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Sato-Kashiwara Determinant and Levi Conditions

for Systems

By Andrea D’Agnolo and Giovanni Taglialatela

Abstract. We prove that a second-microlocal version of the Sato-
Kashiwara determinant computes the Newton polygon of determined
systems of linear partial differential operators with constant multiplic-
ities. Applications are given to the Cauchy problem for hyperbolic
systems with regular singularities.

Introduction

Let X be a complex manifold, and denote by T ∗X its cotangent bundle.

A basic microlocal invariant attached to a coherent DX -module M is its

characteristic variety char(M), an involutive subset of T ∗X. Let A be the

determined DX -module represented by a square matrix A of partial differ-

ential operators. The construction of the Dieudonné determinant associates

to A a meromorphic function det(A) on T ∗X. Sato-Kashiwara [29] proved

that det(A) is in fact holomorphic, and that char(A) is computed by its

zero locus. As in the scalar case, where such determinant coincides with the

principal symbol, one can read-off from det(A) other invariants, such as the

multiplicity of A. We recall these results in section 1.

Now, let V ⊂ T ∗X be an involutive submanifold. Second-microlocal

invariants attached to M are the characteristic varieties char
(r,s)
V (M) (see

[22]), which are subsets of the normal bundle TV (T ∗X). IfM is represented

by a single differential operator, these data are summarized in its Newton

polygon. We recall these constructions in section 2, where we also state that

a second-microlocal version of the Sato-Kashiwara determinant defines and

computes the Newton polygon of determined systems. Mimicking the origi-

nal Sato-Kashiwara’s argument, we give a proof of this fact in Appendix A.

Let us mention that an algebraic approach to regularity of determinants in

filtered rings is proposed in [1], where a weaker form of this result is also

obtained.
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In the theory of (micro)differential operators, an important notion is

that of regular singularities introduced in [16]. The regularity condition

for systems with constant multiplicities coincides with the so-called Levi

conditions. For determined systems, such conditions can be expressed in

terms of the second-microlocal Sato-Kashiwara determinant. We show these

facts in section 3.

Finally, consider a real analytic manifold M , of which X is a complex-

ification. Let A be a determined system which is hyperbolic with respect

to a hypersurface N ⊂ M , and has real constant multiplicities. Using a

result of [9], we show in section 4 that Levi conditions are sufficient for the

well-poseness of the C∞ Cauchy problem for A with data on N . For ma-

trices of Kovalevskayan type this fact was obtained in [33] and [25], using

a totally different approach. (Commenting on a preliminary version of this

paper, W. Matsumoto informed us that in an unpublished paper he also

tried to express Levi conditions using a variation of the Sato-Kashiwara

determinant.)

Acknowledgments. We warmly thank M. Kashiwara for useful discus-

sions. During the preparation of this work, we had the occasion to ask

to their respective authors questions concerning some papers cited in the

Bibliography. In this sense, we thank K. Adjamagbo, Y. Laurent, and

W. Matsumoto.

1. Sato-Kashiwara Determinant

Following Sato-Kashiwara [29] (see [2] for an exposition), we recall in

this section the notion of determinant for square matrices of differential

operators.

Let X be a complex manifold, and π:T ∗X → X its cotangent bun-

dle. Denote by OX the sheaf of holomorphic functions on X, and by DX

the sheaf of linear partial differential operators. Recall that coherent DX -

modules represent systems of partial differential equations. More precisely,

a coherent DX -module M is locally of the form Dm0
X /Dm1

X M , where M is

an m1 ×m0 matrix with elements in DX .

The ring DX is endowed with a Z-filtration FDX by the order of the

operators, and the associated graded ring GDX is identified to the subsheaf

of π∗OT ∗X of functions which are polynomials in the fibers of π. One denotes
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by σ(P ) ∈ π∗OT ∗X the principal symbol of an operator P ∈ DX . Using the

notion of good filtrations, one defines the characteristic variety char(M) of a

coherent DX -module M, a closed conic involutive subset of T ∗X (see [15]).

In particular, char(DX/DXP ) is the zero locus of σ(P ).

Let A = (Aij) be an m ×m matrix with elements in DX , and denote

by A = Dm
X/Dm

X A its associated DX -module. Following [24], one says that

A is normal if there exists a family of integers ri, sj , called Leray-Volevich

weights, such that{
Aij ∈ Fri+sjDX ,

det(σri+sj (Aij)) is not identically zero,
(1.1)

where σr(·) denotes the symbol of order r. In this case, one checks that

char(A) is the zero locus of det(σri+sj (Aij)). Even if A is not normal, Sato-

Kashiwara [29] computed the characteristic variety of A using the notion of

determinant in non commutative fields, as we now recall.

Let K be a field, not necessarily commutative, and set K =

(K×/[K×,K×]) ∪ {0}, where [K×,K×] denotes the commutator subgroup of

the multiplicative group K× = K \ {0}. Denote by Matm(K) the ring of

m×m matrices with elements in K. Dieudonné [11] (see [4] for an exposi-

tion) proved that there exists a unique multiplicative morphism

Det: Matm(K)→ K,

satisfying the axioms: (i) Det(B) = c Det(A) if B is obtained from A by

multiplying one row of A on the left by c ∈ K (where c denotes the image

of c by the map K → K); (ii) Det(B) = Det(A) if B is obtained from A by

adding one row to another; (iii) the unit matrix has determinant 1. Such

a determinant satisfies natural properties as Det(AB) = Det(A) Det(B) =

Det(A ⊕ B), and an m × m matrix A is invertible as a left (resp. right)

K-linear endomorphism of Km if and only if Det(A) �= 0.

Concerning the computation of Det(A), denote by GLm(K) the group

of non-singular matrices, and by SLm(K) its subgroup generated by the

matrices Uij(c), for i �= j, obtained from the unit matrix Im by replacing

the zero in the i-th row and j-th column by c. The product Uij(c)A amounts

to adding to the i-th row of A its j-th row multiplied on the left by c. The

usual Gauss method shows that for any A ∈ GLm(K) there exist c �= 0 and

U ∈ SLm(K) such that A = U Dm(c), where Dm(c) is the matrix obtained
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from Im by replacing the 1 in the m-th row and m-th column by c. One

then has DetA = c. Note that c is in fact unique only up to commutators,

since one checks that Dm(ded−1e−1) ∈ SLm(K) if m ≥ 2.

Let K be endowed with a filtration FK. Assuming that the associated

graded ring GK is commutative, the universal property of K associates a

multiplicative morphism σ:K → GK to the symbol map σ:K → GK. One

sets

det(A) = σ(Det(A)) ∈ GK.(1.2)

Let now X be a complex manifold. The ring DX admits a (e.g. left)

field of fractions K(DX), and the above construction yields a notion of de-

terminant for matrices of differential operators (see [13]) that extends the

classical one for normal matrices

det: Matm(DX) ↪→ Matm(K(DX))→ GK(DX) ↪→ π∗MT ∗X ,

where MT ∗X denotes the sheaf of meromorphic functions on T ∗X. Sato-

Kashiwara proved that such a determinant is in fact holomorphic, and that

it computes the characteristic variety of the associated DX -module.

Theorem 1.1 (see [29]). Let A ∈ Matm(DX), and denote by A =

Dm
X/Dm

XA its associated DX-module. Then

(o) det(A) ∈ π∗OT ∗X is a homogeneous polynomial in the fibers of π,

(i) if det(A) �≡ 0, then char(A) is the zero locus of det(A).

In fact, Sato-Kashiwara obtained the above result as a corollary of The-

orem 1.2 below.

Let EX be the sheaf of microdifferential operators on T ∗X, introduced by

Sato-Kawai-Kashiwara [30] (see [31] for an exposition). This is an analytic

localization of FDX , so that P ∈ EX is invertible if and only if σ(P ) ∈ OT ∗X

does not vanish. The Z-filtered ring EX admits a field of fractions K(EX),

and (1.2) defines the notion of determinant for square matrices with elements

in EX . Denote by Ṫ ∗X = T ∗X \ X the complement of the zero-section in

T ∗X.

Theorem 1.2 (see [29]). Let A = (Aij) be a square matrix with ele-

ments in EX(U), for an open subset U ⊂ Ṫ ∗X. Then
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(o) det(A) is a homogeneous section of OT ∗X(U),

(i) A is invertible in EX(U) if and only if det(A) vanishes nowhere in U ,

(ii) if A is normal as in (1.1), then det(A) = det(σri+sj (Aij)),

(iii) if P ∈ EX satisfies [P,A] = 0, then {σ(P ),det(A)} = 0, where {·, ·}
denotes the Poisson bracket.

Actually, Sato-Kashiwara’s proof of the above result implies that the

Dieudonné determinant in EX is “almost regular”, in the sense that there is

a commutative diagram

(1.3)

where EX denotes the subsheaf of K(EX) whose germ at p ∈ T ∗X is given

by

(EX)p = {Q−1P :P,Q ∈ (EX)p, σ(Q)(p) �= 0}.

More precisely

Lemma 1.3. Let U ⊂ Ṫ ∗X be an open subset, V ⊂ U a smooth hy-

persurface, and p ∈ V . Let A ∈ Matn(EX(U)). Then, there exist an open

neighborhood Ω � p, a closed subset Z ⊂ V ∩ Ω of codimension one in V ,

and an operator P ∈ EX(Ω), such that

Det(A)|Ω\Z = P |Ω\Z .

Remark 1.4. Adjamagbo [1] proposed an algebraic approach to the

regularity of determinants in filtered rings, based on the notion of normal-

ity recalled in (1.1). In this framework, he obtained the analogue of Theo-

rems 1.1, 1.2, and A.1. However, the analogue of Theorem 2.2 is stated in

loc. cit. in a weaker form. Our proof of Theorem 2.2 is based on Lemma 1.3
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above. That is why in this paper we prefer to rely on the original Sato-

Kashiwara’s argument, that we recall in Appendix A.

Example 1.5. To conclude this section, let us give two examples of

computation of the determinant (for matrices which are not normal).

(i) This is the original Sato-Kashiwara’s example. Let X = C with holo-

morphic coordinate z, and consider

A =

(
zD + α(z) D2 + β(z)D + γ(z)

z2 zD + δ(z)

)
.

Then

A =

(
1 0

0 z2

)(
1 zD + α

0 1

)(
0 Q

1 zD + δ + 2

)(
1 0

0 z−2

)
,

where Q = (δ + α− 1− zβ)zD + αδ − 2δ + zδ′ − z2γ. Denoting by ζ

the covariable in T ∗C, one then has

detA =

{
(δ + α− 1− zβ)zζ if it is not zero,

αδ − 2δ + zδ′ − z2γ otherwise.

(ii) Let X = C2 with holomorphic coordinate (z0, z1), and consider the

matrix

A =

(
A11 A12

A21 A22

)
=

(
D2

0 +D0 z0z1D0 + z0z1 + z1

D0D1 z0z1D1 + z0 + 1

)
.

Noticing that(
1 0

−A21 A11

)(
A11 A12

A21 A22

)
=

(
A11 A12

0 A11

)
,

we have

DetA = D2
0 +D0.
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2. Newton Polygon

In this section we recall the notion of Newton polygon for microdiffer-

ential operators as discussed in Laurent [22] (see also [21]). We then use it

to state a second-microlocal version of Sato-Kashiwara’s theorem.

Let V be an involutive submanifold of T ∗X, and τ :TV (T ∗X) → V

its normal bundle. Besides the order filtration, the ring EX |V is naturally

endowed with the so-called V-filtration, VEX =
⋃

j∈Z VjEX .

Example 2.1. (a) Outside of the zero-section, one has

VjEX = (FjEX) EV ,

where EV denotes the sub-F0EX -algebra of EX |V generated by those opera-

tors in F1EX whose symbol of degree 1 belongs to the defining ideal of V in

OT ∗X (see [16]).

(b) Let Y ⊂ X be a submanifold, and denote by IY its defining ideal in

OX . If V = T ∗
YX, then VjEX =

∑
k+�≤j(FkEX)π−1(V�DX), where

V�DX = {P ∈ DX |Y :∀k ∈ Z, P IkY ⊂ Ik−�
Y },

with I�Y = OX for ' ≤ 0 (see [14]).

Let Σ be the set of pairs (r, s) of one of the three types:

(i) r = · and s ∈ Q, s ≥ 1,

(ii) s = · and r ∈ Q ∪ {∞}, r > 1,

(iii) r, s ∈ Q ∪ {∞}, and 1 ≤ s < r ≤ ∞,

and let us consider the ordering of Z2 for which (i′, j′) ≤
(r,s)

(i, j) reads, ac-

cording to the type of (r, s) ∈ Σ,

(i) i′ − i ≤ (1− s)(j′ − j), the inequality being strict if j′ > j,

(ii) j′ ≤ j + (i′ − i)/(1− r), the inequality being strict if i′ > i,

(iii) j′ ≤ j + (i′ − i)/(1− r) and i′ − i ≤ (1− s)(j′ − j).
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Note that the ordering of Z2 given by (i) and (ii) is isomorphic to the

lexicographical ordering, while the one given in (iii) is isomorphic to the

product ordering.

Graphically, the set S
(r,s)
V,[i,j] = {(x, y) ∈ R2: (x, y) ≤

(r,s)
(i, j)}, lies to the

left of the lines drawn in the following picture.

To the above ordering is associated the filtration of EX |V given by

F
(r,s)
V EX =

⋃
i,j∈Z

F
(r,s)
V,[i,j]EX , F

(r,s)
V,[i,j]EX =

∑
(i′,j′) ≤

(r,s)

(i,j)

Fi′EX ∩ Vj′EX .

For any (r, s) ∈ Σ, the graded ring G(r,s)EX =
⊕

i,j F
(r,s)
V,[i,j]EX/∑

[i′,j′] <
(r,s)

[i,j] F
(r,s)
V,[i′,j′] is identified to a subsheaf of τ∗OTV (T ∗X), the homo-

geneous elements being the functions which are homogeneous with respect

to the C×-actions on TV (T ∗X) induced by π and τ . One denotes by

σ
(r,s)
V (P ) ∈ τ∗OTV (T ∗X) the principal symbol of type (r, s) of an operator

P ∈ EX |V . Let us also consider the filtration

F
(s)
V EX =

{
F

(·,s)
V EX for s ∈ Q, s ≥ 1,

F
(∞,·)
V EX for s =∞,

and denote by σ
(s)
V (·) the associated symbol.

The Newton polygon associated to P ∈ EX |V is the convex subset

NV (P ) ⊂ R2, obtained by intersecting the sets S
(r,s)
V,[i,j] such that P ∈

F
(r,s)
V,[i,j]EX . It is easy to check that the boundary of NV (P ) has a finite
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number, say e + 2, of edges with slopes −∞ = m0 < m1 < · · · < me <

me+1 = 0, and has vertices with integral coordinates. Set sk = 1 − 1/mk

for k = 0, . . . , e, so that 1 = s0 < s1 < · · · < se <∞.

The Newton polygon NV (P ) is a convenient way to keep track of the

whole family of symbols associated to P . In fact, setting se+1 =∞, accord-

ing to the type of (r, s) ∈ Σ one has{
σ

(·,s)
V (P ) = σ

(sk)
V (P ) for sk ≤ s < sk+1,

σ
(r,·)
V (P ) = σ

(sk)
V (P ) for sk < r ≤ sk+1,

(2.1)

and

σ
(r,s)
V (P ) =

{
σ

(sk)
V (P ) for sk ≤ s < r ≤ sk+1,

0 otherwise.
(2.2)

Moreover, the Z2-degree of P in F
(r,s)
V EX is given by the coordinates of the

corresponding vertex of NV (P ).

The characteristic variety char
(r,s)
V (M) ⊂ TV (T ∗X) of a coherent EX |V -

moduleM, is defined by using the notion of good F
(r,s)
V -filtrations. Although

the notion of Newton polygon for M loses its meaning, Laurent [23] asso-

ciates to M a finite number of slopes −∞ = m0 < m1 < · · · < me <

me+1 = 0, so that, setting sk = 1− 1/mk, one has{
char

(·,s)
V (M) = char

(sk)
V (M) for sk ≤ s < sk+1,

char
(r,·)
V (M) = char

(sk)
V (M) for sk < r ≤ sk+1.

However, the analogue of property (2.2) does not seem to hold, in general.

The filtered ring F
(s)
V EX admits a field of fractions, and by formula (1.2)

one may associate to A ∈ Matm(EX |V ) a determinant, that we denote by



410 Andrea D’Agnolo and Giovanni Taglialatela

det
(s)
V (A). Sato-Kashiwara’s proof of regularity dealt with a Z-filtration,

and it is straightforward to adapt it for the F
(s)
V filtration, which is indexed

by Z2 endowed with the lexicographical order. Then, we have the following

analogue of Theorem 1.1.

Theorem 2.2. Let V ⊂ T ∗X be a locally closed involutive submani-

fold, and denote by A = EmX /EmXA the EX-module associated to A ∈
Matm(EX |V ). Then,

(o) det
(s)
V (A) is a homogeneous element of τ∗OTV (T ∗X),

(i) if det
(s)
V (A) �≡ 0, then char

(s)
V (A) is the zero locus of det

(s)
V (A).

(ii) Assume that V is a hypersurface. Then A admits a Newton polygon

NV (A). More precisely, there exists a convex subset NV (A) ⊂ R2

whose boundary has the same slopes −∞ = m0 < m1 < · · · < me <

me+1 = 0 as A, so that, setting sk = 1− 1/mk, one has{
char

(·,s)
V (A) = det

(sk)
V (A)−1(0) for sk ≤ s < sk+1,

char
(r,·)
V (A) = det

(sk)
V (A)−1(0) for sk < r ≤ sk+1.

(2.3)

Moreover, the Z2-degree of det
(sk)
V (A) is given by the coordinates of

the corresponding vertex of NV (A).

As pointed out in Remark 1.4, an algebraic approach to this result is

proposed in [1]. However, the characteristic property (2.3) of the Newton

polygon is stated in loc.cit. only for dimX = 1.

Proof. A proof of statements (o) and (i) is given in Appendix A, and

we only prove here assertion (ii).

Let us begin by noticing that if P,Q ∈ EX |V satisfy P = Q in EX |V ,

then NV (P ) = NV (Q). In fact, in this case one has σ
(s)
V (P ) = σ

(s)
V (Q) for

any s.

By Theorem 1.2 (iii), we may use the trick of the dummy variable, and

assume that V ⊂ Ṫ ∗X. By Lemma 1.3, there exists P ∈ EX such that

Det(A)|V \Z = P , where Z is an analytic subset of codimension at least 1

in V . By the argument in the previous paragraph, the definition NV (A) =

NV (P ) is well-posed. On τ−1(V \Z) we have det
(s)
V (A) = σ

(s)
V (P ) = σ

(s)
V (P )

for any s, and such equality still holds in τ−1(Z) by analytic continuation.

Then, (2.3) follows from (i) and (2.1). �
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3. Systems with Regular Singularities

In this section we recall the notion of EX -module with regular singular-

ities. In the case of determined systems, we show that regularity can be

tested using the second-microlocal Sato-Kashiwara determinant.

Let V ⊂ Ṫ ∗X be an involutive submanifold. As in Example 2.1, let EV
be the subalgebra of EX generated over F0EX by the sections P of F1EX
such that σ1(P ) belongs to the annihilating ideal of V in T ∗X. Following

Kashiwara-Oshima [16], one says that a coherent EX -moduleM has regular

singularities along V if locally there exists a coherent sub-F0EX -moduleM0

ofM which generates it over EX , and such that EVM0 ⊂M0. In particular,

recall that a system with regular singularities along V is supported by V .

As proved by Laurent [22, Theorem 3.1.7] and Monteiro-Fernandes [28]

(see [31] for an exposition), a coherent EX -module M has regular singular-

ities along V if and only if

char
(∞,1)
V (M) ⊂ V,(3.1)

the zero-section of TV (T ∗X). Moreover, one says that M satisfies the Levi

conditions along V if

char
(∞,1)
V (M) = char

(·,1)
V (M).(3.2)

Lemma 3.1. Let V ⊂ Ṫ ∗X be a locally closed regular involutive sub-

manifold, and M a coherent EX-module defined in a neighborhood of V ,

with char(M) = V . Then, the following conditions are equivalent

(i) M has regular singularities along V ,

(ii) M satisfies the Levi conditions along V .

Proof. By [22, Proposition 3.1.2] char
(·,1)
V (M) is the Whitney normal

cone of char(M) along V , and hence char
(·,1)
V (M) = char(M). �

Combining Theorem 2.2 and Lemma 3.1, we get

Theorem 3.2. Let A be the EX-module associated to A ∈ Matm(EX),

and set V = Ṫ ∗X ∩det(A)−1(0). Assume that V is a smooth regular hyper-

surface. Then, the following conditions are equivalent
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(i) A has regular singularities along V ,

(ii) A satisfies the Levi conditions along V ,

(iii) NV (A) is reduced to a quadrant.

For instance, the system associated to the matrix A of Example 1.5 (ii)

has regular singularities along his characteristic variety {ζ0 = 0}.

4. Determined Cauchy Problem

As we now recall, Levi conditions are sufficient for the well-poseness of

the C∞ Cauchy problem for hyperbolic systems with real constant multi-

plicities. Here, we discuss in particular the case of determined systems.

Let Y be a submanifold of X. To a coherent DX -module M one asso-

ciates its pull-back MY = DY→X ⊗DX |Y M|Y , where DY→X = OY ⊗OX |Y
DX |Y denotes the transfer bi-module. One says that Y is non-characteristic

for M if

char(M) ∩ T ∗
YX ⊂ T ∗

XX.

By [15], if Y is non-characteristic for M, then MY is coherent, and the

Cauchy-Kovalevskaya-Kashiwara theorem states the isomorphism

RHomDX
(M,OX)|Y ∼→ RHomDY

(MY ,OY ).

Let N ⊂M be real analytic manifolds of which Y ⊂ X is a complexification.

One says that N is hyperbolic for M if

T ∗
NM ∩ CT ∗

MX(char(M)) ⊂ T ∗
MM,

where CT ∗
MX(·) denotes the Whitney normal cone, and we used the embed-

ding T ∗M → TT ∗
MXT

∗X (see [18, §6.2]). By [5] and [17], hyperbolicity is

a sufficient condition for the well-poseness of the Cauchy problem in the

framework of Sato hyperfunctions. Concerning C∞ functions, one has

Theorem 4.1 (see [9]). LetM be a coherent DX-module, and set V =

char(M) ∩ Ṫ ∗X. Assume

(o) V ∩Ṫ ∗
MX is a smooth regular involutive submanifold of Ṫ ∗

MX, of which

V is a complexification,
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(i) N is hyperbolic for M,

(ii) M satisfies the Levi conditions along V .

Then, the C∞ Cauchy problem for M is well-posed, i.e.

RHomDX
(M, C∞M )|N ∼→ RHomDY

(MY , C∞N ).

Remark 4.2.

(i) In [9] this result was stated for distributions. However, as pointed

out in §7.1 of loc. cit., using the functor of formal microlocalization

introduced in [7, 8] one can easily adapt the proof to yield the well-

poseness for the C∞ Cauchy problem.

(ii) Using the results of [20] instead of those of [9], one gets propagation

for C∞ solutions instead of the well-poseness for the Cauchy problem.

Example 4.3. Let (x) = (x1, x
′) be a local system of coordinates in M ,

and let N be the hypersurface x1 = 0. Let M = DX/DXP be associated to

a single differential operator P ∈ DX of order r. Then, hypotheses (o) and

(i) of Theorem 4.1 are equivalent to say that σ(P ) is a hyperbolic polynomial

with respect to N , with real constant multiplicities, which means that, for

x and η′ real,

σ(P )(x; τ, η′) has r real roots τ , with constant multiplicities.

Moreover, condition (ii) coincides with the usual Levi conditions. In this

case the above result is classical, and Levi conditions are also known to be

necessary for the well-poseness of the Cauchy problem (see [12], [10] and [6]).

Combining Theorems 4.1 and 3.2, we get

Theorem 4.4. Let N ⊂M be a hypersurface, and A = Dm
X/Dm

X A the

DX-module associated to A ∈ Matm(DX). Denote by V the zero locus of

det(A) in Ṫ ∗X, and assume
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(i) det(A) is a hyperbolic polynomial with respect to N , with real constant

multiplicities,

(ii) the equivalent conditions in Theorem 3.2 are satisfied.

Then

RHomDX
(A, C∞M )|N ∼→ RHomDY

(AY , C∞N ).(4.1)

If A is of Kovalevskayan type (see below), the Cauchy problem can be

stated in a classical formalism—i.e. without the use of D-module theory—

and has been studied by many authors. In particular, Vaillant [33] and

Matsumoto [25] gave necessary and sufficient conditions for well-poseness of

the hyperbolic Cauchy problem for systems with real constant multiplicities.

(See also [34] and [26].) Let us discuss the relation with our approach.

Let r be the degree of det(A). By (i), Y is non-characteristic for A.

Under this assumption, Andronikof [3] proved that AY is projective of rank

r, and that AY is locally free if and only if A is normal in the sense of (1.1).

As we now recall, this means that (4.1) is equivalent to a Cauchy problem

with free traces if and only if A is normal.

By definition, A admits the presentation

0→ Dm
X→·A D

m
X → A→ 0.

Since AY is projective, the isomorphism (4.1) is equivalent to coker(C∞M |N→
A·
C∞M |N ) = 0,

ker(C∞M |N→
A·
C∞M |N )

∼→ HomDY
(AY , C∞N ).

(4.2)

Assume that A is normal, and let γ : AY
∼← Dr

Y be a local isomorphism.

Then (4.2) is equivalent to the well-poseness of the Cauchy problem{
Au = v, v ∈ (C∞M )m,

γ(u) = w, w ∈ (C∞N )r.
(4.3)

Let us state a lemma which is useful in order to compute explicitly the trace

morphism γ. (Refer to [35] for a discussion of possible choices of the trace

morphism, in a classical formalism.) Denote by OX |̂Y the formal restriction

of OX to Y .
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Lemma 4.5. Let M be a coherent DX-module, N a coherent DY -

module, and γ:N → MY a DY -linear morphism. Assume that the mor-

phism

RHomDX
(M,OX |̂Y )→ RHomDY

(N ,OY )(4.4)

associated to γ is an isomorphism. Then γ is an isomorphism.

Proof. By construction, there is a commutative diagram

where the isomorphism on the right hand side is the formal version of

the Cauchy-Kovalevskaya-Kashiwara theorem (see [19, Theorem 7.2]), and

the horizontal line is induced by γ. It follows that RHomDY
(N ,OY )

∼←
RHomDY

(MY ,OY ). Considering a distinguished triangle N →
γ
MY →

P→
+1

, the last isomorphism is equivalent to RHomDY
(P,OY ) = 0. Since

P is coherent, this implies P = 0 (see [27]). Finally, this gives N ∼→
γ
MY . �

Let (x) = (x1, x
′) be a local system of coordinates in M , and let N be

the hypersurface x1 = 0. One says that A is of Kovalevskayan type if

A(x,D) = ImD1 +B(x,D′).

Note that AY is a quotient of Dm
Y→X , and let γ : AY

∼← Dm
Y be induced by

the natural morphism DY → DY→X sending 1 to 1Y→X . The isomorphism

(4.4) is then equivalent to the well-poseness of the formal Cauchy problem{
Au = v, v ∈ (OX |̂Y )m,

u|Y = w, w ∈ (OY )m,
(4.5)

which is easily proved by computing recurrently the coefficients in the formal

power series. By Lemma 4.5, we get MY " (DY )m. Hence, the Cauchy

problem (4.3) is written as{
Au = v, v ∈ (C∞M )m,

u|Y = w, w ∈ (C∞N )m.
(4.6)
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Necessary and sufficient conditions for the well-poseness of (4.6) are

described in Vaillant [33] and Matsumoto [25] (by [32], these conditions

are equivalent for matrices with small Jordan blocks). Besides applying

only to systems of Kovalevskayan type, each of these descriptions has some

drawbacks with respect to Theorem 4.4. Namely, conditions in [33] have

been tested only for matrices with small Jordan blocks, while conditions

in [25] are expressed in terms of a normal form for the matrix A. Let us

briefly recall how Levi conditions are presented in [25], and note that they

are actually equivalent to those in Theorem 4.4.

In the framework of what he calls “meromorphic formal symbol class”,

Matsumoto [25] shows that A can be reduced to a direct sum of first order

systems. Each such system has only one characteristic root, its “principal

symbol” is in Jordan form, and the lower order terms are in Sylvester form.

Assuming that the characteristic root is ζ1 = 0, the model of such a Jordan

block is the matrix

J(x,D) = IkD1 +


0 |D′| 0 0
...

. . .
. . . 0

0 · · · 0 |D′|
b1 · · · bk−1 bk

 , with bj = bj(x,D
′) ∈ F0EX .

Then, Levi conditions in [25] are stated by asking that the elements bj of

each Jordan block (say, of size k × k) have a degree not bigger than j − k.

In the language of EX -modules, reductions in the meromorphic formal

symbol class correspond to quantized contact transformations with polar

singularities along a hypersurface transversal to the characteristic variety

V = char(A). By analytic continuation, condition (ii) in Theorem 4.4 is

invariant under such transformations. One then checks that the above con-

ditions are precisely those under which det
(∞,·)
V (J) = ζk1 , so that det

(∞,·)
V (A)

is a local equation for V .

Remark 4.6. Even without the assumption of A being of

Kovalevskayan type, one might prove that Levi conditions (ii) in Theo-

rem 4.4 are also necessary for the well-poseness of the C∞ Cauchy problem

for A. Since such conditions are known to be necessary for single differen-

tial operators, this could be done by reducing A to triangular form. In fact,

Sato-Kashiwara proof of Lemma 1.3, that we recall below, shows that for
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any p ∈ V = char(A), there exist an open conic neighborhood Ω � p, and

an analytic subset W ⊂ Ω, such that W ∩ V has codimension at least 2 in

Ω, and A|Ω\W = E T , for E, T ∈ Matm(EX(Ω \W )), with E invertible, and

T lower triangular (here W is the union of the hypersurfaces σ(A11)/ζ
v
1 = 0

obtained at each induction step of the proof). Technically, one should use

the functor of formal microlocalization of [8] along the lines of [9], but we

will not do it here.

Appendix A. Sato-Kashiwara’s Argument

The aim of this Appendix is to recall the original Sato-Kashiwara’s ar-

gument, and to obtain along their lines a proof of Theorem 2.2.

Proof of Lemma 1.3 (see [29]). By definition of Dieudonné deter-

minant, Det(A) = Q−1P ∈ K(EX) for some P,Q ∈ EX . In particular,

Det(A) ∈ EX outside of the characteristic hypersurface S = σ(Q)−1(0).

Let us then consider Det(A)|S . Denote by α the canonical one-form on

T ∗X, and let Sreg ⊂ S be the open subset where S is smooth and α �= 0.

Since S \ Sreg has codimension at least 2 in T ∗X, it is not restrictive to

assume S = Sreg. Recall that EX is invariant by homogeneous symplectic

transformations of T ∗X (i.e. transformations which preserve the canonical

one-form). One may then assume that S is defined by the equation ζ1 = 0,

in a system of local symplectic coordinates (z; ζ) ∈ T ∗X.

The proof will be by induction on the size m of A. Let vij be the

multiplicity of σ(Aij) at {ζ1 = 0}, and set v = min{vij :Aij �= 0}. If A = 0

there is nothing to prove, and hence one may assume v ≥ 0. One proceeds

by induction on the multiplicity v. Without loss of generality one may

assume v = v11. Up to a subset of codimension at least 2, one may also

assume that σ(A11)/ζ
v
1 never vanishes on {ζ1 = 0}. By Weierstrass division

theorem, one may write A1j = A11Qj + Rj , for Rj =
∑

k<v Rj,kD
k
1 with

Rj,k independent of D1. Hence A = Ã · E, with

Ã =


A11 R2 · · · Rm

A21 A22 −A21Q2 · · · A2m −A21Qm
...

...
...

Am1 A22 −Am1Qm · · · Amm −Am1Qm

 ,
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E =


1 Q2 · · · Qm

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 .

One has Det(A) = Det(Ã). If one of the Rj ’s is not zero, then the multi-

plicity of some σ(Rj) at {ζ1 = 0} is strictly less than v, and the induction

proceeds. If Rj = 0 for any j, then Det(Ã) is the product of A11 with the

determinant of a matrix of size m− 1, and again the induction proceeds. �

Proof of Theorem 1.2 (see [29]). Since subsets of codimension at

least 2 are removable singularities for OT ∗X , it follows from Lemma 1.3 that

det(A) ∈ OT ∗X . One can get the rest of the statement along the lines of

the proof of Lemma 1.3 (see [2] for an exposition). �

Proof of Theorem 1.1 (see [29]). For a coherent DX -module M
one has

char(M) = supp(EXM),

where EXM = EX ⊗π−1DX
π−1M. Using Theorem 1.2 (iii) one may apply

the trick of the dummy variable to work outside of the zero-section, and get

the statement as a corollary of Theorem 1.2 (o) and (i). �

Let us now deal with the second microlocal version of Sato-Kashiwara

determinant. We will set Ξ = T ∗X for short.

For 1 ≤ s ≤ ∞, Laurent [22] introduced the sheaf E2(s)
V of second mi-

crodifferential operators on TV Ξ (denoted E2(s,s)
V in loc. cit.), which is a

Gevrey localization of F
(s)
V EX . The filtered ring F

(s)
V E

2(s)
V admits a field of

fractions, so that (1.2) defines a determinant for matrices with elements in

E2(s)
V . Before stating the second microlocal analogue of Theorem 1.2, let us

begin by recalling some notions of second microlocal geometry.

Recall that the canonical one-form α: Ξ → T ∗Ξ is the restriction to the

diagonal Ξ ⊂ Ξ×X Ξ of the map tπ′: Ξ×X Ξ→ T ∗Ξ associated to the pro-

jection π. The pull-back αV = τ∗(α|V ) is a degenerate one-form on TV Ξ,

and one sets T ∗
rel(TV Ξ) = T ∗(TV Ξ)/ kerαV . Denote by ⊥ the orthogonal

with respect to the symplectic form dα, and by Hf = 〈dα, df ∧·〉 the Hamil-

tonian vector field of f ∈ OΞ. The map df '→ Hf gives an identification
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T ∗
V Ξ

∼→ (TV )⊥. The inclusion (TV )⊥ ⊂ TV induces by duality a projection

T ∗V → TV Ξ. The diagram

defines a map τ̃ . The relative one form αrel
V :TV Ξ → T ∗

rel(TV Ξ) is the re-

striction of τ̃ to the diagonal, and the pair (αV , α
rel
V ) give TV Ξ a struc-

ture of homogeneous bisymplectic manifold. For example, let V be de-

scribed by the equations ξ = z = 0 in a local system of symplectic coor-

dinates (x, y, z; ξ, η, ζ) ∈ Ξ. Then T ∗
rel(TV Ξ) � (x, y, η, ζ, x̃, ζ̃;x∗, ζ∗), and

αrel
V =

∑
x̃i dxi +

∑
ζ̃j dζj , αV =

∑
ηk dyk.

Theorem A.1. Let V ⊂ Ξ be a locally closed involutive submanifold,

and A = (Aij) a square matrix with elements in E2(s)
V (Ω), where 1 ≤ s ≤ ∞,

and Ω is an open subset of ṪV Ξ. Then

(o) det
(s)
V (A) is a homogeneous section of OTV Ξ(Ω),

(i) A is invertible in E2(s)
V (Ω) if and only if det

(s)
V (A) vanishes nowhere in

Ω,

(ii) if A is normal in the obvious sense, its determinant det
(s)
V (A) can be

computed using Leray-Volevich weights,

(iii) if P ∈ E2(s)
V satisfies [P,A] = 0, then {σ(s)

V (P ),det
(s)
V (A)}rel = 0, where

{·, ·}rel denotes the Poisson bracket associated to αrel
V .

(A similar result was obtained in [1].)

Proof. As in the proof of Theorem 1.2, it is enough to show that det
(s)
V

is “almost regular”. The line of the proof is the same as that of Lemma 1.3,

and we only sketch it here.

By definition, Det(A) = Q−1P for some P,Q ∈ E2(s)
V . It is then enough

to prove that Det(A) ∈ E2(s)
V outside of a hypersurface in S = σ

(s)
V (Q)−1(0).

Let S′ ⊂ S be the set of smooth points. There are two possibilities
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(a) αrel
V |S′ does not vanish identically. In this case, we denote by Sreg ⊂ S′

the open subset where αrel
V |S′ �= 0. By [22, Theorem 2.9.11], the

ring E2(s)
V is invariant by homogeneous bisymplectic transformations

(i.e. transformations preserving the forms αV and αrel
V ), and one may

assume that Sreg is defined by the equation ζ̃1 = 0, in a system of

local bisymplectic coordinates (x, y, η, ζ, x̃, ζ̃) ∈ TV Ξ.

(b) αrel
V |S′ ≡ 0. Then, αV |S′ does not vanish identically. In this case,

we denote by Sreg ⊂ S′ the open subset where αV �= 0. After a

homogeneous bisymplectic transformation, one may assume that Sreg

is defined by the equation η1 = 0.

Denote by vij the multiplicity of σ
(s)
V (Aij) at Sreg. By [22, Theorem 2.7.1],

Weierstrass division theorem holds in E2(s)
V . The proof then proceeds as

the one of Lemma 1.3. (Though Sato-Kashiwara’s proof dealt with a Z-

filtration, it is straightforward to adapt it for a filtration which is indexed

by Z2, endowed with the lexicographical order.) �

Proof of Theorem 2.2 (o) and (i). By Theorem A.1 (iii), we may

use the trick of the dummy variable on TV Ξ to work outside of the zero-

section. Recall that, for a coherent EX -module M,

char
(s)
V (M) = supp(E2(s)

V ⊗τ−1EX |V M|V ).

The claim is then a corollary of Theorem A.1 (o) and (i). �
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[2] Andronikof, E., Déterminant, selon M. Sato et M. Kashiwara, Seminar
on Hyperbolic and Holomorphic Partial Differential Equations, 1979–1980,
Univ. Paris VI, Paris, 1980, pp. Exp. No. 1, 18.

[3] Andronikof, E., Sur les filtrations de Cohen-Macaulay des modules microd-
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systèmes et réduction des systèmes, Bull. Sci. Math. 120 (1996), no. 1, 19–97.

[33] Vaillant, J., Conditions d’hyperbolicité des systèmes, C. R. Acad. Sci. Paris
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Analyse Algébrique
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