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Density of a Collection of Functions in Ng-Spaces

By Ha Huy BANG and Truong Van THUONG

Abstract. This paper presents sufficient conditions for a transla-
tion invariant subspace of L1(R™) N Ng(R™) to be dense in Ng(R™).

Introduction

In the 1930s N.Wiener presented a necessary and sufficient condition un-
der which a collection of functions generated by translating a single function
to be complete in L1 (R) and La(R) [8]. R.A.Zalik proved later that to un-
der some certain conditions the restriction to R of the family of functions
{f(x + @) : a € S}, where f is a function on €' and S a sequence of
distinct complex numbers, is complete in L,(R™) ([10], [11]). Recently,
V.V.Volchkov has obtained some generalizations of N.Wiener’s theorems in
L,(§2) where € is a bounded domain in R"™ [7].

Let ¢ be a function defined on R™ and a be a function defined on Z™.
Their semi-discrete convolution [9] is defined by, for any = € R,

p¥ a@) = ) ez —a)ala),

aeZm

for which the series converges absolutely. Denote by £y(Z") the space of all
finitely supported functions on Z™ and by Sp(y) the image of ¢o(Z") under

!/

o'

A collection F' of functions on R"™ is called shift invariant [9] if for each
feF, aeZ"then f(.+«a) € F. Then Sy(y) is a linear span of the integer
translates of ¢ and is shift invariant. A set F'is called translation invariant
if

T f— f.+1)
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maps F into F for each t € R"™ and F is dilation invariant if
op: f— f(h_l.)

maps F' into itself for each h > 0. Denote

Up = UUZSO(‘P)

Jj=1

The problem of finding sufficient conditions on a collection of functions
generated by dilating and translating of a single function to be dense in
L,(R™) is studied by Kang Zhao [9]. The author showed that under some
certain conditions on ¢, then the spanU}, is dense in L,(R").

A natural question arises under what conditions on the collection Uy,
and function ¢, the spanU}, is dense in the space Ng(R™) generated by the
concave function @ [6]?

In the paper, we prove, in contrast with Orlicz spaces Ly(R™) (where
the Young function ® must satisfy the As—condition (see [3], [4])), the
continuity of norm in any space Ng(R"™), and give some sufficient conditions
for a collection of functions generated by dilating and translating of a single
function to be dense in Ng(R"™). Besides some results similar to Kang Zhao’s
ones [9], a study of the geometrical properties of the spectrum of functions in
Ng(R™) helps us to obtain certain new sufficient conditions for the density.

Main Results

Let C denote the family of all non-zero concave functions ® : [0, +o00) —
[0, +00), which are non-decreasing, unbounded and satisfy ®(0) = 0. For
an arbitrary measurable function f and ® € C, we put ®(c0) := lim ®(x)

and define -
Il = [ @ 0)i

where A¢(t) = p({z : |f(x)] > t}), t > 0 and p is a positive measure
on R". Let Ng(R™) be the space of all measurable functions f such that
|| fllng < 00. Then Ng(R™) is a Banach space [6].

The following property of Ng(R™) will be useful in the sequel.
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THEOREM 1. For every f € No(R"),

(1) lim £ +) = fllx, = 0.

PrROOF. We shall begin with showing that the set A of all complex,
measurable, simple functions with bounded support is dense in Ng(R™).

Fixed f € Ng(R™). Without loss of generality we may assume that
f > 0. As traditionally, for m =1,2,..., and for 1 < k < m2™, we define

B = 15t o)) and B = 17 (m, o))

and put
m2
k—1
Sm = Z oam XE’m,k: + mXFm
k=1
Then FE,, and F,, are measurable sets, s,, <m, 0 < s1 <859 < --- < f

and sy, (z) — f(z) as m — oo, for every z € R".

Since 0 < s, < f, it follows that s, € No(R"™) and u(E,,) < co, where
En={x : spm(z)#0 }.

It is easy to see that s,,(z) > f(z) — 2™ if m > f(z), and s;,(x) =m
if f(z) = co. Hence, since f € Ng(R™) and 0 < 53 < 59 < --- < f, we have
for each t > 0

Ao (t) = p({x s f(z) —sm(xz) >t}) — 0 as m — oo.

On the other hand, Ar_,, < Ay and then ®(Af_g ) < ®(Af). Therefore,
the dominated convergence theorem shows that

lim ||f — smllng = lim / B(Aj_s, (1))dt = 0.
m—0o0 m—0o0 0
Further, since u(E,,) < oo, there exists a ball By, such that

|smlloc ®(1(Em \ Bm)) — 0 as m — oo.
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We define ]
, Sm(x) if z € By,
S (@) =

0 if xeR"\ By,.
Then

s = Sl = [~ B0, ()
0
ll8m lloo
:/ B(uf{z €R"\ By : sm(x) > t})dt
0
< Ismlloc®(1(Em \ Bm)).-
Thus we have proved
im (|~ v, = 0
as was to be shown.
Therefore, to prove the theorem, it suffices to show (1) for any f € A.

Assume on the contrary that, there exist {tx} C R", |tx] — 0 and € > 0
such that

(2) IfC+tk) = fling 26, VE> 1L

Since f € L} (R™), we have for each K, = [—£, (]"
/ |f(x+1tr) — f(z)|dx — 0 as k — oo.
Ky

Therefore, by Theorem D [2, p. 93], there exists a subsequence {,}, we
still denote by {tx} such that f(.+tx) — f a.e. on K;. Hence, there exists
a subsequence, denoted again by {tx} such that f(. +tx) — f a.e. on R™.
Define
gm(®) = inf |f(@+1)], 7 € R”
k>m

then {g,,} is a nondecreasing sequence and g,, — |f| a.e. By the result in
[6], we have

)\gm (t) - )\|f|(t) as m — o0, fOI' every t > O
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Since ® € C,

(3)  BOy(0) = Tim By, (1) < L (N2, (1), £ > 0.

m—0o0 k—o0

It follows from ® € C that ®(a + b) < ®(a) + (b) for a,b > 0. Observing
that, for any f,g € No(R"™) and t > 0 we have A\r14(2t) < Af(t) + Ag(2),
then

DA (t)—11(28)) S PN ()] (1) + P (A (1))

Hence,
0 < [N p(te0) @) + PN ()] — PN p(tep)—p(20)), VE>0, VE > 1.
It is easy to check that
i [|7(. + )l ve = [1.fllne -
Applying Fatou’s lemma to the sequence

UL f a0 (1) + PN ()] = PN p( ) —p1(20)

we obtain

(4) /(;oo lim [[(I)()‘|f(~+tk)\(t)) + (I)()\m(t))] — (I)()‘|f(.+tk)—f\(2t))] dt

k—o0
oo

< im0 () + PO O)] =~ RO (20)]

= 2/ (I)()\m(t))dt - ikhm (D(A|f(.+tk)_f‘(t))dt.
0 —Jo

Since [tx| — 0 and the support of f is bounded, there exists a ball B
such that

At -1 (8) = p({z € R™ : [f(z + tg) — f(z)] > t})
=p({z € B:|f(z+tk) — fz)] > t})
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for all £ > 1 and ¢ > 0. Therefore, taking account of f(. +t;) — f a.e. on
R™ and p(B) < oo, we have

Jim X)) (1) = 0
and then

(5) lim ®(\jp( 100 /(t) = 0.

k—oo

Combining (3) and (5), we get for any ¢ > 0

(6) 20(A(1)) = Jim ®(Ayy (1)) + POy (1) — limm BN,y (20)
<l [ 2O/ (8) + 71 (5) = A1 (20)]-

Since (4) and (6), we have

oo

2/0 @()\m(t))dt < 2/0 (I)()\m(t))dt 3 lim @()\|f('+tk)_f‘(t))dt.

k—o00 0

Hence o
/0 ‘I)()\|f(.+tk)_f|(t))dt — 0 as k — oo,

ie., limg oo || f(. + tx) — fllny = 0, which contradicts (2). The proof is
complete. [

The two following lemmas are based on Theorem 1 and can be proved
in a similar way to that of Lemma 2.1 and Lemma 2.2 [9].

LEMMA 1. Let ¢ € No(R™). Assume that + is an integer larger than
o .
1. If ¢ € spanly, where U, = |J07S0(p), then spanUy, is translation

J=1
wvariant.

Denote by R* the abelian group of all nonzero real numbers with the
operation of ordinary multiplication and dist(p, S)n, = inf{|j¢— fl|ns, f €
S}.
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LEMMA 2. Let ¢ € Ng(R"™) and let G be a subgroup of R*. If

lim  di =
heG{thOdlst(go,ahSo(go))Nq) 0,

o0 .
then 'UlaiSO(SO) is translation invariant, for any sequence {h;} C G with
J:
j—00
DEFINITION 1. A measure pu on R™ is said to be admissible if for any
permutation (mq,...,my) of (1,...,n), 1 <k <n—1 and any ball B in
the k-dimensional space of the variables ., ..., Ty, then

(B x R"%) = 0.

In the sequel we assume that p is admissible. Further, we also assume
that the o-algebra B of subsets of R" has the following property: If £ € B
and p(E) = +oo then there exists some set F' € B such that F C E and
0 < pu(F') < oo. The last property is a necessary and sufficient condition so
that Mg (R™) is normed, where we denote Mg (R™) the space of measurable
functions ¢ such that

gllare = Sup{m/ﬁj\g(ﬂcﬂdm‘: ECR" 0<pu(FE)< oo} < o0.

Then Mg(R™) is a Banach space and Nj(R"™) = Ms(R") [6].

The spectrum of a function g, denoted by sp(g), is defined to be the
support of g, the Fourier transform of g. According to the method of the
proof of Theorem 1 [1] we obtain the following result.

LEMMA 3. Let f € Ng(R"), f(x) # 0 and let £ € sp(f) be an arbi-

trary point. Then the restriction of f to any neighbourhood of € cannot
concentrate on any finite number of hyperplanes.

Proor. We little sketch the proof. Without loss of generality, we shall
prove the result for functions f with bounded spectrum and £° = 0.

Assume on the contrary that there exist a neighbourhood U > 0 and
hyperplanes Hq, ..., H,, such that the restriction of f(f ) to U concentrates
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on Hy, ..., H,. Without loss of generality we may assume that 0 € H;, j =
1,...,m. Then H; can be defined by the equation

a‘jlgl + P +ajn£n et 07

where (aj1,...,a;,) is a unit vector in R™.
We put for each j=1,... ,m

G; = R”\(UHi)
i#j

~

Then Gj is open. For any ¢(§) € C§°(Gj), the distribution (&) f(§) con-
centrates on the hyperplane H;. We introduce the transformation

x:(xla"'vxn) = (ylu"'7yn):y7

where y1,- - , Yy, are the coordinates of x in the new rectangular system of
coordinates, which is chosen such a way that the hyperplane

a171 + -+ + ajpTy, =0

will be transformed into the hyperplane y; = 0. The coordinate transfor-
mation

n
xk:Zak,sysa k‘:l,"',n
s=1

is defined by a real orthogonal matrix A = (oy, 5) and |det A| = 1.

Put g(y) = (14 * f)(@). Then |lglln, = [F-1% * fllny, suppg is
compact and, clearly, the Fourier transform of g(y) will concentrate on the
hyperplane §; = 0. By an argument analogous to that used for the proof of
Theorem 1 [1], we see that g(y) does not depend on y;.

Since g € Ng(R™), we get

(M) /OOO (A, (1)) dt < oc.

We shall show that g(y) = 0. Actually, assume on the contrary that g(y°) #
0 for some point y°. Because g(y) = F~1(¢f)(x) is continuous, there exist
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a number € > 0 and a neighbourhood V' of 4" such that |g(y)| > ¢ for all
y € V. Hence, since g(y) does not depend on y;, we get

N(E)=p({yeR": [g(y)| > ¢ }) = o0

From A,(t) is a nonincreasing function, A\,(t) = 400 on the interval [0, ¢].
Since ®(t) is nondecreasing and unbounded, it follows that ®(A4(t)) = +oo
on [0,¢], which contradicts (7). Thus, we get g(y) = 0, i.c., (&) f(€) =
0. Since ¥(§) € C§°(G;) is arbitrarily chosen, we get F(€) = 0 on the
hyperplane H;. So f(é) must concentrate on the planes H; N Hj, i,j =
1,...,m, i# 5.

We put fori,j=1,... ,m, i #j

Gij =R"\U{ H.NHy : (k,0)#(i,5), k#L}.

Then Gjj; is open. For any 9(£) € C3°(Gyj), the distribution (£)f(€)
concentrates on the plane H; N H;.

By an argument analogous to the previous one, we obtain (¢ )]‘“(5 ) =0.
Since 1 € C§°(G}j) is arbitrarily chosen, we see that £(&) must concentrate
on H;NH; N Hy, i,5,£=1,...,m, i #j #L.

Repeating the above arguments (k — 3) times more, we deduce that the

distribution f(€) concentrates on ﬁlHi and then, by the same way, we get
1=

F(¢) =0, which contradicts f(z) # 0. The proof is complete. [

The following lemma, which will be used in the sequel, is the analogy
for the space Ng(R"™) of Theorem 9.3 [5], and has a similar proof.

LEMMA 4. Let f € L1(R") N Ng(R™) and g € Mg(R™). If fxg =10
then
sp(g) C Z(f) == {t e R" : J(t)=0}.

THEOREM 2. Let Y be a translation invariant subspace of Li(R™) N

Ng(R™). If for each € € Z(Y) := [ {t € R" : f(t) = 0} there is a
fey

neighbourhood V' of & such that V- N Z(Y') is contained in a finite number

of hyperplanes, then Y is dense in Ng(R").
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PROOF. Assume on the contrary that Y is not dense in Ng(R™). Then,
since (Ng(R™))* = Mg(R™) (Theorem 4.3 [6]) and the Hahn-Banach theo-
rem, there exists a non-zero function g € Mg(R™) such that

f(x)g(—z)dz =0 for all f €Y.
R’ﬂ
Since Y is a translation invariant subspace, we have
fly—x)g(x)de =0 for all f €Y.
R’I’L

In other words, f * g = 0. By Lemma 4, we obtain
sp(g) C {t e R™: f(t) =0} forall feY.

Hence, sp(g) C Z(Y).

The hypothesis that for each & € sp(g) there is a neighbourhood V
of £ such that sp(g) NV is contained in a finite number of hyperplanes
and Lemma 3 imply that ¢ = 0, which contradicts g # 0. The proof is
complete. [

COROLLARY 1. LetY be a translation invariant subspace of Li(R™) N
No(R™). If Z(Y') is contained in a finite number of hyperplanes, then'Y is
dense in Ng(R™).

THEOREM 3. Let ¢ € L1(R™) N Ng(R™) with $(0) # 0 and let 3 be an
integer larger than 1. If ¢ € spanUy, then spanlU;, = Ng(R").

PrOOF. For any g € (Ng(R™))* = Mg (R") satisfying
f(@)g(x)dx =0
Rn
for all f € spanUy, we will prove that ¢ = 0. By virtue of Lemma 1, we get

[ ooty -oglade =0, Viz1 wer
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Note that the Fourier transform of aigp(w) is h/"p(hIt). Tt follows from
Lemma 4 that

sp(g) C 27 () = ﬂ{t € R": p(h't) = 0}.

It follows from ¢ € L1 (R™) and $(0) # 0 that for each t € R", $(h/t) # 0
when j is sufficiently large. Hence, sp(g) = 0, i.e., g = 0. By the Hahn-
Banach theorem, we have spanlU;, = Ng(R"™). The proof is complete. [J

REMARK 1. If ®(t) =t, i.e., No(R™) = L;(R"), then it was shown in
[9] that the condition ¢(0) # 0 is necessary for the density of the spanUj,
in Ly (R™).

THEOREM 4. Let ¢ € L1(R") N No(R™) and let 3 be an integer > 1.
Suppose ¢ € spanlUy,. If for each & € Z*(p) there is a neighbourhood V' of
€ such that Z*(p) NV is contained in a finite number of hyperplanes, then
spanlUy, is dense in Ng(R™).

PROOF. Assume on the contrary; then there exists a non-zero function
g € Mg (R™) such that

f(z)g(x)dx =0 for all f € spanUy,.
]Rn
By virtue of Lemma 1, spanUy, is translation invariant, and hence,
/ olely — z)g(x)dr =0,Y5 > 1, ¥y € R™.

Therefore, since Lemma 4, sp(g) C Z*(¢). By the hypothesis and Lemma
3, we get g = 0, a contradiction. The proof is complete. [

REMARK 2. In the above theorems, if we replace the condition ¢ €
spanUy, by . l(i)I}ll Gdist(go, arS0(¢))Ne = 0, then Uy, is dense in Ng(R™).
—0,he

COROLLARY 2. Let ¢ € Li(R") N No(R"™),+ be an integer > 1 and
o € spanUy. If Z*(yp) is contained in a finite number of hyperplanes then
spanlUy, is dense in Ng(R™).
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By an argument analogous to that used for the proof of Proposition 6.1
[9], we obtain the following results:

COROLLARY 3. Lety € Li(R")NNg(R™),»(0) # 0 and 3 be an integer

larger than 1. If ¢ € o3So(yp), then

lim dist(f,]S0(¢))ng =0,  Vf € Na(R™).

J—00

COROLLARY 4. Let ¢ € L1(R") N No(R") and 3 be an integer larger
than 1. If Z*(p) is contained in a finite number of hyperplanes and ¢ €
UhSO(SD), then

lim dist(f,]S0(¢))ng =0,  Vf € Np(R™).

Jj—o0

References

[1] Bang, H. H., Spectrum of functions in Orlicz spaces, J. Math. Sci. Univ.
Tokyo 4 (1997), 341-349.

[2] Halmos, P. R., Measure Theory, Springer-Verlag, New York, Heidelberg,
Berlin, 1974.

[3] Luxemburg, W., Banach Function Spaces, (Thesis), Technische Hogeschool
te Delft., The Netherlands, 1955.

[4] Rao, M. M. and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, Inc.,
New York, 1995.

[5] Rudin, W., Functional Analysis, Tata McGraw-Hill Publishing Company
Ltd. New Delhi, 1989.

[6]  Steigerwalt, M. S. and A. J. White, Some function spaces related to Ly, Proc.
London. Math. Soc. 22 (1971), 137-163.

[7]  Volchkov, V. V., Approximation of functions on bounded domain in R™ by
linear combination of shifts, Dolk. Akad. Nauk. 334 (1994), 560-561 (in
Russian).

[8]  Wiener, N., The Fourier Integral and Certain of Its Applications, Cambridge
Univ. Press, London, 1933.

[9] Zhao, K., Density of dilates of a shift-invariant subspace, J. Math. Analysis
Appl. 184 (1994), 517-532.

[10] Zalik, R. A., On approximation by shifts and a theorem of Wiener, Trans.
Amer. Math. Soc. 243 (1978), 299-308.



Density of a Collection of Functions 461

[11] Zalik, R. A., On fundamental sequences of translates, Proc. Amer. Math.
Soc. 79 (1980), 255-259.

(Received November 4, 1999)

Ha Huy BaNG

Institute of Mathematics

P.O. Box 631, Bo Ho

Hanoi, Vietnam

E-mail: hhbang@thevinh.ncst.ac.vn

Truong Van THUONG
Department of Mathematics
Hue University

32 Le Loi, Hue, Vietnam



