Spherical Functions in a Certain Distinguished Model

By Keiji Takano

Abstract

We study unramified principal series representations of general linear groups over p-adic fields, distinguished with respect to the fixator of the Galois involution. We give a certain condition for the unramified principal series to be distinguished, and give a formula for spherical vectors in the distinguished models of $G L_{n}$, following the method of Kato and Hironaka. We give explicit results for $G L_{2}$ and $G L_{3}$.

0. Introduction

Let E / F be a quadratic extension of \mathfrak{p}-adic fields, $G=G L_{n}(E)$ and $H=$ $G L_{n}(F)$. Regard H as the fixator of the Galois involution of E / F acting on G. It is known ([F1]) that the symmetric variety $H \backslash G$ is multiplicity free; for any irreducible smooth representation π of G, the dimension of the space of all G-morphisms of π into the space $\mathcal{C}^{\infty}(H \backslash G)$ of locally constant functions on $H \backslash G$ is at most one. If the above space of morphisms is nonzero, then π is said to be H-distinguished, and we call the realization of π in $\mathcal{C}^{\infty}(H \backslash G)$ the H-distinguished model of π.

Distinguished representations are of particular importance for the connection with functoriality principle ($[\mathrm{F} 1,2]$), and for the appearance in a certain Rankin-Selberg method ([R]; the quadratic extension version of the doubling method). Motivated by the latter, we study the unramified H distinguished models and the spherical vectors therein. In the $G L_{2}$-case, an explicit formula for such spherical functions was already given by W. Banks ([B]). Also, several examples of spherical functions on \mathfrak{p}-adic symmetric varieties were studied by Y. Hironaka, S. Kato and F. Sato ([H1-4], [HS], [K]).

Now we summarize the contents of the present paper. Throughout this paper we assume that E / F is unramified. Let P be the Borel subgroup consisting of upper triangular matrices, T be the maximal torus consisting

[^0]of diagonal matrices, W be the Weyl group of (G, T), identified with the subgroup consisting of permutation matrices, and $w_{0} \in W$ be the longest element, that is, the anti-diagonal monomial matrix. We use the Galois involution θ on G twisted by w_{0} (see the Notation section). Let H be the fixator of θ in G. It is isomorphic to $G L_{n}(F)$. Let \mathcal{O}_{E} be the valuation ring of E, ϖ be a prime element of $\mathcal{O}_{E}, K=G L_{n}\left(\mathcal{O}_{E}\right)$ and B be the Iwahori subgroup consisting of elements of K whose entries below the diagonals belong to $\varpi \mathcal{O}_{E}$. In $\S 1$, we give a parametrization of $H \backslash G / K$; let m be the integer part of $n / 2$, and set
$$
\Lambda_{m}=\left\{\lambda=\left(\lambda_{1}, \cdots, \lambda_{m}\right) \in \mathbb{Z}^{m} ; \lambda_{1} \leqslant \cdots \leqslant \lambda_{m} \leqslant 0\right\}
$$

For $\lambda \in \Lambda_{m}$, put

$$
\varpi_{0}^{\lambda}=\operatorname{diag}(\varpi^{\lambda_{1}}, \cdots, \varpi^{\lambda_{m}}, \underbrace{1, \cdots, 1}_{n-m})
$$

We show that $\left\{\varpi_{0}^{\lambda} ; \lambda \in \Lambda_{m}\right\}$ gives a complete set of representatives of $H \backslash G / K$ (see (1.4)).

In $\S 2$, we study H-distinguished models for unramified principal series. Let $X_{\mathrm{ur}}(T)_{\theta}$ be the set of all unramified characters on T which is trivial on $T \cap H$. We show that if χ is regular and the unramified principal series $I(\chi)$ has an H-distinguished model, then ${ }^{w} \chi \in X_{\text {ur }}(T)_{\theta}$ for some $w \in W$. At the same time we prove the uniqueness of the model, and determine the support of the H-invariant functionals (see (2.2)).

At the end of $\S 2$, we construct a non-zero H-invariant linear functional L_{χ} on $I(\chi)$ for $\chi \in X_{\mathrm{ur}}(T)_{\theta}$, using complex powers of relative P-invariants, as was proposed in $[\mathrm{K}]$. We define the spherical function Q_{χ} on $H \backslash G / K$ by $Q_{\chi}(g)=\left\langle L_{\chi}, \pi_{\chi}(g) \phi_{K, \chi}\right\rangle$. Here $\phi_{K, \chi}$ is the unique K-fixed vector in $I(\chi)$ such that $\phi_{K, \chi \mid K} \equiv 1$. In $\S 3$, following the method of [H4] we prove a formula for Q_{χ}, which is the main result of this paper ((3.4));

Theorem. Let $\chi \in X_{\mathrm{ur}}(T)_{\theta}$ be regular and assume that $c_{w}\left(\chi^{-1}\right) c_{w^{-1}}\left({ }^{w} \chi\right) \neq 0$ for all $w \in W$. Then, for $\lambda \in \Lambda_{m}$,

$$
Q_{\chi}\left(\varpi_{0}^{\lambda}\right)=\operatorname{vol}\left(B w_{0} B\right) \sum_{w \in W_{\theta}} \frac{c_{w_{0}}\left({ }^{w} \chi\right) b_{w}(\chi)}{c_{w}\left(\chi^{-1}\right)} w \chi \delta_{P}^{1 / 2}\left(\varpi_{0}^{\lambda}\right)
$$

Here, $c_{w}(\chi)$ is the usual c-function given by (14) of §3, $b_{w}(\chi)$ is the factor determined by the functional equation of invariant functionals (3.3), δ_{P} is the modulus of P and $W_{\theta}=W \cap H$.

Note that the sum is taken over the little Weyl group W_{θ}, not over the full Weyl group W as in [H4]. The vanishing of terms associated to $w \notin W_{\theta}$ follows from the determination of the support of invariant functionals in $\S 2$.

If $Q_{\chi}(1) \neq 0$, put $\widetilde{Q}_{\chi}=Q_{\chi}(1)^{-1} \cdot Q_{\chi}$. Then the above formula can be rewritten as

$$
\widetilde{Q}_{\chi}\left(\varpi_{0}^{\lambda}\right)=\operatorname{vol}\left(B w_{0} B\right) \sum_{w \in W_{\theta}} \frac{c_{w_{0}}\left({ }^{w} \chi\right)}{Q_{w^{w}}(1)} \cdot{ }^{w} \chi \delta_{P}^{1 / 2}\left(\varpi_{0}^{\lambda}\right)
$$

provided that $Q_{w_{\chi}}(1) \neq 0$ for all $w \in W_{\theta}$ (see (3.5)). In $\S 4$, we compute the value $Q_{\chi}(1)$ directly for $n=2$ and $n=3$ and give the explicit formulae of \widetilde{Q}_{χ} in these cases ((4.1) and (4.3)).

I would like to express my deep gratitude to Professor Takao Watanabe for his valuable advice and constant encouragement. Also I would like to thank Professors Shin-ichi Kato, Fumihiro Sato, Tôru Uzawa for their helpful advice, and especially Professor Yumiko Hironaka for explaining her work [H4], which had much influence on the present article.

Notation

Let E / F be a quadratic unramified extension of \mathfrak{p}-adic fields, with the absolute values $|\cdot|_{E},|\cdot|_{F}$ respectively. Let \mathcal{O}_{E} be the valuation ring, k_{E} the residue class field, q_{E} the residue order, of E. Similarly \mathcal{O}_{F}, k_{F} and q_{F} are defined for F. We may fix a prime element ϖ of E which is also a prime element of F. We shall drop the subscript E and write $\mathcal{O}=\mathcal{O}_{E}, q=q_{E}$, etc, when there is no fear of confusion. For $x \in E$, the conjugate of x over F is denoted by \bar{x}.

Let G be the group $G L_{n}(E)$ and P, T, K, B be the subgroups of G given in the Introduction. Let P^{-}be the Borel subgroup opposite to P and N, N^{-}be the unipotent radical of P, P^{-}respectively. Put $N_{0}=N \cap B$, $T_{0}=T \cap B, N_{1}^{-}=N^{-} \cap B$ and $N_{1}=w_{0} N_{1}^{-} w_{0}^{-1}$ where w_{0} is the antidiagonal monomial matrix in G. The Iwahori factorization asserts that $B=N_{0} T_{0} N_{1}^{-}$, uniquely decomposed in this order.

The Weyl group W of (G, T), isomorphic to the symmetric group of n-letters, is identified with the subgroup of G consisting of permutation matrices. W acts on quasi-characters χ of T by ${ }^{w} \chi(t)=\chi\left(w^{-1} t w\right)$ for $w \in W, t \in T$. We say that χ is regular if ${ }^{w} \chi=\chi$ implies $w=1$.

For $g=\left(g_{i j}\right) \in G$, we write \bar{g} for the matrix $\left(\bar{g}_{i j}\right)$. Define the involution θ on G by

$$
\theta(g)=w_{0} \bar{g} w_{0}^{-1} \quad \text { for } g \in G
$$

Then θ leaves K and T stable, and $\theta(N)=N^{-}$. Let H be the fixator of θ in G;

$$
H=\{h \in G ; \theta(h)=h\} .
$$

Note that H is isomorphic to $G L_{n}(F)$. We write W_{θ} for $W \cap H=\{w \in$ $W ; \theta(w)=w\}$, which is the centralizer of w_{0} in W.

Any closed subgroups of G and any homogeneous spaces of them are all regarded as totally disconnected Hausdorff spaces. For such a space Y, topological notions are used with respect to this Hausdorff topology unless otherwise stated. For a subset Z of Y, the closure of Z in Y is denoted by $Z^{c l}$. Let us write $\mathcal{C}^{\infty}(Y)$ for the space of all locally constant \mathbb{C}-valued functions on $Y, \mathcal{C}_{c}^{\infty}(Y)$ for the subspace of those with compact support. Linear functionals on $\mathcal{C}_{c}^{\infty}(Y)$ are called distributions on Y.

Fix a Haar measure $d g$ of G, normalized so that $\int_{K} d g=1$. Also fix a left Haar measure $d_{\ell} p$ of P so that $\int_{P \cap K} d_{\ell} p=1$. Let δ_{P} be the modulus character of P. It is given explicitly by

$$
\begin{equation*}
\delta_{P}\left(\operatorname{diag}\left(t_{1}, \cdots, t_{n}\right)\right)=\prod_{1 \leqslant i<j \leqslant n}\left|t_{i} t_{j}^{-1}\right|=\prod_{1 \leqslant i \leqslant n}\left|t_{i}\right|^{n-2 i+1} \tag{1}
\end{equation*}
$$

on T. On the space of all locally constant functions $f: G \rightarrow \mathbb{C}$ such that $f(p g)=\delta_{P}(p) f(g)(p \in P, g \in G)$ and that $P \backslash \operatorname{supp}(f)$ is compact, there is a unique (up to constant) non-zero right G-invariant linear functional, which is denoted by $f \mapsto \oint_{P \backslash G} f(\dot{g}) d \dot{g}$. We may normalize this so that $\oint_{P \backslash G} f(\dot{g}) d \dot{g}=\int_{K} f(k) d k$.

For a representation (π, V) of G, we denote by $\left(\pi^{*}, V^{*}\right)$ the dual representation and by $(\tilde{\pi}, \tilde{V})$ the smooth contragredient, that is, the smooth part of $\left(\pi^{*}, V^{*}\right)$. For a subgroup U of G, the subspace of all $\pi(U)$-fixed vectors in V is denoted by V^{U}.

§1. Double Coset Decompositions

In this section first we recall the description of the double cosets $P \backslash G / H$ and prepare some properties of them for our later use. Then we give a parametrization of the double cosets $H \backslash G / K$ on which our spherical functions are defined.

Put

$$
X=\{x \in G ; \theta(x) x=1\}
$$

G acts on X (from the right) by the θ-twisted conjugation

$$
(x, g) \mapsto x * g:=\theta(g)^{-1} x g \quad \text { for } x \in X, g \in G
$$

Put $\tau(g)=1 * g=\theta(g)^{-1} g$. By the Hilbert Theorem 90, τ induces a G-equivariant homeomorphism $H \backslash G \xrightarrow{\sim} X$ (see e.g. [F1]). Similarly, the mapping $g \mapsto \tau\left(g^{-1}\right)$ induces $G / H \xrightarrow{\sim} X$. For each $v \in W \cap X$, we may fix an element $\eta_{v} \in G$ such that

$$
\theta\left(\eta_{v}\right) \eta_{v}^{-1}=\tau\left(\eta_{v}^{-1}\right)=v
$$

by the surjectivity of τ. In particular we take $\eta_{1}=1$.
For $x \in G$ and $1 \leqslant i \leqslant n$, let $d_{i}(x)$ be the determinant of the upper left i by i block of x. Then for $p \in P, p^{\prime} \in P^{-}$and $x \in G$ we have $d_{i}\left(p^{\prime} x p\right)=d_{i}\left(p^{\prime}\right) d_{i}(p) d_{i}(x)$. So $d_{\left.i\right|_{X}}$ gives a relative P-invariant polynomial function on X;

$$
\begin{equation*}
\left.d_{i}(x * p)=d_{i}\left(\theta(p)^{-1} p\right)\right) d_{i}(x) \quad \text { for all } p \in P, x \in X \tag{2}
\end{equation*}
$$

Note that $p \mapsto d_{i}\left(\theta(p)^{-1} p\right)$ is an E-rational character of P. Put $m=[n / 2]$, the integer part of $n / 2$, and set

$$
X^{0}=\left\{x \in X ; d_{i}(x) \neq 0 \quad \text { for all } 1 \leqslant i \leqslant m\right\}
$$

Clearly X^{0} is an open dense, P-stable subset of X under the $*$-action.
(1.1) Lemma. G decomposes into the disjoint union of the double cosets $P \eta_{v} H$, where v runs over $W \cap X$, and $P \cdot H$ is the unique open dense (P, H)-double coset in G.

Proof. The Bruhat decomposition for G implies that
$X=\bigcup_{w \in W}\left(P^{-} w P \cap X\right), \quad$ and $\quad P^{-} w P \cap X \neq \emptyset \quad$ if and only if $\quad w \in W \cap X$.
As in [F2, p.421], one has $P^{-} v P \cap X=v * P$ for every $v \in W \cap X$. Pulling back through $\tau\left((\cdot)^{-1}\right)$ we have the first assertion. To prove the second assertion, it is enough to see that $1 * P=X^{0}$. If $v \in W$ satisfies $d_{i}(v) \neq 0$ for all $1 \leqslant i \leqslant m$, then the upper left m by m block of v must be the identity matrix. If moreover $v \in X$, i.e., if $\theta(v) v=w_{0} v w_{0} v=1$, then the lower right m by m block of v also must be the identity, hence $v=1$. This shows that $W \cap X^{0}=\{1\}$, which implies that $1 * P=X^{0}$.

For $v \in W \cap X$ we define an involution θ_{v} on G by

$$
\theta_{v}(g)=v^{-1} \theta(g) v \quad \text { for } g \in G
$$

Put $P_{v}=P \cap v^{-1} P^{-} v$. Then θ_{v} leaves P_{v} stable. Let R_{v} be the fixator of θ_{v} in P_{v};

$$
\begin{equation*}
R_{v}=\left\{r \in P ; v^{-1} \theta(r) v=r\right\} \tag{3}
\end{equation*}
$$

R_{v} is identified with the the stabilizer in $P \times H$ of the representative η_{v} as follows;

$$
\begin{gathered}
\left\{(p, h) \in P \times H ; p \eta_{v} h^{-1}=\eta_{v}\right\}=\left\{(p, h) ; p \in P, \eta_{v}^{-1} p \eta_{v}=h \in H\right\} \\
=\left\{\left(p, \eta_{v}^{-1} p \eta_{v}\right) ; \theta_{v}(p)=p \in P\right\}=\left\{\left(r, \eta_{v}^{-1} r \eta_{v}\right) ; r \in R_{v}\right\}
\end{gathered}
$$

Regarding R_{v} as a subgroup of $P \times H$ as above, the double coset $P \eta_{v} H$ is homeomorphic to $(P \times H) / R_{v}$. We have the following semi-direct product decomposition;

$$
\begin{equation*}
R_{v}=\left(T \cap R_{v}\right) \ltimes\left(N \cap R_{v}\right) . \tag{4}
\end{equation*}
$$

Now, for $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}^{n}$, put

$$
\varpi^{\mu}=\operatorname{diag}\left(\varpi^{\mu_{1}}, \ldots, \varpi^{\mu_{n}}\right) \quad \text { and } \quad \varpi^{-\mu}=\left(\varpi^{\mu}\right)^{-1}
$$

Also, for $\lambda=\left(\lambda_{1}, \cdots, \lambda_{m}\right) \in \mathbb{Z}^{m}$, put

$$
\varpi_{0}^{\lambda}=\operatorname{diag}(\varpi^{\lambda_{1}}, \cdots, \varpi^{\lambda_{m}}, \underbrace{1, \cdots, 1}_{n-m}), \quad \text { and } \quad \varpi_{0}^{-\lambda}=\left(\varpi_{0}^{\lambda}\right)^{-1} .
$$

The following lemma is easily shown by a direct matrix calculation and the ultrametric inequality.
(1.2) Lemma. For $n \in N_{1}, n^{\prime} \in N_{1}^{-}$and $\mu \in \mathbb{Z}^{n}$ with $\mu_{1} \leqslant \ldots \leqslant \mu_{n}$, one has

$$
\left|d_{i}\left(n \varpi^{\mu} n^{\prime}\right)\right|=\left|d_{i}\left(\varpi^{\mu}\right)\right| .
$$

For $\mu \in \mathbb{Z}^{n}$, ϖ^{μ} belongs to X if and only if $\mu_{n-i+1}=-\mu_{i}$ for all i. If moreover $\mu_{1} \leqslant \cdots \leqslant \mu_{n}$ is assumed, we must have $\mu_{1} \leqslant \cdots \leqslant \mu_{m} \leqslant 0$. Now set

$$
\Lambda_{m}=\left\{\lambda=\left(\lambda_{1}, \cdots, \lambda_{m}\right) \in \mathbb{Z}^{m} ; \lambda_{1} \leqslant \cdots \leqslant \lambda_{m} \leqslant 0\right\}
$$

Then we have

$$
\left\{\varpi^{\mu} \in X ; \mu \in \mathbb{Z}^{n}, \quad \mu_{1} \leqslant \ldots \leqslant \mu_{n}\right\}=\left\{\tau\left(\varpi_{0}^{\lambda}\right) ; \lambda \in \Lambda_{m}\right\}
$$

The following corollary, which is similar to $[\mathrm{H} 4,(2.2)]$, is important for our later use;
(1.3) Corollary. For $b \in B$ and $\lambda \in \Lambda_{m}$, one has

$$
\left|d_{i}\left(\tau\left(\varpi_{0}^{\lambda}\right) * b\right)\right|=\left|d_{i}\left(\tau\left(\varpi_{0}^{\lambda}\right)\right)\right| \neq 0
$$

Consequently, $B \varpi_{0}^{-\lambda} \subset P \cdot H$ holds for all $\lambda \in \Lambda_{m}$.
Proof. This follows directly from (1.2), using the Iwahori factorization for B. Note that we pull back through $\tau\left((\cdot)^{-1}\right)$ to get $B \varpi_{0}^{-\lambda} \subset$ $P \cdot H$.

In the rest of this section we give a parametrization of $H \backslash G / K$.
(1.4) Proposition. G decomposes into the disjoint union of the double cosets $H \varpi_{0}^{\lambda} K$, where λ runs over Λ_{m}.

Proof. The assertion is equivalent to the decomposition

$$
X=\bigcup_{\lambda \in \Lambda_{m}} \tau\left(\varpi_{0}^{\lambda}\right) * K \quad \text { (disjoint union) }
$$

of X into K-orbits. First, by the Cartan decomposition for G, one has

$$
X=\bigcup_{\substack{\mu=\left(\mu_{1}, \cdots, \mu_{n}\right) \in \mathbb{Z}^{n} \\ \mu_{1} \leqslant \cdots \leqslant \mu_{n}}}\left(K \varpi^{\mu} K \cap X\right) \quad \text { (disjoint union) }
$$

and it is easy to see that $K \varpi^{\mu} K \cap X \neq \emptyset$ for $\mu_{1} \leqslant \cdots \leqslant \mu_{n}$ if and only if $\varpi^{\mu} \in X$. In this case we may replace ϖ^{μ} by $\tau\left(\varpi_{0}^{\lambda}\right)$, where $\lambda \in \Lambda_{m}$ as above. We show that

$$
K \tau\left(\varpi_{0}^{\lambda}\right) K \cap X=\tau\left(\varpi_{0}^{\lambda}\right) * K \quad \text { for all } \lambda \in \Lambda_{m}
$$

Since $k_{1} \tau\left(\varpi_{0}^{\lambda}\right) k_{2}=\left(\tau\left(\varpi_{0}^{\lambda}\right) k_{2} \theta\left(k_{1}\right)\right) * \theta\left(k_{1}^{-1}\right)$, it is enough to show that, for $\lambda \in \Lambda_{m}$,
(*) For any $k \in K$ with $\tau\left(\varpi_{0}^{\lambda}\right) k \in X$,
there is a $k^{\prime} \in K$ such that $\tau\left(\varpi_{0}^{\lambda}\right) k=\tau\left(\varpi_{0}^{\lambda}\right) * k$.
Put

$$
C_{\lambda}=\varpi_{0}^{\lambda} K \varpi_{0}^{-\lambda} \cap \theta\left(\varpi_{0}^{\lambda} K \varpi_{0}^{-\lambda}\right)
$$

Then, one can show that C_{λ} is a θ-stable subgroup contained in K. In fact, if we understand that $\lambda_{m+1}=\cdots=\lambda_{n}=0$, then C_{λ} is given by

$$
\begin{aligned}
C_{\lambda} & =\left\{\left(c_{i j}\right) \in G ; \operatorname{det}\left(c_{i j}\right) \in \mathcal{O}^{\times},\left|c_{i j}\right| \leqslant \min \left(q^{-\lambda_{i}+\lambda_{j}}, q^{-\lambda_{n-i+1}+\lambda_{n-j+1}}\right)\right\} \\
& =\left\{\left(c_{i j}\right) \in K ;\left|c_{i j}\right| \leqslant \min \left(q^{-\lambda_{i}+\lambda_{j}}, q^{-\lambda_{n-i+1}+\lambda_{n-j+1}}\right)\right\} .
\end{aligned}
$$

Now (*) follows from the assertion

$$
\begin{equation*}
H^{1}\left(\{1, \theta\}, C_{\lambda}\right)=\{1\} \tag{**}
\end{equation*}
$$

Indeed, if $\tau\left(\varpi_{0}^{\lambda}\right) k \in X, k \in K$, then $\varpi_{0}^{\lambda} k \varpi_{0}^{-\lambda}=\theta\left(\varpi_{0}^{\lambda} k \varpi_{0}^{-\lambda}\right)^{-1} \in C_{\lambda}$. So $\left(^{* *}\right)$ implies that there is a $c \in C_{\lambda}$ such that $\varpi_{0}^{\lambda} k \varpi_{0}^{-\lambda}=\theta(c)^{-1} c$, which leads to the equation $\tau\left(\varpi_{0}^{\lambda}\right) k=\tau\left(\varpi_{0}^{\lambda}\right) * k^{\prime}$, with $k^{\prime}=\varpi_{0}^{-\lambda} c \varpi_{0}^{\lambda} \in K$.

To prove $\left(^{* *}\right)$, first let $\rho_{0}: K \rightarrow G L_{n}\left(k_{E}\right)$ be the mod- ϖ map and $\tilde{\theta}$ be the involution on $G L_{n}\left(k_{E}\right)$ defined by $\tilde{\theta}(g)=w_{0} \bar{g} w_{0}^{-1}$, where bar denotes the Galois involution of k_{E} / k_{F}. Regard $\tilde{\theta}$ as a k_{F}-involution on $G L_{n}\left(k_{E}\right)$. It is clear that $\rho_{0} \circ \theta=\tilde{\theta} \circ \rho_{0}$.

Put $M_{\lambda}=\rho_{0}\left(C_{\lambda}\right)$. We observe that M_{λ} is the group of k_{F}-rational points of a Zariski-connected group over k_{F}. Let l be the largest number such that $\lambda_{l} \neq 0$ and assume that λ is of the form

$$
\underbrace{\lambda_{1}=\cdots=\lambda_{i_{1}}}_{i_{1}}<\underbrace{\lambda_{i_{1}+1}=\cdots=\lambda_{i_{1}+i_{2}}}_{i_{2}}<\cdots<\underbrace{\lambda_{i_{1}+\cdots+i_{k-1}+1}=\cdots=\lambda_{l}}_{i_{k}}<0
$$

Then, M_{λ} consists of all matrices of the form $\left(\begin{array}{ccc}p_{1} & x & 0 \\ g & g \\ 0 & y & p_{2}\end{array}\right)$ where $p_{1} \in G L_{l}\left(k_{E}\right)$ is upper quasi-triangular of type $\left(i_{1}, \cdots, i_{k}\right)$, $p_{2} \in G L_{l}\left(k_{E}\right)$ is lower quasitriangular of type $\left(i_{k}, \cdots, i_{1}\right), g \in G L_{n-2 l}\left(k_{E}\right)$ and $x, y \in \operatorname{Mat}_{l, n-2 l}\left(k_{E}\right)$. So M_{λ} is a semi-direct product of rational points of Zariski-connected groups $\left\{\left(\begin{array}{cc}p_{1} & 0 \\ & g \\ 0 & p_{2}\end{array}\right)\right\}$ and $\left\{\left(\begin{array}{lll}1 & x & 0 \\ 1 & \\ 0 & y & 1\end{array}\right)\right\}$.

Put $C_{\lambda}^{(1)}=\operatorname{ker}\left(\rho_{0}\right) \cap C_{\lambda}$. Then, one has an exact sequence of 1-cohomology sets;

$$
H^{1}\left(\{1, \theta\}, C_{\lambda}^{(1)}\right) \longrightarrow H^{1}\left(\{1, \theta\}, C_{\lambda}\right) \longrightarrow H^{1}\left(\{1, \tilde{\theta}\}, M_{\lambda}\right)
$$

The last set is trivial by Lang's theorem. So $\left({ }^{* *}\right)$ follows from

$$
\begin{equation*}
H^{1}\left(\{1, \theta\}, C_{\lambda}^{(1)}\right)=\{1\} \tag{***}
\end{equation*}
$$

To prove $\left({ }^{* * *}\right)$, put $K(N)=1+\varpi^{N} \operatorname{Mat}_{n}(\mathcal{O})$ for each integer $N \geqslant 1$ and define $\rho_{N}: K(N) \rightarrow \operatorname{Mat}_{n}\left(k_{E}\right)$ by

$$
\rho_{N}\left(1+\varpi^{N} a\right)=a \quad \bmod \varpi \quad \text { for } a \in \operatorname{Mat}_{n}(\mathcal{O})
$$

Then ρ_{N} is a homomorphism onto the additive group of $\operatorname{Mat}_{n}\left(k_{E}\right)$ and $K(N+1)=\operatorname{ker}\left(\rho_{N}\right), K(1)=\operatorname{ker}\left(\rho_{0}\right)$. Note that $K(N)$ is normal in K and is θ-stable. Define the involution $\tilde{\theta}$ on the additive group of $\operatorname{Mat}_{n}\left(k_{E}\right)$ by the same as before. Then the relation $\rho_{N} \circ \theta=\tilde{\theta} \circ \rho_{N}$ holds. Put
$C_{\lambda}^{(N)}=C_{\lambda} \cap K(N)$ and $A_{\lambda}^{(N)}=\rho_{N}\left(C_{\lambda}^{(N)}\right)$. Then $A_{\lambda}^{(N)}$ is an additive subgroup of $\operatorname{Mat}_{n}\left(k_{E}\right)$ over k_{F}. As before one has an exact sequence

$$
H^{1}\left(\{1, \theta\}, C_{\lambda}^{(N+1)}\right) \longrightarrow H^{1}\left(\{1, \theta\}, C_{\lambda}^{(N)}\right) \longrightarrow H^{1}\left(\{1, \tilde{\theta}\}, A_{\lambda}^{(N)}\right)
$$

By the additive version of the Hilbert Theorem 90, the last term vanishes. So the vanishing of $H^{1}\left(\{1, \theta\}, C_{\lambda}^{(N)}\right)$ follows from that of $H^{1}\left(\{1, \theta\}, C_{\lambda}^{(N+1)}\right)$. Inductively, $\left({ }^{* * *}\right)$ follows from the vanishing of $H^{1}\left(\{1, \theta\}, C_{\lambda}^{(N)}\right)$ for some large N.

Now, if $N \geqslant-\lambda_{1}$, one has $C_{\lambda} \supset K(N)$, thus $C_{\lambda}^{(N)}=K(N)$. By the argument exactly as in [PR, pp. 292-294], one can show that

$$
H^{1}(\{1, \theta\}, K(N))=\{1\}
$$

for any integer N, hence the proof is completed.

§2. Invariant Functionals on Unramified Principal Series

Let $X_{\mathrm{ur}}(T)$ be the set of all unramified quasi-characters of T. We regard $\chi \in X_{\mathrm{ur}}(T)$ also as a quasi-character of P by letting $\chi_{\mid N} \equiv 1$. For $\chi \in$ $X_{\mathrm{ur}}(T)$ let $\left(\pi_{\chi}, I(\chi)\right)$ be the unramified principal series attached to χ. Thus $I(\chi)$ is the space of all locally constant \mathbb{C}-valued functions φ on G satisfying

$$
\varphi(p g)=\chi(p) \delta_{P}(p)^{1 / 2} \varphi(g) \quad \text { for } p \in P, g \in G
$$

and π_{χ} is the right translation of G on $I(\chi)$.
Let λ, ρ be respectively the left, right translations of G on $\mathcal{C}_{c}^{\infty}(G)$. For $\chi \in X_{\mathrm{ur}}(T)$, let $\mathcal{D}_{\chi}(G)$ be the space of all distributions D on G satisfying

$$
\begin{equation*}
\langle D, \lambda(p) f\rangle=\chi(p)^{-1} \delta_{P}(p)^{1 / 2}\langle D, f\rangle \quad \text { for all } p \in P, f \in \mathcal{C}_{c}^{\infty}(G) \tag{5}
\end{equation*}
$$

and $\mathcal{D}_{\chi}(G)^{H}$ be the space of all $D \in \mathcal{D}_{\chi}(G)$ satisfying

$$
\begin{equation*}
\langle D, \rho(h) f\rangle=\langle D, f\rangle \quad \text { for all } h \in H, f \in \mathcal{C}_{c}^{\infty}(G) \tag{6}
\end{equation*}
$$

Define $p_{\chi}: \mathcal{C}_{c}^{\infty}(G) \rightarrow I(\chi)$ as usual by

$$
\left(p_{\chi}(f)\right)(g)=\int_{P} \chi^{-1}(p) \delta_{P}(p)^{1 / 2} f(p g) d_{\ell} p
$$

for $f \in \mathcal{C}_{c}^{\infty}(G), g \in G$. As is shown in $[\mathrm{H} 4,(1.2)]$, the dual map p_{χ}^{*} of p_{χ} gives rise to a right G-isomorphism $I(\chi)^{*} \xrightarrow{\sim} \mathcal{D}_{\chi}(G)$. Therefore we have

$$
\begin{equation*}
\operatorname{Hom}_{H}(I(\chi), \mathbb{C})=\left(I(\chi)^{*}\right)^{H} \xrightarrow{\stackrel{p_{\chi}^{*}}{\sim}} \mathcal{D}_{\chi}(G)^{H} . \tag{7}
\end{equation*}
$$

By this we may regard H-invariant linear functionals as $P \times H$-relatively invariant distributions on G. From now on we study the space $\mathcal{D}_{\chi}(G)^{H}$ by the standard method, so called the Bruhat theory for $P \backslash G / H$.

For any locally closed subset Ω of G satisfying $P \Omega H \subset \Omega$, define $\mathcal{D}_{\chi}(\Omega)^{H}$ to be the space of all distributions on Ω having the same $P \times H$-equivariance as those in $\mathcal{D}_{\chi}(G)^{H}$ (i.e., the relations (5) and (6)). Put $\Omega_{v}=P \eta_{v} H$ for $v \in W \cap X$, where η_{v} is as in $\S 1$. Recall that $G=\bigcup_{v \in W \cap X} \Omega_{v}$ (disjoint union) and $\Omega_{v} \simeq(P \times H) / R_{v}$, where R_{v} is defined by (3).
(2.1) Lemma. Let $\chi \in X_{\mathrm{ur}}(T)$ and $v \in W \cap X$.
(i) The modulus character δ_{v} of R_{v} is trivial on $N \cap R_{v}$, and on $T \cap R_{v}$ it is given by

$$
\delta_{v}(t)=\delta_{P}(t)^{1 / 2} \quad \text { for all } t \in T \cap R_{v}
$$

(ii) One has

$$
\operatorname{dim} \mathcal{D}_{\chi}\left(\Omega_{v}\right)^{H}= \begin{cases}1 & \text { if } \chi_{\mid T \cap R_{v}} \equiv 1 \\ 0 & \text { otherwise }\end{cases}
$$

Proof. (i) By the semi-direct product decomposition (4) of R_{v}, δ_{v} is directly computed as the Jacobian of the adjoint action of $T \cap R_{v}$ on $N \cap R_{v}$. Let $x=\left(x_{i j}\right) \in N \cap R_{v}$. Since $N \cap R_{v} \subset N \cap v^{-1} N^{-} v$, we may only look at the entries $x_{i j}$ with $i<j, v(i)>v(j)$. (Here and henceforth we regard elements of W also as permutations of indices.) Moreover since $\theta_{v}(x)=x$, we must have $x_{n-v(i)+1, n-v(j)+1}=\bar{x}_{i j}$. In particular if $i=n-v(i)+1$ and $j=n-v(j)+1$, then $x_{i j} \in F$. Similarly, for $t=\operatorname{diag}\left(t_{1}, \cdots, t_{n}\right) \in T \cap R_{v}$,
we have $t_{n-v(i)+1}=\bar{t}_{i}$ and in particular, $t_{i} \in F^{\times}$if $n-v(i)+1=i$. Now, $\delta_{v}(t)$ is computed as;

$$
\begin{aligned}
\delta_{v}(t)= & \prod\left|t_{i} t_{j}^{-1}\right|_{F}(\text { product over } i=n-v(i)+1<j=n-v(j)+1) \\
& \times\left(\prod_{i}\left|t_{i} t_{j}^{-1}\right|\right)^{1 / 2}(i<j, v(i)>v(j) \text { and } \\
& =\prod_{i<j, v(i)>v(j)}\left|t_{i} t_{j}^{-1}\right|^{1 / 2}
\end{aligned}
$$

since $|\cdot|_{F}=|\cdot|{ }^{1 / 2}$. Comparing with (1), it is enough to see that

$$
\prod_{i<j, v(i)<v(j)}\left|t_{i} t_{j}^{-1}\right|=1 \quad \text { for } t=\operatorname{diag}\left(t_{1}, \cdots, t_{n}\right) \in T \cap R_{v}
$$

As is well-known (e.g. [M, p.289]),

$$
\prod_{i<j, v(i)<v(j)}\left|t_{i} t_{j}^{-1}\right|=\delta_{P}(t)^{1 / 2} \delta_{P}\left(v t v^{-1}\right)^{1 / 2}
$$

If $t \in T \cap R_{v}$ then $v t v^{-1}=w_{0} \bar{t} w_{0}^{-1}$, thus

$$
\delta_{P}(t)^{1 / 2} \delta_{P}\left(v t v^{-1}\right)^{1 / 2}=\delta_{P}(t)^{1 / 2} \delta_{P}\left(w_{0} \bar{t} w_{0}^{-1}\right)^{1 / 2}=\delta_{P}(t)^{1 / 2} \delta_{P}(\bar{t})^{-1 / 2}=1
$$

(ii) Recall the following criterion for the existence of relative invariant distributions on homogeneous spaces ([BZ, (1.21)]); let G_{1} be a totally disconnected locally compact group, H_{1} be a closed subgroup of G_{1}, ω be a quasi-character of G_{1}. Then, there is a non-zero distribution D on G_{1} / H_{1} satisfying $\langle D, \lambda(g) f\rangle=\omega(g)\langle D, f\rangle$ for all $g \in G_{1}, f \in \mathcal{C}_{c}^{\infty}\left(G_{1} / H_{1}\right)$ if and only if

$$
\omega_{\mid H_{1}}=\delta_{G_{1} \mid H_{1}} \cdot \delta_{H_{1}}^{-1}
$$

Here, $\delta_{G_{1}}, \delta_{H_{1}}$ are the modulus characters of G_{1}, H_{1} respectively. If such a non-zero distribution D exists, it is unique up to constant multiples. Applying this to $G_{1}=P \times H, H_{1}=R_{v}$ and $\omega=\chi^{-1} \delta_{P}^{1 / 2} \times 1$, (ii) is a direct consequence of (i).

For each $v \in W \cap X$ put
$X_{\mathrm{ur}}(T)_{\theta, v}=\left\{\chi \in X_{\mathrm{ur}}(T) ; \chi_{\mid T \cap R_{v}} \equiv 1\right\} \quad$ and $\quad X_{\mathrm{ur}}(T)_{\theta}=X_{\mathrm{ur}}(T)_{\theta, 1}$.

(2.2) Proposition.

(i) If $\mathcal{D}_{\chi}(G)^{H} \neq(0)$, then $\chi \in X_{\mathrm{ur}}(T)_{\theta, v}$ for some $v \in W \cap X$.
(ii) If χ is regular, then $\mathcal{D}_{\chi}(G)^{H}$ is at most one dimensional. If χ is regular and $\mathcal{D}_{\chi}(G)^{H} \neq(0)$, then $v \in W \cap X$ in (i) is uniquely determined, and for any non-zero $D \in \mathcal{D}_{\chi}(G)^{H}$, the support $\operatorname{supp}(D)$ of D is given by the closure $\Omega_{v}^{c l}$ of Ω_{v}.
(iii) If χ is regular and $\mathcal{D}_{\chi}(G)^{H} \neq(0)$, then there is a $w \in W$ such that ${ }^{w} \chi \in X_{\mathrm{ur}}(T)_{\theta}$.

Proof. (i) follows immediately from (2.1) (ii).
(ii) Assume that χ is regular and $\mathcal{D}_{\chi}(G)^{H} \neq(0)$. The uniqueness of $v \in W \cap X$ such that $\chi \in X_{\mathrm{ur}}(T)_{\theta, v}$ follows immediately from the regularity of χ. Thus, if $\chi \in X_{\mathrm{ur}}(T)_{\theta, v}, \Omega_{v}$ is the unique $P \times H$-orbit such that $\mathcal{D}_{\chi}\left(\Omega_{v}\right)^{H} \neq(0)$, hence one has $\mathcal{D}_{\chi}(\Omega)^{H}=(0)$ for any $P \times H$-stable subset Ω of G such that $\Omega \cap \Omega_{v}=\emptyset$.

Now since Ω_{v} is open in its closure $\Omega_{v}^{c \ell}$, we have the following two exact sequences;

$$
\begin{aligned}
& (0) \longrightarrow \mathcal{D}_{\chi}\left(\Omega_{v}^{c \ell}\right)^{H} \xrightarrow{\text { ext }} \mathcal{D}_{\chi}(G)^{H} \xrightarrow{\text { res }} \mathcal{D}_{\chi}\left(G-\Omega_{v}^{c \ell}\right)^{H} \\
& (0) \longrightarrow \mathcal{D}_{\chi}\left(\Omega_{v}^{c \ell}-\Omega_{v}\right)^{H} \xrightarrow{\text { ext }} \mathcal{D}_{\chi}\left(\Omega_{v}^{c \ell}\right)^{H} \xrightarrow{\text { res }} \mathcal{D}_{\chi}\left(\Omega_{v}\right)^{H} .
\end{aligned}
$$

As was noticed above, one has $\mathcal{D}_{\chi}\left(G-\Omega_{v}^{c \ell}\right)^{H}=\mathcal{D}_{\chi}\left(\Omega_{v}^{c \ell}-\Omega_{v}\right)^{H}=(0)$, thus

$$
\begin{equation*}
\mathcal{D}_{\chi}(G)^{H} \underset{\text { ext }}{\rightleftarrows} \mathcal{D}_{\chi}\left(\Omega_{v}^{c \ell}\right)^{H} \underset{\text { res }}{\leftrightarrows} \mathcal{D}_{\chi}\left(\Omega_{v}\right)^{H} \tag{8}
\end{equation*}
$$

Since $\mathcal{D}_{\chi}(G)^{H}$ is non-zero and $\mathcal{D}_{\chi}\left(\Omega_{v}\right)^{H}$ is one dimensional, all three spaces in (8) are isomorphic and one dimensional. This completes the proof of (ii).
(iii) Let χ be regular, $\mathcal{D}_{\chi}(G)^{H} \neq(0)$ and $\chi \in X_{\text {ur }}(T)_{\theta, v}$. Put $v_{0}=w_{0} v$. Then $v_{0}^{2}=1$, so v_{0} is a product of disjoint transpositions. Put

$$
\chi_{i}(x)=\chi(\operatorname{diag}(1, \cdots, 1, \stackrel{i}{\check{x}}, 1, \cdots, 1))
$$

If i is an index such that $v_{0}(i)=i$, then $\chi \in X_{\mathrm{ur}}(T)_{\theta, v}$ implies that $\chi_{i \mid F^{\times}} \equiv$ 1. Since χ_{i} and E / F are unramified, one must have $\chi_{i} \equiv 1$. By the regularity of χ, one can conclude that there is no pair $\{i, j\}$ of indices such that $i=v_{0}(i) \neq j=v_{0}(j)$, so v_{0} is a product of $m=[n / 2]$-disjoint transpositions, say,

$$
v_{0}=\left(i_{1}, j_{1}\right) \cdots\left(i_{m}, j_{m}\right), \quad i_{1}<\cdots<i_{m} \quad \text { and } \quad i_{k}<j_{k} \text { for all } k .
$$

Take $w \in W$ so that

$$
w\left(i_{k}\right)=k, \quad w\left(j_{k}\right)=n-k+1 \quad \text { for all } k .
$$

Then one has $w v_{0} w^{-1}=w_{0}$, that is, $v=\theta(w)^{-1} w$. This shows that $w^{-1}(T \cap H) w=T \cap R_{v}$, hence ${ }^{w} \chi_{\mid T \cap H} \equiv 1$.

Remark. Actually we do not need the assumption that χ is unramified in (2.2) (i) and (ii). Essentially the same statement as (2.2) (i) is proved in [JLR].

According to the above proposition, to study unramified principal series $I(\chi)$ with $\left(I(\chi)^{*}\right)^{H} \neq(0)$, we may restrict ourselves (at least generically) to the case $\chi \in X_{\mathrm{ur}}(T)_{\theta}$. In the following we construct a non-zero H-invariant linear functional L_{χ} on $I(\chi)$ explicitly for $\chi \in X_{\mathrm{ur}}(T)_{\theta}$.

Write $\chi \in X_{\mathrm{ur}}(T)$ as

$$
\begin{equation*}
\chi\left(\operatorname{diag}\left(t_{1}, \cdots, t_{n}\right)\right)=\prod_{i=1}^{n}\left|t_{i}\right|^{s_{i}}, \quad s_{i} \in \mathbb{C} . \tag{9}
\end{equation*}
$$

If $\chi \in X_{\mathrm{ur}}(T)_{\theta}$, we may assume that $s_{n-i+1}=-s_{i}$ for all i since χ is trivial on $T \cap H$. So $\chi \in X_{\mathrm{ur}}(T)_{\theta}$ is of the form

$$
\begin{equation*}
\chi\left(\operatorname{diag}\left(t_{1}, \cdots, t_{n}\right)\right)=\prod_{i=1}^{m}\left|t_{i} t_{n-i+1}^{-1}\right|^{s_{i}} \tag{10}
\end{equation*}
$$

for $s_{1}, \cdots, s_{m} \in \mathbb{C}$. Define a \mathbb{C}-valued function Δ_{χ} on $P \cdot H$ by

$$
\begin{equation*}
\Delta_{\chi}(g)=\prod_{i=1}^{m}\left|d_{i}\left(\theta(g) g^{-1}\right)\right|^{s_{i}^{\prime}} \quad \text { for } g \in P \cdot H \tag{11}
\end{equation*}
$$

where $s_{1}^{\prime}, \cdots, s_{m}^{\prime} \in \mathbb{C}$ are related with $s_{1}, \cdots, s_{m} \in \mathbb{C}$ by

$$
\left\{\begin{array}{l}
s_{i}^{\prime}=s_{i}-s_{i+1}-1 \quad \text { for } i<m \tag{12}\\
s_{m}^{\prime}=s_{m}-\frac{n-2 m+1}{2}
\end{array}\right.
$$

If $\operatorname{Re}\left(s_{i}^{\prime}\right)>0$ for all i, Δ_{χ} can be extended to a continuous function on G (but not locally constant on G in general). For $p \in P$ (with diagonal entries $\left.t_{1}, \cdots, t_{n}\right), g \in G$ and $h \in H$ we have

$$
\begin{aligned}
\Delta_{\chi}(p g h) & =\left(\prod_{i=1}^{m}\left|d_{i}\left(\theta(p) p^{-1}\right)\right|^{s_{i}^{\prime}}\right) \Delta_{\chi}(g) \quad \text { by }(2) \\
& =\left(\prod_{i=1}^{m}\left|t_{i}\right|^{-\sum_{j=i}^{m} s_{j}^{\prime}}\left|\bar{t}_{n-i+1}\right|^{\sum_{j=i}^{m} s_{j}^{\prime}}\right) \Delta_{\chi}(g) \\
& =\chi^{-1} \delta_{P}^{1 / 2}(p) \Delta_{\chi}(g) \quad \text { by }(10) \text { and }(12)
\end{aligned}
$$

For $\chi \in X_{\mathrm{ur}}(T)_{\theta}$ such that $\operatorname{Re}\left(s_{i}^{\prime}\right)>0$, define a linear functional L_{χ} on $I(\chi)$ by

$$
\begin{equation*}
\left\langle L_{\chi}, \varphi\right\rangle=\oint_{P \backslash G} \Delta_{\chi}(\dot{g}) \varphi(\dot{g}) d \dot{g} \quad\left(=\int_{K} \Delta_{\chi}(k) \varphi(k) d k\right) \tag{13}
\end{equation*}
$$

for $\varphi \in I(\chi)$. As in $[H 4, \operatorname{Remark}(1.1)]$, the functional L_{χ}, which is initially defined for $\operatorname{Re}\left(s_{i}^{\prime}\right)>0$, is analytically continued to whole of $\left(s_{1}, \cdots, s_{m}\right) \in$ \mathbb{C}^{m}. By the right H-invariance of Δ_{χ}, L_{χ} belongs to $\left(I(\chi)^{*}\right)^{H}$.
(2.3) Proposition. If $\chi \in X_{\mathrm{ur}}(T)_{\theta}$ is regular, then $\left(I(\chi)^{*}\right)^{H}$ is one dimensional. In fact, L_{χ} defined above gives a non-zero H-invariant linear functional on $I(\chi)$, which is unique up to constant multiples.

Proof. By (2.2)(ii), it is enough to see that $L_{\chi} \neq 0$. Taking $\lambda=0$ in (1.3), we have $\Delta_{\chi}(b)=1$ for all $b \in B$. Therefore, $\left\langle L_{\chi}, p_{\chi}\left(\operatorname{ch}_{B}\right)\right\rangle=\operatorname{vol}(B)$, which is non-zero.

§3. A Formula for Our Spherical Functions

Let $\chi \in X_{\mathrm{ur}}(T)_{\theta}$ and assume that χ is regular. We have observed in $\S 2$ that $\operatorname{dim}\left(I(\chi)^{*}\right)^{H}=1$. By the Frobenius reciprocity,

$$
\left(I(\chi)^{*}\right)^{H} \simeq \operatorname{Hom}_{G}\left(I(\chi), \mathcal{C}^{\infty}(H \backslash G)\right)
$$

hence there is a unique realization of $I(\chi)$ in $\mathcal{C}^{\infty}(H \backslash G)$. Let L_{χ} be as in (13) of $\S 2$, and define

$$
Q_{\chi}(g)=\left\langle L_{\chi}, \pi_{\chi}(g) \phi_{K, \chi}\right\rangle
$$

where $\phi_{K, \chi}$ is the unique element of $I(\chi)$ such that $\phi_{K, \chi}(k)=1$ for all $k \in K$. The function Q_{χ} on G is then the unique (up to constant) right K invariant function in the realization of $I(\chi)$ in $\mathcal{C}^{\infty}(H \backslash G)$. By the description (1.4) of $H \backslash G / K, Q_{\chi}$ is completely determined by their values at $\varpi_{0}^{\lambda} \in G$, for $\lambda \in \Lambda_{m}$. In this section, following [H4] we give an expression of Q_{χ} as a linear combination of quasi-characters ${ }^{w} \chi \delta_{P}^{1 / 2}$, where w varies in the little Weyl group $W_{\theta}=W \cap H$.

For $\chi \in X_{\mathrm{ur}}(T)$, identify $I(\chi)^{\sim}$ with $I\left(\chi^{-1}\right)$ by the natural pairing

$$
\langle\langle\phi, \psi\rangle\rangle=\oint_{P \backslash G} \phi(\dot{g}) \psi(\dot{g}) d \dot{g} \quad\left(=\int_{K} \phi(k) \psi(k) d k\right)
$$

for $\phi \in I(\chi), \psi \in I\left(\chi^{-1}\right)$. Let $p_{B}: I(\chi) \rightarrow I(\chi)^{B}$ be defined by

$$
p_{B}(\phi)(g)=\operatorname{vol}(B)^{-1} \int_{B} \phi(g b) d b
$$

and $p_{B}^{*}(\ell):=\ell \circ p_{B}$ for $\ell \in I(\chi)^{*}$. Then p_{B} is the identity on $I(\chi)^{B}$ and $p_{B}^{*}(\ell)$ is fixed by B for all $\ell \in I(\chi)^{*}$. Since B is open and compact, $p_{B}^{*}(\ell)$ is a smooth linear form on $I(\chi)$. By the above identification $I(\chi)^{\sim} \simeq$ $I\left(\chi^{-1}\right), p_{B}^{*}(\ell)$ is regarded as an element of $I\left(\chi^{-1}\right)^{B}$ so that $\left\langle p_{B}^{*}(\ell), \phi\right\rangle=$ $\left\langle\ell, p_{B}(\phi)\right\rangle=\left\langle\left\langle\phi, p_{B}^{*}(\ell)\right\rangle\right\rangle$ for all $\phi \in I(\chi)$.
(3.1) Lemma. Let $\ell \in I(\chi)^{*}$. As an element of $I\left(\chi^{-1}\right)^{B}, p_{B}^{*}(\ell)$ is given by

$$
p_{B}^{*}(\ell)=\sum_{w \in W} \operatorname{vol}(B w B)^{-1}\left\langle\ell, \phi_{w, \chi}\right\rangle \phi_{w, \chi^{-1}}
$$

Here, $\phi_{w, \chi}=p_{\chi}\left(\operatorname{ch}_{B w B}\right)$ for $w \in W$.
Proof. $\left\{\phi_{w, \chi^{-1}}\right\}_{w \in W}$ forms a basis of $I\left(\chi^{-1}\right)^{B}$ (see [C, (2.1)]). Write

$$
p_{B}^{*}(\ell)=\sum_{w \in W} a_{w} \phi_{w, \chi^{-1}} \quad\left(a_{w} \in \mathbb{C}\right)
$$

Then, for $w \in W$, taking $\left\langle\left\langle\phi_{w, \chi}, \cdot\right\rangle\right\rangle$ on both sides,

$$
\left\langle\left\langle\phi_{w, \chi}, p_{B}^{*}(\ell)\right\rangle\right\rangle=a_{w} \operatorname{vol}(B w B)
$$

On the other hand,

$$
\left\langle p_{B}^{*}(\ell), \phi_{w, \chi}\right\rangle=\left\langle\ell, p_{B}\left(\phi_{w, \chi}\right)\right\rangle=\left\langle\ell, \phi_{w, \chi}\right\rangle
$$

by definition. Thus $a_{w}=\operatorname{vol}(B w B)^{-1}\left\langle\ell, \phi_{w, \chi}\right\rangle$.
Let $\chi \in X_{\text {ur }}(T)$ be regular and for $w \in W$, let $T_{w}^{\chi}: I(\chi) \rightarrow I\left({ }^{w} \chi\right)$ be the standard intertwining operator $([\mathrm{C}, \S 3])$ and $c_{w}(\chi)$ be defined by the relation $T_{w}^{\chi}\left(\phi_{K, \chi}\right)=c_{w}(\chi) \phi_{K,{ }^{w} \chi}$. If χ is of the form (9), then $c_{w}(\chi)$ is given by

$$
\begin{equation*}
c_{w}(\chi)=\prod_{i<j, w(i)>w(j)} \frac{1-q^{-s_{i}+s_{j}-1}}{1-q^{-s_{i}+s_{j}}} \tag{14}
\end{equation*}
$$

(see $[\mathrm{C},(3.1),(3.3)])$.
(3.2) Lemma [H4, Prop.(1.6),(1.7)]. For $w \in W$ and a regular $\chi \in$ $X_{\mathrm{ur}}(T)$, assume that $c_{w}\left(\chi^{-1}\right) c_{w^{-1}}\left({ }^{w} \chi\right) \neq 0$. Define an intertwining map $\widetilde{T}_{w}^{\chi}: I(\chi)^{*} \rightarrow I\left({ }^{w} \chi\right)^{*}$ by

$$
\widetilde{T}_{w}^{\chi}=\frac{c_{w}\left(\chi^{-1}\right)}{c_{w^{-1}}\left({ }^{w} \chi\right)} \cdot\left(T_{w^{-1}}^{w \chi}\right)^{*}
$$

Then,
(i) \widetilde{T}_{w}^{χ} is an extension of $T_{w}^{\chi^{-1}}: I\left(\chi^{-1}\right) \rightarrow I\left({ }^{w} \chi^{-1}\right)$, regarding $I\left(\chi^{-1}\right) \subset$ $I(\chi)^{*}, I\left({ }^{w} \chi^{-1}\right) \subset I\left({ }^{w} \chi\right)^{*}$ and,
(ii) $p_{B}^{*} \circ \widetilde{T}_{w}^{\chi}=T_{w}^{\chi^{-1}} \circ p_{B}^{*}$.

Now let $\chi \in X_{\text {ur }}(T)_{\theta}$ be regular and $L_{\chi} \in\left(I(\chi)^{*}\right)^{H}$ be defined by (13). Observe that for $w \in W,{ }^{w} \chi \in X_{\mathrm{ur}}(T)_{\theta, v}$ where $v=\theta(w) w^{-1}$. In particular ${ }^{w} \chi \in X_{\mathrm{ur}}(T)_{\theta}$ if and only if $w \in W_{\theta}$, so $L_{w_{\chi}} \in\left(I\left({ }^{w} \chi\right)^{*}\right)^{H}$ is defined for $w \in W_{\theta}$ as before. For each $w \in W$, we choose $L_{\chi}^{(w)} \in\left(I\left({ }^{w} \chi\right)^{*}\right)^{H}$ as follows;

$$
\left\{\begin{array}{l}
\text { If } w \in W_{\theta}, L_{\chi}^{(w)}=L_{w}{ }^{w} \\
\text { If } w \notin W_{\theta} \text { and }\left(I\left({ }^{w} \chi\right)^{*}\right)^{H} \neq(0), \\
\quad \text { then fix a non-zero } L_{\chi}^{(w)} \in\left(I\left({ }^{w} \chi\right)^{*}\right)^{H} \text { arbitrarily. } \\
\text { If } w \notin W_{\theta} \text { and }\left(I\left({ }^{w} \chi\right)^{*}\right)^{H}=(0), \text { then } L_{\chi}^{(w)}=0
\end{array}\right.
$$

Then, by (2.2)(ii),
(3.3) Lemma. For each $w \in W$, there is a constant $b_{w}(\chi) \in \mathbb{C}$ such that

$$
\widetilde{T}_{w}^{\chi}\left(L_{\chi}\right)=b_{w}(\chi) L_{\chi}^{(w)}
$$

Now we give an expression of Q_{χ} which is analogous to the formula for zonal spherical functions.
(3.4) Theorem. Let $\chi \in X_{\mathrm{ur}}(T)_{\theta}$ be regular and assume that $c_{w}\left(\chi^{-1}\right) c_{w^{-1}}\left({ }^{w} \chi\right) \neq 0$ for all $w \in W$. Then, for $\lambda \in \Lambda_{m}$,

$$
Q_{\chi}\left(\varpi_{0}^{\lambda}\right)=\operatorname{vol}\left(B w_{0} B\right) \sum_{w \in W_{\theta}} \frac{c_{w_{0}}\left({ }^{w} \chi\right) b_{w}(\chi)}{c_{w}\left(\chi^{-1}\right)} \chi \delta_{P}^{1 / 2}\left(\varpi_{0}^{\lambda}\right)
$$

Here, $c_{w}(\chi)$ is given by $(14), b_{w}(\chi)$ is determined by the functional equation of invariant functionals in the above lemma, and $W_{\theta}=W \cap H$.

Proof. By definition,

$$
\begin{align*}
Q_{\chi}\left(\varpi_{0}^{\lambda}\right) & =\left\langle\pi_{\chi}^{*}\left(\varpi_{0}^{-\lambda}\right) L_{\chi}, \phi_{K, \chi}\right\rangle=\left\langle\pi_{\chi}^{*}\left(\varpi_{0}^{-\lambda}\right) L_{\chi}, p_{B}\left(\phi_{K, \chi}\right)\right\rangle \\
& =\left\langle p_{B}^{*}\left(\pi_{\chi}^{*}\left(\varpi_{0}^{-\lambda}\right) L_{\chi}\right), \phi_{K, \chi}\right\rangle \tag{15}
\end{align*}
$$

Let $\left\{f_{w, \chi^{-1}}\right\}_{w \in W}$ be the Casselman basis of $I\left(\chi^{-1}\right)^{B}$ (see [C, p.402]) and write

$$
p_{B}^{*}\left(\pi_{\chi}^{*}\left(\varpi_{0}^{-\lambda}\right) L_{\chi}\right)=\sum_{w \in W} \alpha_{w} \cdot f_{w, \chi^{-1}}
$$

regarding $p_{B}^{*}\left(\pi_{\chi}^{*}\left(\varpi_{0}^{-\lambda}\right) L_{\chi}\right)$ as an element of $I\left(\chi^{-1}\right)^{B}$. Applying $T_{w}^{\chi^{-1}}(\cdot)(1)$ on both sides we have

$$
\begin{aligned}
\alpha_{w} & =T_{w}^{\chi^{-1}}\left(p_{B}^{*}\left(\pi_{\chi}^{*}\left(\varpi_{0}^{-\lambda}\right) L_{\chi}\right)\right)(1) \\
& =p_{B}^{*}\left(\widetilde{T}_{w}^{\chi}\left(\pi_{\chi}^{*}\left(\varpi_{0}^{-\lambda}\right) L_{\chi}\right)\right)(1) \quad \text { by (3.2)(ii) } \\
& =p_{B}^{*}\left(\pi_{w}^{*}\left(\varpi_{0}^{-\lambda}\right) \widetilde{T}_{w}^{\chi}\left(L_{\chi}\right)\right)(1) \\
& =b_{w}(\chi) p_{B}^{*}\left(\pi_{w}^{*}\left(\varpi_{0}^{-\lambda}\right) L_{\chi}^{(w)}\right)(1) \quad \text { by (3.3). }
\end{aligned}
$$

Using (3.1) here for $\ell=\pi_{w_{\chi}}^{*}\left(\varpi_{0}^{-\lambda}\right) L_{\chi}^{(w)}$, this is equal to

$$
\begin{aligned}
& b_{w}(\chi) \sum_{w^{\prime} \in W} \operatorname{vol}\left(B w^{\prime} B\right)^{-1}\left\langle\pi_{w}^{*}\left(\varpi_{0}^{-\lambda}\right) L_{\chi}^{(w)}, \phi_{w^{\prime}, w_{\chi}}\right\rangle \phi_{w^{\prime}, w^{-1}}(1) \\
& \quad=b_{w}(\chi) \operatorname{vol}(B)^{-1}\left\langle L_{\chi}^{(w)}, \pi_{w}{ }_{\chi}\left(\varpi_{0}^{\lambda}\right) \phi_{1, w_{\chi}}\right\rangle
\end{aligned}
$$

Returning to (15),

$$
\begin{gather*}
Q_{\chi}\left(\varpi_{0}^{\lambda}\right)=\operatorname{vol}(B)^{-1} \sum_{w \in W} b_{w}(\chi)\left\langle L_{\chi}^{(w)}, \pi_{w_{\chi}}\left(\varpi_{0}^{\lambda}\right) \phi_{1, w_{\chi}}\right\rangle \tag{16}\\
\cdot\left\langle\left\langle\phi_{K, \chi}, f_{w, \chi^{-1}}\right\rangle\right\rangle
\end{gather*}
$$

Here, we have

$$
\begin{aligned}
\left\langle L_{\chi}^{(w)}, \pi_{w}{ }_{\chi}\left(\varpi_{0}^{\lambda}\right) \phi_{1,{ }^{w} \chi}\right\rangle & =\left\langle L_{\chi}^{(w)}, p_{w}\left(\operatorname{ch}_{B \varpi_{0}^{-\lambda}}\right)\right\rangle \\
& =\left\{\begin{array}{l}
\operatorname{vol}(B) \cdot{ }^{w} \chi \delta^{1 / 2}\left(\varpi_{0}^{\lambda}\right) \quad \text { if } w \in W_{\theta}, \\
0 \quad \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

Indeed, if $w \in W_{\theta}$, replacing ${ }^{w} \chi$ by χ it is enough to see this for $w=1$. By definition,

$$
\begin{aligned}
\left\langle L_{\chi}, p_{\chi}\left(\operatorname{ch}_{B \varpi_{0}^{-\lambda}}\right)\right\rangle & =\int_{B} \Delta_{\chi}\left(b \varpi_{0}^{-\lambda}\right) d b=\int_{B} \prod_{i=1}^{m}\left|d_{i}\left(\tau\left(\varpi_{0}^{\lambda}\right) * b^{-1}\right)\right|^{s_{i}^{\prime}} d b \\
& =\operatorname{vol}(B) \cdot \prod_{i=1}^{m}\left|d_{i}\left(\tau\left(\varpi_{0}^{\lambda}\right)\right)\right|^{s_{i}^{\prime}} \quad \text { by (1.3) } \\
& =\operatorname{vol}(B) \cdot \chi \delta^{1 / 2}\left(\varpi_{0}^{\lambda}\right) \quad \text { by }(10) \text { and }(12)
\end{aligned}
$$

On the other hand, if $w \notin W_{\theta}$ and $L_{\chi}^{(w)} \neq 0$, then the support of the distribution $p_{w_{\chi}}^{*}\left(L_{\chi}^{(w)}\right)$ is $\Omega_{v}^{c l}=\left(P \eta_{v} H\right)^{c l}$ with $v=\theta(w)^{-1} w \neq 1$, by (2.2)(ii). Since $\Omega_{v}^{c l} \cap \Omega_{1}=\emptyset$ for $v \neq 1$ by (1.1) and $B \varpi_{0}^{-\lambda} \subset \Omega_{1}$ by (1.3), we have $\operatorname{supp}\left(p_{w_{\chi}^{*}}^{*}\left(L_{\chi}^{(w)}\right)\right) \cap B \varpi_{0}^{-\lambda}=\emptyset$, hence $\left\langle L_{\chi}^{(w)}, p_{w}{ }_{\chi}\left(\operatorname{ch}_{B \varpi_{0}^{-\lambda}}\right)\right\rangle=0$.

Now (16) reduces to

$$
Q_{\chi}\left(\varpi_{0}^{\lambda}\right)=\sum_{w \in W_{\theta}} b_{w}(\chi)\left\langle\left\langle\phi_{K, \chi}, f_{w, \chi^{-1}}\right\rangle\right\rangle^{w} \chi \delta^{1 / 2}\left(\varpi_{0}^{\lambda}\right)
$$

By the formula for zonal spherical functions in [C, (4.2)], it is known that

$$
\left\langle\left\langle\phi_{K, \chi}, f_{w, \chi^{-1}}\right\rangle\right\rangle=\operatorname{vol}\left(B w_{0} B\right) \frac{c_{w_{0}}\left(w_{0} w \chi^{-1}\right)}{c_{w}\left(\chi^{-1}\right)}
$$

Finally, if $w \in W_{\theta}$ and $\chi \in X_{\text {ur }}(T)_{\theta}$, then one has ${ }^{w_{0} w} \chi^{-1}={ }^{w}\left({ }^{w_{0}} \chi^{-1}\right)=$ ${ }^{w} \chi$. This completes the proof.

For a regular $\chi \in X_{\mathrm{ur}}(T)_{\theta}$, assume that

$$
Q_{w_{\chi}}(1) \neq 0 \quad \text { for all } w \in W_{\theta}
$$

Then, for each $w \in W_{\theta}$, applying both sides of (3.3) to $\phi_{K,{ }^{w} \chi}$, one has

$$
\begin{aligned}
\left\langle\widetilde{T}_{w}^{\chi}\left(L_{\chi}\right), \phi_{K,{ }^{w} \chi}\right\rangle & =\frac{c_{w}\left(\chi^{-1}\right)}{c_{w^{-1}}(\chi)} \cdot\left\langle L_{\chi}, T_{w^{-1}}^{w^{-1}}\left(\phi_{K,{ }^{w} \chi}\right)\right\rangle=c_{w}\left(\chi^{-1}\right)\left\langle L_{\chi}, \phi_{K,{ }^{w} \chi}\right\rangle \\
& =b_{w}(\chi)\left\langle L^{w} \chi, \phi_{K,{ }^{w} \chi}\right\rangle
\end{aligned}
$$

Thus

$$
b_{w}(\chi)=\frac{Q_{\chi}(1)}{Q_{w_{\chi}}(1)} \cdot c_{w}\left(\chi^{-1}\right)
$$

Put $\widetilde{Q}_{\chi}=Q_{\chi}(1)^{-1} \cdot Q_{\chi}$. Then we have
(3.5) Corollary. For a regular $\chi \in X_{\mathrm{ur}}(T)_{\theta}$ such that $c_{w}\left(\chi^{-1}\right) c_{w^{-1}}\left({ }^{w} \chi\right) \neq 0$ for all $w \in W$ and that $Q^{w} \chi(1) \neq 0$ for all $w \in W_{\theta}$,

$$
\widetilde{Q}_{\chi}\left(\varpi_{0}^{\lambda}\right)=\operatorname{vol}\left(B w_{0} B\right) \sum_{w \in W_{\theta}} \frac{c_{w_{0}}\left({ }^{w} \chi\right)}{Q^{w} \chi(1)} \cdot{ }^{w} \chi \delta_{P}^{1 / 2}\left(\varpi_{0}^{\lambda}\right)
$$

§4. Explicit Computations for $n=2$ and 3

In this section we give an explicit formula of \widetilde{Q}_{χ} for $n=2$ and $n=3$.
By (3.5) it is enough to compute $Q_{\chi}(1)$ for $\chi \in X_{\mathrm{ur}}(T)_{\theta}$.
(I) $\mathrm{n}=2$

In this case, $W_{\theta}=W=\left\{1, w_{0}\right\}$. Write $\chi \in X_{\mathrm{ur}}(T)_{\theta}$ as

$$
\chi\left(\begin{array}{cc}
t_{1} & 0 \\
0 & t_{2}
\end{array}\right)=\left|t_{1}\right|^{s}\left|t_{2}\right|^{-s}, \quad s \in \mathbb{C}
$$

Then χ is regular if and only if $q^{-s} \neq \pm 1$, which we assume below. The function Δ_{χ} defined by (11) is then of the form

$$
\Delta_{\chi}(g)=\left|d_{1}\left(\theta(g) g^{-1}\right)\right|^{s-\frac{1}{2}}
$$

Note that $d_{1}(x)$ is just the $(1,1)$-entry of the matrix x. By the decomposition $K=B \cup B w_{0} B$ (disjoint),

$$
\begin{equation*}
Q_{\chi}(1)=\int_{K} \Delta_{\chi}(k) d k=\int_{B} \Delta_{\chi}(b) d b+\int_{B w_{0} B} \Delta_{\chi}(y) d y \tag{17}
\end{equation*}
$$

The integral over B is $\operatorname{vol}(B)$ by (1.3). Also, by the Iwahori factorization,

$$
\int_{B w_{0} B} \Delta_{\chi}(y) d y=\operatorname{vol}\left(B w_{0} B\right) \int_{\mathcal{O}} \Delta_{\chi}\left(w_{0}\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\right) d x
$$

where $d x$ is the additive Haar measure of \mathcal{O} normalized so that $\operatorname{vol}(\mathcal{O})=1$. Now the $(1,1)$-entry of $\theta\left(w_{0}\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)\right)\left(w_{0}\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)\right)^{-1}$ is $1-x \bar{x}$, by a direct calculation. We have to compute the integral

$$
\begin{equation*}
\int_{\mathcal{O}}|1-x \bar{x}|^{s-\frac{1}{2}} d x=\int_{|x|<1} d x+\int_{|x|=1}|1-x \bar{x}|^{s-\frac{1}{2}} d x \tag{18}
\end{equation*}
$$

but the latter integral, over $|x|=1$, is already computed in [FH, pp. 705706] as follows (see also (4.2) of this section); the volume of the set

$$
\{x \in \mathcal{O} ;|x|=1, \quad|1-x \bar{x}|=1\}
$$

is $1-q_{F}^{-1}-2 q^{-1}$, and for $i \geqslant 1$ the volume of the set

$$
\left\{x \in \mathcal{O} ;|x|=1, \quad|1-x \bar{x}|=q^{-i}\right\}
$$

is $q_{F}^{-i}\left(1-q^{-1}\right)$, both are with respect to our additive Haar measure. Thus (18) is computed as

$$
\begin{align*}
q^{-1} & +\left(1-q_{F}^{-1}-2 q^{-1}\right)+\sum_{i \geqslant 1} q_{F}^{-i}\left(1-q^{-1}\right) q^{-i\left(s-\frac{1}{2}\right)} \\
& =1-q_{F}^{-1}-q^{-1}+\left(1-q^{-1}\right) \cdot \frac{q^{-s}}{1-q^{-s}} \quad \text { for } \operatorname{Re}(s)>0 \tag{19}
\end{align*}
$$

Since $\operatorname{vol}(B)=(q+1)^{-1}, \operatorname{vol}\left(B w_{0} B\right)=q(q+1)^{-1}$, returning to (17) we have

$$
\begin{aligned}
Q_{\chi}(1) & =\frac{1}{q+1} \cdot(1+q \times(19))=\frac{1}{q+1} \cdot\left(q-q_{F}+(q-1) \cdot \frac{q^{-s}}{1-q^{-s}}\right) \\
& =\frac{q-q_{F}}{q+1} \cdot \frac{1+q^{-s-\frac{1}{2}}}{1-q^{-s}}
\end{aligned}
$$

So $Q_{w_{\chi}}(1) \neq 0$ for all $w \in W_{\theta}$ if and only if $q^{-s} \neq-q^{ \pm 1 / 2}$.
(4.1) Theorem. For $n=2$, assume that $\chi \in X_{\mathrm{ur}}(T)_{\theta}$ is of the form $\chi\left(\operatorname{diag}\left(t_{1}, t_{2}\right)\right)=\left|t_{1}\right|^{s}\left|t_{2}\right|^{-s}, s \in \mathbb{C}, q^{-s} \neq \pm 1,-q^{1 / 2}, \pm q^{-1 / 2}$. Then \widetilde{Q}_{χ} is given by

$$
\widetilde{Q}_{\chi}\left(\begin{array}{cc}
\varpi^{\lambda} & 0 \\
0 & 1
\end{array}\right)=\frac{q_{F}}{q_{F}-1} \cdot\left(\frac{1-q^{-s-\frac{1}{2}}}{1+q^{-s}} \cdot q^{-\lambda\left(s+\frac{1}{2}\right)}+\frac{1-q^{s-\frac{1}{2}}}{1+q^{s}} \cdot q^{\lambda\left(s-\frac{1}{2}\right)}\right)
$$

for $\lambda \in \mathbb{Z}, \lambda \leqslant 0$.
Proof. For our choice of χ,

$$
c_{w_{0}}(\chi)=\frac{1-q^{-2 s-1}}{1-q^{-2 s}}
$$

(see (14)). Therefore, $c_{w_{0}}\left(\chi^{-1}\right) c_{w_{0}^{-1}}\left(w_{0} \chi\right) \neq 0$ holds if and only if $q^{-s} \neq$ $\pm q^{-1 / 2}$. Also, by the above computation of $Q_{\chi}(1)$,

$$
\frac{c_{w_{0}}(\chi)}{Q_{\chi}(1)}=\frac{q+1}{q-q_{F}} \cdot \frac{\left(1-q^{-2 s-1}\right)\left(1-q^{-s}\right)}{\left(1-q^{-2 s}\right)\left(1+q^{-s-\frac{1}{2}}\right)}=\frac{q+1}{q-q_{F}} \cdot \frac{1-q^{-s-\frac{1}{2}}}{1+q^{-s}}
$$

which proves the above formula, by (3.5).
REmark. If we replace $\lambda(\leqslant 0)$ by $-\lambda(\geqslant 0)$, then (4.1) coincides with the formula given by Banks [B].
(II) $\mathrm{n}=3$

Put $w_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0 \\ & \\ \hline\end{array}\right), w_{2}=\left(\begin{array}{cc}1 & \\ 0 & 1 \\ 1 & 0\end{array}\right)$. Then $W=\left\{1, w_{1}, w_{2}, w_{1} w_{2}\right.$, $\left.w_{2} w_{1}, w_{0}\right\}, W_{\theta}=\left\{1, w_{0}\right\}$. Write $\chi \in X_{\mathrm{ur}}(T)_{\theta}$ as

$$
\chi\left(\begin{array}{lll}
t_{1} & & \\
& t_{2} & \\
& & t_{3}
\end{array}\right)=\left|t_{1}\right|^{s}\left|t_{3}\right|^{-s}, \quad s \in \mathbb{C} .
$$

Then χ is regular if and only if $q^{-s} \neq \pm 1$, which again we assume below. The function Δ_{χ} is of the form

$$
\Delta_{\chi}(g)=\left|d_{1}\left(\theta(g) g^{-1}\right)\right|^{s-1}
$$

As in the case $n=2$, we use $K=\cup_{w \in W} B w B$ (disjoint union) and the Iwahori factorization $B=N_{1}^{-} T_{0} N_{0}$ to compute $Q_{\chi}(1)$;

$$
\begin{align*}
Q_{\chi}(1) & =\int_{K} \Delta_{\chi}(k) d k=\sum_{w \in W} \int_{B w B} \Delta_{\chi}(g) d g \\
& =\sum_{w \in W} \operatorname{vol}(B w B) \int_{N_{1}^{-}} \int_{N_{0}} \Delta_{\chi}\left(w n^{\prime} n\right) d n^{\prime} d n \tag{20}
\end{align*}
$$

Here the Haar measures $d n^{\prime}, d n$ of N_{1}^{-}, N_{0} are normalized so that $\operatorname{vol}\left(N_{1}^{-}\right)=\operatorname{vol}\left(N_{0}\right)=1$. We shall compute the six integrals in (20).
(II-1) $w=1$. By (1.3),

$$
\begin{equation*}
\int_{N_{1}^{-}} \int_{N_{0}} \Delta_{\chi}\left(n^{\prime} n\right) d n^{\prime} d n=1 \tag{21}
\end{equation*}
$$

$\left(\mathbf{I I}-w_{1}\right) w=w_{1}=\left(\begin{array}{lll}0 & 1 \\ 1 & 0 & \\ & & 1\end{array}\right)$. In this case, using

$$
w_{1}\left(\begin{array}{ccc}
1 & 0 & * \\
& 1 & * \\
& & 1
\end{array}\right) w_{1}^{-1} \subset N, \quad w_{1}\left(\begin{array}{ccc}
1 & & \\
* & 1 & \\
0 & 0 & 1
\end{array}\right) w_{1}^{-1} \subset N
$$

we obtain

$$
\begin{aligned}
\int_{N_{1}^{-}} & \int_{N_{0}} \Delta_{\chi}\left(w_{1} n^{\prime} n\right) d n^{\prime} d n \\
& =\int_{\mathcal{O}} \int_{\mathcal{O}} \int_{\mathcal{O}} \Delta_{\chi}\left(w_{1}\left(\begin{array}{ccc}
1 & & \\
0 & 1 & \\
\varpi x & \varpi y & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & z & 0 \\
& 1 & 0 \\
& & 1
\end{array}\right)\right) d x d y d z
\end{aligned}
$$

Here and henceforth, the additive Haar measures are normalized so that $\operatorname{vol}(\mathcal{O})=1$. By a direct calculation of the matrix inside Δ_{χ}, this is equal to

$$
\begin{align*}
\int_{\mathcal{O}} & \int_{\mathcal{O}} \int_{\mathcal{O}}\left|-z+\varpi \bar{z} \bar{x}+\varpi \bar{y}-\varpi^{2} \bar{x} y\right|^{s-1} d x d y d z \\
& =\int_{\mathcal{O}} \int_{\mathcal{O}} \int_{\mathcal{O}}|(\varpi \bar{y}-z)+\varpi \bar{x}(\bar{z}-\varpi y)|^{s-1} d x d y d z \\
& =\int_{\mathcal{O}} \int_{\mathcal{O}}|z+\varpi \bar{x} \bar{z}|^{s-1} d x d z \quad(\text { by replacing } z \text { by } z+\varpi \bar{y}) \\
& =\int_{\mathcal{O}}|z|^{s-1} d z \quad(\text { since }|z|>|\varpi \bar{x} \bar{z}| \text { for all } x, z \in \mathcal{O}) \\
& =\left(1-q^{-1}\right) \cdot \frac{1}{1-q^{-s}} \tag{22}
\end{align*}
$$

$\left(\mathbf{I I}-w_{2}\right) w=w_{2}=\left(\begin{array}{cc}1 & \\ 0 & 1 \\ & 1\end{array}\right)$. As in $\left(\mathbf{I I}-w_{1}\right)$, we may write

$$
\begin{aligned}
\int_{N_{1}^{-}} & \int_{N_{0}} \Delta_{\chi}\left(w_{2} n^{\prime} n\right) d n^{\prime} d n \\
& =\int_{\mathcal{O}^{3}} \Delta_{\chi}\left(w_{2}\left(\begin{array}{ccc}
1 & & \\
\varpi x & 1 & \\
\varpi y & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
& 1 & z \\
& & 1
\end{array}\right)\right) d x d y d z
\end{aligned}
$$

and by a matrix calculation inside Δ_{χ}, this is equal to

$$
\begin{aligned}
\int_{\mathcal{O}^{3}} & \left|\bar{z}-\varpi x+\varpi y z-\varpi^{2} \bar{x} y\right|^{s-1} d x d y d z \\
& =\int_{\mathcal{O}^{2}}|\bar{z}+\varpi y z|^{s-1} d y d z \quad(\text { by } z \rightsquigarrow z+\varpi \bar{x}) \\
& =(22) .
\end{aligned}
$$

$\left(\mathbf{I I}-w_{1} w_{2}\right) w=w_{1} w_{2}=\left(\begin{array}{cc}1 & 1 \\ 1 & 0 \\ 0 & 1\end{array}\right)$. We may change the order of the Iwahori factorization to make computations easier. By

$$
w_{1} w_{2}\left(\begin{array}{lll}
1 & & \\
0 & 1 & \\
* & * & 1
\end{array}\right) w_{2}^{-1} w_{1}^{-1} \subset N, \quad w_{1} w_{2}\left(\begin{array}{ccc}
1 & * & 0 \\
& 1 & 0 \\
& & 1
\end{array}\right) w_{2}^{-1} w_{1}^{-1} \subset N
$$

we have

$$
\begin{aligned}
\int_{N_{1}^{-}} & \int_{N_{0}} \Delta_{\chi}\left(w_{1} w_{2} n^{\prime} n\right) d n^{\prime} d n \\
& =\int_{\mathcal{O}^{3}} \Delta_{\chi}\left(w_{1} w_{2}\left(\begin{array}{ccc}
1 & 0 & x \\
& 1 & y \\
& & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & & \\
\varpi z & 1 & \\
0 & 0 & 1
\end{array}\right)\right) d x d y d z
\end{aligned}
$$

Computing the matrix inside Δ_{χ}, this is equal to

$$
\begin{align*}
\int_{\mathcal{O}^{3}} \mid & -x \bar{y}+\varpi x z-y+\left.\varpi \bar{z}\right|^{s-1} d x d y d z \\
& =\int_{\mathcal{O}^{2}}|y+x \bar{y}|^{s-1} d x d y \quad(\text { by } y \rightsquigarrow-y+\varpi \bar{z}) \\
& =\int_{\mathcal{O}^{2}}|y+x y|^{s-1} d x d y \quad\left(\text { by } x \rightsquigarrow\left(\bar{y}^{-1} y\right) x\right) \\
& =\int_{\mathcal{O}}|1+x|^{s-1} d x \cdot \int_{\mathcal{O}}|y|^{s-1} d y \\
& =\left(1-q^{-1}\right)^{2} \cdot \frac{1}{\left(1-q^{-s}\right)^{2}} \tag{23}
\end{align*}
$$

$\left(\mathbf{I I}-w_{2} w_{1}\right) w=w_{2} w_{1}=\left(\begin{array}{rr}1 & 0 \\ 0 & 1 \\ 1 & \end{array}\right)$. As in $\left(\mathbf{I I}-w_{1} w_{2}\right)$, we have

$$
\int_{N_{1}^{-}} \int_{N_{0}} \Delta_{\chi}\left(w_{2} w_{1} n^{\prime} n\right) d n^{\prime} d n
$$

$$
\begin{aligned}
& =\int_{\mathcal{O}^{3}} \Delta_{\chi}\left(w_{2} w_{1}\left(\begin{array}{lll}
1 & x & y \\
& 1 & 0 \\
& & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & & \\
0 & 1 & \\
0 & \varpi z & 1
\end{array}\right)\right) d x d y d z \\
& =\int_{\mathcal{O}^{3}}|-x \bar{y}+\bar{x}+\varpi \bar{y} \bar{z}-\varpi z|^{s-1} d x d y d z \\
& =\int_{\mathcal{O}^{2}}|\bar{x}-x \bar{y}|^{s-1} d x d y \quad(\text { by } x \rightsquigarrow x+\varpi \bar{z}) \\
& =(23) .
\end{aligned}
$$

$\left(\mathbf{I I}-w_{0}\right) w=w_{0}$. Since $w_{0} N_{1}^{-} w_{0}^{-1} \subset N$,

$$
\begin{align*}
\int_{N_{1}^{-}} & \int_{N_{0}} \Delta_{\chi}\left(w_{0} n^{\prime} n\right) d n^{\prime} d n \\
& =\int_{\mathcal{O}^{3}} \Delta_{\chi}\left(w_{0}\left(\begin{array}{lll}
1 & x & y \\
& 1 & z \\
& & 1
\end{array}\right)\right) d x d y d z \\
& =\int_{\mathcal{O}^{3}}|\bar{y}(x z-y)-\bar{x} z+1|^{s-1} d x d y d z \\
& =\int_{\mathcal{O}^{3}}|\bar{x} z(\bar{y}-1)+(1-y \bar{y})|^{s-1} d x d y d z \quad\left(\text { by } y \rightsquigarrow\left(\bar{x}^{-1} x\right) y\right) \tag{24}
\end{align*}
$$

We divide $y \in \mathcal{O}$ into $\{|y|<1\}$ and $\{|y|=1\}$. The integral over $\{|y|<1\}$ is easy to compute; since $|\bar{y}-1|=1$ for $|y|<1$,

$$
\begin{aligned}
\int_{|y|<1} & \int_{x, z \in \mathcal{O}}|\bar{x} z(\bar{y}-1)+(1-y \bar{y})|^{s-1} d x d y d z \\
= & \int_{|y|<1} \int_{x, z \in \mathcal{O}}|\bar{x} z+(1-y \bar{y})|^{s-1} d x d y d z \\
= & \int_{|y|<1} \int_{|x|<1} \int_{z \in \mathcal{O}}|\bar{x} z+(1-y \bar{y})|^{s-1} d x d y d z \\
& +\int_{|y|<1} \int_{|x|=1} \int_{z \in \mathcal{O}}|\bar{x} z+(1-y \bar{y})|^{s-1} d x d y d z
\end{aligned}
$$

The integrand in the first term is 1 . Replacing z by $\bar{x}^{-1} z-\bar{x}^{-1}(1-y \bar{y})$ in the second, the above is equal to
(25) $q^{-2}+q^{-1}\left(1-q^{-1}\right) \cdot \int_{z \in \mathcal{O}}|z|^{s-1} d z=q^{-2}+q^{-1}\left(1-q^{-1}\right)^{2} \cdot \frac{1}{1-q^{-s}}$.

Next, the integral over $\{|y|=1\}$ is;

$$
\left.\left.\left.\begin{array}{l}
\int_{|y|=1} \int_{x, z \in \mathcal{O}}|\bar{x} z(\bar{y}-1)+(1-y \bar{y})|^{s-1} d x d y d z \\
=\sum_{i=0}^{\infty} \int_{|x|=q^{-i}} \int_{|y|=1} q^{i} \cdot \int_{|z| \leqslant q^{-i}}|z(\bar{y}-1)+(1-y \bar{y})|^{s-1} d x d y d z \\
=\sum_{i=1}^{\infty} q^{-i}\left(1-q^{-1}\right) \int_{|y|=1} q^{i} \cdot \int_{|z| \leqslant q^{-i}}|\bar{x} z(\bar{y}-1)+(1-y \bar{y})|^{s-1} d y d z \\
=\left(1-q^{-1}\right) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \int_{|y|=1,|\bar{y}-1|=q^{-j}} q^{j} \int_{|z| \leqslant q^{-i-j}}|z+(1-y \bar{y})|^{s-1} d y d z \\
=\left(1-q^{-1}\right) \sum_{i, j \geqslant 0} q^{j} \cdot\left\{\int_{|y|=1,|\bar{y}-1|=q^{-j}}^{|1-y \bar{y}| \leqslant q^{-i-j}} \mid\right. \\
\quad+\int_{|z| \leqslant q^{-i-j}}|z|=1,|\bar{y}-1|=q^{-j} \\
|1-y \bar{y}|>q^{-i-j}
\end{array} \int_{|z| \leqslant q^{-i-j}}|z+(1-y \bar{y})|^{s-1} d y d z\right\} \bar{y}\right)\left.\right|^{s-1} d y d z\right\} .
$$

In the former integral in $\{\cdots\}$, we may replace z by $z-(1-y \bar{y})$. In the latter, the integrand is $|1-y \bar{y}|^{s-1}$. So, this is written as

$$
\begin{equation*}
\left(1-q^{-1}\right) \sum_{i, j \geqslant 0} q^{j}\left\{v_{i, j}\left(1-q^{-1}\right) \cdot \frac{q^{-i-j}}{1-q^{-s}}+q^{-i-j} \sum_{k=0}^{i-1} v_{k, j}^{\prime} q^{-(k+j)(s-1)}\right\} \tag{26}
\end{equation*}
$$

where, for $i, j, k \geqslant 0$,

$$
\begin{aligned}
v_{i, j} & =\operatorname{vol}\left(\left\{y \in \mathcal{O} ;|y|=1,|\bar{y}-1|=q^{-j},|1-y \bar{y}| \leqslant q^{-i-j}\right\}\right) \\
v_{k, j}^{\prime} & =\operatorname{vol}\left(\left\{y \in \mathcal{O} ;|y|=1,|\bar{y}-1|=q^{-j},|1-y \bar{y}|=q^{-k-j}\right\}\right)
\end{aligned}
$$

both measured by the additive Haar measure as before. Note that if $|y|=1$, $|\bar{y}-1|=q^{-j}$ then $|1-y \bar{y}|=|1-\bar{y}+\bar{y}(1-y)| \leqslant q^{-j}$.
(4.2) Lemma.
(i)

$$
\begin{array}{ll}
v_{0,0}=1-2 q^{-1}, & v_{0, j}=q^{-j}\left(1-q^{-1}\right) \quad(j \geqslant 1), \\
v_{i, 0}=q^{-\frac{i}{2}} \quad(i \geqslant 1), & v_{i, j}=q^{-\frac{i}{2}-j}\left(1-q^{-\frac{1}{2}}\right) \quad(i, j \geqslant 1) .
\end{array}
$$

(ii)

$$
\begin{array}{ll}
v_{0,0}^{\prime}=1-q^{-\frac{1}{2}}-2 q^{-1}, & v_{0, j}^{\prime}=q^{-j}\left(1-q^{-\frac{1}{2}}\right) \quad(j \geqslant 1) \\
v_{k, 0}^{\prime}=q^{-\frac{k}{2}}\left(1-q^{-\frac{1}{2}}\right) \quad(k \geqslant 1), & v_{k, j}^{\prime}=q^{-\frac{k}{2}-j}\left(1-q^{-\frac{1}{2}}\right)^{2} \quad(i, j \geqslant 1)
\end{array}
$$

Proof. Put $U^{(m)}=1+\varpi^{m} \mathcal{O}$ for $m \geqslant 1$ and $U^{(0)}=\mathcal{O}^{\times}$. At first, it is easy to see that $v_{0, j}$ is computed as $\operatorname{vol}\left(U^{(j)}\right)-\operatorname{vol}\left(U^{(j+1)}\right)$, so the first two of (i) are easy. To compute $v_{i, j}$ for $i \geqslant 1$, set

$$
U_{i, j}=\left\{y \in \mathcal{O} ;|y|=1,|\bar{y}-1| \leqslant q^{-j},|1-y \bar{y}| \leqslant q^{-i-j}\right\}
$$

for $i, j \geqslant 0$. Then, $U_{i, j}$ is a multiplicative subgroup of \mathcal{O}^{\times}, lying between $U^{(j)}$ and $U^{(i+j)}$. Moreover it is easy to observe that

$$
U_{i, j}=\bigcup_{\substack{\varepsilon \in U^{(j)} / U^{(i+j)} \\ \varepsilon \bar{\varepsilon} \equiv 1 \bmod U^{(i+j)}}} \varepsilon \cdot U^{(i+j)}
$$

Since E / F is unramified, the norm map $N_{E / F}: E^{\times} \rightarrow F^{\times}$gives a surjection $U^{(m)} \rightarrow U_{F}^{(m)}$ for each m, hence induces $U^{(m)} / U^{(n)} \rightarrow U_{F}^{(m)} / U_{F}^{(n)}$ for $m \leqslant n$. Here $U_{F}^{(m)}=U^{(m)} \cap F$. Now the volume of $U_{i, j}$ is computed as;

$$
\begin{aligned}
\operatorname{vol}\left(U_{i, j}\right) & =\# \operatorname{ker}\left[U^{(j)} / U^{(i+j)} \rightarrow U_{F}^{(j)} / U_{F}^{(i+j)}\right] \times \operatorname{vol}\left(U^{(i+j)}\right) \\
& =q^{-i-j} \frac{\#\left(U^{(j)} / U^{(i+j)}\right)}{\#\left(U_{F}^{(j)} / U_{F}^{(i+j)}\right)}=\left\{\begin{array}{l}
q^{-\frac{i}{2}}\left(1+q^{-\frac{1}{2}}\right) \quad(j=0) \\
q^{-\frac{i}{2}-j} \quad(j \geqslant 1)
\end{array}\right.
\end{aligned}
$$

Using this, $v_{i, j}$ is computed as $\operatorname{vol}\left(U_{i, j}\right)-\operatorname{vol}\left(U_{i-1, j+1}\right)$ for $i \geqslant 1$ so (i) follows immediately. Also, (ii) follows from (i) since $v_{k, j}^{\prime}=v_{k . j}-v_{k+1, j}$.

Applying (4.2) and by an earnest computation, (26) is equal to

$$
\begin{align*}
-\frac{q^{-1}\left(1-q^{-1}\right)^{2}}{1-q^{-s}} & +\frac{\left(1-q^{-1}\right)^{2}\left(1-q^{-1}+q^{-s-\frac{1}{2}}\right)}{\left(1-q^{-s}\right)^{2}}-q^{-\frac{3}{2}}\left(1+q^{-\frac{1}{2}}\right) \tag{27}\\
& +\frac{q^{-1}\left(1-q^{-1}\right)}{1-q^{-s}}
\end{align*}
$$

Returning to (24),

$$
\begin{aligned}
(24) & =(25)+(27) \\
& =-q^{-\frac{3}{2}}+\frac{q^{-1}\left(1-q^{-1}\right)}{1-q^{-s}}+\frac{\left(1-q^{-1}\right)^{2}\left(1-q^{-1}+q^{-s-\frac{1}{2}}\right)}{\left(1-q^{-s}\right)^{2}} .
\end{aligned}
$$

Finally, since $\operatorname{vol}(B w B)=\operatorname{vol}(B) \times q^{\ell(w)}$, returning to (20),

$$
\begin{aligned}
Q_{\chi}(1)= & \operatorname{vol}(B) \times\left\{(21)+2 \times q \times(22)+2 \times q^{2} \times(23)+q^{3} \times(28)\right\} \\
= & \operatorname{vol}(B)\left\{\left(1-q^{3 / 2}\right)+\left(2 q\left(1-q^{-1}\right)+q^{2}\left(1-q^{-1}\right)\right) \cdot \frac{1}{1-q^{-s}}\right. \\
& +\left(2 q^{2}\left(1-q^{-1}\right)^{2}+q^{3}\left(1-q^{-1}\right)^{2}\left(1-q^{-1}++q^{-s-\frac{1}{2}}\right)\right) \\
& \left.\cdot \frac{1}{\left(1-q^{-s}\right)^{2}}\right\}
\end{aligned}
$$

which is simplified as

$$
\begin{equation*}
Q_{\chi}(1)=\operatorname{vol}(B)\left(q^{3}-q_{F}^{3}\right) \frac{\left(1-q^{-s-1}\right)\left(1+q^{-s-\frac{1}{2}}\right)}{\left(1-q^{-s}\right)^{2}} \tag{29}
\end{equation*}
$$

Note that $Q_{w_{\chi}}(1) \neq 0$ for all $w \in W_{\theta}$ if and only if $q^{-s} \neq q^{ \pm 1},-q^{ \pm 1 / 2}$.
(4.3) Theorem. For $n=3$, assume that $\chi \in X_{\mathrm{ur}}(T)_{\theta}$ is of the form $\underset{\widetilde{Q}}{\chi}\left(\operatorname{diag}\left(t_{1}, t_{2}, t_{3}\right)\right)=\left|t_{1}\right|^{s}\left|t_{3}\right|^{-s}, s \in \mathbb{C}, q^{-s} \neq \pm 1, q^{ \pm 1},-q^{1 / 2}, \pm q^{-1 / 2}$. Then, \widetilde{Q}_{χ} is given by

$$
\begin{array}{r}
\widetilde{Q}_{\chi}\left(\varpi_{0}^{\lambda}\right)=\frac{q q_{F}}{q q_{F}-1}\left(\frac{\left(1-q^{-s-1}\right)\left(1-q^{-s-\frac{1}{2}}\right)}{1-q^{-2 s}} q^{-\lambda(s+1)}\right. \\
\left.+\frac{\left(1-q^{s-1}\right)\left(1-q^{s-\frac{1}{2}}\right)}{1-q^{2 s}} q^{\lambda(s-1)}\right)
\end{array}
$$

for $\lambda \in \mathbb{Z}, \lambda \leqslant 0$.
Proof. First, by (14) it is known that $c_{w}\left(\chi^{-1}\right) c_{w^{-1}}\left({ }^{w} \chi\right) \neq 0$ for all $w \in W$ if and only if $q^{-s} \neq q^{-1}, \pm q^{-1 / 2}$. Also, for our choice of χ,

$$
c_{w_{0}}(\chi)=\left(\frac{1-q^{-s-1}}{1-q^{-s}}\right)^{2} \cdot \frac{1-q^{-2 s-1}}{1-q^{-2 s}}
$$

Therefore, by (29),

$$
\begin{aligned}
\frac{c_{w_{0}}(\chi)}{Q_{\chi}(1)} & =\frac{1}{\operatorname{vol}(B) q^{3}\left(1-q_{F}^{-3}\right)} \cdot \frac{\left(1-q^{-s}\right)^{2}\left(1-q^{-s-1}\right)^{2}\left(1-q^{-2 s-1}\right)}{\left(1-q^{-s-1}\right)\left(1+q^{-s-\frac{1}{2}}\right)\left(1-q^{-s}\right)^{2}\left(1-q^{-2 s}\right)} \\
& =\frac{1}{\operatorname{vol}\left(B w_{0} B\right)} \frac{q q_{F}}{q q_{F}-1} \cdot \frac{\left(1-q^{-s-1}\right)\left(1-q^{-s-\frac{1}{2}}\right)}{\left(1-q^{-2 s}\right)}
\end{aligned}
$$

which proves the above formula, by (3.5).

References

[B] Banks, W., The Casselman-Shalika formula for a distinguished model, Proc. Amer. Soc. 123(3) (1995), 681-692.
[BZ] Bernstein, I. and A. Zelevinski, Representations of the group $G L_{n}(F)$ where F is a non-archimedean local field. Russian Math. Surveys 31(3) (1976), 1-68.
[C] Casselman, W., The unramified principal series of \mathfrak{p}-adic groups I. The spherical functions, Compositio Math. 40 (1980), 387-406.
[F 1] Flicker, Y., On distinguished representations, J. reine. angew. Math. 418 (1991), 139-172.
[F 2] Flicker, Y.,, Distinguished representations and a Fourier summation formula, Bull. Soc. Math. France 120 (1992), 413-465.
[FH] Flicker, Y. and J. Hakim, Quaternionic distinguished representations, Amer. Jour. Math. 116 (1994), 683-736.
[H 1] Hironaka, Y., Spherical functions of hermitian and symmetric forms I, Japan. Jour. Math. 14 (1988), 203-223.
[H 2] Hironaka, Y., Spherical functions of hermitian and symmetric forms II, Japan. Jour. Math. 15 (1989), 15-51.
[H 3] Hironaka, Y., Spherical functions of hermitian and symmetric forms III, Tôhoku Math. Jour. 40 (1988), 651-671.
[H 4] Hironaka, Y., Spherical functions and local densities on hermitian forms, Jour. Math. Soc. Japan 51(3) (1999), 553-581.
[HS] Hironaka, Y. and F. Sato, Spherical functions and local densities of alternating forms, Amer. Jour. Math. 110 (1988), 473-512.
[JLR] Jacquet, H., Lapid, E. and J. Rogawski, Periods of automorphic forms, Jour. Amer. Math. Soc. 12(1) (1999), 173-240.
[K] Kato, S., Spherical functions on spherical homogeneous spaces, Proc. of the 3-rd Summer School on Number Theory, 1995, pp. 54-77 (in Japanese).
[KMS] Kato, S., Murase, A. and T. Sugano, Spherical functions on certain spherical homogeneous spaces and Rankin-Selberg method, RIMS kôkyûroku, Kyoto 956 (1996), 12-22.
[M] Muller, I., Integrales d'entrelacement pour $G L_{n}(k)$ où k est un corps p adique, Springer Lect. Notes in Math, vol. 497, 1975, pp. 277-348.
[PR] Platonov, V. and A. Rapinchuk, Algebraic Groups and Number Theory, Academic Press, 1994.
[R] Rallis, S., Poles of standard L-functions, Proc. Int. Cong. Math. Kyoto 1990, Springer-Verlag, pp. 833-845.
[U] Uzawa, T., Functoriality for distinguished representations and the relative trace formula, Proc. of the 3-rd Summer School on Number Theory, 1995, pp. 158-167.

Department of Mathematics
 Graduate School of Science
 Osaka University
 Toyonaka, Osaka
 560-0043, Japan

Current address
Akashi College of Technology
Akashi, Hyogo
674-8501, Japan
E-mail: takano@akashi.ac.jp

[^0]: 1991 Mathematics Subject Classification. Primary 11F70; Secondary 22E35.

