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Spherical Functions in a Certain Distinguished Model

By Keiji TAKANO

Abstract. We study unramified principal series representations
of general linear groups over p-adic fields, distinguished with respect
to the fixator of the Galois involution. We give a certain condition for
the unramified principal series to be distinguished, and give a formula
for spherical vectors in the distinguished models of G Ly, following the
method of Kato and Hironaka. We give explicit results for GLo and
GLs.

0. Introduction

Let E/F be a quadratic extension of p-adic fields, G = GL,(F) and H =
GL,(F). Regard H as the fixator of the Galois involution of E/F acting
on G. It is known ([F1]) that the symmetric variety H\G is multiplicity
free; for any irreducible smooth representation 7 of GG, the dimension of the
space of all G-morphisms of 7 into the space C*°(H\G) of locally constant
functions on H\G is at most one. If the above space of morphisms is non-
zero, then 7 is said to be H-distinguished, and we call the realization of 7
in C*°(H\G) the H-distinguished model of .

Distinguished representations are of particular importance for the con-
nection with functoriality principle ([F1, 2]), and for the appearance in a
certain Rankin-Selberg method ([R]; the quadratic extension version of the
doubling method). Motivated by the latter, we study the unramified H-
distinguished models and the spherical vectors therein. In the G Lo-case,
an explicit formula for such spherical functions was already given by W.
Banks ([B]). Also, several examples of spherical functions on p-adic sym-
metric varieties were studied by Y. Hironaka, S. Kato and F. Sato ([H1-4],
HS), [K]).

Now we summarize the contents of the present paper. Throughout this
paper we assume that E/F is unramified. Let P be the Borel subgroup
consisting of upper triangular matrices, T' be the maximal torus consisting
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of diagonal matrices, W be the Weyl group of (G,T), identified with the
subgroup consisting of permutation matrices, and wyg € W be the longest
element, that is, the anti-diagonal monomial matrix. We use the Galois
involution # on G twisted by wq (see the Notation section). Let H be the
fixator of @ in G. It is isomorphic to GL,(F). Let O be the valuation ring
of E, w be a prime element of O, K = GL,(OFg) and B be the Iwahori
subgroup consisting of elements of K whose entries below the diagonals
belong to wOpg. In §1, we give a parametrization of H\G/K; let m be the
integer part of n/2, and set

Ap={ A=A, An) €Z™; M1 << A\ <0}
For A € A,,,, put

w())\ :diag(w/\la"' 7w/\m713"’ 71)

n—m

We show that {w())‘ ;A € A} gives a complete set of representatives of
H\G/K (see (1.4)).

In §2, we study H-distinguished models for unramified principal series.
Let Xy (T)g be the set of all unramified characters on T' which is trivial
on T'N H. We show that if y is regular and the unramified principal series
I(x) has an H-distinguished model, then “x € X (T")p for some w € W.
At the same time we prove the uniqueness of the model, and determine the
support of the H-invariant functionals (see (2.2)).

At the end of §2, we construct a non-zero H-invariant linear functional
L, on I(x) for x € Xu(T)g, using complex powers of relative P-invariants,
as was proposed in [K]. We define the spherical function @, on H\G/K
by Qy(9) = (Ly,m(9)¢K, ). Here ¢x , is the unique K-fixed vector in
I(x) such that ¢k x ¢ = 1. In §3, following the method of [H4] we prove a
formula for @y, which is the main result of this paper ((3.4));

THEOREM. Let x € Xu(T)g be regular and assume that
cw(X Hew-1(Yx) # 0 for allw € W. Then, for X € A,

Qu(@)) = vol(BuyB) 3 ol 1720y

weWy Cw(X?l)
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Here, cy(x) is the usual c-function given by (14) of §3, by (x) is the factor
determined by the functional equation of invariant functionals (3.3), 6p is
the modulus of P and Wy =W N H.

Note that the sum is taken over the little Weyl group Wy, not over the
full Weyl group W as in [H4]. The vanishing of terms associated to w ¢ Wy
follows from the determination of the support of invariant functionals in §2.

If Q,(1) # 0, put @X = Qy(1)"! - Q. Then the above formula can be

rewritten as

Qulem) = vol(woB) Y- Sl v,

weWy
provided that Quw, (1) # 0 for all w € Wy(see (3.5)). In §4, we compute
the value @, (1) directly for n = 2 and n = 3 and give the explicit formulae
of @X in these cases ((4.1) and (4.3)).

I would like to express my deep gratitude to Professor Takao Watanabe
for his valuable advice and constant encouragement. Also I would like
to thank Professors Shin-ichi Kato, Fumihiro Sato, Téru Uzawa for their
helpful advice, and especially Professor Yumiko Hironaka for explaining her
work [H4], which had much influence on the present article.

Notation

Let E/F be a quadratic unramified extension of p-adic fields, with the
absolute values | - |g, | - |F respectively. Let O be the valuation ring, kg
the residue class field, g the residue order, of E. Similarly O, kr and qp
are defined for F'. We may fix a prime element w of F which is also a prime
element of F'. We shall drop the subscript £ and write O = Og, q = qg,
etc, when there is no fear of confusion. For x € F, the conjugate of x over
F' is denoted by Z.

Let G be the group GL,(F) and P, T, K, B be the subgroups of G
given in the Introduction. Let P~ be the Borel subgroup opposite to P and
N, N~ be the unipotent radical of P, P~ respectively. Put Ng = NN B,
To=TNB, Ny = N"NBand Ny = woN; wy " where wy is the anti-
diagonal monomial matrix in G. The Iwahori factorization asserts that
B = NyIp Ny, uniquely decomposed in this order.
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The Weyl group W of (G,T), isomorphic to the symmetric group of
n-letters, is identified with the subgroup of G consisting of permutation
matrices. W acts on quasi-characters x of T by “x(t) = x(w™'tw) for
we W, teT. We say that x is regular if “y = x implies w = 1.

For g = (gi;) € G, we write g for the matrix (g;;). Define the involution
f on G by

0(g) = wogwo_l for g € G.

Then 6 leaves K and T stable, and (N) = N~. Let H be the fixator of 6
in G;
H={heG;0h)=h}.

Note that H is isomorphic to GL,(F). We write Wy for W N H = {w €
W;0(w) = w}, which is the centralizer of wqy in W.

Any closed subgroups of G and any homogeneous spaces of them are
all regarded as totally disconnected Hausdorff spaces. For such a space Y,
topological notions are used with respect to this Hausdorff topology unless
otherwise stated. For a subset Z of Y, the closure of Z in Y is denoted
by Z¢. Let us write C>°(Y") for the space of all locally constant C-valued
functions on Y, C°(Y) for the subspace of those with compact support.
Linear functionals on C2°(Y') are called distributions on Y.

Fix a Haar measure dg of G, normalized so that [, dg = 1. Also fix a
left Haar measure dgp of P so that [pnx dep = 1. Let ép be the modulus
character of P. It is given explicitly by

(1) op (diag(tla T 7tn)) = H ’titj_ll = H ‘ti|n72i+1

1<i<j<n 1<i<n

on 1. On the space of all locally constant functions f : G — C such that
f(pg) = ép(p)f(g) (p € P, g € G) and that P\supp(f) is compact, there
is a unique (up to constant) non-zero right G-invariant linear functional,
which is denoted by f +— fP\G f(g)dg. We may normalize this so that
fp\G f(g)dg = fK f(k)dk

For a representation (m, V') of G, we denote by (7*,V*) the dual repre-
sentation and by (7, ‘7) the smooth contragredient, that is, the smooth part
of (7*,V*). For a subgroup U of G, the subspace of all 7(U)-fixed vectors
in V is denoted by V.
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§1. Double Coset Decompositions

In this section first we recall the description of the double cosets P\G/H
and prepare some properties of them for our later use. Then we give a
parametrization of the double cosets H\G/K on which our spherical func-
tions are defined.

Put

X={zeG;0(x)zr=1}

G acts on X ( from the right ) by the 6-twisted conjugation
(z,9)—xxg:=0(9) tzg forzeX, ged.

Put 7(g) = 1xg = 6(g)~'g. By the Hilbert Theorem 90, 7 induces a
G-equivariant homeomorphism H\G = X (see e.g. [F1]). Similarly, the
mapping g — 7(¢~!) induces G/H = X. For each v € W N X, we may fix
an element 7, € G such that

O(no)n, " =7(n, ") = v

by the surjectivity of 7. In particular we take n; = 1.

For x € G and 1 < i < n, let d;(x) be the determinant of the upper
left ¢ by 4 block of . Then for p € P, p’ € P~ and z € G we have
di(p'zp) = di(p')di(p)di(z). So dj|, gives a relative P-invariant polynomial
function on X;

(2) di(zxp) = d; (0(p)"'p)) di(x) forallpe P,z € X.

Note that p — d; ((p)~'p) is an E-rational character of P. Put m = [n/2],
the integer part of n/2, and set

X'={zeX;di(x)#0 foralll1<i<m}.
Clearly X is an open dense, P-stable subset of X under the x-action.

(1.1) LEMMA. G decomposes into the disjoint union of the double

cosets Pny,H, where v runs over W N X, and P - H 1is the unique open
dense (P, H)-double coset in G.
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PrROOF. The Bruhat decomposition for G implies that

X=|J (P wPnX), and P wPNX #0 ifandonlyif weWnX.
weW

As in [F2, p.421], one has P"vPNX = vx P for every v € W N X. Pulling
back through 7 (( : )*1) we have the first assertion. To prove the second
assertion, it is enough to see that 1+ P = X0, If v € W satisfies d;(v) # 0
for all 1 < ¢ < m, then the upper left m by m block of v must be the
identity matrix. If moreover v € X, i.e., if 8(v)v = wovwov = 1, then the
lower right m by m block of v also must be the identity, hence v = 1. This
shows that W N X° = {1}, which implies that 1% P = X°. [J

For v € W N X we define an involution 6, on G by
0,(g) = v '0(g)v for g € G.

Put P, = PNv P v. Then 6, leaves P, stable. Let R, be the fixator of
0, in P,;

(3) R,={reP;v0(r)w=r}.

R, is identified with the the stabilizer in P x H of the representative 7, as
follows;

{(p,h)e PxH;pnh" =n,} ={(ph);peP,n, 'ppu=heH}
:{(p,m_lp%);9v(p)=p€P}={(r,nv_lmv);reRv}.

Regarding R, as a subgroup of P x H as above, the double coset Pn,H is
homeomorphic to (P x H)/R,. We have the following semi-direct product
decomposition;

(4) R, = (TNRy) x (NNRy).

Now, for u = (p1,...,un) € Z", put

w" = diag(w"!,...,@w"") and w * = (=)7L
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Also, for A = (A,--- , A\p) € Z™, put
wy = diag(@w™,--- ,@™,1,---,1), and wO_A = (wp) L.

The following lemma is easily shown by a direct matrix calculation and the
ultrametric inequality.

(1.2) LEMMA. Forn € Ny, n' € N{ and p € Z™ with py1 < ... < fin,
one has
|di(nwn’)| = |di(w")].

For p € Z", w" belongs to X if and only if pp—jy1 = —p; for all 4. If
moreover ] < --- < ln is assumed, we must have pg < -+ < i, < 0. Now
set

Ap={ A=, ) €ZM 5 M < <A <0 1

Then we have
(o' eX;pneZ, m<...<pny={7(@); A€ An }.

The following corollary, which is similar to [H4, (2.2)], is important for our
later use;

(1.3) COROLLARY. Forbée€ B and \ € A,,, one has
di (r(e) + b) | = Idi (7(d)) | £ 0.
Consequently, Bwo_/\ C P - H holds for all A € A,,.

PrOOF. This follows directly from (1.2), using the Iwahori factoriza-
tion for B. Note that we pull back through 7 ((-)™') to get Bw,? C
P-H.O

In the rest of this section we give a parametrization of H\G/K.

(1.4) PROPOSITION. G decomposes into the disjoint union of the dou-
ble cosets Hw())‘K, where A runs over A,,.
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PRrROOF. The assertion is equivalent to the decomposition

X = U 7(w)) * K (disjoint union)
AEAM,

of X into K-orbits. First, by the Cartan decomposition for GG, one has
X = U (Kw'K N X) (disjoint union)
=1, o pin ) EL™

P S pn

and it is easy to see that Kw’K N X # () for pug < --- < py, if and only
if " € X. In this case we may replace @” by 7(w}), where A € A, as
above. We show that

Kr(w))KNX =7(wy) « K for all A € A,,.

Since k17 (w)ks = (7(w))k20(k1)) * O(k7!), it is enough to show that, for
A€ Ay,

(*) For any k € K with 7(w))k € X,
there is a k' € K such that 7(w))k = 7(wp) * k.

Put
Cy = wy Ky * N 0(w) Kwog ).

Then, one can show that C) is a 6-stable subgroup contained in K. In fact,
if we understand that A\j,+1 =--- = A, = 0, then C), is given by

= { (cij) € K 5 |eij| < min(g A g n-ititAniin) }
Now (*) follows from the assertion
(%) H'({1,6},Cy) = {1}.

Indeed, if 7(wy)k € X, k € K, then wjkw,® = 0(w)kwy )~ € Cy. So
(**) implies that there is a ¢ € Cy such that wjkw,® = 0(c)~'¢c, which
leads to the equation 7(wp)k = 7(w}) * k', with k' = wy *cw)) € K.
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To prove (**), first let pg : K — GLy,(kg) be the mod-w map and 6 be
the involution on GL,(kg) defined by 0(g) = wogwgy ', where bar denotes
the Galois involution of kg /kr. Regard 0 as a kp-involution on GL,(kE).
It is clear that ppo 8 = 6o 00-

Put My = po(C)). We observe that M) is the group of kp-rational
points of a Zariski-connected group over kr. Let [ be the largest number
such that \; # 0 and assume that A is of the form

Al =+ :>\i1 < )\i1+1 = :>\i1+i21< e < >\’i1+"'+ik71+1 =...= <0
i1 i i
p1x O
Then, M) consists of all matrices of the form g where p1 € GLj(kg)
0 yp2
is upper quasi-triangular of type (i1, - ,ix), p2 € GLi(kg) is lower quasi-

triangular of type (ig,--- ,%1), 9 € GLy_2/(kg) and z, y € Mat; ,,_o(kg). So
M) is a semi-direct product of rational points of Zariski-connected groups

o,y i)

Put C’/(\l) = ker(po)NCy. Then, one has an exact sequence of 1-cohomolo-
gy sets;

Hl({la 0}7 C)(\l)) B Hl({lv 0}7 C)\) I Hl({la é}a M)\)
The last set is trivial by Lang’s theorem. So (**) follows from
skokok 1 My _

To prove (***), put K(N) = 1+ w’Mat,(O) for each integer N > 1
and define py : K(N) — Mat, (kg) by

pn(14+@Va)=a mod w for a € Mat,(0).

Then py is a homomorphism onto the additive group of Mat, (kg) and
K(N + 1) = ker(pn), K(1) = ker(pg). Note that K(N) is normal in K

and is f-stable. Define the involution # on the additive group of Mat,,(kg)
by the same as before. Then the relation py o 8 = 6 o py holds. Put
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C’/(\N) = C\N K(N) and Ag\N) = pN(Cf\N)). Then AE\N) is an additive
subgroup of Mat,,(kg) over kp. As before one has an exact sequence

H'({1,6},Cc\"") — H'({1,6},C") — H'({1,6},A0).

By the additive version of the Hilbert Theorem 90, the last term vanishes.
So the vanishing of H'({1, 6}, C’iN)) follows from that of H'({1,6}, C’/(\NH)).
Inductively, (***) follows from the vanishing of H'({1,6}, CiN)) for some
large N.

Now, if N > —\;, one has C) D K(N), thus C’/(\N) = K(N). By the
argument exactly as in [PR, pp. 292-294], one can show that

HY({1,0}, K(N)) = {1}
for any integer N, hence the proof is completed. [
§2. Invariant Functionals on Unramified Principal Series

Let X, (T') be the set of all unramified quasi-characters of T'. We regard
X € Xu(T) also as a quasi-character of P by letting x|y = 1. For x €
Xur(T) let (my, I(x)) be the unramified principal series attached to x. Thus
I(x) is the space of all locally constant C-valued functions ¢ on G satisfying

¢(pg) = x(p)6p(p)?p(g) forpe P, geq,

and 7y is the right translation of G on I(x).
Let A, p be respectively the left, right translations of G on C°(G). For
X € Xu(T), let D, (G) be the space of all distributions D on G satisfying

(5)  (DAW@S) =x(p)'8p(@)*(D,f) forallpe P, f€CF(G),
and D, (G)H be the space of all D € D, (G) satisfying
(6) (D,p(h)f) = (D, f) forall he H, feC®(G).

Define p, : C°(G) — I(x) as usual by

(o (1)) (9) = /P ()60 ()2 £ (pg)dep
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for f € C2°(G), g € G. As is shown in [H4, (1.2)], the dual map p} of p,
gives rise to a right G-isomorphism I(x)* = D, (G). Therefore we have

129

(7) Homy (I(x),C) = (I(x)")" = Dy(G)".

By this we may regard H-invariant linear functionals as P x H-relatively
invariant distributions on G. From now on we study the space D, (G)? by
the standard method, so called the Bruhat theory for P\G/H.

For any locally closed subset Q of G satisfying PQH C Q, define D, ()%
to be the space of all distributions on €2 having the same P x H-equivariance
as those in Dy (G)¥ (i.e., the relations (5) and (6)). Put Q, = Pn,H for
v e WnNX, where 7, is as in §1. Recall that G = |J,cpynx Qo (disjoint
union) and Q, ~ (P x H)/R,, where R, is defined by (3).

(2.1) LEMMA. Let x € Xu(T) andv e WNX.

(i) The modulus character &, of Ry, is trivial on N N Ry, and on T N R,
it is given by

6o(t) = 6p(t)Y?  forallt e TNR,.
(ii) One has

1 ifX\TﬂRU = 1}

dim D, (Q,) =
mDy(() {0 otherwise.

PrOOF. (i) By the semi-direct product decomposition (4) of R,, 6, is
directly computed as the Jacobian of the adjoint action of TN R, on NNR,.
Let z = (z;5) € NN R,. Since NN R, C N Nv !N~ v, we may only look
at the entries x;; with i < j, v(i) > v(j). (Here and henceforth we regard
elements of W also as permutations of indices. ) Moreover since 6,(x) = z,
we must have 2,_,(i)41,n—v(j)4+1 = Zij- In particular if i = n —v(i) + 1 and
j=n—v(j)+1, then z;; € F. Similarly, for t = diag(ti,--- ,t,) € TN R,,
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we have t,,_y;4+1 = t; and in particular, t; € F* if n —v(i) + 1 = i. Now,
8y (t) is computed as;

5y (t) = H |titj_1|p (product over i =n—v(i)+1<j=n—v(j)+1)

< (11 |titj_1|)1/2 (i < j, v(i) > v(j) and,
i#n—v()+lorj#n—ov(j)+1)

= JI '

i<jw(i)>v(3)
since | - |p = | - |"/2. Comparing with (1), it is enough to see that

II lt;'l=1 fort=diag(ts, -~ ,ta) € TN R,.
i<j (i) <v(j)

As is well-known (e.g. [M, p.289)]),

IT 1t =6p®)?6p(vtv™")1V2.
1<g,v(3)<v(4)

Ift e TNR, then vtv™! = wofwo_l, thus
5p(t)1/25p(1)t1)71)1/2 = (Sp(t)l/Q(Sp(wof’wO_l)l/Q = §p(t)1/2§p(f)71/2 =1.

(ii) Recall the following criterion for the existence of relative invariant
distributions on homogeneous spaces ([BZ, (1.21)]); let G; be a totally
disconnected locally compact group, Hy be a closed subgroup of G1, w be a
quasi-character of G7. Then, there is a non-zero distribution D on Gy/H;
satisfying ( D, A(g9)f) = w(g)( D, f) for all g € Gy, f € C*(G1/H,) if and
only if

W\Hl = 6G1\H1 . 5;{}

Here, 6¢,, 6m, are the modulus characters of G, H; respectively. If such
a non-zero distribution D exists, it is unique up to constant multiples.
Applying thisto Gy = Px H, Hi = R, and w = )(16}3/2 x 1, (ii) is a direct
consequence of (i). O
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For each v € W N X put

)

Xuw(T)ow = {x € Xu(T); Xj7rR, =1} and X (T)g = Xur(T)o,1-

(2.2) PROPOSITION.

(1) If Dy (G)H # (0), then x € Xuw(T)g for somev e WNX.

(ii) If x is regular, then Dy(G) is at most one dimensional. If x is
regular and Dy (G)H # (0), then v € W N X in (i) is uniquely de-
termined, and for any non-zero D € D, (G)H, the support supp(D)
of D is given by the closure Q' of Q.

(iil) If x is regqular and Dy (G)H # (0), then there is a w € W such that
wX € Xur(T)G-

Proor. (i) follows immediately from (2.1) (ii).

(ii) Assume that x is regular and D, (G)# # (0). The uniqueness of
v € WNX such that x € X (T)g,, follows immediately from the regularity
of x. Thus, if x € Xy (T)p, b is the unique P x H-orbit such that
D, (2,)H # (0), hence one has D, () = (0) for any P x H-stable subset
Q of G such that QN Q, = 0.

Now since €2, is open in its closure Q, we have the following two exact
sequences;

(0) — Dy (@) =5 DU 22 Dy (G = 9,
(0) — Dy = 2u)7 =5 DU 2 Dy ().
As was noticed above, one has D, (G — Q) H =D, (0 — Q,)H = (0), thus

(8) DX(G)H % DX(QQOJK)H o Dx(Qv)H-
ex res
Since D, (G)* is non-zero and D, (Q,)¥ is one dimensional, all three spaces
in (8) are isomorphic and one dimensional. This completes the proof of (ii).
(iii) Let x be regular, Dy (G)H # (0) and x € Xu(T)g. Put vo = wov.
Then U% =1, so vg is a product of disjoint transpositions. Put

71,...’1)).

R

xi(z) = x(diag(1,---,1,
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If i is an index such that vo(i) = i, then x € Xy (T)g,, implies that x; px =
1. Since x; and E/F are unramified, one must have y; = 1. By the
regularity of y, one can conclude that there is no pair {7,j} of indices
such that i = vg(i) # j = vo(j), so vg is a product of m = [n/2]-disjoint
transpositions, say,

Vo = (il,jl)"'(im,jm), < <1y and i < Jk for all k.
Take w € W so that
w(iy) =k, w(g)=n—k+1 forallk.

Then one has wvow™! = wp, that is, v = O(w) 'w. This shows that
w N TN H)w=TnN R,, hence “Xirng = 1. O

REMARK. Actually we do not need the assumption that y is unramified
in (2.2) (i) and (ii). Essentially the same statement as (2.2) (i) is proved
in [JLR].

According to the above proposition, to study unramified principal series
I(x) with (I(x)*)¥ # (0), we may restrict ourselves (at least generically) to
the case x € X (7T')p. In the following we construct a non-zero H-invariant
linear functional L, on I(x) explicitly for x € Xy (7).

Write x € Xy, (T) as

n
(9) X (dlag(tl7 e 7tn)) = H ’ti|5i7 Si S (C
i=1
If x € Xu(T)g, we may assume that s,_;+1 = —s; for all ¢ since y is trivial

on T'NH. So x € Xy(T)g is of the form

m

(10) X (diag(ty, -+, tn)) = [ ] Itity 0
i=1

for s1,---, s, € C. Define a C-valued function A, on P - H by

m

(11) Av(g) =[] 1di (0(9)g™") | for g e P H,
=1
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where s}, ,s], € C are related with s1,--- , s, € C by
s =s8;i—841—1 fori<m,
(12) / n—2m+1
Sy = S — LG

If Re(s}) > 0 for all 9, A can be extended to a continuous function on G
(but not locally constant on G in general). For p € P (with diagonal entries
ti, -+ ,tn), g € G and h € H we have

x(pgh) = (Hld ) Aylg) by (2)
= <H ] 2= 55 [y |0 89) Ax(g)
i=1

— x'5%(p)Ay(g) by (10) and (12) .

For x € Xy (T)g such that Re(s}) > 0, define a linear functional L, on I(x)
by

(13) (Ly,p) = A (9)p(9)dg ( Z/KAX(k)go(k)dk: )

P\G

for ¢ € I(x). As in [H4, Remark(1.1)], the functional L., which is initially
defined for Re(s;) > 0, is analytically continued to whole of (s1,-- ,sp) €
C™. By the right H-invariance of A,, L, belongs to (I(x)")".

(2.3) PROPOSITION. If x € Xy (T)g is regular, then (I(x)*) is one
dimensional. In fact, L, defined above gives a non-zero H-invariant linear
functional on I(x), which is unique up to constant multiples.

PRrOOF. By (2.2)(ii), it is enough to see that L, # 0. Taking A =0 in
(1.3), we have A, (b) = 1 for all b € B. Therefore, ( Ly, py(chp)) = vol(B),

which is non-zero. OJ
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§3. A Formula for Our Spherical Functions

Let x € Xw(T)g and assume that y is regular. We have observed in §2
that dim(Z(x)*) = 1. By the Frobenius reciprocity,

(100")" = Homg (I(x),C>(H\G))

hence there is a unique realization of I(x) in C*°(H\G). Let L, be as in
(13) of §2, and define

Qx(g) = <LX7 ﬂ-x(g)¢K,x >

where ¢, is the unique element of I() such that ¢x (k) = 1 for all
k € K. The function @, on G is then the unique (up to constant) right K-
invariant function in the realization of I(x) in C*°(H\G). By the description
(1.4) of H\G/K, Qy is completely determined by their values at wp € G,
for A € A,,. In this section, following [H4] we give an expression of @ as a
linear combination of quasi-characters “’X(SIID/ 2, where w varies in the little
Weyl group Wy =W N H.
For x € X (T), identify I(x)~ with I(x~!) by the natural pairing

o=, o a (= [ otwmar )

for ¢ € I(x), ¥ € I(x™1). Let pg : I(x) — I(x)® be defined by

pe(¢)(g) = vol(B /¢gb

and p5(¢) := Lo pp for £ € I(x)*. Then pp is the identity on I(x)?
and pj(¢) is fixed by B for all £ € I(x)*. Since B is open and compact,
p5(€) is a smooth linear form on I(x). By the above identification I(x)™~ =~
I(x™1), pi(f) is regarded as an element of I(x~ )P so that (pj(¢),¢) =
(6,pB(0)) = ({ ¢, pp(£) ) for all ¢ € I(x).

(3.1) LEMMA. Let £ € I(x)*. As an element of I(x 1)%, pi(f) is
given by

pp(f) = Z VOl(BwB) ™ (€, Guy )Py 1

weW
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Here, ¢y = py(chpyB) forw e W.

PROOF. {¢,, -1} wew forms a basis of I(x 1)? (see [C, (2.1)]). Write

pp0) =Y awby -1 (aw €C).

weW

Then, for w € W, taking ({ ¢y, - )) on both sides,

(( Pwx>pB(L) )) = ayvol(BwB).

On the other hand,

(PB(0) bux ) = (£,pB(dwx)) = (£ Pux)
by definition. Thus a,, = vol(BwB) (£, ¢y, ). O

Let x € Xu(T) be regular and for w € W, let T : 1(x) — I(“x) be
the standard intertwining operator ([C, §3]) and ¢, (x) be defined by the
relation T (¢r ) = cw(X) @K wy- If x is of the form (9), then ¢, (x) is given
by

1— q_5i+5j_1
(14) cw(x) = H gt
i<jyw(i)>w(j)

(see [C, (3.1), (3.3)]).

(3.2) LEmMA [H4, Prop.(1.6),(1.7)]. For w € W and a regular x €
Xu(T), assume that cy,(x 1 )ey-1(Yx) # 0. Define an intertwining map
To - I(x)* — I("x)* by

Then,

(i) TX is an extension ofT&(_1 I — I(*x™Y), regarding I(x~') C
100", I("x 1) C I("x)* and,
(ii) pyoTy =Ty opf.
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Now let x € X (T)g be regular and L, € (I(x)*) be defined by (13).
Observe that for w € W, “x € X(T)g,» where v = O(w)w~!. In particular
Wy € Xuw(T)g if and only if w € Wy, so Lu, € (I(“x)*)? is defined for
w € Wy as before. For each w € W, we choose L;w) € (I("x)")H as follows;

If w e Wy, L = Lu,.
If w ¢ Wp and (I(“x)*)" # (0),

then fix a non-zero L§§”) € (I(“x)")H arbitrarily.
If w ¢ Wy and (I(*x)*) = (0), then L") =0,

Then, by (2.2)(ii),

(3.3) LEMMA. For each w € W, there is a constant by, (x) € C such
that

Now we give an expression of (), which is analogous to the formula for
zonal spherical functions.

(3.4) THEOREM. Let x € Xy (T)g be regular and assume that
cw(X Vew-1(Yx) # 0 for allw € W. Then, for X\ € Ay,

Qy(w() = vol(BwoB) > Cuo (Y X)bw (X)

wo c1/2/ X
1 X6P (WO)
weWy Cw(X )

Here, ¢y (x) is given by (14), by, (x) is determined by the functional equation
of invariant functionals in the above lemma, and Wy = W N H.

ProoOF. By definition,

Qu(@0) = (T (@g ) Ly, e ) = {7y (w5 ) Ly pB ()

(15) = (ph (w3 (@0 MLy ) s brc)-
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Let {f, -1} wew be the Casselman basis of I(x~*)? (see [C, p.402]) and
write

pi (7@ VL) = D aw fuxr,

weWw

regarding pj (ﬂ;(wg/\)Lx> as an element of I(x ')5.

TZE_I( - )(1) on both sides we have

Applying

Using (3.1) here for ¢ = m’f,x(wg’\)L;w), this is equal to

bu(x) D vol(Bw'B) N {mh, (wy M) L™, dut oy Yt oy -1 (1)
w'eW

= b (X)vol(B) T (L), mur (9 b1, ).

Returning to (15),

(16) Qx (@) = vol(B) ™ >~ by (X){ LY, (@) 1,0y )
weWw

: << ¢K,X7 fw,x—l >>

Here, we have

<L§<w), wa(wé)gbl,wX) = <L§<w),pr(Ctho—A)>
{ vol(B) - “x6'2(w)) if w € Wy,

0 otherwise.
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Indeed, if w € Wy, replacing “x by x it is enough to see this for w = 1. By
definition,

(Lpy (e = [

i A, (bewg)db = /BI;[I \d; (T(wg) * b—l) 1% db
— vol(B) - ] I (T(wg)) 1 by (1.3)

=1
= vol(B) - x6/%(w}) by (10) and (12).

On the other hand, if w ¢ Wy and Lgcw) # 0, then the support of the dis-
tribution pi, (L") is Q¢ = (P, H)* with v = §(w) " w # 1, by (2.2)(ii).
Since Q¢ N Q; = @ for v # 1 by (1.1) and Bwy? C © by (1.3), we have

(w)

supp (Pix(ng”))) N Bwy® = 0, hence ( LY ,pwx(cthO_A» = 0.
Now (16) reduces to

Qu(@) = Y bwOO{ Dxxs funy—1 ) X8 (wp).

weWy

By the formula for zonal spherical functions in [C, (4.2)], it is known that

Finally, if w € Wy and x € Xy (T)g, then one has Wowy =1 = w(woy~1) =
wy. This completes the proof. [

For a regular x € X(T)g, assume that
Quy (1) #0 for all w € W.

Then, for each w € Wj, applying both sides of (3.3) to ¢k wy, one has

TX — Cw(X_l) . wx _ -1
<Tw(Lx)=¢K,wx> w1 (X) <anTw—1(¢K7wx)> cw(X )<LX7¢K7MX>

= b () (Lo, 0o )-
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Thus

buw(X) = C%‘T((ll))'cw(x‘l)-

Put Q, = Q, (1)~ - Q,. Then we have

(3.5) COROLLARY. For a regular x € Xu(T)g such that
cw(X Y ew-1(YX) # 0 for allw € W and that Quy (1) # 0 for all w € Wy,

@X(w{)\) = vol(BwyB) Z ng(u()i()) ,wxé}g/?(w()\).
weWy X

4. Explicit Computations for n =2 and 3

In this section we give an explicit formula of @X for n =2 and n = 3.
By (3.5) it is enough to compute Q, (1) for x € X (7).

(I) n=2
In this case, Wy =W = {1,wq }. Write x € Xy(T")p as

t1 0\ Sy 1—s
X(O tg) = |t1’ |t2‘ s s e C.

Then y is regular if and only if ¢7° # 41, which we assume below. The
function A, defined by (11) is then of the form

Ay(g) = |di(8(9)g 2.

Note that dy(z) is just the (1, 1)-entry of the matrix z. By the decomposi-
tion K = B U BwyB (disjoint),

(17) QX(1):/KAX(k;)dk:/BAX(b)dH/ Ay (y)dy.

BwoB

The integral over B is vol(B) by (1.3). Also, by the Iwahori factorization,

/ Ay = vol(Buy) LA <w0 (é ’ >> da
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where dx is the additive Haar measure of O normalized so that vol(O) = 1.
~1

Now the (1,1)-entry of 6 (’LU() <(1J f)) (wo ((1) Qf)) is 1 — zZ, by a direct

calculation. We have to compute the integral

(18) / \1—1‘3‘6\5_%0&:/ dx—i-/ |1—x§:|5_%dx
© o<1 ja|=1

but the latter integral, over |z| = 1, is already computed in [FH, pp. 705—
706] as follows (see also (4.2) of this section); the volume of the set

{ze€0;|z|=1, [1—zz|=1}

1

is1— qgl —2q~*, and for 7 > 1 the volume of the set

{ze0;lz=1, [1-az]=¢"}

is q;i(l — ¢ 1), both are with respect to our additive Haar measure. Thus
(18) is computed as

_ _ _ i 1y —i(s—L
¢ (=g =20+ ) g (1 —g g

i1

(19) =l-qr' —q¢'+(1-q"):

—S

q
1—q3

for Re(s) > 0.

Since vol(B) = (¢ + 1)71, vol(BwyB) = q(q + 1)~!, returning to (17) we
have

1

Q) =y rax ) = - (a-ar b -0 L)

1
ST3

_q9—-qr 1+q
g+1 1—qgs

So Quy (1) # 0 for all w € Wp if and only if ¢=° # —¢*1/2.

(4.1) THEOREM. For n =2, assume that x € Xu(T)g is of the form
x(diag(t1, t2)) = [t1[*[ta| ™%, s € C, ¢* # £1, —¢*/?, £¢~ /2. Then Qy is
given by

_g—1 _1
o G W A B Sk B N el AP O
XLVo o1 qr — 1 14q5 14 ¢°
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forAxeZ, X <0.

ProoF. For our choice of y;,

1 — q—25—1
Cwo (X) = T

(see (14)). Therefore, ¢y, (X_l)cwo_l(wox) # 0 holds if and only if ¢7° #
+¢~ /2. Also, by the above computation of Qy (1),

1
co(X) _ g+l (1—g¢*H(1—-q®) q+1 1—q":

Q) a—ar (1-g=)(1+q o2 a—ar 1447

which proves the above formula, by (3.5). O

REMARK. If we replace A (< 0) by —A (= 0), then (4.1) coincides with
the formula given by Banks [B].
(IT) n=3
01
Put wiy = (10 |, 01) Then W = {1, w;,ws, wiws,

10
wowy, Wy }, 9—{1 wo} Write x € X (T)p as

t1
X ( to ) = |t1‘5’t3|_8, s e C.
t3

Then x is regular if and only if ¢~* # 41, which again we assume below.
The function A, is of the form

Ay(g) = |di(0(g)g~ )"

As in the case n = 2, we use K = Uyew BwDB (disjoint union) and the
Iwahori factorization B = N; ToNy to compute Q(1);

/A k)dk = Z
BwB

weWw

(20) = 3 vol(BwB) /N i /N A nm) .

weW
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Here the Haar measures dn’, dn of Ny, Ny are normalized so that
vol(Ny ) = vol(Ng) = 1. We shall compute the six integrals in (20).
(II-1) w = 1. By (1.3),

(21) / Ay (n'n)dn'dn = 1.
N JNg

01
(II~wy) w =wy = (1 0 ) In this case, using
1

wl_ICN

we obtain

/ Ay (win/n)dn'dn
Ny I

1

1 z
:///Axwlo 1 |
oJoJo

wr wy 1

dxdydz.

= O O

Here and henceforth, the additive Haar measures are normalized so that
vol(O) = 1. By a direct calculation of the matrix inside A, this is equal
to

///]—z+wzx+wy—w2xy|s1da:dydz
0OJOJO

:///|(wy—z)—i—wa‘:(%—wy)P_ldxdydz

OJOJO

://\z+wx2\s_1d:cdz (by replacing z by z + wy)
0JO

:/ |2|°71dz  (since |z| > |wzz| for all z, z € O)
@]

1
1—qs

(2 =(-q)
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1
(IT~wg2) w = wy = ( 0 1). As in (IT-w;), we may write
10

/ Ay (wan'n)dn’dn
Ny N

1 1 00
= / Ay fwe | wz 1 1 =z dxdydz,
o3 wy 0 1 1

and by a matrix calculation inside A, this is equal to

/ |z — wx + wyz — w2 zy|* Ldrdydz
03

= / |z + wyz|*"Ydydz (by z ~ 2z + wi)
02

— (22).

1
(IT~wwe) w = wiwy = <1 0 ) We may change the order of the

01
Iwahori factorization to make computations easier. By

1 1 % 0
wiwe | 0 1 wz_lwl_lcN, wW1W2 1 0 wz_lwl_ICN
* ok 1 1
we have
/ / Ay (wywen'n)dn'dn
Ny JNg
1 0 =z 1
:/ Ay | wiwe 1 vy wz 1 dxdydz.
o3 1 0 01



394 Keiji TAKANO

Computing the matrix inside A, this is equal to
/ | — 27 + wzz — y + wz|* tdaxdydz
03
= / ly + 2g* tdazdy (by y ~ —y + @2)
02

— /02 ly + xy|571d:13dy (by z ~~ (@fly)x)

:/ |1—|—x\5_1dw-/ ]y[s_ldy
O O

(23) =1 o
10

(IT~wow1) w = wawy = ( 0 1>. As in (II-wjws), we have
1

/ / A, (wawin/n)dn'dn
Ny N,

1 =z y 1
:/ Ay | wowy 1 0 0 1 dxdydz
o3 1 0 wz 1

:/ | — 27 + & + wyz — wz|* tdaxdydz
(93

= / |z — zg|*tdxdy (by z ~ z + w2)
02
= (23).

(IT-wp) w = wp. Since ngl_wo_l C N,

/ Ay (won'n)dn’dn
Ny JNg

1 =z
= / AX wo 1
o3

= /(93 [9(xz —y) — 22 + 1° *dadydz

dxdydz

— N <

@) = [ -0+ - )l eyt by y - @)
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We divide y € O into {|y| < 1} and {|y| = 1}. The integral over {|y| < 1}
is easy to compute; since |y — 1| =1 for |y| < 1,

/ / |Z2(7 — 1) + (1 — yp)|* ‘dedydz
lyl<1 Jz,2€0
= / / |Zz + (1 — yp)|* 'dadydz
lyl<1 Jz,2€0
= [ [ e ey
ly|<1 J)z|<1 J2€0
+ / / / |Z2 4+ (1 — yy)|* *daedydz.
ly|<1 J]z|=1 Jz€O

The integrand in the first term is 1. Replacing z by 27tz — 271(1 — y7) in
the second, the above is equal to

- - - - — _ _ 1
2€0 —q

Next, the integral over {|y| =1} is;

/ / |Z2(7 — 1) + (1 — yp)|* ‘dedydz
lyl=1 Jz,2€0
Oo .
- Z/ . / q - / g 1)+ (1~ yy)|* L dadydz
|z|=g=¢ J|y|=1 |z|<q~?
—Zq (1-g™ / / Z2(y — 1) + (1 — y)|*" dydz
lyl= 1 |2<q~?
—a-ahy Yy |

j/ 12+ (1 — yy)|* dydz
|lz|<q=—7

i—0 j—0 * [YI=Llg—1l=q7
(1-q Z ¢ {/y 1,|y_1|:qj/ |z + (1 —yy)|* tdyd=
3,5>0 1—ygl<qg—i—i Jlzl<a™

+/y|=1,|y1|=qf/ . _\Z+(1—yy)!s‘1dydz}.
7 i—j J|z|<qTd

1—yg|>q—*7
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In the former integral in {---}, we may replace z by z — (1 — yy). In the
latter, the integrand is |1 — yy|*~!. So, this is written as

- -
- j - g’ —ij \ (ki) (s—
(26) (1—¢7") > ¢ {w,ju—q . Tt I3 v g 1)}
k=0

i,j20

where, for i, j, k > 0,

vij=vol({y € Oyl =11y -1 =q7, |1 —yyl <q7}),

vy =vol ({y € 05 Iyl = Ll =1 = a7, ]1 =y =g *77}) |
both measured by the additive Haar measure as before. Note that if [y| = 1,
[y =1 =¢7 then [1 —yy| =1 -y +y(1 —y)| <q¢.

(4.2) LEMMA.

1

_1 _ i _1 .
0 ¢ z—2¢", v, =a 7 (1—q2) (j=1),

k _1 _k_ _1 ..
vo=q2(1—q2) (k=1), v,;=q¢27/1—-q2)? (i,j=>1).

PROOF. Put U™ =1+ @O for m > 1 and U® = O*. At first, it
is easy to see that v ; is computed as vol(U)) — vol(UU+)), so the first
two of (i) are easy. To compute v; ; for ¢ > 1, set

Uiy ={y € 05yl = LIy =1 g7, =yil a7}

for i, j > 0. Then, U;; is a multiplicative subgroup of O*, lying between
UU) and U@+ Moreover it is easy to observe that

Ui; = U e Ulits),

geU(j)/U(i+j)
eg=1 mod U+
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Since £/ F is unramified, the norm map Ng,p : E* — F* gives a surjection
um Ul(;m) for each m, hence induces U™ /U™ — U}m)/Ufw”) form < n.
Here U ém) = U™ N F. Now the volume of Ui j is computed as;
vol(Us ;) = #ker[UD U+ — gl jyiH] s vol(Ulit))
: L _i _1 :
L #UW Uiy [ gme(l4q72) (§=0),

L R#UDlity { ¢E7 (=),

Using this, v;; is computed as vol(U; ;) — vol(U;—1 j4+1) for ¢ > 1 so (i)
follows immediately. Also, (ii) follows from (i) since vy = Vkj — Vk41,5- U

Applying (4.2) and by an earnest computation, (26) is equal to

g1
q_l(l _ q—1)2 (1 _ q—1)2(1 _ q—l +q s 2)

3 1
27) — + —q 2 (1+q 2
(27) = 0—q 7 g 2(1+q 2)
—1 1— —1
L4 ( 4 )
1—q3

Returning to (24),
(24) = (25) + (27)

el
(28) B U € B NN Gl 0 I ol B D
1—q* (1—g2)?

Finally, since vol(BwB) = vol(B) x ¢“*), returning to (20),

Qy (1) = vol(B) x {(21) +2 x ¢ x (22) + 2 x ¢* x (23) + ¢* x (28)}
= vol(B) {(1 —?)+ (200 - )+ (1 -g7) -5 _1q_5
+ (220 - P - a0 — g )

which is simplified as

(1—¢ > (1 +q°7)
(1—q°)?

(29) Qx(1) = vol(B)(¢* — ¢})
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Note that Qu, (1) # 0 for all w € Wp if and only if ¢=% # ¢*!, —¢*1/2.

(4.3) THEOREM. For n = 3, assume that x € Xy (T)g is of the form
x(diag(t1,ta,t3)) = |t1]°|ts| =%, s € C, ¢~* # +1, ¢*1, —¢'/2, £~ V2. Then,
Qy 15 given by

1

= 2 qqF (1-¢g*H-g¢g2) —A(s+1)

Qy(wy) =
x(=b) qmv—1-< 1—q 2 ¢

1— s—1 1— s—%
+( ¢ )(1—g¢ >q)\(s—1))

1_q25

forAeZ, A<0.

PROOF. First, by (14) it is known that c,(x " 1)e,-1(Yx) # 0 for all
w e W if and only if g% # ¢~*, £¢~ /2. Also, for our choice of ¥,

1— qfsfl 2 1— q72571
Cwo(X) - s ’ 25 °

1—g¢q 1—g¢q

Therefore, by (29),

cwy(X) _ 1 R € e 0 € Sl B L ¢ ek D)
Qx(1)  vol(B)g3(1 — ¢z°) (1— g1 +q* %)(1 —q=)2(1 — ¢—29)
1 ggr  (1—g 7 H(1—g 3
vol(BwoB) qqr — 1 (1—q%)

which proves the above formula, by (3.5). O
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