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Spacelike Surfaces with Harmonic

Inverse Mean Curvature

By Atsushi Fujioka∗† and Jun-ichi Inoguchi‡

Abstract. We study fundamental properties of spacelike surfaces
with harmonic inverse mean curvature in Lorentzian space forms. Fur-
ther we classify spacelike Bonnet surfaces with constant curvature in
Lorentzian space forms.

Introduction

Surfaces with nonzero constant mean curvature (CMC surfaces) in Rie-

mannian and Lorentzian 3-space forms have been studied extensively. (See

[1]-[3], [5]-[8], [13], [18], [28], [30]-[31] and references therein.)

As is well known, since the Gauss-Codazzi equations of an umbilic free

CMC surface can be transformed to Sinh-Laplace equation, we can apply

methods in the theory of integrable systems to the study of CMC sur-

faces. The starting point of such methods is a zero curvature representation

(ZCR), more precisely, a representation of the Gauss-Codazzi equations in

a form of compatibility condition for the Lax equations with spectral pa-

rameter.

From the view point of integrability theory, it is natural to consider the

following problem:

What kinds of surfaces can be considered as natural generalisations of

CMC surfaces?

In 1994, Bobenko [8] has introduced the notion of surfaces with har-

monic inverse mean curvature in Euclidean 3-space E3 (HIMC surfaces). A
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surface in E3 is said to be a surface with harmonic inverse mean curvature

if the reciprocal of the mean curvature is a harmonic function. He showed

that HIMC surfaces are natural generalisation of CMC surfaces in terms

of integrability theory. In fact, he showed HIMC surfaces admit ZCR with

variable spectral parameter. The first named author [19] generalised the no-

tion of HIMC surface to surfaces in Riemannian 3-space forms. He obtained

immersion formulae for HIMC surfaces. Furthermore he established Law-

son type correspondences between HIMC surfaces in Riemannian 3-space

forms.

Fokas and Gelfand [17] found another characterisation of HIMC surfaces.

They showed that the class of HIMC surfaces (including CMC surfaces) is

the only class of surfaces which admit a Lie-point group of symmetries.

Further, Bobenko, Eitner and Kitaev [12] have developed detailed study

on HIMC surfaces. In the general class of HIMC surfaces they distinguished

a subclass of θ-isothermic HIMC surfaces. They showed that Gauss equa-

tion of θ-isothermic HIMC surface reduce to the ordinary differential equa-

tion:

(∗)
(
q′′(t)

q′(t)

)′
− q′(t) = S(t)

(
2− q2(t) + c

q′(t)

)
, q′(t) < 0, c > 0.

This ordinary differential equation is called the generalised Hazzidakis equa-

tion. Bobenko, Eitner and Kitaev solved the generalised Hazzidakis equa-

tion (∗) in terms of Painlevé transcendents PV and PV I .

The authors are interested in the study of following generalisation of (∗):

(�±
c )

(
q′′(t)

q′(t)

)′
− q′(t) = S(t)

(
2− q2(t) + c

q′(t)

)
, ±q′(t) > 0, c ∈ R.

We shall also call this equation the generalised Hazzidakis equation. In this

paper we shall show that if c = θ2 > 0 then a solution q(t) to (�+
c ) describes

a spacelike surface with harmonic inverse mean curvature in Minkowski

3-space E3
1. Furthermore a solution q(t) describes a spacelike Bonnet sur-

face in pseudo hyperbolic space of constant curvature −1/θ2 if θ �= 0 and

spacelike Bonnet surface in 3-space E3
1 if θ = 0.

We would like to remark that solutions q(t) to (�−
c ) with c = −θ2

describes timelike HIMC surfaces in E3
1, timelike Bonnet surfaces in E3

1 if
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θ = 0 and Bonnet surfaces in hyperbolic 3-space if θ �= 0. For more details

we refer to [22] and [23].

On the other hand it is also interesting to generalise CMC surfaces in

terms of variational problem. So called H-surface equations are examples

of such generalisations. The first named author introduced gauge-theoretic

equations whose solutions are considered as a generalisation of surfaces

with prescribed mean curvature in Riemannian 3-space forms [18]. Further

we obtained a characterisation of HIMC surfaces in terms of a reduction

condition for H-surfaces equations [21].

In this paper we shall introduce the notion of spacelike surfaces with

harmonic inverse mean curvature (SHIMC surfaces) in Lorentzian 3-space

forms and study their fundamental properties. Furthermore we shall apply

our results on SHIMC surfaces to the classification of spacelike Bonnet

surfaces with constant curvature.

The authors would like to thank Dr. H. Kawamuko and M. Taneda for

their advices on proof of Proposition 6.9.

1. Models for Lorentzian Space Forms

First of all, we shall describe complete connected Lorentzian manifolds

of constant curvature explicitly for later use.

Let En
ν be a semi-Euclidean n-space of index ν, that is, Cartesian n-

space Rn(ξ1, ..., ξn) with scalar product 〈·, ·〉 of index ν. The scalar product

〈·, ·〉 is expressed as 〈·, ·〉 = −
∑ν

i=1 dξ
2
i +

∑n
i=ν+1 dξ

2
i in terms of natural

coordinates.

A semi-Euclidean n-space En
ν is a complete connected and simply con-

nected flat semi- Riemannian manifold. For n ≥ 2, En
1 is called a Minkowski

n-space. Semi-Euclidean space En
ν contains two kinds of central hyper-

quadrics:

Sn
ν (r) = {ξ ∈ En

ν | 〈ξ, ξ〉 = r2},

Hn
ν−1(r) = {ξ ∈ En

ν | 〈ξ, ξ〉 = −r2}.

The hyperquadrics Sn
ν (r) and Hn

ν−1(r) are called pseudosphere of radius

r and pseudohyperbolic space of radius r respectively. The pseudosphere

Sn
ν (r) is a semi-Riemannian manifold of index ν and of constant curvature

1/r2. The pseudohyperbolic space is a semi-Riemannian manifolds of index
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ν − 1 and of constant curvature −1/r2. Note that these hyperquadrics are

not necessarily simply connected. For n ≥ 2, Sn
1 = Sn

1 (1) is called a de

Sitter n-space and Hn
1 = Hn

1 (1) is called an anti de Sitter n-space.

In this paper we shall denote by M3
1(c) the following model spaces. (c = 0

or ±1.)

c = 0 : M3
1(0) = E3

1, the Minkowski 3-space,

c = 1 : M3
1(1) = S3

1 , the de Sitter 3-space,

c = −1 : M3
1(−1) = H3

1 , the anti de Sitter 3-space.

We shall call Lorentzian 3-manifolds M3
1(c), Lorentzian 3-space forms.

Note that Minkowski 3-space and de Sitter 3-space are simply connected

but anti de Sitter 3-space is not.

For more details on Semi-Riemannian geometry, we refer to O’Neill’s

textbook [29].

2. Split-quaternion Formalism

To study spacelike surfaces in Minkowski 3-space E3
1 by the methods

of integrability theory, it is convenient to use 2 by 2 matrix-formalism.

Our idea for this purpose is to identify the Minkowski 3–space with the

imaginary part Im H′ of the split-quaternion algebra H′.
In this section we shall summarise the fundamental equations of spacelike

surfaces for later use.

Let M be a connected 2-manifold and F : M → E3
1 an immersion. The

immersion F is said to be spacelike if the induced metric of M is positive

definite. Hereafter we may assume that M is an orientable spacelike surface

in E3
1 immersed by F .

The induced Riemannian metric I (the first fundamental form) of a

spacelike surface M determines a conformal structure on M . We treat M

as a Riemann surface with respect to this conformal structure and F as a

conformal immersion. Let z = x+
√
−1y be a local complex coordinate of

M . The induced metric I of M can be written as

(2.1) I = eudzdz̄ = eu(dx2 + dy2).

Since the immersion F is conformal, partial derivatives of F satisfy the

following formulae.

(2.2) 〈Fz, Fz〉 = 〈Fz̄, Fz̄〉 = 0, 〈Fz, Fz̄〉 =
1

2
eu.
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Here we denote the complex bilinear extension of the Minkowski metric by

the same letter. Let N be a unit normal vector field to M . Then the vector

fields N , Fz and Fz̄ define a moving frame along F .

The compatibility conditions (Gauss-Codazzi equations) of the moving

frame equations have the following form:

(G0) uzz̄ −
1

2
H2eu + 2|Q|2e−u = 0,

(C0) Q̄z =
eu

2
Hz̄, Qz̄ =

eu

2
Hz.

Here H is the mean curvature of M defined by H = −2e−u〈Fzz̄, N〉. The

function Q = −〈Fzz, N〉 defines a global 2-differential Q# = Qdz2 on M .

The differential Q# is called the Hopf differential of M .

Now, let us denote the algebra of split-quaternions by H′ and its natural

basis by {1, i, j′, k′}. The multiplication of H′ is defined as follows:

(2.3) ij′ = −j′i = k′, j′k′ = −k′j′ = −i, k′i = −ik′ = j′,

i2 = −1, j
′2 = k

′2 = 1.

An element ξ = ξ01 + ξ1i + ξ2j
′ + ξ3k

′ ∈ H′ is called a split-quaternion.

For a split-quaternion ξ, the conjugate ξ̄ of ξ is defined by ξ̄ = ξ01− ξ1i−
ξ2j

′− ξ3k′. It is easy to see that −ξξ̄ = −ξ2
0 − ξ2

1 + ξ2
2 + ξ2

3 . The algebra H′

is naturally identified with a semi-Euclidean 4-space E4
2

E4
2 = (R4(ξ0, ξ1, ξ2, ξ3), −dξ2

0 − dξ2
1 + dξ2

2 + dξ2
3).

Let G = {ξ ∈ H′ | ξξ̄ = 1} be the multiplicative group of timelike unit

split-quaternions. The Lie algebra g of G is the imaginary part of H′, that

is,

g = Im H′ = {ξ1i + ξ2j
′ + ξ3k

′ | ξ1, ξ2, ξ3 ∈ R}.

The Lie algebra g is naturally identified with a Minkowski 3-space

E3
1 = (R3(ξ1, ξ2, ξ3), −dξ2

1 + dξ2
2 + dξ2

3)
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as a metric linear space.

We shall use the standard matricial expression of H′ in M2C:

(2.4) 1 ←→
(

1 0

0 1

)
, i ←→

(√
−1 0

0 −
√
−1

)
,

j′ ←→
(

0 −
√
−1√

−1 0

)
, k′ ←→

(
0 1

1 0

)
.

Under the identification (2.4), the group G of timelike unit split-qua-

ternions corresponds to an indefinite special unitary group (see [29, p.324].)

SU1(2) =

{(
α β̄

β ᾱ

) ∣∣∣ − |α|2 + |β|2 = −1, α, β ∈ C

}
.

The semi-Euclidean metric of H′ corresponds to the following scalar product

on M2C.

(2.5) 〈X,Y 〉 =
1

2
{tr(XY )− tr(X)tr(Y )}

for all X, Y ∈ M2C. The metric of G induced by (2.5) is a bi-invariant

Lorentz metric of constant curvature−1. Hence the Lie groupG is identified

with an anti de Sitter 3-space H3
1 of constant curvature −1. (See [29].)

Now, we shall rewrite the Gauss-Codazzi equations (G0) and (C0) in 2

by 2 matrix-form. Let F : M → E3
1 be a spacelike surface with a moving

frame (N, Fz, Fz̄) as before. Recall that SU1(2) is the double covering

group of O++
1 (3). Let us take an SU1(2)-valued framing Φ. We shall define

a framing Φ by

(2.6) Ad(Φ)(i, j′, k′) = (N, e−
u
2Fx, e

−u
2Fy).

The H
′
-valued function Φ satisfies the following system of linear differ-

ential equations:

(2.7)
∂

∂z
Φ = ΦU,

∂

∂z̄
Φ = ΦV,

(2.8) U =

( 1
4uz

H
2 e

u
2

Qe−
u
2 −1

4uz

)
, V =

(−1
4uz̄ Q̄e−

u
2

H
2 e

u
2

1
4uz̄

)
.
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3. Spacelike Surfaces in H3
1

In this section, we shall describe the fundamental equations of spacelike

surfaces in anti de Sitter 3-space H3
1 .

As we saw in the preceding section, H3
1 is naturally identified with the

indefinite special unitary group G = SU1(2) with biinvariant Lorentz metric

〈·, ·〉 defined by (2.5). The Lie group G can be characterised by i′ as follows:

G =
{
g ∈ M2C | g i′ g∗ = i′

}
.

It is easy to see that

〈X,X〉 = −detX = −1

2
tr(i′X∗i′X)

for all X ∈ H′ under the identification (2.4). The Lie group G × G acts

transitively and isometrically on H3
1 as follows:

µH : (G×G)×H3
1 −→ H3

1 , µH(g1, g2)X = g1 X g−1
2

for (g1, g2) ∈ G × G, X ∈ H3
1 . The isotropy subgroup ∆ of G × G at 1 is

the diagonal subgroup of G×G, that is, ∆ = {(g1, g1) | g1 ∈ G}. Hence the

anti de Sitter 3-space H3
1 is represented as a Lorentzian symmetric space:

H3
1 = (G×G)/∆ =

{
g1g

−1
2 | (g1, g2) ∈ G×G

}
.

Note that the Lie group G × G is a double covering group of the identity

component O++
2 (4) of the full isometry group O2(4) of H3

1 [29, p. 238]. The

natural projection pH : G × G → H3
1 is given explicitly by pH(g1, g2) =

µH(g1, g2)1 = g1g
−1
2 , (g1, g2) ∈ G×G.

Let F : M → H3
1 ⊂ H′ be a spacelike surface and z = x+

√
−1y a local

complex coordinate. Then the induced metric I can be written as

I = eudzdz̄.

We can take a moving frame σ along F defined by σ = (F,N, Fz, Fz̄). The

moving frame σ satisfies the following Frenet (Gauss-Weingarten) equa-

tions:

(3.1) σz = σ U , σz̄ = σ V
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U =




0 0 0 eu

2

0 0 Q H
2 e

u

1 H uz 0

0 2Qe−u 0 0


 , V =




0 0 eu

2 0

0 0 H
2 e

u Q̄

0 2Q̄e−u 0 0

1 H 0 uz̄


 ,

where H = −2eu〈Fzz̄, N〉 is the mean curvature of M and Q = −〈Fzz, N〉.
The function Q defines a global 2-differential on M as like in Section 2. The

Gauss-Codazzi equations for (M,F ) have the following form:

(G−1) uzz̄ −
1

2
(H2 + 1)eu + 2|Q|2e−u = 0,

(C−1) Q̄z =
eu

2
Hz̄, Qz̄ =

eu

2
Hz.

4. Spacelike Surfaces in S3
1

In this section we shall discuss the 2 by 2 matrix-model of the de Sitter

3-space.

Let {1, i, j′,k′} be the natural basis of split-quaternion algebra H′ as

before. In this section, instead of the complex structure i, we use the

following split-complex structure i′:

(4.1) i′ =

(
1 0

0 −1

)
.

It is easy to see that i
′2 = 1. The linear space H spanned by 1, i′, j′ and

k′ is the linear space of all Hermitian 2-matrices:

H =

{(
ξ0 + ξ1 ξ3 −

√
−1ξ2

ξ3 +
√
−1ξ2 ξ0 − ξ1

)∣∣∣ ξ0, ξ1, ξ2, ξ3 ∈ R

}
.

On the linear space H, The following scalar product (·, ·)

(4.2) (X,Y ) = −1

2
tr(j′X j′Y t)

gives a Minkowski metric. In fact under the identification:

(4.3) ξ = ξ01 + ξ1i
′ + ξ2j

′ + ξ3k
′ ←→ Ξ =

(
ξ0 + ξ1 ξ3 −

√
−1ξ2

ξ3 +
√
−1ξ2 ξ0 − ξ1

)
,
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the scalar product (·, ·) corresponds to the Minkowski metric

(ξ, η) = −ξ0η0 + ξ1η1 + ξ2η2 + ξ3η3.

Hence the metric linear space (H, (·, ·) ) is identified with Minkowski 4-

space E4
1(ξ0, ξ1, ξ2, ξ3). See Aiyama and Akutagawa [1] and Bryant [13].

However our description is slightly different from [1] and [13]. This matrix

model is suitable for our approach. Note that det Ξ = −(Ξ,Ξ) under (4.3).

The de Sitter 3-space S3
1 is represented by

S3
1 = {Ξ ∈ H | det Ξ = −1}.

The special linear group SL2C acts transitively and isometrically on S3
1 as

follows

µS : SL2C× S3
1 → S3

1 , µS(g) = g X g∗.

Here g∗ denotes the transposed complex conjugate of g. The de Sitter space

S3
1 is a homogeneous manifold of SL2C. The isotropy subgroup of SL2C at

i′ is G = SU1(2). The special linear group SL2C is a complexification of G.

Hence the de Sitter 3-space S3
1 is represented as S3

1 = GC/G.

It is well known that SL2C is a double covering group of the full isom-

etry group O1(4) of S3
1 . In particular GC/G is a Lorentzian symmet-

ric space. The natural projection pS : GC → GC/G is given explicitly

pS(g) = µS(g) i′ = g i′ g∗, g ∈ GC.

Let F : M → S3
1 be a spacelike surface and z = x +

√
−1y a local

complex coordinate. The induced metric I of M can be written as

I = eudzdz̄.

Let N be a unit normal vector field to M in S3
1 . Since F is conformal, we

get

(4.4) (F, F ) = 1, (Fz, Fz) = (Fz̄, Fz̄) = 0, (Fz, Fz̄) =
1

2
eu.

As in the geometry of spacelike surfaces in E3
1, the function

Q = −(Fzz̄, N)
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defines a global 2-differential Q# = Qdz2 on M . The differential Q# is also

called the Hopf differential of M .

The vector fields N, F, Fz, Fz̄ define a moving frame σ = (N,F, Fz, Fz̄).

The Frenet equations for σ are slightly different from (3.1).

(4.5) σz = σ U , σz̄ = σ V,

U =




0 0 Q H
2 e

u

0 0 0 −1
2e

u

H 1 uz 0

2Qe−u 0 0 0


 , V =




0 0 H
2 e

u Q̄

0 0 −1
2e

u 0

2Q̄e−u 0 0 0

H 1 0 uz̄


 .

Here H = −2e−u(Fzz̄, N) is the mean curvature of M . The compatibility

condition (Gauss–Codazzi equations) of (4.5) has the following form:

(G1) uzz̄ −
1

2
(H2 − 1)eu + 2|Q|2e−u = 0,

(C1) Q̄z =
eu

2
Hz̄, Qz̄ =

eu

2
Hz.

Comparing Gauss-Codazzi equations (Gc)− (Cc), c = ±1, 0 we can deduce

that spacelike CMC surfaces in S3
1 with mean curvature H2 > 1 locally

corresponds to spacelike CMC surfaces in H3
1 and E3

1.

In hyperbolic 3-space H3, global properties of CMC surfaces are influ-

enced by the range of mean curvature. For example, there are no compact

CMC surfaces in H3 with mean curvature 0 < H2 < 1. On the other hand

there are many compact CMC surfaces with H2 > 1. In particular Bobenko

[6] classified all CMC tori in H3. In addition CMC surfaces with H2 > 1

locally corresponds to CMC surfaces in S3 and E3. (so-called Lawson cor-

respondences.) However CMC surfaces in H3 with H2 < 1 have no Lawson

correspondents in S3 and E3.

In S3
1 compactness is very strong restriction for spacelike CMC surfaces.

In fact Akutagawa and Ramanathan obtained the following fundamental

result. (See also M. Dajczer and K. Nomizu [16] and H. Mori [28].)

Theorem 4.1 ([3], [31]).
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Let F : M → S3
1 be a complete spacelike surface with nonzero constant

mean curvature. Then

(1) M is compact if and only if H2 < 1. In this case M is congruent to a

totally umbilic 2-sphere of constant curvature 1−H2:

F : S2(1/
√

1−H2) ⊂ E3(x1, x2, x3)→ S3
1 ⊂ H ;

F (x1, x2, x3) =

( H√
1−H2

+ x1 x3 −
√
−1x2

x3 +
√
−1x2

H√
1−H2

− x1

)
.

(2) If H2 ≡ 1 then M is a flat totally umbilic surface. More precisely, M

is congruent to a parabolic type spacelike surface of revolution:

F : E2(x, y)→ S3
1 ⊂ H ; F (x, y) =

(
1 y −

√
−1x

y +
√
−1x x2 + y2

)
.

Remark. In the case H2 > 1, complete spacelike surfaces with mean

curvature H2 > 1 are not unique.

It is easy to find totally umbilic spacelike surface with constant mean

curvature such that H2 > 1. In fact for any H ∈ R such that H2 > 1, we

can construct an isometric and totally umbilical immersion of hyperbolic

2-space H2(1/
√
H2 − 1) of constant curvature 1−H2 < 0 into S3

1 by

F : H2(1/
√
H2 − 1) ⊂ E3

1(x0, x1, x2)→ S3
1 ⊂ H ;

F (x0, x1, x2) =

(
x0 + x1

H√
H2−1

−
√
−1x2

H√
H2−1

+
√
−1x2 x0 − x1

)
.

However there exist complete nontotally umbilic spacelike surfaces of

constant mean curvature H2 > 1 in S3
1 . For example, spacelike surfaces of

revolution provide such examples. See Akutagawa [3] and Mori [28]. More

generally Mori [28] classified constant mean curvature spacelike surfaces of

revolution in S3
1 . See also Ramanathan [31, Example 10, 11] and [16].

Tribuzy [32] and Umehara [33] proved the nonexistence of compact Bon-

net surfaces with nonconstant mean curvature in Riemannian 3-space forms.

In Lorentzian 3-space forms compactness is still a strong restriction for

spacelike Bonnet surface. It is well known that only Lorentzian 3-space
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form which admits compact spacelike surfaces is S3
1 . We saw as above only

compact spacelike CMC surfaces are totally umbilic 2-spheres. Recently

Aĺıas proved the nonexistence of compact spacelike Bonnet surfaces.

Theorem 4.2 ([4]). There are no compact spacelike Bonnet surfaces

in Lorentzian 3-space forms. Moreover there are no compact spacelike sur-

faces which admit Bonnet pairs.

These facts tell us that geometry of spacelike surfaces in S3
1 is very

complicated and not a cheap analogue of geometry of surfaces in H3. For

more details on Lawson correspondences between spacelike CMC surfaces

in M3
1(c) we refer to [1]-[2].

Remark. The definitions of H and Q for surfaces in M3
1(c) have op-

posite sign of those in Chen and Li [15].

5. Spacelike HIMC Surfaces in Minkowski 3-space

In this section we shall insert a variable spectral parameter λ in the

sense of Butsev, Zakharov and Mikhairov [14]— i.e., an additional complex

parameter λ depends on the coordinates z and z̄— in the Lax pair (2.8).

Further we shall introduce the notion of spacelike HIMC surfaces.

For the Lax pair {U, V } in (2.8) we shall introduce an additional complex

parameter λ in the following way:

(5.1) Uλ =

( 1
4uz

H
2 λe

u
2

Qe−
u
2 −1

4uz

)
, Vλ =

( −1
4uz̄ Q̄e−

u
2

H
2 λ

−1e
u
2

1
4uz̄

)
.

Then the compatibility condition

(5.2)
∂

∂z
Vλ −

∂

∂z̄
Uλ + [ Uλ, Vλ ] = 0

for the deformed Lax pair Uλ, Vλ yields

(G0) uzz̄ −
1

2
H2eu + 2|Q|2e−u = 0,

(5.3) Qz̄ =
eu

2
(Hλ−1)z, Q̄z =

eu

2
(Hλ)z̄.
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The Lax pair Uλ, Vλ describe a spacelike surface in E3
1 if and only if the

equations (5.3) are consistent with Codazzi equation (C0). Hence the mean

curvature H and the spectral parameter λ should satisfy the following equa-

tions

(5.4)
∂

∂z̄
{H(1− λ)} = 0,

∂

∂z
{H(1− λ−1)} = 0.

These equations (5.4) can be easily solved as follows:

(5.5) H =
1

h+ h̄
, λ = − h̄

h
,

where h(z) is a holomorphic function. It is easy to see that the mean

curvature H is invariant under the one parametric deformation

h �−→ h+
1

2
√
−1τ

, τ ∈ R.

Under this deformation, spectral parameter λ is transformed as

λ �−→ 1− 2
√
−1h̄τ

1 + 2
√
−1hτ

, τ ∈ R.

The form (5.5) of H is equivalent to the harmonicity of 1/H. As in the

Euclidean surface geometry [8], we shall call a spacelike surface M in E3
1, a

spacelike surface with harmonic inverse mean curvature (SHIMC surface)

if 1/H is a harmonic function.

Example 5.1 (SHIMC cylinders). Let a(x) = (a1(x), a2(x)) be a space-

like curve in Minkowski plane E2
1(ξ1, ξ2) parametrised by the arclength pa-

rameter x ∈ I. Here I is an interval. A cylinder over the curve a is a space-

like surface in E3
1 defined by the immersion F : I ×R −→ E3

1; F (x, y) =

(a1(x), a2(x), y). The fundamental quantities of F is given as follows

I = dx2 + dy2, II = (a′1a
′′
2 − a′′1a

′
2)dx

2 = −κ2dx2.

Here the prime denotes the differentiation with respect to x and κ is the

curvature of a. (See Appendix.) In particular the mean curvature H of F is
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H = κ/2. Since the mean curvature H depends only on x, the harmonicity

of 1/H implies that the reciprocal ρ of the curvature κ is a linear function

of x, namely ρ has the form ρ = C1x+ C2, C1, C2 ∈ R.

We can see in Appendix that spacelike curves with reciprocal curvature
1

C1x+C2
are logarithmic pseudo-spirals or spacelike hyperbolas. Hence all

the SHIMC cylinders are congruent to cylinders over a logarithmic pseudo-

spiral or a spacelike hyperbola.

In [25], we have obtained a one-parameter isometric deformation of

spacelike surfaces with constant mean curvature (SCMC surfaces). For

SHIMC surfaces in E3
1, we get the following one-parameter family of con-

formal deformation.

Proposition 5.2 (Sym formula). Let F : M → E3
1 be a spacelike

surface with harmonic inverse mean curvature

H =
1

h(z) + h̄(z)
,

where h(z) is a holomorphic function. Then F has the following zero cur-

vature representation with variable spectral parameter λ:

(5.6)
∂

∂z
Φλ = ΦλUλ,

∂

∂z̄
Φλ = ΦλVλ,

Uλ =

( 1
4uz

H
2 λe

u
2

Qe−
u
2 −1

4uz

)
, Vλ =

( −1
4uz̄ Q̄e−

u
2

H
2 λ

−1e
u
2

1
4uz̄

)
,

where λ = (1−2
√
−1h̄τ)/(1+2

√
−1hτ), τ ∈ R. Let Φλ(z, z̄) be a solution

of (5.6). Then

(5.7) Fλ =
∂

∂τ
Φλ · Φ−1

λ , Nλ = Ad(Φλ) i

describes a real loop of SHIMC surfaces through F = F1 with Gauss map-

ping Nλ. The fundamental associated quantities of Fλ are given as follows:

(5.8) Iλ = euλdzdz̄, euλ =
eu

(1 + 2
√
−1hτ)2(1− 2

√
−1h̄τ)2

,
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(5.9)
1

Hλ
= hλ + h̄λ, hλ =

h

(1 + 2
√
−1hτ)

,

(5.10) Q#
λ =

Q#

(1 + 2
√
−1hτ)2

,

(5.11) Kλ = (1 + 2
√
−1hτ)(1− 2

√
−1h̄τ)K,

(5.12) H2
λ/Kλ ≡ H2/K.

Proof. Differentiating (5.7),

∂

∂z
Fλ = Ad(Φλ)

∂

∂τ
Uλ,

∂

∂z̄
Fλ = Ad(Φλ)

∂

∂τ
Vλ.

Direct calculations show

euλ = 2〈 ∂
∂z

Fλ,
∂

∂z̄
Fλ〉 =

eu

(1 + 2
√
−1hτ)2(1− 2

√
−1h̄τ)2

,

Hλ =2e−uλ〈 ∂
∂z

Fλ,
∂

∂z̄
Nλ〉 = −e−uλ tr

{
∂

∂t
Uλ[Vλ, i]

}

=
1

hλ + h̄λ
,

Qλ = 〈 ∂
∂z

Fλ,
∂

∂z
Nλ〉 =

1

2
tr

{
∂

∂τ
Uλ[Uλ, i]

}
=

Q

(1 + 2
√
−1hτ)2

. �

The formula (5.12) implies that the members of the one parameter family

Fλ have same ratio of the principal curvatures.
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6. Christoffel Transformations of SHIMC Surfaces

It is well known that every umbilic free SCMC surfaces in E3
1 pos-

sess isometric and principal curvature preserving deformations [25], [30].

Thus spacelike Bonnet surfaces may be thought as another generalisation

of SCMC surfaces.

Wang [34] studied spacelike and timelike Bonnet surfaces in E3
1. More

generally, Chen and Li [15] studied spacelike Bonnet surfaces in Lorentzian

space forms. In this section we shall study the relation between SHIMC

surfaces and spacelike Bonnet surfaces.

We shall start with the following definition.

Definition 6.1. Let F : M →M3
1(c) be a spacelike immersion. Then

(M,F ) is said to be isothermic if there exists a local isothermic coordinate

system around any point of M .

Here an isothermic coordinate system is a local isothermal coordinate

system such that both of parameter curves are curvature lines. (i.e., prin-

cipal curves.)

The isothermic property for spacelike surfaces in M3
1(c) can be reformu-

lated as follows. (cf. [8, p. 93 ].)

Proposition 6.2. A spacelike surface (M,F ) in M3
1(c) is isothermic

if and only if there exists a local complex coordinate z around any point of

M such that the Hopf differential Q takes the following form:

(6.1) Q(z, z̄) =
1

2
q(z, z̄)f(z).

Here q is a real smooth function and f is a holomorphic function.

Typical examples of isothermic spacelike surfaces are spacelike surfaces

of revolution in E3
1. We shall recall the notion of spacelike surface of revolu-

tion in E3
1. A revolution of E3

1 is a linear isometry which lies in the identity

component of the Lorentz group O1(3). Every revolution fixes a line point-

wisely. Such a fixed line of a revolution is called the axis of revolution.

Hence revolutions of E3
1 can be characterised by the causal character of the

axes.
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By a spacelike surfaces of revolution in E3
1 we mean a spacelike surface

obtained by revolving about an axis a regular curve lying in some plane

containing the axis. We refer to McNertney [27] and Hano and Nomizu

[24] for more details on surfaces of revolution in E3
1. One can easily show

that spacelike surfaces of revolution are isothermic in much the same way

in [12].

Example 6.3 (Spacelike axis). Let F : M −→ E3
1 be a spacelike sur-

face of revolution with spacelike axis. Then there exists an isothermic

parametrisation

F (x, y) =
1

a

(
e

u(x)
2 cosh(ay), e

u(x)
2 sinh(ay), c(x)

)
, a ∈ R∗

so that

c′(x)2e−u(x) −
(
u′(x)

2

)2

= a2.

With respect to this isothermic coordinates, the mean curvature is given by

H(x) = − 1

8c′(x)
{2u′′(x) + u′(x)2 + 4a2}, c′′(x) = −eu(x)u′(x)H(x).

Example 6.4 (Timelike axis). Let F : M −→ E3
1 be a spacelike

surface of revolution with timelike axis. Then there exists an isothermic

parametrisation

F (x, y) =
1

a

(
c(x), e

u(x)
2 cos(ay), e

u(x)
2 sin(ay),

)
, a ∈ R∗

so that

−c′(x)2e−u(x) +

(
u′(x)

2

)2

= a2.

With respect to this isothermic coordinates, the mean curvature is given by

H(x) = − 1

8c′(x)
{−2u′′(x)− u′(x)2 + 4a2}, c′′(x) = −eu(x)u′(x)H(x).
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Example 6.5 (Null axis). Let F : M −→ E3
1 be a spacelike surface of

revolution with null axis. Then there exists a null frame {L1, L2, L3} and

an isothermic parametrisation

F (x, y) =

(
a(x), b(x)− y2

2
a(x), ya(x)

)
, a ∈ R∗

relative to the null frame {L1, L2, L3} so that

2a′(x)b′(x) = a2(x).

Here a null frame means a basis of E3
1 such that

〈L1, L1〉 = 〈L2, L2〉 = 0, 〈L1, L2〉 = 1,

〈L3, L3〉 = 1, 〈L1, L3〉 = 〈L2, L3〉 = 1.

With respect to this isothermic parametrisation, the mean curvature of F

is given by

H(x) =
a′′(x)a(x) + a′(x)2

4a(x)2a′(x)
.

The following propositions 6.6–6.8 can be easily checked. (cf. [12, Sec-

tion 4].)

Proposition 6.6. For any SHIMC surface of revolution with noncon-

stant mean curvature, there exists an isothermic coordinates (x, y) such that

H(x) = 1/x.

Proposition 6.7. Let F : M −→ E3
1 be a spacelike surface of revo-

lution with spacelike axis parametrised as in Example 6.3 with harmonic

inverse mean curvature 1/H = x and a = 2. Then there exists a real valued

function φ such that

eu(x) =
x2

4

(
φ′(x) + 2 coshφ(x)

)2
,

c(x) =
x2

4
{φ′(x)2 − 4 cosh2 φ(x)}.
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Furthermore φ is a solution to the ordinary differential equation:

(6.2) x
{
φ′′(x)− 2 sinh(2φ(x))

}
− φ′(x)− 2 coshφ(x) = 0.

Remark. Every solution φ to

φ′(x) + 2 coshφ(x) = 0

solves (6.2). In this case φ(x) can be solved by quadratures:

x+ C = −1

2

∫
dφ

coshφ
= − tan−1 eφ, C ∈ R.

Proposition 6.8. Let F : M −→ E3
1 be a spacelike surface of rev-

olution with timelike axis parametrised as in Example 6.4 with harmonic

inverse mean curvature 1/H = x and a = 2. Then there exists a real valued

function φ such that

eu(x) =
x2

4

(
φ′(x)± 2 sinhφ(x)

)2
,

c(x) = −x
2

4
{φ′(x)2 − 4 sinh2 φ(x)}.

Furthermore φ is a solution to the ordinary differential equation:

(6.3) x
{
φ′′(x)− 2 sinh(2φ(x))

}
− φ′(x)∓ 2 sinhφ(x) = 0.

Remark. Every solution φ to

φ′(x)± 2 sinhφ(x) = 0

solves (6.3). In this case φ(x) can be solved by quadratures:

x+ C = ∓1

2

∫
dφ

sinhφ
= ∓ log tanh

φ

2
, C ∈ R.
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Remark. The ordinary differential equations (6.2) and (6.3) have sim-

ilar forms to the third Painlevé equation. More precisely let ω = ω(x) be a

solution to the third Painlevé equation:

(PIII) ω′′ − 1

ω
(ω′)2 +

ω′

x
− αω2 − α

x
− γ

ω3
− γ

ω
= 0

with unit modulus, i.e., ω(x) = e
√
−1ψ(x) for some real valued function ψ(x).

Then (PIII) is equivalent to the following ordinary differential equation

(trigonometric form of PIII):

x
{
ψ′′(x) + 2γ sin(2ψ(x))

}
+ ψ′(x) + 2α sinψ(x) = 0.

In addition, if we complexified the above third Painlevé equation in trigono-

metric form as above and put ψ =
√
−1φ then φ satisfies

x
{
φ′′(x) + 2γ sinh(2φ(x))

}
+ φ′(x) + 2α sinhφ(x) = 0.

On the other hand SHIMC surfaces of revolution with null axis have

restrictive shape. In fact such surfaces can be classified as follows:

Proposition 6.9. Let F : M −→ E3
1 be a spacelike surface of revolu-

tion with null axis parametrised as in Example 6.5 with harmonic inverse

mean curvature 1/H = 4x. Then the function a(x) is a solution to the

following ordinary differential equation:

(6.4) x
{
a′′(x)a(x) + a′(x)2

}
= a2(x)a′(x).

This ordinary differential equation is explicitly solved by quadratures. In

fact the solution a(x) is given as follows.

(6.5) 12

∫
a

2a3 + 3a2 + c1
da = 2 log |x|+ c2, c1, c2 ∈ R.

Proof. The ordinary differential equation (6.4) can be written as

1

2
x(a2(x))′′ = a2(x)a′(x).
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Adding 1
2(a2(x))′ to both hand sides of this equation, we get

1

2
{x(a2(x))′}′ =

1

3
(a3(x))′ +

1

2
(a2(x))′.

Hence we have

1

2
x(a2(x))′ =

a3(x)

3
+
a2(x)

2
+ C, C ∈ R.

This differential equation is solved by quadratures. In fact∫
2a

a3

3 + a2

2 + C
da =

∫
2

x
dx.

Thus we obtain (6.5). �

As in the geometry of surfaces in E3, we can formulate the Christoffel

transformations for isothermic spacelike surfaces. (cf. [8, Proposition 2].)

Proposition 6.10. Let (M,F ) be an isothermic spacelike surface in

E3
1 and (D, z) a simply connected local isothermic coordinate region as in

(6.1). Then the formulae:

(6.6) F ∗
z = e−ufFz̄, F ∗

z̄ = e−uf̄ Fz, N∗ = N

define a spacelike immersion F ∗ : D → E3
1. The conformal structure of D

induced by F ∗ is anti-conformal to the original conformal structure deter-

mined by I. The fundamental quantities of F ∗ are given as follows:

(6.7) eu
∗

= e−u|f |2, H∗ = q, Q∗ =
f

2
H.

Here I = eudzdz̄ is the first fundamental form of the original surface

(M,F ).

The immersion F ∗ is called a Christoffel transform (or dual surface) of

F .

The following two propositions are immediate consequences of (6.6) and

Theorem 6.1 in [15] (see also Lemma 6 in [12]).
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Proposition 6.11. Let (M,F ) be a spacelike Bonnet surface in E3
1.

Then (M,F ) is isothermic and its Christoffel transform is a SHIMC sur-

face.

Proposition 6.12. For any isothermic SHIMC surface in E3
1, its

Christoffel transform is a spacelike Bonnet surface.

The notion of isothermic surfaces can be generalised to the notion of

θ-isothermic surfaces. (cf. [10, Definition 2].)

Definition 6.13. A spacelike surface (M,F ) is said to be ϑ-isothermic

if there exists a local complex coordinate z around any point of M such that

the Hopf differential Q has the following form:

(6.8) Q(z, z̄) =
1

2
(q(z, z̄) +

√
−1ϑ)f(z).

Here q is a real smooth function, f is a holomorphic function and ϑ is a

real constant.

Note that the constant ϑ has no global meaning, in fact, ϑ depends on

the choice of z and f .

For any ϑ-isothermic SHIMC surface in E3
1 we can consider dual Bonnet

surface in H3
1 . (cf. [12, Lemma 10].)

Proposition 6.14. Let (M,F ) be a ϑ-isothermic spacelike surface in

E3
1 and (D, z) a simply connected ϑ-isothermic coordinate region such that

the Hopf differential Q takes the following form:

Q =
1

2
(q +

√
−1ϑ).

Then there exists a spacelike immersion

F ∗ : D −→
{
H3

1 ( 1
|ϑ|), ϑ �= 0,

E3
1, ϑ = 0

with fundamental quantities

eu
∗

= e−u, H∗ = q, Q∗ =
1

2
(H ±

√
−1ϑ).
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The spacelike immersion F ∗ is called a dual surface of F . In particular if F

is a SHIMC surface then F ∗ is a spacelike Bonnet surface and vice versa.

Remark. In section 8, we shall prove a Lawson correspondence be-

tween SHIMC surfaces in Lorentzian space forms. Combining the duality

in the preceding proposition and Lawson correspondence, we get a duality

between SHIMC surfaces and spacelike Bonnet surfaces in H3
1 .

The following proposition is a direct consequence of Definition 6.13. See

[12, Proposition 3].

Proposition 6.15. A ϑ-isothermic spacelike surface with ϑ �= 0 is

isothermic if and only if it is a spacelike Bonnet surface (including spacelike

CMC surface.)

7. Generalised Hazzidakis Equation

In this section we shall study normal forms of Gauss-Codazzi equations

for SHIMC surfaces in E3
1. We assume that the mean curvature H is non

constant in this section.

Let F : M → E3
1 be a spacelike surface and ζ a local complex coordinate.

Differentiating the Codazzi equation:

(C0) eu =
2Qζ̄

Hζ

with respect to ζ, we have

uζ =
Qζζ̄

Qζ̄

− Hζζ

Hζ
.

Inserting this equation into Gauss equation (G0), we get

(7.1)

(
Qζζ̄

Qζ̄

)
ζ̄

−
(
Hζζ

Hζ

)
ζ̄

=
H2

Hζ
Qζ̄ −

|Q|2Hζ

Qζ̄

.

Now we shall consider a SHIMC surface (M,F ) with harmonic inverse mean

curvature

(7.2) H(ζ, ζ̄) =
1

h(ζ) + h̄(ζ̄)
.
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Inserting (7.2) into (C0) we get

(7.3) hζ(ζ)Q̄ζ(ζ, ζ̄) = h̄ζ̄(ζ̄)Qζ̄(ζ, ζ̄).

By using (7.3), the Codazzi equation (C0) can be rewritten as

(7.4) hζ(ζ)

(
Qζζ̄

Qζ̄

)
ζ̄

+Qζ̄ =
|hζ(ζ)|2

(h(ζ) + h̄(ζ̄))2

(
2hζ(ζ) +

|Q|2
Q̄ζ

)
.

As long as h′(ζ) �= 0, we may assume w := h(ζ) as a local complex coor-

dinate. With respect to the local complex coordinate w, Gauss equation

(G0) become:

(7.5)

(
Qww̄

Qw̄

)
w̄

+Qw̄ =
1

(w + w̄)2

(
2 +
|Q|2
Q̄w

)
, Qw̄ = Q̄w.

We should remark that solutions Q(w, w̄) to

(7.6) 2 +
|Q|2
Q̄w

= 0

solve (7.5).

By the Codazzi equtions and the formula 1/H = w + w̄, we get

eu(w,w̄) = −2(w + w̄)2Q̄w = (w + w̄)2|Q(w, w̄)|2.

Hence the solution Q(w, w̄) to (7.6) defines a SHIMC surface with meric:

(7.7) I = eu(w,w̄)dwdw̄ = |Q(w, w̄)|2(w + w̄)2dwdw̄.

(Compare with Euclidean case [12, p. 203].)

Hereafter we restrict our attention to ϑ-isothermic SHIMC surfaces.

Namely we assume

(7.8) Q(w, w̄) =
1

2

(
q(w, w̄) +

√
−1ϑ

)
f(w).
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Throughout this section, to adapt our computation to [12] and avoid a

plethora of unnecessary 1/2’s in the description, we shall use the following

convention:

(7.9) q =
1

2
q, θ :=

1

2
ϑ.

And we call a coordinate w simply a θ-isothermic coordinate in this section.

Inserting (7.8) to (7.3), we get

(7.10) f̄(w̄)qw(w, w̄) = f(w)qw̄(w, w̄).

Now we shall introduce a new complex coordinate z by z =
∫
f(w)dw.

Then the formula (7.8) implies that q depends only on t = −(z + z̄).

We should separate our consideration to the following two cases:

(1) 2 + |Q|2/Q̄w = 0, (2) 2 + |Q|2/Q̄w �= 0.

Case 1: 2 + |Q|2/Q̄w = 0.

In this case, the Hopf differential is given by

(7.11) Q(w, w̄) = f(w)(q(t) +
√
−1θ), q(t) =

{
θ tan( θt2 ), θ �= 0

−2/t, θ = 0.

Next we shall compute the Riemannian metric I. Inserting (7.9) into (7.10),

we have

I = eu(z,z̄)dzdz̄ =
θ2(w(z) + w̄(z̄))2

cos2(θt/2)
dzdz̄,

for θ �= 0 and

I = eu(z,z̄)dzdz̄ =
4(w(z) + w̄(z̄))2

t2
dzdz̄

for θ = 0. The dual surface F ∗ of F with θ �= 0 in pseudo hyperbolic space

of radius 1/(2|θ|) is described by

I∗ =
cos2( θt2 )

θ2(w(z) + w̄(z̄))2
dzdz̄,
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(7.12) Q∗(w, w̄) =
1

2(w(z) + w̄(z̄))2
±
√
−1, H∗(w, w̄) = 2θ tan(

θt

2
).

The formulae (7.12) show that F ∗ is a spacelike Bonnet surface in

H3
1 (1/(2|θ|)) of type D in the classification table due to Chen and Li [15,

Theorem 6.3]. Similary we can compute the dual surface F ∗ of isothermic

SHIMC surface F .

Proposition 7.1. Let (M,F ) be a θ-isothermic SHIMC surface in E3
1

with θ-isothermic coordinate w of the form (7.8)− (7.9). If 2Q̄w + |Q|2 = 0.

Then the fundamental quantities of (M,F ) are given by

Q(w, w̄) =
q(t) +

√
−1θ

f(w(ζ))
, q(t) =

{
θ tan( θt2 ), θ �= 0

−2/t, θ = 0.

H(w, w̄) =
1

w(z) + w̄(z̄)
,

eu(z,z̄) =

{
θ2(w(z)+w̄(z̄))2

cos2(θt/2)
, θ �= 0

4
t2
, θ = 0

The dual surface of (M,F ) is given by the following formulae :

If θ �= 0 then the dual surface F ∗ in H3
1 (1/(2|θ|)) is defined by the folloing

formulae :

eu
∗(z,z̄) =

cos2(θt/2)

θ2(w(z) + w̄(z̄))2
,

Q∗(w, w̄) =
1

2(w + w̄)
±
√
−1, H∗(w, w̄) = 2θ tan(

θt

2
).

The dual surface F ∗ in H3
1 ( 1

2|θ|) is a spacelike Bonnet surface which belongs

to D-family of Chen-Li.

If θ = 0 then the dual surface F ∗ in E3
1 is defined by

eu
∗(z,z̄) =

t2

4
,

Q∗(w, w̄) =
1

2(w + w̄)
, H∗(w, w̄) =

−4

t
.
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The dual surface F ∗ in E3
1 is a spacelike Bonnet surface which belongs to

D-family of Chen-Li.

We shall call SHIMC surface (M,F ) generic if (M,F ) is not dual to a

spacelike Bonnet surface which belongs to D-family.

Case 2: 2 + |Q|2/Q̄w �= 0.

In this case, inserting

Q(w, w̄) = f(w)(q(t) +
√
−1θ)

into (7.3) and the assumption 2+ |Q|2/Q̄w �= 0, we can define the following

function

(7.13) S(t) =
1

|f(w(z))|2(w(z) + w̄(z̄))2
.

Lemma 7.2. Let (M,F ) be a generic θ-isothermic SHIMC surface in

E3
1. Namely a θ-isothermic SHIMC surface such that 2+|Q|2/Q̄w �= 0 Then

with respect to the complex coordinate z =
∫
f(w)dw, the Gauss equation

reduces to the following ordinary differential equation:

(�+
θ2)

(
q′′(t)

q′(t)

)′
− q′(t) = S(t)

(
2− q2(t) + θ2

q′(t)

)
, q′(t) > 0.

Here S(t) is a real analytic function of t = −(z + z̄) away from a discrete

set. With respect to z, fundamental quantities of M are described as

(7.14) eu(z,z̄) = 2q′(t)(w(z) + w̄(z̄))2,

(7.15) Q(z, z̄) =
q(t) +

√
−1θ

f(w(z))
, H(z, z̄) =

1

w(z) + w̄(z̄)
.

The following three lemmata are proved by much the same way in [12].
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Lemma 7.3. Let f(w) be the function in Lemma 7.2. Then f(w) has

the following form:

f(w) =
1

aw2 +
√
−1bw + c

, a, b, c ∈ R.

Lemma 7.4 ([12]). Let (M,F ) be a generic θ-isothermic SHIMC sur-

face in E3
1. Then up to scaling and reparametrisation, its fundamental

quantities (u,Q,H) are given by (7.14)− (7.15) where f(w) and w(z) have

following forms:

f(w) =
1

4
√
−1w

, w(z) = −
√
−1e4

√
−1z,(A)

f(w) =
1

−w2 + 4
, w(z) = 2 coth(2z),(B)

f(w) = 2, w(z) =
z

2
,(C)

f(w) =
1

2w2
, w(z) = − 1

2z
,(D)

f(w) =
1

w2 + 4
, w(z) = −2 cot(2z).(E)

Lemma 7.5. In the preceding lemma, there are following isomorphisms:

A ∼= E and C ∼= D.

Theorem 7.6. There exit three classes- A, B and C- of associated

families of generic θ-isothermic SHIMC surfaces in E3
1. The immersion

function of each family is given by the Sym formula (5.6)− (5.7) in Propo-

sition 5.2, where the data (u,Q,H) in (5.6) are determined by

eu(z,z̄) = 2q′(t)(w(z) + w̄(z̄))2,

Q(z, z̄) =
q(t) +

√
−1θ

f(w(z))
, H(z, z̄) =

1

w(z) + w̄(z̄)
.
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Here q(t) is a solution to the generalised Hazzidakis equation:

(�+
θ2)

(
q′′(t)

q′(t)

)′
− q′(t) = S(t)

(
2− q2(t) + θ2

q′(t)

)
, q′(t) > 0.

Here coefficient function S(t) in the generalised Hazzidakis equation is given

by

Family Coefficient

A-family S(t) = 1/ sin2(2t)

B-family S(t) = 1/ sinh2(2t)

C-family S(t) = 1/t2

Any generic θ-isothermic SHIMC surface belongs to one of these families

A,B or C.

8. Spacelike HIMC Surfaces in M3
1(c)

In this section we shall introduce the notion of spacelike surfaces with

harmonic inverse mean curvature in M3
1(c). First of all, we shall recall the

following two results due to the first-named author [19].

Proposition 8.1. Let I(c) be a 1-dimensional Riemannian manifold

defined by

I(c) =

{
(R, g(c) ) c = 0, 1,

(R \ {±1}, g(c) ) c = −1,

g(c) =
dt2

(1 + ct2)2
.

Let ϕ : (M, z)→ I(c) be a smooth mapping. Then ϕ is a harmonic map

if and only if

(8.1)
∂2ϕ

∂z∂z̄
− 2cϕ

1 + cϕ2

∣∣∣∣∂ϕ∂z
∣∣∣∣
2

= 0.

Note that the Riemannian manifolds I(c) may be considered as 1-di-

mensional Riemannian space forms. The distance function derived from

the metric g(−1) is an example of Hilbert distance on the interval (−1, 1).
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Proposition 8.2. The equation (8.1) can be solved as follows:

ϕ =

{
h+ h̄, c = 0,

h+h̄
1−c|h|2 or 1−c|h|2

h+h̄
, c = ±1,

where h is a holomorphic function.

The following definition may be considered as a generalisation of that in

Section 5.

Definition 8.3. Let F : M → M3
1(c) be a spacelike surface in

Lorentzian 3-space form. Then M is said to be a spacelike surface with

harmonic inverse mean curvature (SHIMC surface) if 1/H is a harmonic

map into I(−c).

Note that surfaces in Riemannian space forms M3
1(c) is HIMC provided

the reciprocal of mean curvature is a harmonic map into I(c).

Hereafter we assume that M is simply connected. We denote CH the

moduli space of conformal immersions of M into M3
1(c) with prescribed H,

namely CH = {F : M →M3
1(c)| conformal spacelike immersion with mean

curvature H }/I0(c).

Here I0(c) is the identity component of the full isometry group of M3
1(c).

Then we can easily deduce (by the fundamental theorem of surface theory)

that

CH ∼= {(u,Q)| solution to (GC)c} .
Here (GC)c denotes the Gauss-Codazzi equations (Gc) and (Cc).

Lawson correspondences between spacelike CMC surfaces in Lorentzian

space forms M3
1(c) can be generalised for SHIMC surfaces.

Theorem 8.4 (Generalised Lawson correspondences).

Let M be a simply connected Riemann surface and h a holomorphic

function on M . We define a function H by Hc := (1+ c|h|2)/(h+ h̄). Then

the following three spaces are mutually isomorphic.

CH0
∼= CH1

∼= CH−1 .
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Proof. First we should remark that if the ambient space is S3
1 then

H2
1 > 1.

Let (u,Q) be a solution of (GCc) for c = ±1. Then (ũ, Q̃) defined by

eũ := |1− ch2 |2 eu, Q̃ := (1− ch2)Q

is a solution to (GC0). �

In the case of spacelike CMC surfaces, Lawson correspondents preserves

Riemannian metrics. However Lawson correspondences for SHIMC surfaces

are not metric preserving correspondence but conformal one. This property

is consistent with the fact that SHIMC surfaces in E3
1 admits conformal one-

parameter deformations described in Proposition 5.2.

Using the Lawson correspondences described above, we can give immer-

sion formulae for SHIMC surfaces in M3
1(c), c = ±1.

Let Φλ be a solution of the zero curvature equation (5.6) with variable

spectral parameter λ. To describe immersion formulae we shall use the

following notational convention.

Φ[τ ] := Φλ, λ = (1− 2
√
−1h̄τ)/(1 + 2

√
−1hτ), τ ∈ R.

Since the zero curvature equation (5.6) is completely integrable, (5.6) have

also solutions for all t ∈ C.

Theorem 8.5 (Immersion formulae).

Let Φ[τ ] : M × C → GC be a complexified solution to (5.2). Then the

followings hold.

(c = 0) For every τ ∈ R,

FE(τ) :=
∂

∂τ
Φ[τ ] · (Φ[τ ])−1, τ ∈ R

describes a SHIMC surface in E3
1 given in Proposition 5.2.

(c = −1) For any distinct τ1, τ2 ∈ R,

FH(τ1, τ2) := µH(Φ[τ1],Φ[τ2]) = Φ[τ1]Φ[τ2]
−1
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is a SHIMC surface in H3
1 with unit normal vector field

N = µH(Φ[τ1],Φ[τ2])i.

(c = 1) Let Φ[
√
−1τ ], τ ∈ R be a complexified solution to (5.6).

Then for every τ ∈ R:

FS(τ) := pS(Φ[
√
−1t]) = Φ[

√
−1t] i′ Φ[

√
−1t]∗

is a SHIMC surface in S3
1 of mean curvature H2 > 1. Its unit normal

vector field is

N = −µS(Φ[0])1.

In particular FH(1
2 ,−1

2) and FS(1
2) are Lawson correspondents of FE(0).

Proof. Direct computations similar to the proof of Proposition 5.2

give the required result. Here we shall give a proof of the case c = −1.

Differentiating FH(τ1, τ2), we have

∂

∂z
FH(τ1, τ2) = µH(U1 − U2),

∂

∂z̄
FH(τ1, τ2) = µH(V1 − V2),

Ui = Φ[τi]
−1 ∂

∂z
Φ[τi], Vi = Φ[τi]

−1 ∂

∂z̄
Φ[τi], i = 1, 2.

Direct calculation show

eu(z,z̄;τ1,τ2) =
(t1 − t2)

2

|(1 + 2
√
−1f(z)τ1)(1 + 2

√
−1f(z)τ2)|2

,

H(z, z̄; τ1, τ2) =
1 + 4|f(z)|2τ1τ2 +

√
−1(τ1 + τ2)(f(z)− f̄(z̄))

(f(z) + f̄(z̄))(τ1 − τ2)
.

In particular if we choose (τ1, τ2) = (1/2,−1/2) then

eu(z,z̄; 1
2
,−1

2
) =

eu(z,z̄)

|1 + f(z)2| , H(z, z̄;
1

2
,
−1

2
) =

1− |f(z)|2
f(z) + f̄(z̄)

.

These formulae imply that FH(1
2 ,

−1
2 ) is the Lawson correspondent of

FE(0). �
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Finally we shall consider SHIMC surfaces in M3
1(±1) with mean curva-

ture H = (h+ h̄)/(1 + c|h|2).
By similar computations to the preceding theorem, one can prove the

following theorem.

Theorem 8.6. Let Ψ[ν] be a solution to

(8.2)
∂

∂z
Ψ[ν] = Ψ[ν]U [ν],

∂

∂z̄
Ψ[ν] = Ψ[ν]V [ν],

(8.3)

U [ν] =

( 1
4uz

1
2λ(Hν − c)e

u
2

Qe−
u
2 −1

4uz

)
,

V [ν] =

( −1
4uz̄ Q̄e−

u
2

1
2 λ̄(Hν + c)e

u
2

1
4uz̄

)
,

λ =
1

ν̄

1 + ch2

ν2 + ch2
, Hν =

νh̄+ ν̄h

1 + c|h|2 , ν ∈ U(1).

Then the followings hold.

(c = −1) For any distinct ν1, ν2 ∈ U(1), FH := pH(Ψ[ν1],Ψ[ν2]) is a

SHIMC surface in H3
1 with unit normal vector field N = µH(Ψ[1],Ψ[2])i.

(c = 1) For any ν ∈ U(1), F [ν] := pS(Ψ[ν]) is a SHIMC surface in S3
1 with

mean curvature 0 < H2
ν < 1 and unit normal vector field N = µS(Ψλ)1.

9. Spacelike Bonnet Surfaces with Constant Curvature c

In our previous paper [20], we have classified Bonnet surfaces with con-

stant curvature in Riemannian space forms M3(c). We shall classify space-

like Bonnet surfaces in Lorentzian space forms M3
1(c) in this section and

next section. (For timelike case, see [22].) Hereafter we assume that (M,F )

is umbilic free and H �= 0.

First of all we shall recall the following result. (cf. Theorem 6.11 and

[15, Theorem 6.1].)

Proposition 9.1. Let F : M −→M3
1(c) be a spacelike surface. Then

F is a spacelike Bonnet surface if and only if
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(1) F is isothermic,

(2) 1/Q is harmonic with respect to an isothermic coordinate system.

As in the case of Bonnet surfaces in Riemannian space forms, in order

to classify spacelike Bonnet surfaces with constant curvature in M3
1(c) we

have only to consider the following two cases: (cf. [32].)

(1) spacelike Bonnet surfaces with extrinsic curvature 0 (i.e., K = c for

c = ±1.);

(2) flat spacelike Bonnet surfaces (i.e., K = 0.)

In this section we shall consider spacelike Bonnet surfaces with constant

curvature c in M3
1(c). Flat surfaces will be treated in the next section.

Let F : M −→ M3
1(c) be a spacelike Bonnet surface with constant

curvature c = ±1. We take an isothermic coordinate z = x +
√
−1y and

put Q = q/2. Here q is a real smooth function. Then the Gauss-Codazzi

equations (GC)c become:

(9.1) q2 = e2uH2,

(9.2) qz̄ = euHz.

By using similar arguments in our previous paper [20], we get the fol-

lowing.

Theorem 9.2. Let F : M −→ M3
1(c) be a spacelike Bonnet surface

with constant curvature c for c = ±1 and z = x +
√
−1y its isothermic

coordinate. Then the first fundamental form, the Hopf differential and the

mean curvature function are given as follows:

(u, q, H) =

(
u(η),

e
u
2

f(ξ)
,
εe

u
2

f(ξ)

)
,

where (η, ξ, ε) = (x, y,−1) or (y, x, 1).

u(η) =

{
log α2

cosh2(αη+β)
c = 1,

log α2

sinh2(αη+β)
, log α2

cosh2(αη+β)
or log 1

(η+β)2
c = −1,
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f(ξ) =




C1 cosαξ + C2 sinαξ, c = 1,

C1 cosαξ + C2 sinαξ, C1e
αξ + C2e

−αξ

or C1ξ + C2 respectively, c = −1.

for α > 0, β ∈ R, (C1, C2) ∈ R2 \ {0}.

In general H3
1 [resp. S3

1 ] is regarded as a Lorentzian analogue of S3

[resp. H3]. For example, both S3 and H3
1 are identified with 3-dimensional

simple Lie groups with biinvariant metrics. Both H3 and S3
1 are realised

as quadrics in Minkowski 4-space. This theorem 9.2 implies a strange fact

that every spacelike Bonnet surface with constant curvature 1 [resp. −1]

in S3
1 [resp. H3

1 ] has same data (u, q, H) with those in S3 [resp. H3]. This

result also tell us that geometry of surfaces in Lorentzian 3-space forms is

not necessarily an easy modification of geometry of surfaces in Riemannian

3-space forms.

10. Flat Spacelike Bonnet Surfaces

In this section we shall investigate flat spacelike Bonnet surfaces in

M3
1(c).

Let F : M −→ M3
1(c) be a flat spacelike Bonnet surface. As in the

preceding section we take an isothermic coordinate z = x+
√
−1y and put

Q = q/2. Then we have

(10.1) q2 = e2u(H2 − c),

(10.2) qz̄ = euHz.

Differentiating (10.1) by z and using (10.1) and (10.2), we have

(10.3)
qz

q
= uz +

HHz

H2 − c
.

Since (M,F ) is a flat spacelike Bonnet surface, both 1/q and u are

harmonic with respect to z. Hence we get

(10.4)
|Hz|2
H2 − c

=

(
HHz

H2 − c

)
z̄
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If H �= 0 then (10.4) is equivalent to the harmonicity of ϕ = 1/H with

respect to the metric g(−c). In fact one can deduce the following.

∂2ϕ

∂z∂z̄
− 2cϕ

1− cϕ2

∣∣∣∣∂ϕ∂z
∣∣∣∣
2

= 0.

Namely (M,F ) is a spacelike HIMC surface in M3
1(c).

Theorem 10.1. Every flat spacelike Bonnet surface in E3
1 is a flat

spacelike HIMC surface. Using the same notations in Theorem 9.2, we

get

(u(η), f(ξ)) = (β,C1ξ + C2) or
(
αη + β,C1 cos

α

2
ξ + C2 sin

α

2
ξ
)
.

The former case with C1 = 0 corresponds to a spacelike flat and constant

mean curvature surface. Hence (M,F ) is an open portion of a hyperbolic

cylinder. The former case with C1 �= 0 corresponds to certain spacelike

cone or generalised cone.

The equation (10.1) implies that H2 − c > 0. As we saw in Section 8,

such SHIMC surfaces in one Lorentzian space form correspond to those in

another locally. By using the result on generalised Lawson correspondences

described in Theorem 8.4, we get

Theorem 10.2. All flat spacelike Bonnet surface in M3
1(c) for c =

±1 are obtained by generalised Lawson correspondences from flat spacelike

Bonnet surfaces in E3
1.

Remark. Wang [34] proved that spacelike or timelike Bonnet surfaces

with constant curvature in E3
1 are flat. However she did not classify flat

spacelike or timelike Bonnet surfaces in E3
1.

11. A Certain Reduction of H-surface Equations

In our previous paper [18], the first-named author introduced equations

(called H-surface equations) whose solutions are considered as a generalisa-

tion of surfaces with prescribed mean curvature in Riemannian space forms

M3(c). Here we shall introduce the following equations:

(11.1) dA+
1

2
[A ∧A]− c[ψ ∧ ψ̄] = 0,
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(11.2) dψ + [A ∧ ψ] =
√
−1H[ψ ∧ ψ̄],

where c = 0,±1, H is a function on a Riemann surface M , A is a Lie

algebra o
++
1 (3)-valued 1-form on M and ψ is a (1, 0)-type o

++
1 (3)C-valued

1-form on M . If M is simply connected, the set of solutions (A,ψ) to (11.1)

and (11.2) which satisfy the conditions tr(ψ ⊗ ψ) = 0 and tr(ψ ⊗ ψ̄) �= 0 is

identified with the set of conformal immersions of M into M3
1(c) with mean

curvature function H. We call the equations (11.1)–(11.2) the (gauge

theoretic) spacelike H-surface equation. In this section we shall consider

the following reduction of spacelike H-surface equations:

(11.3) A = fψ + f̄ ψ̄.

Here f is a holomorphic function on M . We shall determine the necessary

condition of the reduction. Substituting (11.3) into (11.1) we get

fdψ + f̄dψ̄ + |f |2 [ψ ∧ ψ̄]− c[ψ ∧ ψ̄] = 0.

Using (11.2), we obtain

f
(
−[A ∧ ψ] +

√
−1H[ψ ∧ ψ̄]

)
+ f̄

(
−[A ∧ ψ̄ −

√
−1H[ψ ∧ ψ̄]

)
+
(
|f |2 − c

)
[ψ ∧ ψ̄] = 0.

Using (11.3) again, we have

(11.4)
{√
−1H(f − f̄)− (|f |2 + c)

}
[ψ ∧ ψ̄] = 0.

Thus if we assume that

(11.5) H =
|f |2 + c√
−1(f − f̄)

then (11.4) is always satisfied. It is easy to see that the reciprocal of the

function H given by the formula (11.5) is a harmonic map into I(−c). Thus

we obtained a characterisation of SHIMC surfaces. Namely SHIMC surfaces

in M3
1(c) are spacelike H-surfaces in M3

1(c) which satisfy the reduction

condition (11.3).
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Appendix

In this appendix we shall give a brief story of Frenet-Serret formulae for

spacelike plane curves.

Let a(s) = (a1(s), a2(s)) be a spacelike curve in Minkowski plane

E2
1(ξ1, ξ2) parametrised by the arclength parameter s. We shall define an

orthonormal frame field E = (e1, e2) along a by

e2(s) =
d

ds
a(s), e1(s) =

(
0 1

1 0

)
e2(s)

and call it the Frenet frame field of a. The Frenet frame field E satisfies

the following Frenet-Serret equation.

(A.1)
d

ds
E = E

(
0 κ

κ 0

)

for some function κ(s) defined along a. The function κ is called the cur-

vature of a. It is easy to see that a spacelike curve with curvature κ = 0

is congruent to a spacelike line. Further a spacelike curve with nonzero

constant curvature is congruent to a spacelike hyperbola. Since the ma-

trix valued function E−1dE/ds takes the value in the Lie algebra o1(2) of

the Lorentz group O1(2), we can easily get the fundamental theorem of

spacelike curve theory.

Next we shall consider spacelike curves with prescribed curvature. Let

a(s) be a spacelike curve with Frenet frame e as before. We may assume

that e2 takes value in the upper half component (S1
1)+ = {(ξ1, ξ2) ∈ E2

1 | −
ξ2
1 + ξ2

2 = 1, ξ1 > 0} of a unit spacelike hyperbola S1
1 . We can write

e2(s) = (coshφ(s), sinhφ(s)). Here φ is the hyperbolic angle function. The

curvature κ of a satisfies

(A.2) κ =
d

ds
φ.

The spacelike curve a(s) with curvature κ = 1
C1s+C2

is given by the

following formula.

(A.3) (a1, a2) = (

∫
sinhφ(s)ds,

∫
coshφ(s)ds).
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We shall determine spacelike curves with curvature κ = 1
C1s+C2

, C1, C2 ∈
R. Hereafter we shall treat the case C1 �= 0. (If C1 = 0 then, as we

saw above, the spacelike curve is congruent to a spacelike line or spacelike

hyperbola.)

Let us denote the reciprocal of κ by ρ. Then we have

φ(s) =

∫ s

0

1

ρ
ds+ φ0 =

∫ s

0

1

C1

dρ

ρ
=

1

C1
log

ρ

ρ0
+ φ0.

Without loss of generality we can choose φ0 = 0. Thus we get ρ = C2e
C1φ.

Under a linear isometry

(
ξ1
ξ2

)
=

(
C1 −1

−1 C1

)(
ξ̃1
ξ̃2

)
+

C2e
C1

C2
1 − 1

(
1

−C1

)

of E2
1, the required spacelike curve a(s) is transformed as

(
ã1

ã2

)
=

C2e
C1φ√

C2
1 − 1

(
sinhφ

coshφ

)
.

Thus we get the following Lorentzian polar representation of the required

curve.

−ã2
1 + ã2

2 =
C2

2

C2
1 − 1

e2C1φ.

This curve ã = (ã1, ã2) is a Lorentzian analogue of a logarithmic spiral in

Euclidean plane. We shall call this curve a logarithmic pseudo-spairal.
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Reine Angew. Math. 499 (1998), 47–79.

[11] Bobenko, A. I. and U. Eitner, Painlevé Equations in Differential Geometry
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