Density of a Collection of Functions in N_{Φ} -Spaces

By Ha Huy BANG and Truong Van THUONG

Abstract. This paper presents sufficient conditions for a translation invariant subspace of $L_1(\mathbb{R}^n) \cap N_{\Phi}(\mathbb{R}^n)$ to be dense in $N_{\Phi}(\mathbb{R}^n)$.

Introduction

In the 1930s N.Wiener presented a necessary and sufficient condition under which a collection of functions generated by translating a single function to be complete in $L_1(\mathbb{R})$ and $L_2(\mathbb{R})$ [8]. R.A.Zalik proved later that to under some certain conditions the restriction to \mathbb{R} of the family of functions $\{f(x + \alpha) : \alpha \in S\}$, where f is a function on \mathcal{C} and S a sequence of distinct complex numbers, is complete in $L_p(\mathbb{R}^+)$ ([10], [11]). Recently, V.V.Volchkov has obtained some generalizations of N.Wiener's theorems in $L_p(\Omega)$ where Ω is a bounded domain in \mathbb{R}^n [7].

Let φ be a function defined on \mathbb{R}^n and a be a function defined on \mathbb{Z}^n . Their *semi-discrete convolution* [9] is defined by, for any $x \in \mathbb{R}^n$,

$$\varphi *' a(x) = \sum_{\alpha \in \mathbb{Z}^n} \varphi(x - \alpha) a(\alpha),$$

for which the series converges absolutely. Denote by $\ell_0(\mathbb{Z}^n)$ the space of all finitely supported functions on \mathbb{Z}^n and by $S_0(\varphi)$ the image of $\ell_0(\mathbb{Z}^n)$ under $\varphi *'$.

A collection F of functions on \mathbb{R}^n is called *shift invariant* [9] if for each $f \in F$, $\alpha \in \mathbb{Z}^n$ then $f(.+\alpha) \in F$. Then $S_0(\varphi)$ is a linear span of the integer translates of φ and is shift invariant. A set F is called *translation invariant* if

$$\tau_t: f \longrightarrow f(.+t)$$

¹⁹⁹¹ Mathematics Subject Classification. 46F99, 46E30.

Key words: Translation invariant, Fourier transform, theory of Orlicz spaces.

Supported by the National Basic Research Program in Natural Science.

maps F into F for each $t \in \mathbb{R}^n$ and F is dilation invariant if

$$\sigma_h: f \longrightarrow f(h^{-1}.)$$

maps F into itself for each h > 0. Denote

$$U_h = \bigcup_{j=1}^{\infty} \sigma_h^j S_0(\varphi).$$

The problem of finding sufficient conditions on a collection of functions generated by dilating and translating of a single function to be dense in $L_p(\mathbb{R}^n)$ is studied by Kang Zhao [9]. The author showed that under some certain conditions on φ , then the span U_h is dense in $L_p(\mathbb{R}^n)$.

A natural question arises under what conditions on the collection U_h and function φ , the span U_h is dense in the space $N_{\Phi}(\mathbb{R}^n)$ generated by the concave function Φ [6]?

In the paper, we prove, in contrast with Orlicz spaces $L_{\Phi}(\mathbb{R}^n)$ (where the Young function Φ must satisfy the Δ_2 -condition (see [3], [4])), the continuity of norm in any space $N_{\Phi}(\mathbb{R}^n)$, and give some sufficient conditions for a collection of functions generated by dilating and translating of a single function to be dense in $N_{\Phi}(\mathbb{R}^n)$. Besides some results similar to Kang Zhao's ones [9], a study of the geometrical properties of the spectrum of functions in $N_{\Phi}(\mathbb{R}^n)$ helps us to obtain certain new sufficient conditions for the density.

Main Results

Let \mathcal{C} denote the family of all non-zero concave functions $\Phi : [0, +\infty) \to [0, +\infty)$, which are non-decreasing, unbounded and satisfy $\Phi(0) = 0$. For an arbitrary measurable function f and $\Phi \in \mathcal{C}$, we put $\Phi(\infty) := \lim_{x \to \infty} \Phi(x)$ and define

$$\|f\|_{N_{\Phi}} = \int_0^\infty \Phi(\lambda_f(t)) dt,$$

where $\lambda_f(t) = \mu(\{x : |f(x)| > t\}), t \ge 0$ and μ is a positive measure on \mathbb{R}^n . Let $N_{\Phi}(\mathbb{R}^n)$ be the space of all measurable functions f such that $\|f\|_{N_{\Phi}} < \infty$. Then $N_{\Phi}(\mathbb{R}^n)$ is a Banach space [6].

The following property of $N_{\Phi}(\mathbb{R}^n)$ will be useful in the sequel.

THEOREM 1. For every $f \in N_{\Phi}(\mathbb{R}^n)$,

(1)
$$\lim_{t \to 0} \|f(.+t) - f\|_{N_{\Phi}} = 0.$$

PROOF. We shall begin with showing that the set A of all complex, measurable, simple functions with bounded support is dense in $N_{\Phi}(\mathbb{R}^n)$.

Fixed $f \in N_{\Phi}(\mathbb{R}^n)$. Without loss of generality we may assume that $f \geq 0$. As traditionally, for $m = 1, 2, \ldots$, and for $1 \leq k \leq m2^m$, we define

$$E_{m,k} = f^{-1}\left(\left[\frac{k-1}{2^m}, \frac{k}{2^m}\right)\right)$$
 and $F_m = f^{-1}\left([m, \infty]\right)$

and put

$$s_m = \sum_{k=1}^{m2^m} \frac{k-1}{2^m} \chi_{E_{m,k}} + m\chi_{F_m}.$$

Then $E_{m,k}$ and F_m are measurable sets, $s_m \leq m, 0 \leq s_1 \leq s_2 \leq \cdots \leq f$ and $s_m(x) \longrightarrow f(x)$ as $m \to \infty$, for every $x \in \mathbb{R}^n$.

Since $0 \le s_m \le f$, it follows that $s_m \in N_{\Phi}(\mathbb{R}^n)$ and $\mu(E_m) < \infty$, where $E_m = \{x : s_m(x) \ne 0\}.$

It is easy to see that $s_m(x) \ge f(x) - 2^{-m}$ if $m \ge f(x)$, and $s_m(x) = m$ if $f(x) = \infty$. Hence, since $f \in N_{\Phi}(\mathbb{R}^n)$ and $0 \le s_1 \le s_2 \le \cdots \le f$, we have for each t > 0

$$\lambda_{f-s_m}(t) = \mu(\{x: f(x) - s_m(x) > t\}) \to 0 \text{ as } m \to \infty.$$

On the other hand, $\lambda_{f-s_m} \leq \lambda_f$ and then $\Phi(\lambda_{f-s_m}) \leq \Phi(\lambda_f)$. Therefore, the dominated convergence theorem shows that

$$\lim_{m \to \infty} \|f - s_m\|_{N_{\Phi}} = \lim_{m \to \infty} \int_0^\infty \Phi(\lambda_{f-s_m}(t)) dt = 0.$$

Further, since $\mu(E_m) < \infty$, there exists a ball B_m such that

$$||s_m||_{\infty} \Phi(\mu(E_m \setminus B_m)) \to 0 \text{ as } m \to \infty.$$

We define

$$s'_m(x) = \begin{cases} s_m(x) & \text{if } x \in B_m \\ 0 & \text{if } x \in \mathbb{R}^n \setminus B_m \end{cases}$$

Then

$$\begin{split} \|s_m - s'_m\|_{N_{\Phi}} &= \int_0^\infty \Phi(\lambda_{s_m - s'_m}(t))dt \\ &= \int_0^{\|s_m\|_\infty} \Phi(\mu\{x \in \mathbb{R}^n \setminus B_m : s_m(x) > t\})dt \\ &\leq \|s_m\|_\infty \Phi(\mu(E_m \setminus B_m)). \end{split}$$

Thus we have proved

$$\lim_{m \to \infty} \|f - s'_m\|_{N_\Phi} = 0$$

as was to be shown.

Therefore, to prove the theorem, it suffices to show (1) for any $f \in A$. Assume on the contrary that, there exist $\{t_k\} \subset \mathbb{R}^n$, $|t_k| \to 0$ and $\varepsilon > 0$ such that

(2)
$$||f(.+t_k) - f||_{N_{\Phi}} \ge \varepsilon, \quad \forall k \ge 1.$$

Since $f \in L^1_{\ell oc}(\mathbb{R}^n)$, we have for each $K_{\ell} = [-\ell, \ell]^n$

$$\int_{K_{\ell}} |f(x+t_k) - f(x)| dx \to 0 \quad \text{as } k \to \infty.$$

Therefore, by Theorem D [2, p. 93], there exists a subsequence $\{t_{k_j}\}$, we still denote by $\{t_k\}$ such that $f(.+t_k) \to f$ a.e. on K_{ℓ} . Hence, there exists a subsequence, denoted again by $\{t_k\}$ such that $f(.+t_k) \to f$ a.e. on \mathbb{R}^n . Define

$$g_m(x) = \inf_{k \ge m} |f(x+t_k)|, \ x \in \mathbb{R}^n$$

then $\{g_m\}$ is a nondecreasing sequence and $g_m \to |f|$ a.e. By the result in [6], we have

$$\lambda_{g_m}(t) \to \lambda_{|f|}(t)$$
 as $m \to \infty$, for every $t > 0$.

452

Since $\Phi \in \mathcal{C}$,

(3)
$$\Phi(\lambda_{|f|}(t)) = \lim_{m \to \infty} \Phi(\lambda_{|g_m|}(t)) \le \lim_{k \to \infty} \Phi(\lambda_{|f(.+t_k)|}(t)), \ t > 0.$$

It follows from $\Phi \in \mathcal{C}$ that $\Phi(a+b) \leq \Phi(a) + \Phi(b)$ for $a, b \geq 0$. Observing that, for any $f, g \in N_{\Phi}(\mathbb{R}^n)$ and t > 0 we have $\lambda_{f+g}(2t) \leq \lambda_f(t) + \lambda_g(t)$, then

$$\Phi(\lambda_{|f(.+t_k)-f|}(2t)) \le \Phi(\lambda_{|f(.+t_k)|}(t)) + \Phi(\lambda_{|f|}(t)).$$

Hence,

$$0 \le \left[\Phi(\lambda_{|f(.+t_k)|}(t)) + \Phi(\lambda_{|f|}(t))\right] - \Phi(\lambda_{|f(.+t_k)-f|}(2t)), \ \forall t > 0, \ \forall k \ge 1.$$

It is easy to check that

$$\lim_{t \to 0} \|f(.+t)\|_{N_{\Phi}} = \|f\|_{N_{\Phi}}.$$

Applying Fatou's lemma to the sequence

$$\{ [\Phi(\lambda_{|f(.+t_k)|}(t)) + \Phi(\lambda_{|f|}(t))] - \Phi(\lambda_{|f(.+t_k)-f|}(2t)) \},\$$

we obtain

$$(4) \quad \int_0^\infty \lim_{k \to \infty} \left[\left[\Phi(\lambda_{|f(.+t_k)|}(t)) + \Phi(\lambda_{|f|}(t)) \right] - \Phi(\lambda_{|f(.+t_k)-f|}(2t)) \right] dt$$
$$\leq \lim_{k \to \infty} \int_0^\infty \left[\left[\Phi(\lambda_{|f(.+t_k)|}(t)) + \Phi(\lambda_{|f|}(t)) \right] - \Phi(\lambda_{|f(.+t_k)-f|}(2t)) \right] dt$$
$$= 2 \int_0^\infty \Phi(\lambda_{|f|}(t)) dt - \frac{1}{2} \lim_{k \to \infty} \int_0^\infty \Phi(\lambda_{|f(.+t_k)-f|}(t)) dt.$$

Since $|t_k| \to 0$ and the support of f is bounded, there exists a ball B such that

$$\lambda_{|f(.+t_k)-f|}(t) = \mu(\{x \in \mathbb{R}^n : |f(x+t_k) - f(x)| > t\})$$

= $\mu(\{x \in B : |f(x+t_k) - f(x)| > t\})$

for all $k \ge 1$ and t > 0. Therefore, taking account of $f(.+t_k) \to f$ a.e. on \mathbb{R}^n and $\mu(B) < \infty$, we have

$$\lim_{k \to \infty} \lambda_{|f(.+t_k) - f|}(t) = 0$$

and then

(5)
$$\lim_{k \to \infty} \Phi(\lambda_{|f(.+t_k) - f|}(t)) = 0.$$

Combining (3) and (5), we get for any t > 0

(6)
$$2\Phi(\lambda_{|f|}(t)) = \lim_{k \to \infty} \Phi(\lambda_{|g_k|}(t)) + \Phi(\lambda_{|f|}(t)) - \lim_{k \to \infty} \Phi(\lambda_{|f(.+t_k)-f|}(2t)) \\ \leq \lim_{k \to \infty} \left[\Phi(\lambda_{|f(.+t_k)|}(t)) + \Phi(\lambda_{|f|}(t)) - \Phi(\lambda_{|f(.+t_k)-f|}(2t)) \right].$$

Since (4) and (6), we have

$$2\int_0^\infty \Phi(\lambda_{|f|}(t))dt \le 2\int_0^\infty \Phi(\lambda_{|f|}(t))dt - \frac{1}{2}\overline{\lim}_{k\to\infty}\int_0^\infty \Phi(\lambda_{|f(.+t_k)-f|}(t))dt.$$

Hence

$$\int_0^\infty \Phi(\lambda_{|f(.+t_k)-f|}(t))dt \to 0 \text{ as } k \to \infty,$$

i.e., $\lim_{k\to\infty} ||f(.+t_k) - f||_{N_{\Phi}} = 0$, which contradicts (2). The proof is complete. \Box

The two following lemmas are based on Theorem 1 and can be proved in a similar way to that of Lemma 2.1 and Lemma 2.2 [9].

LEMMA 1. Let $\varphi \in N_{\Phi}(\mathbb{R}^n)$. Assume that $\frac{1}{h}$ is an integer larger than 1. If $\varphi \in \overline{\operatorname{span}U_h}$, where $U_h = \bigcup_{j=1}^{\infty} \sigma_h^j S_0(\varphi)$, then $\overline{\operatorname{span}U_h}$ is translation invariant.

Denote by \mathbb{R}^* the abelian group of all nonzero real numbers with the operation of ordinary multiplication and $\operatorname{dist}(\varphi, S)_{N_{\Phi}} = \inf\{\|\varphi - f\|_{N_{\Phi}}, f \in S\}.$

LEMMA 2. Let $\varphi \in N_{\Phi}(\mathbb{R}^n)$ and let G be a subgroup of \mathbb{R}^* . If

$$\lim_{h \in G, \ h \to 0} \operatorname{dist}(\varphi, \sigma_h S_0(\varphi))_{N_{\Phi}} = 0,$$

then $\overline{\bigcup_{j=1}^{\infty} \sigma_h^j S_0(\varphi)}$ is translation invariant, for any sequence $\{h_j\} \subset G$ with $\lim_{j \to \infty} h_j = 0.$

DEFINITION 1. A measure μ on \mathbb{R}^n is said to be admissible if for any permutation (m_1, \ldots, m_n) of $(1, \ldots, n)$, $1 \leq k \leq n-1$ and any ball B in the k-dimensional space of the variables x_{m_1}, \ldots, x_{m_k} then

$$\mu(B \times \mathbb{R}^{n-k}) = \infty$$

In the sequel we assume that μ is admissible. Further, we also assume that the σ -algebra \mathcal{B} of subsets of \mathbb{R}^n has the following property: If $E \in \mathcal{B}$ and $\mu(E) = +\infty$ then there exists some set $F \in \mathcal{B}$ such that $F \subset E$ and $0 < \mu(F) < \infty$. The last property is a necessary and sufficient condition so that $M_{\Phi}(\mathbb{R}^n)$ is normed, where we denote $M_{\Phi}(\mathbb{R}^n)$ the space of measurable functions g such that

$$||g||_{M_{\Phi}} = \sup\left\{\frac{1}{\Phi(\mu(E))}\int_{E}|g(x)|dx: E \subset \mathbb{R}^{n}, \ 0 < \mu(E) < \infty\right\} < \infty.$$

Then $M_{\Phi}(\mathbb{R}^n)$ is a Banach space and $N^*_{\Phi}(\mathbb{R}^n) = M_{\Phi}(\mathbb{R}^n)$ [6].

The spectrum of a function g, denoted by sp(g), is defined to be the support of \hat{g} , the Fourier transform of g. According to the method of the proof of Theorem 1 [1] we obtain the following result.

LEMMA 3. Let $f \in N_{\Phi}(\mathbb{R}^n)$, $f(x) \neq 0$ and let $\xi^0 \in \operatorname{sp}(f)$ be an arbitrary point. Then the restriction of \hat{f} to any neighbourhood of ξ^0 cannot concentrate on any finite number of hyperplanes.

PROOF. We little sketch the proof. Without loss of generality, we shall prove the result for functions f with bounded spectrum and $\xi^0 = 0$.

Assume on the contrary that there exist a neighbourhood $U \ni 0$ and hyperplanes H_1, \ldots, H_m such that the restriction of $\hat{f}(\xi)$ to U concentrates on H_1, \ldots, H_m . Without loss of generality we may assume that $0 \in H_j, j = 1, \ldots, m$. Then H_j can be defined by the equation

$$a_{j1}\xi_1 + \dots + a_{jn}\xi_n = 0,$$

where (a_{j1}, \ldots, a_{jn}) is a unit vector in \mathbb{R}^n .

We put for each $j = 1, \ldots, m$

$$G_j = \mathbb{R}^n \backslash \left(\bigcup_{i \neq j} H_i\right)$$

Then G_j is open. For any $\psi(\xi) \in C_0^{\infty}(G_j)$, the distribution $\psi(\xi)\hat{f}(\xi)$ concentrates on the hyperplane H_j . We introduce the transformation

$$x = (x_1, \cdots, x_n) \iff (y_1, \cdots, y_n) = y,$$

where y_1, \dots, y_n are the coordinates of x in the new rectangular system of coordinates, which is chosen such a way that the hyperplane

$$a_{j1}x_1 + \dots + a_{jn}x_n = 0$$

will be transformed into the hyperplane $y_j = 0$. The coordinate transformation

$$x_k = \sum_{s=1}^n \alpha_{k,s} y_s, \quad k = 1, \cdots, n$$

is defined by a real orthogonal matrix $A = (\alpha_{k,s})$ and $|\det A| = 1$.

Put $g(y) = (F^{-1}\psi * f)(x)$. Then $||g||_{N_{\Phi}} = ||F^{-1}\psi * f||_{N_{\Phi}}$, $\operatorname{supp} \hat{g}$ is compact and, clearly, the Fourier transform of g(y) will concentrate on the hyperplane $\xi_j = 0$. By an argument analogous to that used for the proof of Theorem 1 [1], we see that g(y) does not depend on y_j .

Since $g \in N_{\Phi}(\mathbb{R}^n)$, we get

(7)
$$\int_0^\infty \Phi(\lambda_g(t))dt < \infty.$$

We shall show that $g(y) \equiv 0$. Actually, assume on the contrary that $g(y^0) \neq 0$ for some point y^0 . Because $g(y) = F^{-1}(\psi \hat{f})(x)$ is continuous, there exist

a number $\varepsilon > 0$ and a neighbourhood V of y^0 such that $|g(y)| > \varepsilon$ for all $y \in V$. Hence, since g(y) does not depend on y_j , we get

$$\lambda_g(\varepsilon) = \mu(\{ y \in \mathbb{R}^n : |g(y)| > \varepsilon \}) = \infty.$$

From $\lambda_g(t)$ is a nonincreasing function, $\lambda_g(t) = +\infty$ on the interval $[0, \varepsilon]$. Since $\Phi(t)$ is nondecreasing and unbounded, it follows that $\Phi(\lambda_g(t)) = +\infty$ on $[0, \varepsilon]$, which contradicts (7). Thus, we get $g(y) \equiv 0$, i.e., $\psi(\xi)\hat{f}(\xi) \equiv 0$. Since $\psi(\xi) \in C_0^{\infty}(G_j)$ is arbitrarily chosen, we get $\hat{f}(\xi) \equiv 0$ on the hyperplane H_j . So $\hat{f}(\xi)$ must concentrate on the planes $H_i \cap H_j$, $i, j = 1, \ldots, m, i \neq j$.

We put for $i, j = 1, \ldots, m, i \neq j$

$$G_{ij} := \mathbb{R}^n \setminus \bigcup \{ H_k \cap H_\ell : (k, \ell) \neq (i, j), k \neq \ell \}.$$

Then G_{ij} is open. For any $\psi(\xi) \in C_0^{\infty}(G_{ij})$, the distribution $\psi(\xi)\hat{f}(\xi)$ concentrates on the plane $H_i \cap H_j$.

By an argument analogous to the previous one, we obtain $\psi(\xi)\hat{f}(\xi) \equiv 0$. Since $\psi \in C_0^{\infty}(G_{ij})$ is arbitrarily chosen, we see that $\hat{f}(\xi)$ must concentrate on $H_i \cap H_j \cap H_\ell$, $i, j, \ell = 1, \ldots, m, i \neq j \neq \ell$.

Repeating the above arguments (k-3) times more, we deduce that the distribution $\hat{f}(\xi)$ concentrates on $\bigcap_{i=1}^{m} H_i$ and then, by the same way, we get $\hat{f}(\xi) \equiv 0$, which contradicts $f(x) \neq 0$. The proof is complete. \Box

The following lemma, which will be used in the sequel, is the analogy for the space $N_{\Phi}(\mathbb{R}^n)$ of Theorem 9.3 [5], and has a similar proof.

LEMMA 4. Let $f \in L_1(\mathbb{R}^n) \cap N_{\Phi}(\mathbb{R}^n)$ and $g \in M_{\Phi}(\mathbb{R}^n)$. If f * g = 0then

$$\operatorname{sp}(g) \subset Z(f) := \{ t \in \mathbb{R}^n : \widehat{f}(t) = 0 \}.$$

THEOREM 2. Let Y be a translation invariant subspace of $L_1(\mathbb{R}^n) \cap N_{\Phi}(\mathbb{R}^n)$. If for each $\xi \in Z(Y) := \bigcap_{f \in Y} \{t \in \mathbb{R}^n : \hat{f}(t) = 0\}$ there is a neighbourhood V of ξ such that $V \cap Z(Y)$ is contained in a finite number of hyperplanes, then Y is dense in $N_{\Phi}(\mathbb{R}^n)$.

PROOF. Assume on the contrary that Y is not dense in $N_{\Phi}(\mathbb{R}^n)$. Then, since $(N_{\Phi}(\mathbb{R}^n))^* = M_{\Phi}(\mathbb{R}^n)$ (Theorem 4.3 [6]) and the Hahn-Banach theorem, there exists a non-zero function $g \in M_{\Phi}(\mathbb{R}^n)$ such that

$$\int_{\mathbb{R}^n} f(x)g(-x)dx = 0 \text{ for all } f \in \overline{Y}.$$

Since Y is a translation invariant subspace, we have

$$\int_{\mathbb{R}^n} f(y-x)g(x)dx = 0 \text{ for all } f \in Y.$$

In other words, f * g = 0. By Lemma 4, we obtain

$$\operatorname{sp}(g) \subset \{t \in \mathbb{R}^n : f(t) = 0\}$$
 for all $f \in Y$.

Hence, $\operatorname{sp}(g) \subset Z(Y)$.

The hypothesis that for each $\xi \in \operatorname{sp}(g)$ there is a neighbourhood V of ξ such that $\operatorname{sp}(g) \cap V$ is contained in a finite number of hyperplanes and Lemma 3 imply that g = 0, which contradicts $g \neq 0$. The proof is complete. \Box

COROLLARY 1. Let Y be a translation invariant subspace of $L_1(\mathbb{R}^n) \cap N_{\Phi}(\mathbb{R}^n)$. If Z(Y) is contained in a finite number of hyperplanes, then Y is dense in $N_{\Phi}(\mathbb{R}^n)$.

THEOREM 3. Let $\varphi \in L_1(\mathbb{R}^n) \cap N_{\Phi}(\mathbb{R}^n)$ with $\hat{\varphi}(0) \neq 0$ and let $\frac{1}{h}$ be an integer larger than 1. If $\varphi \in \overline{\operatorname{span}U_h}$, then $\overline{\operatorname{span}U_h} = N_{\Phi}(\mathbb{R}^n)$.

PROOF. For any $g \in (N_{\Phi}(\mathbb{R}^n))^* = M_{\Phi}(\mathbb{R}^n)$ satisfying

$$\int_{\mathbb{R}^n} f(x)g(x)dx = 0$$

for all $f \in \overline{\text{span}U_h}$, we will prove that g = 0. By virtue of Lemma 1, we get

$$\int_{\mathbb{R}^n} \sigma_h^j \varphi(y-x) g(x) dx = 0, \quad \forall j \ge 1, \quad \forall y \in \mathbb{R}^n.$$

Note that the Fourier transform of $\sigma_h^j \varphi(x)$ is $h^{jn} \hat{\varphi}(h^j t)$. It follows from Lemma 4 that

$$\operatorname{sp}(g) \subset Z^*(\varphi) := \bigcap_{j=1}^{\infty} \{ t \in \mathbb{R}^n : \hat{\varphi}(h^j t) = 0 \}.$$

It follows from $\varphi \in L_1(\mathbb{R}^n)$ and $\hat{\varphi}(0) \neq 0$ that for each $t \in \mathbb{R}^n$, $\hat{\varphi}(h^j t) \neq 0$ when j is sufficiently large. Hence, $\operatorname{sp}(g) = \emptyset$, i.e., g = 0. By the Hahn-Banach theorem, we have $\overline{\operatorname{span} U_h} = N_{\Phi}(\mathbb{R}^n)$. The proof is complete. \Box

REMARK 1. If $\Phi(t) = t$, i.e., $N_{\Phi}(\mathbb{R}^n) = L_1(\mathbb{R}^n)$, then it was shown in [9] that the condition $\hat{\varphi}(0) \neq 0$ is necessary for the density of the span U_h in $L_1(\mathbb{R}^n)$.

THEOREM 4. Let $\varphi \in L_1(\mathbb{R}^n) \cap N_{\Phi}(\mathbb{R}^n)$ and let $\frac{1}{h}$ be an integer > 1. Suppose $\varphi \in \overline{\operatorname{span}U_h}$. If for each $\xi \in Z^*(\varphi)$ there is a neighbourhood V of ξ such that $Z^*(\varphi) \cap V$ is contained in a finite number of hyperplanes, then $\operatorname{span}U_h$ is dense in $N_{\Phi}(\mathbb{R}^n)$.

PROOF. Assume on the contrary; then there exists a non-zero function $g \in M_{\Phi}(\mathbb{R}^n)$ such that

$$\int_{\mathbb{R}^n} f(x)g(x)dx = 0 \text{ for all } f \in \overline{\operatorname{span} U_h}.$$

By virtue of Lemma 1, $\overline{\text{span}U_h}$ is translation invariant, and hence,

$$\int_{\mathbb{R}^n} \sigma_h^j \varphi(y-x) g(x) dx = 0, \forall j \ge 1, \ \forall y \in \mathbb{R}^n.$$

Therefore, since Lemma 4, $\operatorname{sp}(g) \subset Z^*(\varphi)$. By the hypothesis and Lemma 3, we get g = 0, a contradiction. The proof is complete. \Box

REMARK 2. In the above theorems, if we replace the condition $\varphi \in \overline{\operatorname{span}U_h}$ by $\lim_{h\to 0,h\in G} \operatorname{dist}(\varphi,\sigma_h S_0(\varphi))_{N_\Phi} = 0$, then U_h is dense in $N_{\Phi}(\mathbb{R}^n)$.

COROLLARY 2. Let $\varphi \in L_1(\mathbb{R}^n) \cap N_{\Phi}(\mathbb{R}^n), \frac{1}{h}$ be an integer > 1 and $\varphi \in \overline{\operatorname{span}U_h}$. If $Z^*(\varphi)$ is contained in a finite number of hyperplanes then $\operatorname{span}U_h$ is dense in $N_{\Phi}(\mathbb{R}^n)$.

By an argument analogous to that used for the proof of Proposition 6.1 [9], we obtain the following results:

COROLLARY 3. Let $\varphi \in L_1(\mathbb{R}^n) \cap N_{\Phi}(\mathbb{R}^n)$, $\hat{\varphi}(0) \neq 0$ and $\frac{1}{h}$ be an integer larger than 1. If $\varphi \in \overline{\sigma_h S_0(\varphi)}$, then

$$\lim_{j \to \infty} \operatorname{dist}(f, \sigma_h^j S_0(\varphi))_{N_{\Phi}} = 0, \qquad \forall f \in N_{\Phi}(\mathbb{R}^n).$$

COROLLARY 4. Let $\varphi \in L_1(\mathbb{R}^n) \cap N_{\Phi}(\mathbb{R}^n)$ and $\frac{1}{h}$ be an integer larger than 1. If $Z^*(\varphi)$ is contained in a finite number of hyperplanes and $\varphi \in \overline{\sigma_h S_0(\varphi)}$, then

$$\lim_{j \to \infty} \operatorname{dist}(f, \sigma_h^j S_0(\varphi))_{N_{\Phi}} = 0, \qquad \forall f \in N_{\Phi}(\mathbb{R}^n).$$

References

- Bang, H. H., Spectrum of functions in Orlicz spaces, J. Math. Sci. Univ. Tokyo 4 (1997), 341–349.
- [2] Halmos, P. R., *Measure Theory*, Springer-Verlag, New York, Heidelberg, Berlin, 1974.
- [3] Luxemburg, W., Banach Function Spaces, (Thesis), Technische Hogeschool te Delft., The Netherlands, 1955.
- [4] Rao, M. M. and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, Inc., New York, 1995.
- [5] Rudin, W., Functional Analysis, Tata McGraw-Hill Publishing Company Ltd. New Delhi, 1989.
- [6] Steigerwalt, M. S. and A. J. White, Some function spaces related to L_p , Proc. London. Math. Soc. **22** (1971), 137–163.
- [7] Volchkov, V. V., Approximation of functions on bounded domain in \mathbb{R}^n by linear combination of shifts, Dolk. Akad. Nauk. **334** (1994), 560–561 (in Russian).
- [8] Wiener, N., The Fourier Integral and Certain of Its Applications, Cambridge Univ. Press, London, 1933.
- [9] Zhao, K., Density of dilates of a shift-invariant subspace, J. Math. Analysis Appl. 184 (1994), 517–532.
- [10] Zalik, R. A., On approximation by shifts and a theorem of Wiener, Trans. Amer. Math. Soc. 243 (1978), 299–308.

460

[11] Zalik, R. A., On fundamental sequences of translates, Proc. Amer. Math. Soc. 79 (1980), 255–259.

(Received November 4, 1999)

Ha Huy BANG Institute of Mathematics P.O. Box 631, Bo Ho Hanoi, Vietnam E-mail: hhbang@thevinh.ncst.ac.vn

Truong Van THUONG Department of Mathematics Hue University 32 Le Loi, Hue, Vietnam