Spherical Functions in a Certain Distinguished Model

Ву Кеіјі Такано

Abstract. We study unramified principal series representations of general linear groups over p-adic fields, distinguished with respect to the fixator of the Galois involution. We give a certain condition for the unramified principal series to be distinguished, and give a formula for spherical vectors in the distinguished models of GL_n , following the method of Kato and Hironaka. We give explicit results for GL_2 and GL_3 .

0. Introduction

Let E/F be a quadratic extension of \mathfrak{p} -adic fields, $G = GL_n(E)$ and $H = GL_n(F)$. Regard H as the fixator of the Galois involution of E/F acting on G. It is known ([F1]) that the symmetric variety $H\backslash G$ is multiplicity free; for any irreducible smooth representation π of G, the dimension of the space of all G-morphisms of π into the space $\mathcal{C}^{\infty}(H\backslash G)$ of locally constant functions on $H\backslash G$ is at most one. If the above space of morphisms is nonzero, then π is said to be H-distinguished, and we call the realization of π in $\mathcal{C}^{\infty}(H\backslash G)$ the H-distinguished model of π .

Distinguished representations are of particular importance for the connection with functoriality principle ([F1, 2]), and for the appearance in a certain Rankin-Selberg method ([R]; the quadratic extension version of the doubling method). Motivated by the latter, we study the unramified Hdistinguished models and the spherical vectors therein. In the GL_2 -case, an explicit formula for such spherical functions was already given by W. Banks ([B]). Also, several examples of spherical functions on p-adic symmetric varieties were studied by Y. Hironaka, S. Kato and F. Sato ([H1-4], [HS], [K]).

Now we summarize the contents of the present paper. Throughout this paper we assume that E/F is unramified. Let P be the Borel subgroup consisting of upper triangular matrices, T be the maximal torus consisting

¹⁹⁹¹ Mathematics Subject Classification. Primary 11F70; Secondary 22E35.

of diagonal matrices, W be the Weyl group of (G, T), identified with the subgroup consisting of permutation matrices, and $w_0 \in W$ be the longest element, that is, the anti-diagonal monomial matrix. We use the Galois involution θ on G twisted by w_0 (see the Notation section). Let H be the fixator of θ in G. It is isomorphic to $GL_n(F)$. Let \mathcal{O}_E be the valuation ring of E, ϖ be a prime element of \mathcal{O}_E , $K = GL_n(\mathcal{O}_E)$ and B be the Iwahori subgroup consisting of elements of K whose entries below the diagonals belong to $\varpi \mathcal{O}_E$. In §1, we give a parametrization of $H \setminus G/K$; let m be the integer part of n/2, and set

$$\Lambda_m = \{ \lambda = (\lambda_1, \cdots, \lambda_m) \in \mathbb{Z}^m ; \lambda_1 \leqslant \cdots \leqslant \lambda_m \leqslant 0 \}.$$

For $\lambda \in \Lambda_m$, put

$$\varpi_0^{\lambda} = \operatorname{diag}(\varpi^{\lambda_1}, \cdots, \varpi^{\lambda_m}, \underbrace{1, \cdots, 1}_{n-m})$$

We show that $\{\varpi_0^{\lambda} ; \lambda \in \Lambda_m\}$ gives a complete set of representatives of $H \setminus G/K$ (see (1.4)).

In §2, we study *H*-distinguished models for unramified principal series. Let $X_{\rm ur}(T)_{\theta}$ be the set of all unramified characters on *T* which is trivial on $T \cap H$. We show that if χ is regular and the unramified principal series $I(\chi)$ has an *H*-distinguished model, then ${}^{w}\chi \in X_{\rm ur}(T)_{\theta}$ for some $w \in W$. At the same time we prove the uniqueness of the model, and determine the support of the *H*-invariant functionals (see (2.2)).

At the end of §2, we construct a non-zero *H*-invariant linear functional L_{χ} on $I(\chi)$ for $\chi \in X_{\rm ur}(T)_{\theta}$, using complex powers of relative *P*-invariants, as was proposed in [K]. We define the spherical function Q_{χ} on $H \setminus G/K$ by $Q_{\chi}(g) = \langle L_{\chi}, \pi_{\chi}(g)\phi_{K,\chi} \rangle$. Here $\phi_{K,\chi}$ is the unique *K*-fixed vector in $I(\chi)$ such that $\phi_{K,\chi|K} \equiv 1$. In §3, following the method of [H4] we prove a formula for Q_{χ} , which is the main result of this paper ((3.4));

THEOREM. Let $\chi \in X_{\mathrm{ur}}(T)_{\theta}$ be regular and assume that $c_w(\chi^{-1})c_{w^{-1}}(^w\chi) \neq 0$ for all $w \in W$. Then, for $\lambda \in \Lambda_m$,

$$Q_{\chi}(\varpi_0^{\lambda}) = \operatorname{vol}(Bw_0 B) \sum_{w \in W_{\theta}} \frac{c_{w_0}(^w\chi)b_w(\chi)}{c_w(\chi^{-1})} w_{\chi} \delta_P^{1/2}(\varpi_0^{\lambda}).$$

Here, $c_w(\chi)$ is the usual c-function given by (14) of §3, $b_w(\chi)$ is the factor determined by the functional equation of invariant functionals (3.3), δ_P is the modulus of P and $W_{\theta} = W \cap H$.

Note that the sum is taken over the *little* Weyl group W_{θ} , not over the full Weyl group W as in [H4]. The vanishing of terms associated to $w \notin W_{\theta}$ follows from the determination of the support of invariant functionals in §2.

If $Q_{\chi}(1) \neq 0$, put $\widetilde{Q}_{\chi} = Q_{\chi}(1)^{-1} \cdot Q_{\chi}$. Then the above formula can be rewritten as

$$\widetilde{Q}_{\chi}(\varpi_0^{\lambda}) = \operatorname{vol}(Bw_0 B) \sum_{w \in W_{\theta}} \frac{c_{w_0}({}^w\chi)}{Q_{{}^w\chi}(1)} \cdot {}^w\chi \delta_P^{1/2}(\varpi_0^{\lambda}),$$

provided that $Q_{w\chi}(1) \neq 0$ for all $w \in W_{\theta}(\text{see } (3.5))$. In §4, we compute the value $Q_{\chi}(1)$ directly for n = 2 and n = 3 and give the explicit formulae of \widetilde{Q}_{χ} in these cases ((4.1) and (4.3)).

I would like to express my deep gratitude to Professor Takao Watanabe for his valuable advice and constant encouragement. Also I would like to thank Professors Shin-ichi Kato, Fumihiro Sato, Tôru Uzawa for their helpful advice, and especially Professor Yumiko Hironaka for explaining her work [H4], which had much influence on the present article.

Notation

Let E/F be a quadratic unramified extension of \mathfrak{p} -adic fields, with the absolute values $|\cdot|_E$, $|\cdot|_F$ respectively. Let \mathcal{O}_E be the valuation ring, k_E the residue class field, q_E the residue order, of E. Similarly \mathcal{O}_F , k_F and q_F are defined for F. We may fix a prime element ϖ of E which is also a prime element of F. We shall drop the subscript E and write $\mathcal{O} = \mathcal{O}_E$, $q = q_E$, etc, when there is no fear of confusion. For $x \in E$, the conjugate of x over F is denoted by \bar{x} .

Let G be the group $GL_n(E)$ and P, T, K, B be the subgroups of G given in the Introduction. Let P^- be the Borel subgroup opposite to P and N, N^- be the unipotent radical of P, P^- respectively. Put $N_0 = N \cap B$, $T_0 = T \cap B$, $N_1^- = N^- \cap B$ and $N_1 = w_0 N_1^- w_0^{-1}$ where w_0 is the antidiagonal monomial matrix in G. The Iwahori factorization asserts that $B = N_0 T_0 N_1^-$, uniquely decomposed in this order.

The Weyl group W of (G,T), isomorphic to the symmetric group of *n*-letters, is identified with the subgroup of G consisting of permutation matrices. W acts on quasi-characters χ of T by ${}^{w}\chi(t) = \chi(w^{-1}tw)$ for $w \in W, t \in T$. We say that χ is regular if ${}^{w}\chi = \chi$ implies w = 1.

For $g = (g_{ij}) \in G$, we write \overline{g} for the matrix (\overline{g}_{ij}) . Define the involution θ on G by

$$\theta(g) = w_0 \bar{g} w_0^{-1}$$
 for $g \in G$.

Then θ leaves K and T stable, and $\theta(N) = N^-$. Let H be the fixator of θ in G;

$$H = \{ h \in G; \theta(h) = h \}.$$

Note that H is isomorphic to $GL_n(F)$. We write W_θ for $W \cap H = \{w \in W; \theta(w) = w\}$, which is the centralizer of w_0 in W.

Any closed subgroups of G and any homogeneous spaces of them are all regarded as totally disconnected Hausdorff spaces. For such a space Y, topological notions are used with respect to this Hausdorff topology unless otherwise stated. For a subset Z of Y, the closure of Z in Y is denoted by $Z^{c\ell}$. Let us write $\mathcal{C}^{\infty}(Y)$ for the space of all locally constant \mathbb{C} -valued functions on Y, $\mathcal{C}^{\infty}_{c}(Y)$ for the subspace of those with compact support. Linear functionals on $\mathcal{C}^{\infty}_{c}(Y)$ are called distributions on Y.

Fix a Haar measure dg of G, normalized so that $\int_K dg = 1$. Also fix a left Haar measure $d_\ell p$ of P so that $\int_{P \cap K} d_\ell p = 1$. Let δ_P be the modulus character of P. It is given explicitly by

(1)
$$\delta_P(\operatorname{diag}(t_1, \cdots, t_n)) = \prod_{1 \le i < j \le n} |t_i t_j^{-1}| = \prod_{1 \le i \le n} |t_i|^{n-2i+1}$$

on T. On the space of all locally constant functions $f: G \to \mathbb{C}$ such that $f(pg) = \delta_P(p)f(g) \ (p \in P, g \in G)$ and that $P \setminus \operatorname{supp}(f)$ is compact, there is a unique (up to constant) non-zero right G-invariant linear functional, which is denoted by $f \mapsto \oint_{P \setminus G} f(\dot{g}) d\dot{g}$. We may normalize this so that $\oint_{P \setminus G} f(\dot{g}) d\dot{g} = \int_K f(k) dk$.

For a representation (π, V) of G, we denote by (π^*, V^*) the dual representation and by $(\tilde{\pi}, \tilde{V})$ the smooth contragredient, that is, the smooth part of (π^*, V^*) . For a subgroup U of G, the subspace of all $\pi(U)$ -fixed vectors in V is denoted by V^U .

$\S1$. Double Coset Decompositions

In this section first we recall the description of the double cosets $P \setminus G/H$ and prepare some properties of them for our later use. Then we give a parametrization of the double cosets $H \setminus G/K$ on which our spherical functions are defined.

Put

$$X = \{ x \in G; \theta(x)x = 1 \}.$$

G acts on X (from the right) by the θ -twisted conjugation

$$(x,g) \mapsto x * g := \theta(g)^{-1} xg \text{ for } x \in X, g \in G.$$

Put $\tau(g) = 1 * g = \theta(g)^{-1}g$. By the Hilbert Theorem 90, τ induces a G-equivariant homeomorphism $H \setminus G \xrightarrow{\sim} X$ (see e.g. [F1]). Similarly, the mapping $g \mapsto \tau(g^{-1})$ induces $G/H \xrightarrow{\sim} X$. For each $v \in W \cap X$, we may fix an element $\eta_v \in G$ such that

$$\theta(\eta_v)\eta_v^{-1} = \tau(\eta_v^{-1}) = v$$

by the surjectivity of τ . In particular we take $\eta_1 = 1$.

For $x \in G$ and $1 \leq i \leq n$, let $d_i(x)$ be the determinant of the upper left *i* by *i* block of *x*. Then for $p \in P$, $p' \in P^-$ and $x \in G$ we have $d_i(p'xp) = d_i(p')d_i(p)d_i(x)$. So $d_{i|_X}$ gives a relative *P*-invariant polynomial function on *X*;

(2)
$$d_i(x*p) = d_i\left(\theta(p)^{-1}p\right) d_i(x) \text{ for all } p \in P, x \in X.$$

Note that $p \mapsto d_i \left(\theta(p)^{-1}p\right)$ is an *E*-rational character of *P*. Put $m = \lfloor n/2 \rfloor$, the integer part of n/2, and set

$$X^{0} = \{ x \in X ; d_{i}(x) \neq 0 \text{ for all } 1 \leq i \leq m \}.$$

Clearly X^0 is an open dense, *P*-stable subset of X under the *-action.

(1.1) LEMMA. G decomposes into the disjoint union of the double cosets $P\eta_v H$, where v runs over $W \cap X$, and $P \cdot H$ is the unique open dense (P, H)-double coset in G.

PROOF. The Bruhat decomposition for G implies that

$$X = \bigcup_{w \in W} (P^- w P \cap X), \text{ and } P^- w P \cap X \neq \emptyset \text{ if and only if } w \in W \cap X.$$

As in [F2, p.421], one has $P^-vP \cap X = v * P$ for every $v \in W \cap X$. Pulling back through $\tau((\cdot)^{-1})$ we have the first assertion. To prove the second assertion, it is enough to see that $1 * P = X^0$. If $v \in W$ satisfies $d_i(v) \neq 0$ for all $1 \leq i \leq m$, then the upper left m by m block of v must be the identity matrix. If moreover $v \in X$, i.e., if $\theta(v)v = w_0vw_0v = 1$, then the lower right m by m block of v also must be the identity, hence v = 1. This shows that $W \cap X^0 = \{1\}$, which implies that $1 * P = X^0$. \Box

For $v \in W \cap X$ we define an involution θ_v on G by

$$\theta_v(g) = v^{-1}\theta(g)v \text{ for } g \in G.$$

Put $P_v = P \cap v^{-1}P^-v$. Then θ_v leaves P_v stable. Let R_v be the fixator of θ_v in P_v ;

(3)
$$R_v = \{ r \in P ; v^{-1}\theta(r)v = r \}.$$

 R_v is identified with the the stabilizer in $P\times H$ of the representative η_v as follows;

$$\left\{ (p,h) \in P \times H \, ; \, p\eta_v h^{-1} = \eta_v \right\} = \left\{ (p,h) \, ; \, p \in P, \, \eta_v^{-1} p\eta_v = h \in H \right\}$$
$$= \left\{ (p,\eta_v^{-1} p\eta_v) \, ; \, \theta_v(p) = p \in P \right\} = \left\{ (r,\eta_v^{-1} r\eta_v) \, ; \, r \in R_v \right\}.$$

Regarding R_v as a subgroup of $P \times H$ as above, the double coset $P\eta_v H$ is homeomorphic to $(P \times H)/R_v$. We have the following semi-direct product decomposition;

(4)
$$R_v = (T \cap R_v) \ltimes (N \cap R_v).$$

Now, for $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}^n$, put

$$\varpi^{\mu} = \operatorname{diag}(\varpi^{\mu_1}, \dots, \varpi^{\mu_n}) \quad \text{and} \quad \varpi^{-\mu} = (\varpi^{\mu})^{-1}.$$

Also, for $\lambda = (\lambda_1, \cdots, \lambda_m) \in \mathbb{Z}^m$, put

$$\varpi_0^{\lambda} = \operatorname{diag}(\varpi^{\lambda_1}, \cdots, \varpi^{\lambda_m}, \underbrace{1, \cdots, 1}_{n-m}), \text{ and } \varpi_0^{-\lambda} = (\varpi_0^{\lambda})^{-1}.$$

The following lemma is easily shown by a direct matrix calculation and the ultrametric inequality.

(1.2) LEMMA. For $n \in N_1$, $n' \in N_1^-$ and $\mu \in \mathbb{Z}^n$ with $\mu_1 \leq \ldots \leq \mu_n$, one has

$$|d_i(n\varpi^{\mu}n')| = |d_i(\varpi^{\mu})|.$$

For $\mu \in \mathbb{Z}^n$, ϖ^{μ} belongs to X if and only if $\mu_{n-i+1} = -\mu_i$ for all *i*. If moreover $\mu_1 \leq \cdots \leq \mu_n$ is assumed, we must have $\mu_1 \leq \cdots \leq \mu_m \leq 0$. Now set

$$\Lambda_m = \{ \lambda = (\lambda_1, \cdots, \lambda_m) \in \mathbb{Z}^m ; \lambda_1 \leqslant \cdots \leqslant \lambda_m \leqslant 0 \}.$$

Then we have

$$\{ \varpi^{\mu} \in X ; \mu \in \mathbb{Z}^n, \mu_1 \leq \ldots \leq \mu_n \} = \{ \tau(\varpi_0^{\lambda}) ; \lambda \in \Lambda_m \}.$$

The following corollary, which is similar to [H4, (2.2)], is important for our later use;

(1.3) COROLLARY. For $b \in B$ and $\lambda \in \Lambda_m$, one has

$$|d_i\left(\tau(\varpi_0^\lambda) * b\right)| = |d_i\left(\tau(\varpi_0^\lambda)\right)| \neq 0.$$

Consequently, $B\varpi_0^{-\lambda} \subset P \cdot H$ holds for all $\lambda \in \Lambda_m$.

PROOF. This follows directly from (1.2), using the Iwahori factorization for *B*. Note that we pull back through $\tau((\cdot)^{-1})$ to get $B\varpi_0^{-\lambda} \subset P \cdot H$. \Box

In the rest of this section we give a parametrization of $H \setminus G/K$.

(1.4) PROPOSITION. G decomposes into the disjoint union of the double cosets $H\varpi_0^{\lambda}K$, where λ runs over Λ_m .

PROOF. The assertion is equivalent to the decomposition

$$X = \bigcup_{\lambda \in \Lambda_m} \tau(\varpi_0^{\lambda}) * K \quad \text{(disjoint union)}$$

of X into K-orbits. First, by the Cartan decomposition for G, one has

$$X = \bigcup_{\substack{\mu = (\mu_1, \cdots, \mu_n) \in \mathbb{Z}^n \\ \mu_1 \leqslant \cdots \leqslant \mu_n}} (K \varpi^{\mu} K \cap X) \quad \text{(disjoint union)}$$

and it is easy to see that $K\varpi^{\mu}K \cap X \neq \emptyset$ for $\mu_1 \leq \cdots \leq \mu_n$ if and only if $\varpi^{\mu} \in X$. In this case we may replace ϖ^{μ} by $\tau(\varpi_0^{\lambda})$, where $\lambda \in \Lambda_m$ as above. We show that

$$K\tau(\varpi_0^{\lambda})K \cap X = \tau(\varpi_0^{\lambda}) * K \quad \text{ for all } \lambda \in \Lambda_m.$$

Since $k_1 \tau(\varpi_0^{\lambda}) k_2 = (\tau(\varpi_0^{\lambda}) k_2 \theta(k_1)) * \theta(k_1^{-1})$, it is enough to show that, for $\lambda \in \Lambda_m$,

(*) For any
$$k \in K$$
 with $\tau(\varpi_0^{\lambda})k \in X$,
there is a $k' \in K$ such that $\tau(\varpi_0^{\lambda})k = \tau(\varpi_0^{\lambda}) * k$.

Put

$$C_{\lambda} = \varpi_0^{\lambda} K \varpi_0^{-\lambda} \cap \theta(\varpi_0^{\lambda} K \varpi_0^{-\lambda}).$$

Then, one can show that C_{λ} is a θ -stable subgroup contained in K. In fact, if we understand that $\lambda_{m+1} = \cdots = \lambda_n = 0$, then C_{λ} is given by

$$C_{\lambda} = \left\{ (c_{ij}) \in G ; \det(c_{ij}) \in \mathcal{O}^{\times}, |c_{ij}| \leq \min(q^{-\lambda_i + \lambda_j}, q^{-\lambda_{n-i+1} + \lambda_{n-j+1}}) \right\}$$
$$= \left\{ (c_{ij}) \in K ; |c_{ij}| \leq \min(q^{-\lambda_i + \lambda_j}, q^{-\lambda_{n-i+1} + \lambda_{n-j+1}}) \right\}.$$

Now (*) follows from the assertion

(**)
$$H^1(\{1,\theta\},C_\lambda) = \{1\}.$$

Indeed, if $\tau(\varpi_0^{\lambda})k \in X$, $k \in K$, then $\varpi_0^{\lambda}k\varpi_0^{-\lambda} = \theta(\varpi_0^{\lambda}k\varpi_0^{-\lambda})^{-1} \in C_{\lambda}$. So (**) implies that there is a $c \in C_{\lambda}$ such that $\varpi_0^{\lambda}k\varpi_0^{-\lambda} = \theta(c)^{-1}c$, which leads to the equation $\tau(\varpi_0^{\lambda})k = \tau(\varpi_0^{\lambda}) * k'$, with $k' = \varpi_0^{-\lambda}c\varpi_0^{\lambda} \in K$.

To prove (**), first let $\rho_0: K \to GL_n(k_E)$ be the mod- ϖ map and θ be the involution on $GL_n(k_E)$ defined by $\tilde{\theta}(g) = w_0 \bar{g} w_0^{-1}$, where bar denotes the Galois involution of k_E/k_F . Regard $\tilde{\theta}$ as a k_F -involution on $GL_n(k_E)$. It is clear that $\rho_0 \circ \theta = \tilde{\theta} \circ \rho_0$.

Put $M_{\lambda} = \rho_0(C_{\lambda})$. We observe that M_{λ} is the group of k_F -rational points of a Zariski-connected group over k_F . Let l be the largest number such that $\lambda_l \neq 0$ and assume that λ is of the form

$$\underbrace{\lambda_1 = \dots = \lambda_{i_1}}_{i_1} < \underbrace{\lambda_{i_1+1} = \dots = \lambda_{i_1+i_2}}_{i_2} < \dots < \underbrace{\lambda_{i_1+\dots+i_{k-1}+1} = \dots = \lambda_l}_{i_k} < 0.$$

Then, M_{λ} consists of all matrices of the form $\begin{pmatrix} p_1 & x & 0 \\ 0 & y & p_2 \end{pmatrix}$ where $p_1 \in GL_l(k_E)$ is upper quasi-triangular of type (i_1, \dots, i_k) , $p_2 \in GL_l(k_E)$ is lower quasi-triangular of type (i_k, \dots, i_1) , $g \in GL_{n-2l}(k_E)$ and $x, y \in \operatorname{Mat}_{l,n-2l}(k_E)$. So M_{λ} is a semi-direct product of rational points of Zariski-connected groups $\left\{ \begin{pmatrix} p_1 & 0 \\ 0 & p_2 \end{pmatrix} \right\}$ and $\left\{ \begin{pmatrix} 1 & x & 0 \\ 1 & 0 \\ 0 & y & 1 \end{pmatrix} \right\}$.

Put $C_{\lambda}^{(1)} = \ker(\rho_0) \cap C_{\lambda}$. Then, one has an exact sequence of 1-cohomology sets;

$$H^{1}(\{1,\theta\}, C_{\lambda}^{(1)}) \longrightarrow H^{1}(\{1,\theta\}, C_{\lambda}) \longrightarrow H^{1}(\{1,\tilde{\theta}\}, M_{\lambda}).$$

The last set is trivial by Lang's theorem. So (**) follows from

(***)
$$H^1(\{1,\theta\}, C^{(1)}_{\lambda}) = \{1\}.$$

To prove (***), put $K(N) = 1 + \varpi^N \operatorname{Mat}_n(\mathcal{O})$ for each integer $N \ge 1$ and define $\rho_N : K(N) \to \operatorname{Mat}_n(k_E)$ by

$$\rho_N(1 + \varpi^N a) = a \mod \varpi \quad \text{for } a \in \operatorname{Mat}_n(\mathcal{O}).$$

Then ρ_N is a homomorphism onto the additive group of $\operatorname{Mat}_n(k_E)$ and $K(N+1) = \ker(\rho_N), K(1) = \ker(\rho_0)$. Note that K(N) is normal in K and is θ -stable. Define the involution $\tilde{\theta}$ on the additive group of $\operatorname{Mat}_n(k_E)$ by the same as before. Then the relation $\rho_N \circ \theta = \tilde{\theta} \circ \rho_N$ holds. Put

 $C_{\lambda}^{(N)} = C_{\lambda} \cap K(N)$ and $A_{\lambda}^{(N)} = \rho_N(C_{\lambda}^{(N)})$. Then $A_{\lambda}^{(N)}$ is an additive subgroup of $\operatorname{Mat}_n(k_E)$ over k_F . As before one has an exact sequence

$$H^{1}(\{1,\theta\}, C_{\lambda}^{(N+1)}) \longrightarrow H^{1}(\{1,\theta\}, C_{\lambda}^{(N)}) \longrightarrow H^{1}(\{1,\tilde{\theta}\}, A_{\lambda}^{(N)}).$$

By the additive version of the Hilbert Theorem 90, the last term vanishes. So the vanishing of $H^1(\{1, \theta\}, C_{\lambda}^{(N)})$ follows from that of $H^1(\{1, \theta\}, C_{\lambda}^{(N+1)})$. Inductively, (***) follows from the vanishing of $H^1(\{1, \theta\}, C_{\lambda}^{(N)})$ for some large N.

Now, if $N \ge -\lambda_1$, one has $C_{\lambda} \supset K(N)$, thus $C_{\lambda}^{(N)} = K(N)$. By the argument exactly as in [PR, pp. 292–294], one can show that

$$H^1(\{1,\theta\}, K(N)) = \{1\}$$

for any integer N, hence the proof is completed. \Box

§2. Invariant Functionals on Unramified Principal Series

Let $X_{ur}(T)$ be the set of all unramified quasi-characters of T. We regard $\chi \in X_{ur}(T)$ also as a quasi-character of P by letting $\chi_{|N} \equiv 1$. For $\chi \in X_{ur}(T)$ let $(\pi_{\chi}, I(\chi))$ be the unramified principal series attached to χ . Thus $I(\chi)$ is the space of all locally constant \mathbb{C} -valued functions φ on G satisfying

$$\varphi(pg) = \chi(p)\delta_P(p)^{1/2}\varphi(g) \text{ for } p \in P, g \in G,$$

and π_{χ} is the right translation of G on $I(\chi)$.

Let λ , ρ be respectively the left, right translations of G on $\mathcal{C}_c^{\infty}(G)$. For $\chi \in X_{\mathrm{ur}}(T)$, let $\mathcal{D}_{\chi}(G)$ be the space of all distributions D on G satisfying

(5)
$$\langle D, \lambda(p)f \rangle = \chi(p)^{-1} \delta_P(p)^{1/2} \langle D, f \rangle$$
 for all $p \in P, f \in \mathcal{C}^{\infty}_c(G),$

and $\mathcal{D}_{\chi}(G)^H$ be the space of all $D \in \mathcal{D}_{\chi}(G)$ satisfying

(6)
$$\langle D, \rho(h)f \rangle = \langle D, f \rangle$$
 for all $h \in H, f \in \mathcal{C}^{\infty}_{c}(G)$.

Define $p_{\chi} : \mathcal{C}^{\infty}_{c}(G) \to I(\chi)$ as usual by

$$(p_{\chi}(f))(g) = \int_{P} \chi^{-1}(p) \delta_{P}(p)^{1/2} f(pg) d_{\ell} p$$

for $f \in \mathcal{C}^{\infty}_{c}(G)$, $g \in G$. As is shown in [H4, (1.2)], the dual map p_{χ}^{*} of p_{χ} gives rise to a right *G*-isomorphism $I(\chi)^{*} \xrightarrow{\sim} \mathcal{D}_{\chi}(G)$. Therefore we have

(7)
$$\operatorname{Hom}_{H}(I(\chi),\mathbb{C}) = (I(\chi)^{*})^{H} \xrightarrow{p_{\chi}^{*}} \mathcal{D}_{\chi}(G)^{H}$$

By this we may regard *H*-invariant linear functionals as $P \times H$ -relatively invariant distributions on *G*. From now on we study the space $\mathcal{D}_{\chi}(G)^H$ by the standard method, so called *the Bruhat theory* for $P \setminus G/H$.

For any locally closed subset Ω of G satisfying $P\Omega H \subset \Omega$, define $\mathcal{D}_{\chi}(\Omega)^{H}$ to be the space of all distributions on Ω having the same $P \times H$ -equivariance as those in $\mathcal{D}_{\chi}(G)^{H}$ (i.e., the relations (5) and (6)). Put $\Omega_{v} = P\eta_{v}H$ for $v \in W \cap X$, where η_{v} is as in §1. Recall that $G = \bigcup_{v \in W \cap X} \Omega_{v}$ (disjoint union) and $\Omega_{v} \simeq (P \times H)/R_{v}$, where R_{v} is defined by (3).

- (2.1) LEMMA. Let $\chi \in X_{ur}(T)$ and $v \in W \cap X$.
- (i) The modulus character δ_v of R_v is trivial on $N \cap R_v$, and on $T \cap R_v$ it is given by

$$\delta_v(t) = \delta_P(t)^{1/2}$$
 for all $t \in T \cap R_v$.

(ii) One has

$$\dim \mathcal{D}_{\chi}(\Omega_v)^H = \begin{cases} 1 & \text{if } \chi_{|T \cap R_v} \equiv 1 \\ 0 & \text{otherwise.} \end{cases}$$

PROOF. (i) By the semi-direct product decomposition (4) of R_v , δ_v is directly computed as the Jacobian of the adjoint action of $T \cap R_v$ on $N \cap R_v$. Let $x = (x_{ij}) \in N \cap R_v$. Since $N \cap R_v \subset N \cap v^{-1}N^-v$, we may only look at the entries x_{ij} with i < j, v(i) > v(j). (Here and henceforth we regard elements of W also as permutations of indices.) Moreover since $\theta_v(x) = x$, we must have $x_{n-v(i)+1,n-v(j)+1} = \bar{x}_{ij}$. In particular if i = n - v(i) + 1 and j = n - v(j) + 1, then $x_{ij} \in F$. Similarly, for $t = \text{diag}(t_1, \cdots, t_n) \in T \cap R_v$,

we have $t_{n-v(i)+1} = \overline{t}_i$ and in particular, $t_i \in F^{\times}$ if n - v(i) + 1 = i. Now, $\delta_v(t)$ is computed as;

$$\begin{split} \delta_{v}(t) &= \prod |t_{i}t_{j}^{-1}|_{F} \left(\text{product over } i = n - v(i) + 1 < j = n - v(j) + 1 \right) \\ &\times \left(\prod |t_{i}t_{j}^{-1}| \right)^{1/2} \left(i < j, \, v(i) > v(j) \text{ and,} \right. \\ &\quad i \neq n - v(i) + 1 \text{ or } j \neq n - v(j) + 1 \right) \\ &= \prod_{i < j, v(i) > v(j)} |t_{i}t_{j}^{-1}|^{1/2} \end{split}$$

since $|\cdot|_F = |\cdot|^{1/2}$. Comparing with (1), it is enough to see that

$$\prod_{i < j, v(i) < v(j)} |t_i t_j^{-1}| = 1 \quad \text{for } t = \text{diag}(t_1, \cdots, t_n) \in T \cap R_v.$$

As is well-known (e.g. [M, p.289]),

$$\prod_{i < j, v(i) < v(j)} |t_i t_j^{-1}| = \delta_P(t)^{1/2} \delta_P(v t v^{-1})^{1/2}.$$

If $t \in T \cap R_v$ then $vtv^{-1} = w_0 \overline{t} w_0^{-1}$, thus

$$\delta_P(t)^{1/2} \delta_P(vtv^{-1})^{1/2} = \delta_P(t)^{1/2} \delta_P(w_0 \bar{t} w_0^{-1})^{1/2} = \delta_P(t)^{1/2} \delta_P(\bar{t})^{-1/2} = 1.$$

(ii) Recall the following criterion for the existence of relative invariant distributions on homogeneous spaces ([BZ, (1.21)]); let G_1 be a totally disconnected locally compact group, H_1 be a closed subgroup of G_1 , ω be a quasi-character of G_1 . Then, there is a non-zero distribution D on G_1/H_1 satisfying $\langle D, \lambda(g)f \rangle = \omega(g) \langle D, f \rangle$ for all $g \in G_1$, $f \in C_c^{\infty}(G_1/H_1)$ if and only if

$$\omega_{|H_1} = \delta_{G_1|H_1} \cdot \delta_{H_1}^{-1}.$$

Here, δ_{G_1} , δ_{H_1} are the modulus characters of G_1 , H_1 respectively. If such a non-zero distribution D exists, it is unique up to constant multiples. Applying this to $G_1 = P \times H$, $H_1 = R_v$ and $\omega = \chi^{-1} \delta_P^{1/2} \times 1$, (ii) is a direct consequence of (i). \Box

For each $v \in W \cap X$ put

 $X_{\mathrm{ur}}(T)_{\theta,v} = \left\{ \chi \in X_{\mathrm{ur}}(T) \, ; \, \chi_{|T \cap R_v} \equiv 1 \right\} \quad \text{and} \quad X_{\mathrm{ur}}(T)_{\theta} = X_{\mathrm{ur}}(T)_{\theta,1}.$

(2.2) Proposition.

- (i) If $\mathcal{D}_{\chi}(G)^H \neq (0)$, then $\chi \in X_{\mathrm{ur}}(T)_{\theta,v}$ for some $v \in W \cap X$.
- (ii) If χ is regular, then $\mathcal{D}_{\chi}(G)^{H}$ is at most one dimensional. If χ is regular and $\mathcal{D}_{\chi}(G)^{H} \neq (0)$, then $v \in W \cap X$ in (i) is uniquely determined, and for any non-zero $D \in \mathcal{D}_{\chi}(G)^{H}$, the support supp(D) of D is given by the closure $\Omega_{v}^{c\ell}$ of Ω_{v} .
- (iii) If χ is regular and $\mathcal{D}_{\chi}(G)^H \neq (0)$, then there is a $w \in W$ such that ${}^w\chi \in X_{\mathrm{ur}}(T)_{\theta}$.

PROOF. (i) follows immediately from (2.1) (ii).

(ii) Assume that χ is regular and $\mathcal{D}_{\chi}(G)^{H} \neq (0)$. The uniqueness of $v \in W \cap X$ such that $\chi \in X_{\mathrm{ur}}(T)_{\theta,v}$ follows immediately from the regularity of χ . Thus, if $\chi \in X_{\mathrm{ur}}(T)_{\theta,v}$, Ω_{v} is the unique $P \times H$ -orbit such that $\mathcal{D}_{\chi}(\Omega_{v})^{H} \neq (0)$, hence one has $\mathcal{D}_{\chi}(\Omega)^{H} = (0)$ for any $P \times H$ -stable subset Ω of G such that $\Omega \cap \Omega_{v} = \emptyset$.

Now since Ω_v is open in its closure $\Omega_v^{c\ell}$, we have the following two exact sequences;

$$(0) \longrightarrow \mathcal{D}_{\chi}(\Omega_{v}^{c\ell})^{H} \xrightarrow{\text{ext}} \mathcal{D}_{\chi}(G)^{H} \xrightarrow{\text{res}} \mathcal{D}_{\chi}(G - \Omega_{v}^{c\ell})^{H},$$

$$(0) \longrightarrow \mathcal{D}_{\chi}(\Omega_{v}^{c\ell} - \Omega_{v})^{H} \xrightarrow{\text{ext}} \mathcal{D}_{\chi}(\Omega_{v}^{c\ell})^{H} \xrightarrow{\text{res}} \mathcal{D}_{\chi}(\Omega_{v})^{H}.$$

As was noticed above, one has $\mathcal{D}_{\chi}(G - \Omega_v^{c\ell})^H = \mathcal{D}_{\chi}(\Omega_v^{c\ell} - \Omega_v)^H = (0)$, thus

(8)
$$\mathcal{D}_{\chi}(G)^{H} \underset{\text{ext}}{\overset{\sim}{\leftarrow}} \mathcal{D}_{\chi}(\Omega_{v}^{c\ell})^{H} \underset{\text{res}}{\hookrightarrow} \mathcal{D}_{\chi}(\Omega_{v})^{H}.$$

Since $\mathcal{D}_{\chi}(G)^H$ is non-zero and $\mathcal{D}_{\chi}(\Omega_v)^H$ is one dimensional, all three spaces in (8) are isomorphic and one dimensional. This completes the proof of (ii).

(iii) Let χ be regular, $\mathcal{D}_{\chi}(G)^H \neq (0)$ and $\chi \in X_{\mathrm{ur}}(T)_{\theta,v}$. Put $v_0 = w_0 v$. Then $v_0^2 = 1$, so v_0 is a product of disjoint transpositions. Put

$$\chi_i(x) = \chi(\operatorname{diag}(1, \cdots, 1, \overset{i}{\check{x}}, 1, \cdots, 1)).$$

If *i* is an index such that $v_0(i) = i$, then $\chi \in X_{\mathrm{ur}}(T)_{\theta,v}$ implies that $\chi_{i|F^{\times}} \equiv 1$. Since χ_i and E/F are unramified, one must have $\chi_i \equiv 1$. By the regularity of χ , one can conclude that there is no pair $\{i, j\}$ of indices such that $i = v_0(i) \neq j = v_0(j)$, so v_0 is a product of $m = \lfloor n/2 \rfloor$ -disjoint transpositions, say,

$$v_0 = (i_1, j_1) \cdots (i_m, j_m), \quad i_1 < \cdots < i_m \text{ and } i_k < j_k \text{ for all } k.$$

Take $w \in W$ so that

$$w(i_k) = k$$
, $w(j_k) = n - k + 1$ for all k.

Then one has $wv_0w^{-1} = w_0$, that is, $v = \theta(w)^{-1}w$. This shows that $w^{-1}(T \cap H)w = T \cap R_v$, hence ${}^w\chi_{|T \cap H} \equiv 1$. \Box

REMARK. Actually we do not need the assumption that χ is unramified in (2.2) (i) and (ii). Essentially the same statement as (2.2) (i) is proved in [JLR].

According to the above proposition, to study unramified principal series $I(\chi)$ with $(I(\chi)^*)^H \neq (0)$, we may restrict ourselves (at least generically) to the case $\chi \in X_{\rm ur}(T)_{\theta}$. In the following we construct a non-zero *H*-invariant linear functional L_{χ} on $I(\chi)$ explicitly for $\chi \in X_{\rm ur}(T)_{\theta}$.

Write $\chi \in X_{\rm ur}(T)$ as

(9)
$$\chi(\operatorname{diag}(t_1,\cdots,t_n)) = \prod_{i=1}^n |t_i|^{s_i}, \quad s_i \in \mathbb{C}.$$

If $\chi \in X_{\mathrm{ur}}(T)_{\theta}$, we may assume that $s_{n-i+1} = -s_i$ for all *i* since χ is trivial on $T \cap H$. So $\chi \in X_{\mathrm{ur}}(T)_{\theta}$ is of the form

(10)
$$\chi(\operatorname{diag}(t_1,\cdots,t_n)) = \prod_{i=1}^m |t_i t_{n-i+1}^{-1}|^{s_i}$$

for $s_1, \dots, s_m \in \mathbb{C}$. Define a \mathbb{C} -valued function Δ_{χ} on $P \cdot H$ by

(11)
$$\Delta_{\chi}(g) = \prod_{i=1}^{m} |d_i(\theta(g)g^{-1})|^{s'_i} \quad \text{for } g \in P \cdot H,$$

where $s'_1, \dots, s'_m \in \mathbb{C}$ are related with $s_1, \dots, s_m \in \mathbb{C}$ by

(12)
$$\begin{cases} s'_i = s_i - s_{i+1} - 1 & \text{for } i < m, \\ s'_m = s_m - \frac{n - 2m + 1}{2}. \end{cases}$$

If $\operatorname{Re}(s'_i) > 0$ for all i, Δ_{χ} can be extended to a continuous function on G(but not locally constant on G in general). For $p \in P$ (with diagonal entries t_1, \dots, t_n), $g \in G$ and $h \in H$ we have

$$\begin{aligned} \Delta_{\chi}(pgh) &= \left(\prod_{i=1}^{m} |d_{i}(\theta(p)p^{-1})|^{s'_{i}}\right) \Delta_{\chi}(g) \quad \text{by (2)} \\ &= \left(\prod_{i=1}^{m} |t_{i}|^{-\sum_{j=i}^{m} s'_{j}} |\bar{t}_{n-i+1}|^{\sum_{j=i}^{m} s'_{j}}\right) \Delta_{\chi}(g) \\ &= \chi^{-1} \delta_{P}^{1/2}(p) \Delta_{\chi}(g) \quad \text{by (10) and (12)} . \end{aligned}$$

For $\chi \in X_{\mathrm{ur}}(T)_{\theta}$ such that $\mathrm{Re}(s'_i) > 0$, define a linear functional L_{χ} on $I(\chi)$ by

(13)
$$\langle L_{\chi},\varphi\rangle = \oint_{P\setminus G} \Delta_{\chi}(\dot{g})\varphi(\dot{g})d\dot{g} \quad \left(= \int_{K} \Delta_{\chi}(k)\varphi(k)dk \right)$$

for $\varphi \in I(\chi)$. As in [H4, Remark(1.1)], the functional L_{χ} , which is initially defined for $\operatorname{Re}(s'_i) > 0$, is analytically continued to whole of $(s_1, \dots, s_m) \in \mathbb{C}^m$. By the right *H*-invariance of Δ_{χ} , L_{χ} belongs to $(I(\chi)^*)^H$.

(2.3) PROPOSITION. If $\chi \in X_{ur}(T)_{\theta}$ is regular, then $(I(\chi)^*)^H$ is one dimensional. In fact, L_{χ} defined above gives a non-zero *H*-invariant linear functional on $I(\chi)$, which is unique up to constant multiples.

PROOF. By (2.2)(ii), it is enough to see that $L_{\chi} \neq 0$. Taking $\lambda = 0$ in (1.3), we have $\Delta_{\chi}(b) = 1$ for all $b \in B$. Therefore, $\langle L_{\chi}, p_{\chi}(ch_B) \rangle = vol(B)$, which is non-zero. \Box

§3. A Formula for Our Spherical Functions

Let $\chi \in X_{\mathrm{ur}}(T)_{\theta}$ and assume that χ is regular. We have observed in §2 that $\dim(I(\chi)^*)^H = 1$. By the Frobenius reciprocity,

$$(I(\chi)^*)^H \simeq \operatorname{Hom}_G(I(\chi), \mathcal{C}^{\infty}(H \setminus G)),$$

hence there is a unique realization of $I(\chi)$ in $\mathcal{C}^{\infty}(H\backslash G)$. Let L_{χ} be as in (13) of §2, and define

$$Q_{\chi}(g) = \langle L_{\chi}, \pi_{\chi}(g)\phi_{K,\chi} \rangle$$

where $\phi_{K,\chi}$ is the unique element of $I(\chi)$ such that $\phi_{K,\chi}(k) = 1$ for all $k \in K$. The function Q_{χ} on G is then the unique (up to constant) right K-invariant function in the realization of $I(\chi)$ in $\mathcal{C}^{\infty}(H \setminus G)$. By the description (1.4) of $H \setminus G/K$, Q_{χ} is completely determined by their values at $\varpi_0^{\lambda} \in G$, for $\lambda \in \Lambda_m$. In this section, following [H4] we give an expression of Q_{χ} as a linear combination of quasi-characters ${}^w\chi \delta_P^{1/2}$, where w varies in the *little* Weyl group $W_{\theta} = W \cap H$.

For $\chi \in X_{\mathrm{ur}}(T)$, identify $I(\chi)^{\sim}$ with $I(\chi^{-1})$ by the natural pairing

$$\left\langle \left\langle \ \phi, \psi \ \right\rangle \right\rangle = \oint_{P \setminus G} \phi(\dot{g}) \psi(\dot{g}) d\dot{g} \quad \left(= \int_{K} \phi(k) \psi(k) dk \right)$$

for $\phi \in I(\chi)$, $\psi \in I(\chi^{-1})$. Let $p_B : I(\chi) \to I(\chi)^B$ be defined by

$$p_B(\phi)(g) = \operatorname{vol}(B)^{-1} \int_B \phi(gb) db$$

and $p_B^*(\ell) := \ell \circ p_B$ for $\ell \in I(\chi)^*$. Then p_B is the identity on $I(\chi)^B$ and $p_B^*(\ell)$ is fixed by B for all $\ell \in I(\chi)^*$. Since B is open and compact, $p_B^*(\ell)$ is a smooth linear form on $I(\chi)$. By the above identification $I(\chi)^{\sim} \simeq I(\chi^{-1}), p_B^*(\ell)$ is regarded as an element of $I(\chi^{-1})^B$ so that $\langle p_B^*(\ell), \phi \rangle = \langle \ell, p_B(\phi) \rangle = \langle \langle \phi, p_B^*(\ell) \rangle \rangle$ for all $\phi \in I(\chi)$.

(3.1) LEMMA. Let $\ell \in I(\chi)^*$. As an element of $I(\chi^{-1})^B$, $p_B^*(\ell)$ is given by

$$p_B^*(\ell) = \sum_{w \in W} \operatorname{vol}(BwB)^{-1} \langle \ell, \phi_{w,\chi} \rangle \phi_{w,\chi^{-1}}.$$

Here, $\phi_{w,\chi} = p_{\chi}(\operatorname{ch}_{BwB})$ for $w \in W$.

PROOF. $\{\phi_{w,\chi^{-1}}\}_{w\in W}$ forms a basis of $I(\chi^{-1})^B$ (see [C, (2.1)]). Write

$$p_B^*(\ell) = \sum_{w \in W} a_w \phi_{w,\chi^{-1}} \quad (a_w \in \mathbb{C}).$$

Then, for $w \in W$, taking $\langle \langle \phi_{w,\chi}, \cdot \rangle \rangle$ on both sides,

$$\langle \langle \phi_{w,\chi}, p_B^*(\ell) \rangle \rangle = a_w \operatorname{vol}(BwB).$$

On the other hand,

$$\langle p_B^*(\ell), \phi_{w,\chi} \rangle = \langle \ell, p_B(\phi_{w,\chi}) \rangle = \langle \ell, \phi_{w,\chi} \rangle$$

by definition. Thus $a_w = \operatorname{vol}(BwB)^{-1} \langle \ell, \phi_{w,\chi} \rangle$.

Let $\chi \in X_{\mathrm{ur}}(T)$ be regular and for $w \in W$, let $T_w^{\chi} : I(\chi) \to I(^w\chi)$ be the standard intertwining operator ([C, §3]) and $c_w(\chi)$ be defined by the relation $T_w^{\chi}(\phi_{K,\chi}) = c_w(\chi)\phi_{K,w_{\chi}}$. If χ is of the form (9), then $c_w(\chi)$ is given by

(14)
$$c_w(\chi) = \prod_{i < j, w(i) > w(j)} \frac{1 - q^{-s_i + s_j - 1}}{1 - q^{-s_i + s_j}}$$

(see [C, (3.1), (3.3)]).

(3.2) LEMMA [H4, Prop.(1.6),(1.7)]. For $w \in W$ and a regular $\chi \in$ $X_{\rm ur}(T)$, assume that $c_w(\chi^{-1})c_{w^{-1}}(^w\chi) \neq 0$. Define an intertwining map $\widetilde{T}_w^{\chi}: I(\chi)^* \to I(^w\chi)^* by$

$$\widetilde{T}_{w}^{\chi} = \frac{c_{w}(\chi^{-1})}{c_{w^{-1}}(^{w}\chi)} \cdot (T_{w^{-1}}^{w\chi})^{*}.$$

Then,

- (i) \widetilde{T}_w^{χ} is an extension of $T_w^{\chi^{-1}}: I(\chi^{-1}) \to I({}^w\chi^{-1}), \text{ regarding } I(\chi^{-1}) \subset I(\chi^{-1})$ (ii) $p_B^* \circ \widetilde{T}_w^{\chi} = T_w^{\chi^{-1}} \circ p_B^*.$

Now let $\chi \in X_{\mathrm{ur}}(T)_{\theta}$ be regular and $L_{\chi} \in (I(\chi)^*)^H$ be defined by (13). Observe that for $w \in W$, ${}^w\chi \in X_{\mathrm{ur}}(T)_{\theta,v}$ where $v = \theta(w)w^{-1}$. In particular ${}^w\chi \in X_{\mathrm{ur}}(T)_{\theta}$ if and only if $w \in W_{\theta}$, so $L_{w\chi} \in (I({}^w\chi)^*)^H$ is defined for $w \in W_{\theta}$ as before. For each $w \in W$, we choose $L_{\chi}^{(w)} \in (I({}^w\chi)^*)^H$ as follows;

$$\begin{cases} \text{If } w \in W_{\theta}, \ L_{\chi}^{(w)} = L_{w_{\chi}}.\\ \text{If } w \notin W_{\theta} \text{ and } (I(^{w}\chi)^{*})^{H} \neq (0),\\ \text{ then } fix \text{ a non-zero } L_{\chi}^{(w)} \in (I(^{w}\chi)^{*})^{H} \text{ arbitrarily}.\\ \text{If } w \notin W_{\theta} \text{ and } (I(^{w}\chi)^{*})^{H} = (0), \text{ then } L_{\chi}^{(w)} = 0. \end{cases}$$

Then, by (2.2)(ii),

(3.3) LEMMA. For each $w \in W$, there is a constant $b_w(\chi) \in \mathbb{C}$ such that

$$\widetilde{T}_w^{\chi}(L_{\chi}) = b_w(\chi) L_{\chi}^{(w)}.$$

Now we give an expression of Q_{χ} which is analogous to the formula for zonal spherical functions.

(3.4) THEOREM. Let $\chi \in X_{\mathrm{ur}}(T)_{\theta}$ be regular and assume that $c_w(\chi^{-1})c_{w^{-1}}(^w\chi) \neq 0$ for all $w \in W$. Then, for $\lambda \in \Lambda_m$,

$$Q_{\chi}(\varpi_0^{\lambda}) = \operatorname{vol}(Bw_0 B) \sum_{w \in W_{\theta}} \frac{c_{w_0}(^w \chi) b_w(\chi)}{c_w(\chi^{-1})} w \chi \delta_P^{1/2}(\varpi_0^{\lambda}).$$

Here, $c_w(\chi)$ is given by (14), $b_w(\chi)$ is determined by the functional equation of invariant functionals in the above lemma, and $W_{\theta} = W \cap H$.

PROOF. By definition,

(15)
$$Q_{\chi}(\varpi_{0}^{\lambda}) = \langle \pi_{\chi}^{*}(\varpi_{0}^{-\lambda})L_{\chi}, \phi_{K,\chi} \rangle = \langle \pi_{\chi}^{*}(\varpi_{0}^{-\lambda})L_{\chi}, p_{B}(\phi_{K,\chi}) \rangle$$
$$= \langle p_{B}^{*}\left(\pi_{\chi}^{*}(\varpi_{0}^{-\lambda})L_{\chi}\right), \phi_{K,\chi} \rangle.$$

Let $\{f_{w,\chi^{-1}}\}_{w\in W}$ be the Casselman basis of $I(\chi^{-1})^B$ (see [C, p.402]) and write

$$p_B^*\left(\pi_{\chi}^*(\varpi_0^{-\lambda})L_{\chi}\right) = \sum_{w \in W} \alpha_w \cdot f_{w,\chi^{-1}},$$

regarding $p_B^*\left(\pi_{\chi}^*(\varpi_0^{-\lambda})L_{\chi}\right)$ as an element of $I(\chi^{-1})^B$. Applying $T_w^{\chi^{-1}}(\cdot)(1)$ on both sides we have

$$\begin{aligned} \alpha_w &= T_w^{\chi^{-1}} \left(p_B^* \left(\pi_\chi^*(\varpi_0^{-\lambda}) L_\chi \right) \right) (1) \\ &= p_B^* \left(\widetilde{T}_w^{\chi} \left(\pi_\chi^*(\varpi_0^{-\lambda}) L_\chi \right) \right) (1) \quad \text{by (3.2)(ii)} \\ &= p_B^* \left(\pi_{w\chi}^*(\varpi_0^{-\lambda}) \widetilde{T}_w^{\chi}(L_\chi) \right) (1) \\ &= b_w(\chi) p_B^* \left(\pi_{w\chi}^*(\varpi_0^{-\lambda}) L_\chi^{(w)} \right) (1) \quad \text{by (3.3).} \end{aligned}$$

Using (3.1) here for $\ell = \pi_{w_{\chi}}^*(\varpi_0^{-\lambda})L_{\chi}^{(w)}$, this is equal to

$$b_w(\chi) \sum_{w' \in W} \operatorname{vol}(Bw'B)^{-1} \langle \pi_{w\chi}^*(\varpi_0^{-\lambda}) L_{\chi}^{(w)}, \phi_{w',w\chi} \rangle \phi_{w',w\chi^{-1}}(1)$$

= $b_w(\chi) \operatorname{vol}(B)^{-1} \langle L_{\chi}^{(w)}, \pi_{w\chi}(\varpi_0^{\lambda}) \phi_{1,w\chi} \rangle.$

Returning to (15),

(16)
$$Q_{\chi}(\varpi_{0}^{\lambda}) = \operatorname{vol}(B)^{-1} \sum_{w \in W} b_{w}(\chi) \langle L_{\chi}^{(w)}, \pi_{w_{\chi}}(\varpi_{0}^{\lambda}) \phi_{1,w_{\chi}} \rangle \\ \cdot \langle \langle \phi_{K,\chi}, f_{w,\chi^{-1}} \rangle \rangle.$$

Here, we have

$$\langle L_{\chi}^{(w)}, \pi_{w_{\chi}}(\varpi_{0}^{\lambda})\phi_{1,w_{\chi}} \rangle = \langle L_{\chi}^{(w)}, p_{w_{\chi}}(\operatorname{ch}_{B\varpi_{0}^{-\lambda}}) \rangle$$

$$= \begin{cases} \operatorname{vol}(B) \cdot {}^{w}\chi \delta^{1/2}(\varpi_{0}^{\lambda}) & \text{if } w \in W_{\theta}, \\ 0 & \text{otherwise.} \end{cases}$$

Indeed, if $w \in W_{\theta}$, replacing ${}^{w}\chi$ by χ it is enough to see this for w = 1. By definition,

$$\langle L_{\chi}, p_{\chi}(\operatorname{ch}_{B\varpi_{0}^{-\lambda}}) \rangle = \int_{B} \Delta_{\chi}(b\varpi_{0}^{-\lambda})db = \int_{B} \prod_{i=1}^{m} |d_{i}\left(\tau(\varpi_{0}^{\lambda}) * b^{-1}\right)|^{s'_{i}}db$$
$$= \operatorname{vol}(B) \cdot \prod_{i=1}^{m} |d_{i}\left(\tau(\varpi_{0}^{\lambda})\right)|^{s'_{i}} \quad \text{by (1.3)}$$
$$= \operatorname{vol}(B) \cdot \chi \delta^{1/2}(\varpi_{0}^{\lambda}) \quad \text{by (10) and (12).}$$

On the other hand, if $w \notin W_{\theta}$ and $L_{\chi}^{(w)} \neq 0$, then the support of the distribution $p_{w\chi}^{*}(L_{\chi}^{(w)})$ is $\Omega_{v}^{c\ell} = (P\eta_{v}H)^{c\ell}$ with $v = \theta(w)^{-1}w \neq 1$, by (2.2)(ii). Since $\Omega_{v}^{c\ell} \cap \Omega_{1} = \emptyset$ for $v \neq 1$ by (1.1) and $B\varpi_{0}^{-\lambda} \subset \Omega_{1}$ by (1.3), we have $\sup \left(p_{w\chi}^{*}(L_{\chi}^{(w)})\right) \cap B\varpi_{0}^{-\lambda} = \emptyset$, hence $\langle L_{\chi}^{(w)}, p_{w\chi}(ch_{B\varpi_{0}^{-\lambda}}) \rangle = 0$.

Now (16) reduces to

$$Q_{\chi}(\varpi_{0}^{\lambda}) = \sum_{w \in W_{\theta}} b_{w}(\chi) \langle \langle \phi_{K,\chi}, f_{w,\chi^{-1}} \rangle \rangle^{w} \chi \delta^{1/2}(\varpi_{0}^{\lambda}).$$

By the formula for zonal spherical functions in [C, (4.2)], it is known that

$$\langle \langle \phi_{K,\chi}, f_{w,\chi^{-1}} \rangle \rangle = \operatorname{vol}(Bw_0 B) \frac{c_{w_0}(^{w_0 w} \chi^{-1})}{c_w(\chi^{-1})}$$

Finally, if $w \in W_{\theta}$ and $\chi \in X_{\rm ur}(T)_{\theta}$, then one has $w_0 w \chi^{-1} = w(w_0 \chi^{-1}) = w \chi$. This completes the proof. \Box

For a regular $\chi \in X_{\mathrm{ur}}(T)_{\theta}$, assume that

$$Q_{w_{\chi}}(1) \neq 0 \quad \text{for all } w \in W_{\theta}.$$

Then, for each $w \in W_{\theta}$, applying both sides of (3.3) to $\phi_{K,w_{\chi}}$, one has

$$\langle \widetilde{T}_{w}^{\chi}(L_{\chi}), \phi_{K, w_{\chi}} \rangle = \frac{c_{w}(\chi^{-1})}{c_{w^{-1}}(\chi)} \cdot \langle L_{\chi}, T_{w^{-1}}^{w_{\chi}}(\phi_{K, w_{\chi}}) \rangle = c_{w}(\chi^{-1}) \langle L_{\chi}, \phi_{K, w_{\chi}} \rangle$$
$$= b_{w}(\chi) \langle L_{w_{\chi}}, \phi_{K, w_{\chi}} \rangle.$$

Thus

$$b_w(\chi) = \frac{Q_\chi(1)}{Q_{w_\chi}(1)} \cdot c_w(\chi^{-1}).$$

Put $\widetilde{Q}_{\chi} = Q_{\chi}(1)^{-1} \cdot Q_{\chi}$. Then we have

(3.5) COROLLARY. For a regular $\chi \in X_{\mathrm{ur}}(T)_{\theta}$ such that $c_w(\chi^{-1})c_{w^{-1}}(^w\chi) \neq 0$ for all $w \in W$ and that $Q_{w\chi}(1) \neq 0$ for all $w \in W_{\theta}$,

$$\widetilde{Q}_{\chi}(\varpi_0^{\lambda}) = \operatorname{vol}(Bw_0 B) \sum_{w \in W_{\theta}} \frac{c_{w_0}(^w \chi)}{Q^{w_{\chi}}(1)} \cdot {}^w \chi \delta_P^{1/2}(\varpi_0^{\lambda}).$$

§4. Explicit Computations for n = 2 and 3

In this section we give an explicit formula of \tilde{Q}_{χ} for n = 2 and n = 3. By (3.5) it is enough to compute $Q_{\chi}(1)$ for $\chi \in X_{\rm ur}(T)_{\theta}$.

(I) n=2

In this case, $W_{\theta} = W = \{1, w_0\}$. Write $\chi \in X_{ur}(T)_{\theta}$ as

$$\chi \begin{pmatrix} t_1 & 0\\ 0 & t_2 \end{pmatrix} = |t_1|^s |t_2|^{-s}, \quad s \in \mathbb{C}.$$

Then χ is regular if and only if $q^{-s} \neq \pm 1$, which we assume below. The function Δ_{χ} defined by (11) is then of the form

$$\Delta_{\chi}(g) = |d_1(\theta(g)g^{-1})|^{s-\frac{1}{2}}.$$

Note that $d_1(x)$ is just the (1, 1)-entry of the matrix x. By the decomposition $K = B \cup Bw_0 B$ (disjoint),

(17)
$$Q_{\chi}(1) = \int_{K} \Delta_{\chi}(k) dk = \int_{B} \Delta_{\chi}(b) db + \int_{Bw_{0}B} \Delta_{\chi}(y) dy.$$

The integral over B is vol(B) by (1.3). Also, by the Iwahori factorization,

$$\int_{Bw_0 B} \Delta_{\chi}(y) dy = \operatorname{vol}(Bw_0 B) \int_{\mathcal{O}} \Delta_{\chi} \left(w_0 \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \right) dx$$

where dx is the additive Haar measure of \mathcal{O} normalized so that $\operatorname{vol}(\mathcal{O}) = 1$. Now the (1,1)-entry of $\theta\left(w_0\begin{pmatrix}1&x\\0&1\end{pmatrix}\right)\left(w_0\begin{pmatrix}1&x\\0&1\end{pmatrix}\right)^{-1}$ is $1-x\bar{x}$, by a direct calculation. We have to compute the integral

(18)
$$\int_{\mathcal{O}} |1 - x\bar{x}|^{s - \frac{1}{2}} dx = \int_{|x| < 1} dx + \int_{|x| = 1} |1 - x\bar{x}|^{s - \frac{1}{2}} dx$$

but the latter integral, over |x| = 1, is already computed in [FH, pp. 705–706] as follows (see also (4.2) of this section); the volume of the set

$$\{x \in \mathcal{O}; |x| = 1, |1 - x\bar{x}| = 1\}$$

is $1 - q_F^{-1} - 2q^{-1}$, and for $i \ge 1$ the volume of the set

$$\{x \in \mathcal{O}; |x| = 1, |1 - x\bar{x}| = q^{-i}\}$$

is $q_F^{-i}(1-q^{-1})$, both are with respect to our additive Haar measure. Thus (18) is computed as

(19)
$$q^{-1} + (1 - q_F^{-1} - 2q^{-1}) + \sum_{i \ge 1} q_F^{-i}(1 - q^{-1})q^{-i(s - \frac{1}{2})}$$
$$= 1 - q_F^{-1} - q^{-1} + (1 - q^{-1}) \cdot \frac{q^{-s}}{1 - q^{-s}} \quad \text{for } \operatorname{Re}(s) > 0$$

Since $vol(B) = (q+1)^{-1}$, $vol(Bw_0B) = q(q+1)^{-1}$, returning to (17) we have

$$Q_{\chi}(1) = \frac{1}{q+1} \cdot (1+q \times (19)) = \frac{1}{q+1} \cdot \left(q - q_F + (q-1) \cdot \frac{q^{-s}}{1-q^{-s}}\right)$$
$$= \frac{q - q_F}{q+1} \cdot \frac{1+q^{-s-\frac{1}{2}}}{1-q^{-s}}.$$

So $Q_{w\chi}(1) \neq 0$ for all $w \in W_{\theta}$ if and only if $q^{-s} \neq -q^{\pm 1/2}$.

(4.1) THEOREM. For n = 2, assume that $\chi \in X_{\rm ur}(T)_{\theta}$ is of the form $\chi(\operatorname{diag}(t_1, t_2)) = |t_1|^s |t_2|^{-s}$, $s \in \mathbb{C}$, $q^{-s} \neq \pm 1$, $-q^{1/2}$, $\pm q^{-1/2}$. Then \widetilde{Q}_{χ} is given by

$$\widetilde{Q}_{\chi} \begin{pmatrix} \varpi^{\lambda} & 0\\ 0 & 1 \end{pmatrix} = \frac{q_F}{q_F - 1} \cdot \left(\frac{1 - q^{-s - \frac{1}{2}}}{1 + q^{-s}} \cdot q^{-\lambda(s + \frac{1}{2})} + \frac{1 - q^{s - \frac{1}{2}}}{1 + q^s} \cdot q^{\lambda(s - \frac{1}{2})} \right)$$

for $\lambda \in \mathbb{Z}$, $\lambda \leq 0$.

PROOF. For our choice of χ ,

$$c_{w_0}(\chi) = \frac{1 - q^{-2s - 1}}{1 - q^{-2s}}$$

(see (14)). Therefore, $c_{w_0}(\chi^{-1})c_{w_0^{-1}}(^{w_0}\chi) \neq 0$ holds if and only if $q^{-s} \neq \pm q^{-1/2}$. Also, by the above computation of $Q_{\chi}(1)$,

$$\frac{c_{w_0}(\chi)}{Q_{\chi}(1)} = \frac{q+1}{q-q_F} \cdot \frac{(1-q^{-2s-1})(1-q^{-s})}{(1-q^{-2s})(1+q^{-s-\frac{1}{2}})} = \frac{q+1}{q-q_F} \cdot \frac{1-q^{-s-\frac{1}{2}}}{1+q^{-s}}$$

which proves the above formula, by (3.5). \Box

REMARK. If we replace $\lambda \ (\leq 0)$ by $-\lambda \ (\geq 0)$, then (4.1) coincides with the formula given by Banks [B].

(II) n=3

Put $w_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 1 \end{pmatrix}$, $w_2 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 \\ 1 & 0 \end{pmatrix}$. Then $W = \{1, w_1, w_2, w_1 w_2, w_2 w_1, w_0\}$, $W_{\theta} = \{1, w_0\}$. Write $\chi \in X_{\mathrm{ur}}(T)_{\theta}$ as

$$\chi \begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix} = |t_1|^s |t_3|^{-s}, \quad s \in \mathbb{C}.$$

Then χ is regular if and only if $q^{-s} \neq \pm 1$, which again we assume below. The function Δ_{χ} is of the form

$$\Delta_{\chi}(g) = |d_1(\theta(g)g^{-1})|^{s-1}.$$

As in the case n = 2, we use $K = \bigcup_{w \in W} BwB$ (disjoint union) and the Iwahori factorization $B = N_1^- T_0 N_0$ to compute $Q_{\chi}(1)$;

(20)
$$Q_{\chi}(1) = \int_{K} \Delta_{\chi}(k) dk = \sum_{w \in W} \int_{BwB} \Delta_{\chi}(g) dg$$
$$= \sum_{w \in W} \operatorname{vol}(BwB) \int_{N_{1}^{-}} \int_{N_{0}} \Delta_{\chi}(wn'n) dn' dn.$$

Here the Haar measures dn', dn of N_1^- , N_0 are normalized so that $\operatorname{vol}(N_1^-) = \operatorname{vol}(N_0) = 1$. We shall compute the six integrals in (20). (II-1) w = 1. By (1.3),

(21)
$$\int_{N_1^-} \int_{N_0} \Delta_{\chi}(n'n) dn' dn = 1.$$

(II-
$$w_1$$
) $w = w_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ & 1 \end{pmatrix}$. In this case, using

$$w_1 \begin{pmatrix} 1 & 0 & * \\ & 1 & * \\ & & 1 \end{pmatrix} w_1^{-1} \subset N, \quad w_1 \begin{pmatrix} 1 & \\ * & 1 & \\ 0 & 0 & 1 \end{pmatrix} w_1^{-1} \subset N$$

we obtain

$$\begin{split} \int_{N_1^-} \int_{N_0} \Delta_{\chi}(w_1 n' n) dn' dn \\ &= \int_{\mathcal{O}} \int_{\mathcal{O}} \int_{\mathcal{O}} \Delta_{\chi} \left(w_1 \begin{pmatrix} 1 & & \\ 0 & 1 & \\ \varpi x & \varpi y & 1 \end{pmatrix} \begin{pmatrix} 1 & z & 0 \\ & 1 & 0 \\ & & 1 \end{pmatrix} \right) dx dy dz. \end{split}$$

Here and henceforth, the additive Haar measures are normalized so that $\operatorname{vol}(\mathcal{O}) = 1$. By a direct calculation of the matrix inside Δ_{χ} , this is equal to

$$\int_{\mathcal{O}} \int_{\mathcal{O}} \int_{\mathcal{O}} |-z + \overline{\omega} \overline{z} \overline{x} + \overline{\omega} \overline{y} - \overline{\omega}^2 \overline{x} y|^{s-1} dx dy dz
= \int_{\mathcal{O}} \int_{\mathcal{O}} \int_{\mathcal{O}} |(\overline{\omega} \overline{y} - z) + \overline{\omega} \overline{x} (\overline{z} - \overline{\omega} y)|^{s-1} dx dy dz
= \int_{\mathcal{O}} \int_{\mathcal{O}} |z + \overline{\omega} \overline{x} \overline{z}|^{s-1} dx dz \quad \text{(by replacing } z \text{ by } z + \overline{\omega} \overline{y})
= \int_{\mathcal{O}} |z|^{s-1} dz \quad (\text{since } |z| > |\overline{\omega} \overline{x} \overline{z}| \text{ for all } x, z \in \mathcal{O})
(22) = (1 - q^{-1}) \cdot \frac{1}{1 - q^{-s}}.$$

(II-
$$w_2$$
) $w = w_2 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{pmatrix}$. As in (II- w_1), we may write

$$\int_{N_1^-} \int_{N_0} \Delta_{\chi}(w_2 n' n) dn' dn$$

=
$$\int_{\mathcal{O}^3} \Delta_{\chi} \left(w_2 \begin{pmatrix} 1 & & \\ \varpi x & 1 & \\ \varpi y & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ & 1 & z \\ & & 1 \end{pmatrix} \right) dx dy dz,$$

and by a matrix calculation inside Δ_{χ} , this is equal to

$$\int_{\mathcal{O}^3} |\bar{z} - \varpi x + \varpi yz - \varpi^2 \bar{x}y|^{s-1} dx dy dz$$
$$= \int_{\mathcal{O}^2} |\bar{z} + \varpi yz|^{s-1} dy dz \quad (\text{by } z \rightsquigarrow z + \varpi \bar{x})$$
$$= (22).$$

(II- w_1w_2) $w = w_1w_2 = \begin{pmatrix} 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$. We may change the order of the Iwahori factorization to make computations easier. By

$$w_1w_2\begin{pmatrix}1\\0&1*&*&1\end{pmatrix}w_2^{-1}w_1^{-1}\subset N, \quad w_1w_2\begin{pmatrix}1&*&0\\&1&0\\&&1\end{pmatrix}w_2^{-1}w_1^{-1}\subset N$$

we have

$$\int_{N_1^-} \int_{N_0} \Delta_{\chi}(w_1 w_2 n' n) dn' dn$$

=
$$\int_{\mathcal{O}^3} \Delta_{\chi} \left(w_1 w_2 \begin{pmatrix} 1 & 0 & x \\ & 1 & y \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & & \\ \varpi z & 1 & \\ 0 & 0 & 1 \end{pmatrix} \right) dx dy dz.$$

Computing the matrix inside Δ_{χ} , this is equal to

(23)
$$\int_{\mathcal{O}^3} |-x\bar{y} + \varpi xz - y + \varpi \bar{z}|^{s-1} dx dy dz$$
$$= \int_{\mathcal{O}^2} |y + x\bar{y}|^{s-1} dx dy \quad (\text{by } y \rightsquigarrow -y + \varpi \bar{z})$$
$$= \int_{\mathcal{O}^2} |y + xy|^{s-1} dx dy \quad (\text{by } x \rightsquigarrow (\bar{y}^{-1}y)x)$$
$$= \int_{\mathcal{O}} |1 + x|^{s-1} dx \cdot \int_{\mathcal{O}} |y|^{s-1} dy$$
$$= (1 - q^{-1})^2 \cdot \frac{1}{(1 - q^{-s})^2}.$$

(II- w_2w_1) $w = w_2w_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 \end{pmatrix}$. As in (II- w_1w_2), we have

$$\begin{split} \int_{N_1^-} \int_{N_0} \Delta_{\chi}(w_2 w_1 n' n) dn' dn \\ &= \int_{\mathcal{O}^3} \Delta_{\chi} \left(w_2 w_1 \begin{pmatrix} 1 & x & y \\ & 1 & 0 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & \\ 0 & 1 \\ 0 & \varpi z & 1 \end{pmatrix} \right) dx dy dz \\ &= \int_{\mathcal{O}^3} |-x\bar{y} + \bar{x} + \varpi \bar{y}\bar{z} - \varpi z|^{s-1} dx dy dz \\ &= \int_{\mathcal{O}^2} |\bar{x} - x\bar{y}|^{s-1} dx dy \quad (\text{by } x \rightsquigarrow x + \varpi \bar{z}) \\ &= (23). \end{split}$$

(II- w_0) $w = w_0$. Since $w_0 N_1^- w_0^{-1} \subset N$,

$$\int_{N_1^-} \int_{N_0} \Delta_{\chi}(w_0 n'n) dn' dn$$

$$= \int_{\mathcal{O}^3} \Delta_{\chi} \left(w_0 \begin{pmatrix} 1 & x & y \\ & 1 & z \\ & & 1 \end{pmatrix} \right) dx dy dz$$

$$= \int_{\mathcal{O}^3} |\bar{y}(xz - y) - \bar{x}z + 1|^{s-1} dx dy dz$$

$$(24) \qquad = \int_{\mathcal{O}^3} |\bar{x}z(\bar{y} - 1) + (1 - y\bar{y})|^{s-1} dx dy dz \quad (by \ y \rightsquigarrow (\bar{x}^{-1}x)y).$$

We divide $y \in \mathcal{O}$ into $\{|y| < 1\}$ and $\{|y| = 1\}$. The integral over $\{|y| < 1\}$ is easy to compute; since $|\bar{y} - 1| = 1$ for |y| < 1,

$$\begin{split} \int_{|y|<1} \int_{x,z\in\mathcal{O}} |\bar{x}z(\bar{y}-1) + (1-y\bar{y})|^{s-1} dx dy dz \\ &= \int_{|y|<1} \int_{x,z\in\mathcal{O}} |\bar{x}z + (1-y\bar{y})|^{s-1} dx dy dz \\ &= \int_{|y|<1} \int_{|x|<1} \int_{z\in\mathcal{O}} |\bar{x}z + (1-y\bar{y})|^{s-1} dx dy dz \\ &+ \int_{|y|<1} \int_{|x|=1} \int_{z\in\mathcal{O}} |\bar{x}z + (1-y\bar{y})|^{s-1} dx dy dz. \end{split}$$

The integrand in the first term is 1. Replacing z by $\bar{x}^{-1}z - \bar{x}^{-1}(1 - y\bar{y})$ in the second, the above is equal to

(25)
$$q^{-2} + q^{-1}(1 - q^{-1}) \cdot \int_{z \in \mathcal{O}} |z|^{s-1} dz = q^{-2} + q^{-1}(1 - q^{-1})^2 \cdot \frac{1}{1 - q^{-s}}$$

Next, the integral over $\{|y| = 1\}$ is;

$$\begin{split} &\int_{|y|=1} \int_{x,z\in\mathcal{O}} |\bar{x}z(\bar{y}-1) + (1-y\bar{y})|^{s-1} dx dy dz \\ &= \sum_{i=0}^{\infty} \int_{|x|=q^{-i}} \int_{|y|=1} q^{i} \cdot \int_{|z|\leqslant q^{-i}} |z(\bar{y}-1) + (1-y\bar{y})|^{s-1} dx dy dz \\ &= \sum_{i=1}^{\infty} q^{-i}(1-q^{-1}) \int_{|y|=1} q^{i} \cdot \int_{|z|\leqslant q^{-i}} |\bar{x}z(\bar{y}-1) + (1-y\bar{y})|^{s-1} dy dz \\ &= (1-q^{-1}) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \int_{|y|=1,|\bar{y}-1|=q^{-j}} q^{j} \int_{|z|\leqslant q^{-i-j}} |z + (1-y\bar{y})|^{s-1} dy dz \\ &= (1-q^{-1}) \sum_{i,j\geqslant 0} q^{j} \cdot \left\{ \int_{|y|=1,|\bar{y}-1|=q^{-j}} \int_{|z|\leqslant q^{-i-j}} |z + (1-y\bar{y})|^{s-1} dy dz \right. \\ &+ \int_{|y|=1,|\bar{y}-1|=q^{-j}} \int_{|z|\leqslant q^{-i-j}} |z + (1-y\bar{y})|^{s-1} dy dz \\ &+ \int_{|y|=1,|\bar{y}-1|=q^{-j}} \int_{|z|\leqslant q^{-i-j}} |z + (1-y\bar{y})|^{s-1} dy dz \right\}. \end{split}$$

In the former integral in $\{\cdots\}$, we may replace z by $z - (1 - y\bar{y})$. In the latter, the integrand is $|1 - y\bar{y}|^{s-1}$. So, this is written as

$$(26) \ (1-q^{-1}) \sum_{i,j \ge 0} q^j \left\{ v_{i,j} (1-q^{-1}) \cdot \frac{q^{-i-j}}{1-q^{-s}} + q^{-i-j} \sum_{k=0}^{i-1} v'_{k,j} q^{-(k+j)(s-1)} \right\}$$

where, for $i, j, k \ge 0$,

$$v_{i,j} = \operatorname{vol}\left(\{y \in \mathcal{O} \, ; \, |y| = 1, |\bar{y} - 1| = q^{-j}, |1 - y\bar{y}| \leq q^{-i-j}\}\right),\\ v'_{k,j} = \operatorname{vol}\left(\{y \in \mathcal{O} \, ; \, |y| = 1, |\bar{y} - 1| = q^{-j}, |1 - y\bar{y}| = q^{-k-j}\}\right),$$

both measured by the additive Haar measure as before. Note that if |y| = 1, $|\bar{y} - 1| = q^{-j}$ then $|1 - y\bar{y}| = |1 - \bar{y} + \bar{y}(1 - y)| \leq q^{-j}$.

(4.2) LEMMA.
(i)

$$v_{0,0} = 1 - 2q^{-1}, \quad v_{0,j} = q^{-j}(1 - q^{-1}) \quad (j \ge 1),$$

 $v_{i,0} = q^{-\frac{i}{2}} \quad (i \ge 1), \quad v_{i,j} = q^{-\frac{i}{2}-j}(1 - q^{-\frac{1}{2}}) \quad (i, j \ge 1).$

$$\begin{split} v_{0,0}' &= 1 - q^{-\frac{1}{2}} - 2q^{-1}, & v_{0,j}' &= q^{-j}(1 - q^{-\frac{1}{2}}) \quad (j \ge 1), \\ v_{k,0}' &= q^{-\frac{k}{2}}(1 - q^{-\frac{1}{2}}) \quad (k \ge 1), \quad v_{k,j}' &= q^{-\frac{k}{2}-j}(1 - q^{-\frac{1}{2}})^2 \quad (i, j \ge 1). \end{split}$$

PROOF. Put $U^{(m)} = 1 + \varpi^m \mathcal{O}$ for $m \ge 1$ and $U^{(0)} = \mathcal{O}^{\times}$. At first, it is easy to see that $v_{0,j}$ is computed as $\operatorname{vol}(U^{(j)}) - \operatorname{vol}(U^{(j+1)})$, so the first two of (i) are easy. To compute $v_{i,j}$ for $i \ge 1$, set

$$U_{i,j} = \{ y \in \mathcal{O} ; |y| = 1, |\bar{y} - 1| \leq q^{-j}, |1 - y\bar{y}| \leq q^{-i-j} \}$$

for $i, j \ge 0$. Then, $U_{i,j}$ is a multiplicative subgroup of \mathcal{O}^{\times} , lying between $U^{(j)}$ and $U^{(i+j)}$. Moreover it is easy to observe that

$$U_{i,j} = \bigcup_{\substack{\varepsilon \in U^{(j)}/U^{(i+j)}\\\varepsilon \bar{\varepsilon} \equiv 1 \mod U^{(i+j)}}} \varepsilon \cdot U^{(i+j)}.$$

Since E/F is unramified, the norm map $N_{E/F} : E^{\times} \to F^{\times}$ gives a surjection $U^{(m)} \twoheadrightarrow U_F^{(m)}$ for each m, hence induces $U^{(m)}/U^{(n)} \twoheadrightarrow U_F^{(m)}/U_F^{(n)}$ for $m \leq n$. Here $U_F^{(m)} = U^{(m)} \cap F$. Now the volume of $U_{i,j}$ is computed as;

$$\operatorname{vol}(U_{i,j}) = \# \ker[U^{(j)}/U^{(i+j)} \twoheadrightarrow U_F^{(j)}/U_F^{(i+j)}] \times \operatorname{vol}(U^{(i+j)})$$
$$= q^{-i-j} \frac{\#(U^{(j)}/U^{(i+j)})}{\#(U_F^{(j)}/U_F^{(i+j)})} = \begin{cases} q^{-\frac{i}{2}}(1+q^{-\frac{1}{2}}) & (j=0), \\ q^{-\frac{i}{2}-j} & (j \ge 1). \end{cases}$$

Using this, $v_{i,j}$ is computed as $\operatorname{vol}(U_{i,j}) - \operatorname{vol}(U_{i-1,j+1})$ for $i \ge 1$ so (i) follows immediately. Also, (ii) follows from (i) since $v'_{k,j} = v_{k,j} - v_{k+1,j}$. \Box

Applying (4.2) and by an earnest computation, (26) is equal to

$$(27) \qquad -\frac{q^{-1}(1-q^{-1})^2}{1-q^{-s}} + \frac{(1-q^{-1})^2(1-q^{-1}+q^{-s-\frac{1}{2}})}{(1-q^{-s})^2} - q^{-\frac{3}{2}}(1+q^{-\frac{1}{2}}) \\ + \frac{q^{-1}(1-q^{-1})}{1-q^{-s}}.$$

Returning to (24),

(24) = (25) + (27)
(28) =
$$-q^{-\frac{3}{2}} + \frac{q^{-1}(1-q^{-1})}{1-q^{-s}} + \frac{(1-q^{-1})^2(1-q^{-1}+q^{-s-\frac{1}{2}})}{(1-q^{-s})^2}.$$

Finally, since $\operatorname{vol}(BwB) = \operatorname{vol}(B) \times q^{\ell(w)}$, returning to (20),

$$Q_{\chi}(1) = \operatorname{vol}(B) \times \left\{ (21) + 2 \times q \times (22) + 2 \times q^{2} \times (23) + q^{3} \times (28) \right\}$$

= $\operatorname{vol}(B) \left\{ (1 - q^{3/2}) + (2q(1 - q^{-1}) + q^{2}(1 - q^{-1})) \cdot \frac{1}{1 - q^{-s}} + (2q^{2}(1 - q^{-1})^{2} + q^{3}(1 - q^{-1})^{2}(1 - q^{-1} + q^{-s - \frac{1}{2}})) \cdot \frac{1}{(1 - q^{-s})^{2}} \right\}$

which is simplified as

(29)
$$Q_{\chi}(1) = \operatorname{vol}(B)(q^3 - q_F^3) \frac{(1 - q^{-s-1})(1 + q^{-s-\frac{1}{2}})}{(1 - q^{-s})^2}.$$

Note that $Q_{w_{\chi}}(1) \neq 0$ for all $w \in W_{\theta}$ if and only if $q^{-s} \neq q^{\pm 1}, -q^{\pm 1/2}$.

(4.3) THEOREM. For n = 3, assume that $\chi \in X_{\rm ur}(T)_{\theta}$ is of the form $\chi({\rm diag}(t_1, t_2, t_3)) = |t_1|^s |t_3|^{-s}$, $s \in \mathbb{C}$, $q^{-s} \neq \pm 1$, $q^{\pm 1}$, $-q^{1/2}$, $\pm q^{-1/2}$. Then, \widetilde{Q}_{χ} is given by

$$\begin{split} \widetilde{Q}_{\chi}(\varpi_{0}^{\lambda}) &= \frac{qq_{F}}{qq_{F}-1} \left(\frac{(1-q^{-s-1})(1-q^{-s-\frac{1}{2}})}{1-q^{-2s}} q^{-\lambda(s+1)} \right. \\ &+ \frac{(1-q^{s-1})(1-q^{s-\frac{1}{2}})}{1-q^{2s}} q^{\lambda(s-1)} \right) \end{split}$$

for $\lambda \in \mathbb{Z}$, $\lambda \leqslant 0$.

PROOF. First, by (14) it is known that $c_w(\chi^{-1})c_{w^{-1}}(^w\chi) \neq 0$ for all $w \in W$ if and only if $q^{-s} \neq q^{-1}$, $\pm q^{-1/2}$. Also, for our choice of χ ,

$$c_{w_0}(\chi) = \left(\frac{1-q^{-s-1}}{1-q^{-s}}\right)^2 \cdot \frac{1-q^{-2s-1}}{1-q^{-2s}}.$$

Therefore, by (29),

$$\frac{c_{w_0}(\chi)}{Q_{\chi}(1)} = \frac{1}{\operatorname{vol}(B)q^3(1-q_F^{-3})} \cdot \frac{(1-q^{-s})^2(1-q^{-s-1})^2(1-q^{-2s-1})}{(1-q^{-s-1})(1+q^{-s-\frac{1}{2}})(1-q^{-s})^2(1-q^{-2s})}$$
$$= \frac{1}{\operatorname{vol}(Bw_0B)} \frac{qq_F}{qq_F-1} \cdot \frac{(1-q^{-s-1})(1-q^{-s-\frac{1}{2}})}{(1-q^{-2s})}$$

which proves the above formula, by (3.5).

References

- [B] Banks, W., The Casselman-Shalika formula for a distinguished model, Proc. Amer. Soc. **123(3)** (1995), 681–692.
- [BZ] Bernstein, I. and A. Zelevinski, Representations of the group $GL_n(F)$ where F is a non-archimedean local field. Russian Math. Surveys **31(3)** (1976), 1–68.

- [C] Casselman, W., The unramified principal series of p-adic groups I. The spherical functions, Compositio Math. 40 (1980), 387–406.
- [F 1] Flicker, Y., On distinguished representations, J. reine. angew. Math. 418 (1991), 139–172.
- [F 2] Flicker, Y., Distinguished representations and a Fourier summation formula, Bull. Soc. Math. France 120 (1992), 413–465.
- [FH] Flicker, Y. and J. Hakim, Quaternionic distinguished representations, Amer. Jour. Math. 116 (1994), 683–736.
- [H 1] Hironaka, Y., Spherical functions of hermitian and symmetric forms I, Japan. Jour. Math. 14 (1988), 203–223.
- [H 2] Hironaka, Y., Spherical functions of hermitian and symmetric forms II, Japan. Jour. Math. 15 (1989), 15–51.
- [H 3] Hironaka, Y., Spherical functions of hermitian and symmetric forms III, Tôhoku Math. Jour. 40 (1988), 651–671.
- [H 4] Hironaka, Y., Spherical functions and local densities on hermitian forms, Jour. Math. Soc. Japan 51(3) (1999), 553–581.
- [HS] Hironaka, Y. and F. Sato, Spherical functions and local densities of alternating forms, Amer. Jour. Math. **110** (1988), 473–512.
- [JLR] Jacquet, H., Lapid, E. and J. Rogawski, Periods of automorphic forms, Jour. Amer. Math. Soc. 12(1) (1999), 173–240.
- [K] Kato, S., Spherical functions on spherical homogeneous spaces, *Proc. of the 3-rd Summer School on Number Theory*, 1995, pp. 54–77 (in Japanese).
- [KMS] Kato, S., Murase, A. and T. Sugano, Spherical functions on certain spherical homogeneous spaces and Rankin-Selberg method, RIMS kôkyûroku, Kyoto 956 (1996), 12–22.
- [M] Muller, I., Integrales d'entrelacement pour $GL_n(k)$ où k est un corps p-adique, Springer Lect. Notes in Math, vol. 497, 1975, pp. 277–348.
- [PR] Platonov, V. and A. Rapinchuk, Algebraic Groups and Number Theory, Academic Press, 1994.
- [R] Rallis, S., Poles of standard L-functions, Proc. Int. Cong. Math. Kyoto 1990, Springer-Verlag, pp. 833–845.
- [U] Uzawa, T., Functoriality for distinguished representations and the relative trace formula, *Proc. of the 3-rd Summer School on Number Theory*, 1995, pp. 158–167.

(Received March 18, 1999) (Revised October 27, 1999)

Department of Mathematics Graduate School of Science Osaka University Toyonaka, Osaka 560-0043, Japan

Current address Akashi College of Technology Akashi, Hyogo 674-8501, Japan E-mail: takano@akashi.ac.jp