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Freeness of Adjoint Linear Systems on Threefolds

with Terminal Gorenstein Singularities or Some

Quotient Singularities

By Nobuyuki Kakimi

Abstract. We generalize the result of Kawamata concerning the
strong version of Fujita’s freeness conjecture for smooth 3-folds to some
singular cases, namely, Gorenstein terminal singularities, Gorenstein
Q-factorial terminal singularities and quotient singularities of type
1/r(1, 1, 1) and of type 1/r(1, 1,−1). We generalize furthermore the
result of that to projective threefolds with only canonical singularities
for canonical and not terminal singularities. It turns out that the es-
timates in the first three cases are better than the one for the smooth
case, while it is not in the fourth case. We also give explicit examples
which show the estimate in the fourth case is necessarily worse than
the one for the smooth case.

0. Introduction

We recall related results which are previously known. T.Fujita conjec-

tured that, for a smooth projective variety X and an ample divisor L on

X, the linear system |KX + mL| is free if m ≥ dimX + 1. Reider [Rdr]

proved that this is the case if dimX = 2. Ein and Lazarsfeld [EL] proved

that this is the case if dimX = 3. Kawamata [K3] proved that this is

the case if dimX = 4. For a projective variety X of dimension 2 with

some singularities, Ein and Lazarsfeld [EL] and Matsushita [M] extended

the result of Reider [Rdr] to singular cases. Kawachi [KM] obtained the

effective estimates for a normal surface X. For a projective variety X of

dimension 3 with some singularities, Oguiso and Peternell [OP] proved that

|KX +5L| is free if X is a projective threefold with only Q-factorial terminal

Gorenstein singularities. Ein, Lazarsfeld and Maşek [ELM] and Matsushita

[M] extended some of the results of Ein and Lazarsfeld [EL] to projective

threefolds with terminal singularities.
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A strong version of Fujita’s freeness conjecture:

Let X be a normal projective variety of dimension n, x0 ∈ X a smooth

point, and L an ample Cartier divisor. Assume that there exist positive

numbers σp for p = 1, 2, · · · , n which satisfy the following conditions: (1)
p
√

(L)p ·W ≥ σp for any subvariety W of dimension p which contains x0,

(2)σp ≥ n for all p, and σn > n. Then |KX + L| is free at x0.

Fujita [F] proved that, if σ1 ≥ 3, σ2 ≥
√

7, and σ3 > 3
√

51, then |KX +

L| is free at x0. Our results are generalizations of the following result of

Kawamata [K3]: Let X be a normal projective variety of dimension 3, L an

ample Cartier divisor, and x0 ∈ X a smooth point. Assume that there are

positive numbers σp for p = 1, 2, 3 which satisfy the following conditions:

(1) p
√

(L)p ·W ≥ σp for any subvariety W of dimension p which contains

x0, (2) σ1 ≥ 3, σ2 ≥ 3, and σ3 > 3. Then |KX + L| is free at x0.

We shall prove the following results in this paper: Let X be a normal

projective variety of dimension 3, x0 ∈ X a point, and L an ample Q-

Cartier divisor such that KX + L is a Cartier divisor at x0. Assume that
p
√

(L)p ·W ≥ σp for any subvariety W of dimension p which contains x0.

(1)(Theorem 3.1) Let x0 ∈ X be a Gorenstein terminal singular point. As-

sume that σ1 > ( 3
√

2 +
√

3)/ 3
√

2, σ2 > 3
√

2 +
√

3, and σ3 > 3
√

2 +
√

3. Then

|KX + L| is free at x0. (Note that 3 > 3
√

2 +
√

3 > 2.99)

(2)(Theorem 3.3) Let x0 ∈ X be a Gorenstein terminal singular Q-factorial

point. Assume that σ1 ≥ 2, σ2 ≥ 2
√

2, and σ3 > 2 3
√

2. Then |KX + L| is

free at x0.

(3)(Theorem 3.4) Let x0 ∈ X be a quotient singular point of type

(1/r, 1/r, 1/r) for an integer r. Assume that σ1 ≥ 3/r, σ2 ≥ 3/
√
r, and

σ3 > 3/ 3
√
r. Then |KX + L| is free at x0.

(4)(Theorem 3.6) Let x0 ∈ X be a quotient singular point of type

(1/r, 1/r,−1/r) for an integer r ≥ 3. Assume that σ1 ≥ 1 + (1/r), σ2 ≥
(1 + (1/r))

√
r + 3, and σ3 > (1 + (1/r)) 3

√
r + 2. Then |KX + L| is free at

x0.

(5)(Theorem 3.8) Let X be a projective threefold with only canonical singu-

larities and x0 ∈ X be a canonical and not terminal singular point. Assume

that σ1 ≥ 3, σ2 ≥ 3, and σ3 > 3. Then |KX + L| is free at x0.

The result (1), the result (5), and the result for the smooth case [K3]

imply the following: Corollary (Corollary 3.9). Let X be a projective variety

of dimension 3 and H an ample Cartier divisor on X. Assume that X has at
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most canonical Gorenstein singularities. Then |KX + mH| is free if m ≥ 4.

Moreover, if (H3) ≥ 2, then |KX + 3H| is also free. Note that Lee[L1, L2]

also obtained a result similar to this corollary independently.

We also give a series of examples (Example 3.5) which shows that our

estimate in (3) is optimal for each r. Note that the estimates for σp in cases

(1), (2) and (3) are better than the one in the smooth case. On the other

hand, our estimate in (4) is worse than in the smooth case, especially when

the indices r being large, indeed, σ3 → +∞ if r → +∞. In Example 3.7, we

construct an infinite sequence (Xr, Lr)(r = 1, 2, 3, · · ·) consisting of a 3-fold

Xr having a singular point of type 1/r(1, 1,−1) and an ample Q-Cartier

divisor Lr on Xr which satisfies that (L3
r) → +∞ if r → +∞, KXr + Lr is

Cartier at the point, but |KXr +Lr| is not free at the point for each r. This

sequence shows that there exists no uniform estimate for σ3 independent of

the indices r and also explains the reason why σ3 → +∞ under r → +∞ in

our estimate (4).

Our proof is very similar to the one for the smooth case given in [K3].

However this involves more careful and detailed analysis of multiplicities

and discrepancies. For example, important differences for proof in between

the case (1) and the smooth case are: the discrepancy coefficient for KX

under the blow up x0 ∈ X is 1 in (1), while it is 2 in the smooth case;

multx0X = 2 in (1), while it is 1 in the smooth case and the multiplicity

multx0S of the minimal center S (Definition 1.2) at x0 is 1, 2 or 3 in (1)

while multx0S = 1 or 2 in the smooth case if S is a surface. We also notice

that in cases (3) and (4) the discrepancy coefficients for KX under the blow

up x0 ∈ X are no more integers; it is 3/r − 1 in (3) and 1/r in (4). By this

reason, we need to treat Q-Cartier divisors whose orders ordx0D at x0 is of

the form d/r and especially for Theorem 3.4, the case (3), we need Lemma

2.3, a generalization of [K3, Theorem 2.2] to Q-Cartier divisors of fractional

orders at x0.
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1. Preliminaries

Most of the results of this paper are the applications of the following

vanishing theorem:

Theorem 1.1 ([K1, V]). Let X be a smooth projective variety and

D a Q-divisor. Assume that D is nef and big, and that the support of the

difference �D�−D is a normal crossing divisor. Then Hp(X,KX +�D�) = 0

for p > 0.

We recall notation of [K3](cf [KMM]).

Definition 1.2. Let X be a normal variety and D = ΣidiDi an effec-

tive Q-divisor such that KX +D is Q-Cartier. If µ : Y → X is an embedded

resolution of the pair (X,D), then we can write

KY + F = µ∗(KX + D)

with F = µ−1
∗ D + ΣjejEj for the exceptional divisors Ej .

The pair (X,D) is said to have only log canonical singularities (LC)

(resp. kawamata log terminal singularities (KLT )) if di ≤ 1(resp. < 1) for

all i and ej ≤ 1(resp. < 1) for all j.

A subvariety W of X is said to be a center of log canonical singularities

for the pair (X,D), if there is a birational morphism from a normal variety

µ : Y → X and a prime divisor E on Y with the coefficient e ≥ 1 such that

µ(E) = W . The set of all the centers of log canonical singularities is denoted

by CLC(X,D). The union of all the subvarieties in CLC(X,D) is denoted

by LLC(X,D) and called the locus of log canonical singularities for (X,D).

For a point x0 ∈ X, we define CLC(X,x0, D) = {W ∈ CLC(X,D);x0 ∈
W}.

We shall use the following propositions proved by Kawamata [K3]. Then

we shall control the singularities of the minimal center of log canonical

singularities and replace the minimal center of log canonical singularities by

a smaller subvariety.

Proposition 1.3 ([K3, 1.5,1.6]). Let X be a normal variety and D

an effective Q-Cartier divisor such that KX + D is Q-Cartier. Assume
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that X is KLT and (X,D) is LC. If W1,W2 ∈ CLC(X,D) and W is an

irreducible component of W1 ∩W2, then W ∈ CLC(X,D). If (X,D) is not

KLT at a point x0 ∈ X, then there exists the unique minimal element W0

of CLC(X,x0, D). Moreover, W0 is normal at x0.

Proposition 1.4 ([K3, 1.9]). Let x0 ∈ X, D and W0 be as in Propo-

sition 1.3. Assume that dimW0 = 2. Then W0 has at most a rational

singularity at x0. Moreover, if W0 is singular at x0, and if D′ is an ef-

fective Q-Cartier divisor on X such that ordx0D
′|W0 ≥ 1, then {x0} ∈

CLC(X,x0, D + D′).

Remark 1.5. The result in Proposition 1.4 is extended to higher di-

mensions ([K4]).

Proposition 1.6 ([K3, 1.10]). Let x0 ∈ X, D and W0 be as in Propo-

sition 1.3. Let D1 and D2 be effective Q-Cartier divisors on X whose sup-

ports do not contain W0 and which induce the same Q-Cartier divisor on

W0. Assume that (X,D + D1) is LC at x0 and there exists an element of

CLC(X,x0, D + D1) which is properly contained in W0. Then the similar

statement holds for the pair (X,D + D2).

2. General Method

We can construct divisors which have high multiplicity at a given point

from the following lemma.

Lemma 2.1. Let X be a normal and complete variety of dimension n,

L a nef and big Q-Cartier divisor, x0 ∈ X a point, and t,t0 rational numbers

such that t > t0 > 0. Then there exists an effective Q-Cartier divisor D

such that D ∼Q tL and

ordx0D ≥ (t0 + ε) n

√
(Ln)

multx0X

which is a rational number for 0 ≤ ε � n
√

multx0X/(Ln).

Proof. We take r ∈ Q such that rL is Cartier and t′ ∈ Q such that

t′ = t/t0 > 1. By [K3, 2.1], there exists an effective Q-Cartier divisor rD′
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such that

ordx0rD
′ ≥ r n

√
(Ln)

multx0X
.

Therefore we may take D = t0D
′. �

We generalize [K3, 2.3] in which a given point is assumed to be a Goren-

stein KLT point. For our purpose, we need to consider the case where a

given point is a KLT point. The following proposition is the key of the

proofs of our main results.

Proposition 2.2. Let X be a normal projective variety of dimension

n, x0 ∈ X a KLT point, and L an ample Q-Cartier divisor such that KX+L

is Cartier at x0. Assume that there exists an effective Q-Cartier divisor D

which satisfies the following conditions:

(1) D ∼Q tL for a rational number t < 1,

(2) (X,D) is LC at x0,

(3) {x0} ∈ CLC(X,D).

Then |KX + L| is free at x0.

Proof (cf [K3 2.3]). Let r = min{s ∈ N; sL is Cartier} and D′ be a

general member of |mrL| for m � 0 which passes through x0. Replacing D

by (1− ε1)(D + ε2D
′) for some 0 < εi � 1/(rm), we may assume that x0 is

an isolated point of LLC(X,D). Let µ : Y → X be an embedded resolution

of the pair (X,D). Then

KY + E + F1 + F2 = µ∗(KX + D)

where E is a reduced divisor such that µ(E) = {x0}, F1 is a divisor of the

form
∑

j f1jF1j such that f1j < 1 and x0 ∈ µ(F1j), and F2 is a divisor of

the form
∑

i f2iF2i such that x0 /∈ µ(F2i). Then

KY + (1 − t)µ∗L ∼Q µ∗(KX + L) − E − F1 − F2.

Thus

H1(Y, µ∗(KX + L) − E + �−F1
� − F ′

2) = 0

where F ′
2 = µ∗(KX + L) − �µ∗(KX + L) − F2

� and we obtain a surjection

H0(Y, µ∗(KX + L) + �−F1
� − F ′

2) → H0(E, µ∗(KX + L)) ∼= C.
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Since �−F1
� − F ′

2 is effective and exceptional over a neighborhood of x0,

H0(X,KX + L) → H0(E,µ∗(KX + L))

is also surjective. �

We generalize [K3, 2.2] in which Q-divisors have integral order at x0.

For our purpose, we need to treat Q-Cartier divisors of fractional orders at

x0.

Lemma 2.3. Let X be a normal projective variety of dimension 3, x0 ∈
X a quotient singular point of type (1/r, 1/r, 1/r) for an integer r, L an

ample Q-Cartier divisor such that KX + L is Cartier at x0, W a prime

divisor with ordx0W = d/r ≥ 1/r for an integer d, and e,k positive rational

numbers such that de ≤ 1 and (k/r)3 < (L)3/r2. Assume that there exists an

effective Q-divisor D such that D ∼Q L and ordx0D ≥ k/r, and moreover

that D ≥ ekW for any such D. Then there exists a real number λ with

0 ≤ λ < 1 and λ ≤ max{1 − de, (3de)−1/2} which satisfies the following

condition: if k′ is a positive rational number such that k′ > k and

(λ
k

r
)3+(

1 − de− λ

1 − λ
)2{(k

′

r
+

λde

1 − de− λ

k

r
)3−(

λk

r
+

λde

1 − de− λ

k

r
)3} <

(L)3

r2
,

then there exists an effective Q-divisor D such that D ∼Q L and ordx0D ≥
k′/r. (If λ = 1 − de, then the left hand side of the above inequality should

be taken as a limit.)

Proof. (cf [K3, 2.2]). We have multx0X = r2. Let k̄ = sup {q; there

exists an effective Q-divisor D such that D ∼Q L and ordx0D = q/r }. Let

us define a function φ(q) for q ∈ Q with 0 ≤ q < k̄ to be the largest real

number such that D ≥ φ(q)W whenever D ≥ 0, D ∼Q L and ordx0D = q/r.

Then φ is a convex function. In fact, if ordx0Di = qi/r and Di = (φ(qi) +

εi)W+ other components for 0 ≤ εi � 1 and i = 1, 2, then ordx0(tD1 +

(1 − t)D2) = t(q1/r) + (1 − t)(q2/r) and tD1 + (1 − t)D2 = (t(φ(q1) +

ε1) + (1 − t)(φ(q2) + ε2))W+ other components, hence φ(tq1 + (1 − t)q2) ≤
tφ(q1) + (1 − t)φ(q2). Since φ(k) ≥ ek, there exists a real number λ such

that 0 ≤ λ < 1 and φ(q) ≥ e(q − λk)/(1 − λ) for any q.

Let m be a large and sufficiently divisible integer and ν : H0(X,mL) →
OX,x0(mL) ∼= OX,x0 the evaluation homomorphism. We consider subspaces
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Vi = ν−1(mx0
i) of H0(X,mL) for integers i such that λkm/r ≤ i ≤ k′m/r.

First, we have

dimV�λkm/r� ≥ dimH0(X,mL) − r2 (λkm/r)3

3!
+ lower terms in m.

Let D ∈ |mL| be a member corresponding to h ∈ Vi for some i. Since we

have D ≥ φ(ir/m)mW , the number of conditions in order for h ∈ Vi+1 is at

most ( the number of homogeneous polynomials of order i−φ(ir/m)m(d/r)

in 3 variables ) × multx0X, i.e.,

r2 (i− φ(ir/m)md/r)2

2!
+ lower terms in m.

Therefore, we have k′ < k̄ because

r2 (λkm/r)3

3!
+

k′m/r−1∑
i=�λkm/r�

r2
(i− e(ir/m−λk)

(1−λ) md/r)2

2!
+ lower terms in m

= r2 (λkm/r)3

3!

+ r2
(1−de−λ

1−λ )2{(k′/r + λde
1−de−λk/r)

3 − (λk/r + λde
1−de−λk/r)

3}m3

3!
+ lower terms in m

<
m3(L3)

3!
+ lower terms in m.

By [K3 2.2 last part], we have that λ ≤ max{1 − de, (3de)−1/2}. �

The following theorem plays the important role in the proofs of our main

results.

Theorem 2.4 ([A, Corollary 6]). Let S be a normal surface, x0 be

a point of S. Suppose S has a rational singularity at x0. Let Z be the

fundamental cycle.

Then

multx0S = −Z2

for all integers k,

dimmk
S,x0

/mk+1
S,x0

= kmultx0S + 1
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where mS,x0 is the maximal ideal of x0 in S and

embdimx0S = multx0S + 1.

The following lemma plays the supporting role in the proof of Theorem

3.6.

Lemma 2.5. Let (X,x0) be a quotient singularity C3/Zr(a/r,−a/r,

1/r) with 0 < a < r. Let Si = C2/Zr(i/r, 1/r) for i = a,−a. Then

embdimx0X = multx0X + 2.

multx0X = multx0Sa + multx0S−a.

embdimx0X = embdimx0Sa + embdimx0S−a.

Proof. Let (xy)wxszu, (xy)wytzu ∈ mn
X,x0

/mn+1
X,x0

where mX,x0 is the

maximal ideal of x0 in X. Then xszu, ytzu ∈ mn−w
X,x0

/mn−w+1
X,x0

. We consider

that xszu ∈ mn−w
Sa,x0

/mn−w+1
Sa,x0

where mSa,x0 is the maximal ideal of x0 in Sa

and that ytzu ∈ mn−w
S−a,x0

/mn−w+1
S−a,x0

where mS−a,x0 is the maximal ideal of x0

in S−a. By Theorem 2.4., for i = a, r − a

dimmn−w
Si,x0

/mn−w+1
Si,x0

= (n− w)multx0Si + 1.

mn−w
Sa,x0

/mn−w+1
Sa,x0

∩mn−w
S−a,x0

/mn−w+1
S−a,x0

= (zr)n−w for 0 ≤ w < n. Then

dimmn
X,x0

/mn+1
X,x0

=

n−1∑
w=0

{dimmn−w
Sa,x0

/mn−w+1
Sa,x0

+ dimmn−w
S−a,x0

/mn−w+1
S−a,x0

− 1} + 1

=

n−1∑
w=0

{(n− w)(multx0Sa + multx0S−a) + 1} + 1

= (multx0Sa + multx0S−a)
n2

2
+ (multx0Sa + multx0S−a + 2)

n

2
+ 1

Hence

multx0X = multx0Sa + multx0S−a.

embdimx0X = multx0Sa + multx0S−a + 2. �
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3. Main Theorem

First we consider Gorenstein terminal singular points.

Theorem 3.1. Let X be a normal projective variety of dimension 3,

x0 ∈ X a Gorenstein terminal singular point, and L an ample Q-Cartier

divisor such that L is Cartier at x0. Assume that there are positive numbers

σp for p = 1, 2, 3 which satisfy the following conditions:

(1) p
√

(L)p ·W ≥ σp for any subvariety W of dimension p which contains

x0,

(2) σ1 > ( 3
√

2 +
√

3)/ 3
√

2, σ2 > 3
√

2 +
√

3, and σ3 > 3
√

2 +
√

3.

Then |KX + L| is free at x0.

Proof. Since x0 is a Gorenstein terminal singularity of dimension 3, x0

is an isolated hypersurface singularity of multiplicity 2 ([R, (1.1) Theorem]).

Let U be a neighborhood at x0. Let U ⊂ V be an embedding of U as a

hypersurface in a smooth fourfold V , and let g : Ṽ −→ V be the blowing-up

of V at x0. Let Ũ be the proper transform of U in Ṽ , f : Ũ −→ U the

restriction of g to Ũ , and F ⊂ Ṽ the exceptional divisor of g. Then

K
Ũ

= (K
Ṽ

+ Ũ)|
Ũ

= (g∗KV + 3F + g∗U − 2F )|
Ũ

= f∗KU + (F |
Ũ
).

(cf.[ELM, Lemma 2.2 ’s proof, l.8–l.13])

Step 0. Let t be a rational number such that t > 2 3
√

2/ 3
√

(L3). Since

σ3 > 2 3
√

2, we can take t < 1. Let t0 be a rational number such that

t0 = 2 3
√

2/ 3
√

(L3) − ε for 0 ≤ ε � 3
√

2/(L3). By Lemma 2.1, there exists

an effective Q-Cartier divisor D such that D ∼Q tL and ordx0D ≥ (t0 +

ε) 3
√

(L3)/2. Hence ordx0D = 2.

Let c be the log canonical threshold of (X,D) at x0:

c = sup {t ∈ Q; KX + tD is LC at x0 }.

Then c ≤ 1. Let W be the minimal element of CLC(X,x0, cD). If W =

{x0}, then |KX + L| is free at x0 by Proposition 2.2, since ct < 1.

Step 1. We consider the case in which W = C is a curve. By Propo-

sition 1.3, C is normal at x0, i.e., smooth at x0. Since t < 1, we have

ct + (1 − c) < 1. Since σ1 ≥ 2, there exists a rational number t′ with
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ct + (1 − c) < t′ < 1 and an effective Q-Cartier divisor D′
C on C such that

D′
C ∼Q (t′ − ct)L|C and ordx0D

′
C = 2(1 − c). As in [K3, 3.1 Step1], there

exists an effective Q-Cartier divisor D′ on X such that D′ ∼Q (t′− ct)L and

D′|C = D′
C . Let D′

1 be a general effective Q-Cartier divisor on an affine

neighborhood U of x0 in X such that D′
1|C∩U = D′

C |C∩U and ordx0D
′
1 =

2(1−c). Then we have ordx0(cD+D′
1) = 2, hence {x0} ∈ CLC(U, cD+D′

1).

Let

c′ = sup {t ∈ Q; KX + (cD + tD′
1) is LC at x0 }.

Since D′
1 is chosen to be general, we have c′ > 0. We have an element

W ′ such that W ′ ∈ CLC(X,x0, cD + c′D′
1) and W ′ �⊇ C. By Proposition

1.3, CLC(X,x0, cD + c′D′
1) has an element which is properly contained in

C. By Proposition 1.6, we conclude that (X, cD + c′D′) is LC at x0, and

CLC(X,x0, cD + c′D′) has an element which is properly contained in C,

i.e., {x0}.

Step 2. We consider the case in which W = S is a surface. By Propo-

sition 1.4, S has at most a rational singularity at x0.

Step 2-1. We assume first that S is smooth at x0. As in Step 1, we

take a rational number t′, an effective Q-Cartier divisor D′ on X and a

positive number c′ such that ct + (1 − c) < t′ < 1, D′ ∼Q (t′ − ct)L,

ordx0D
′|S ,= 2(1 − c), (X, cD + c′D′) is LC at x0, and that the minimal

element W ′ of CLC(X,x0, cD + c′D′) is properly contained in S. Thus we

have the theorem when W ′ = {x0}.
We consider the case in which W ′ = C is a curve. Since t, t′ < 1, we have

ct+ c′(t′− ct)+ (1− c)(1− c′) < 1. As in Step 1, we take a rational number

t′′, an effective Q-Cartier divisor D′′ on X and a positive number c′′ such

that ct+ c′(t′ − ct) + (1− c)(1− c′) < t′′ < 1, D′′ ∼Q (t′′ − ct− c′(t′ − ct))L,

ordx0D
′′|C = 2(1−c)(1−c′), (X, cD+c′D′+c′′D′′) is LC at x0 and that the

minimal element W ′′ of CLC(X,x0, cD+c′D′+c′′D′′) is properly contained

in C, i.e., {x0} ∈ CLC(X,x0, cD + c′D′ + c′′D′′).

Step 2-2. We assume that S has a rational singularity at x0. Since the

embedding dimension of X at x0 is 4 and x0 is also a singular point of S,

the embedding dimension of S at x0 is 3 or 4. Therefore d := multx0S = 2

or 3, because x0 ∈ S is a rational singular point([A, Corollary 6]). Since
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t > 2 3
√

2/ 3
√

(L3) and 3
√

(L3) > 3
√

2 +
√

3, we can take t < 2 3
√

2/( 3
√

2 +
√

3),

so t/2 +
√

3/σ2 < 1. Therefore, if c ≥ 1/2, then

ct +
2
√
d(1 − c)

σ2
< 1.

In this case, we can take a rational number t′ and an effective Q-Cartier

divisor D′ on X such that ct + 2
√
d(1 − c)/σ2 < t′ < 1, D′ ∼Q (t′ − ct)L

and ordx0D
′|S = 2(1 − c), and proceed as in Step 2-1.

On the other hand, if c ≤ 1/2, then

ct +

√
d

σ2
< 1.

We take t′ and D′ with D′ ∼Q (t′ − ct)L and ordx0D
′|S = 1, by Proposition

1.4, {x0} ∈ CLC(X,x0, cD + D′). As in Step 1, there exists c′ such that

1 ≥ c′ > 0, (X,x0, cD + c′D′) is LC at x0, and that the minimal element of

W ′ of CLC(X,x0, cD + c′D′) is properly contained in S. If W ′ = {x0}, we

have the theorem.

We consider the case in which W ′ = C is a curve. We have

ordx0(cD + c′D′)|S ≥ 2c + c′ = 2 − 2(1 − c− c′

2
).

Since
√
d/σ2 < t′ − ct, we can take t′ − ct <

√
d/( 3

√
2 +

√
3). Then,

ct + c′(t′ − ct) +
2

σ1
(1 − c− c′

2
)

< c(
2 3
√

2
3
√

2 +
√

3
) +

2 3
√

2
3
√

2 +
√

3
(1 − c) + c′(

√
d

3
√

2 +
√

3
−

3
√

2
3
√

2 +
√

3
) ≤ 1

The rest is the same as before. �

The following example shows that the condition σ3 > 2 3
√

2 in Theorem

3.1 is optimal.

Example 3.2. Let X = {xy + z2 + t2 = 0} ⊂ P4 and x0 = (0 : 0 : 0 :

0 : 1). Then x0 is a Gorenstein terminal singular point and KX = O(−3).

If L = O(3), then |KX +L| is free at x0. If L = O(2), then |KX +L| is not

free at x0 and L3X = 16.
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If we assume furthermore that X is Q-factorial at x0, we obtain better

estimates for σp.

Theorem 3.3. Let X be a normal projective variety of dimension 3,

L an ample Q-Cartier divisor, x0 ∈ X a Gorenstein terminal Q-factorial

singular point. Assume that there are positive numbers σp for p = 1, 2, 3

which satisfy the following conditions:

(1) p
√

(L)p ·W ≥ σp for any subvariety W of dimension p which contains

x0,

(2) σ1 ≥ 2, σ2 ≥ 2
√

2, and σ3 > 2 3
√

2.

Then |KX + L| is free at x0.

Proof. Since σ1 ≥ 2 and σ3 > 2 3
√

2, Steps 0,1 are the same as Steps

0,1 of the proof of Theorem 3.1.

Step 2. We consider the case in which W = S is a surface. Since X is

Q-factorial terminal Gorenstein at x0, X is factorial at x0([K2, Lemma 5.1]).

In particular, S is a Cartier divisor at x0. Then we have 2 > ordx0cD ≥
ordx0S. Hence we have ordx0S = 1 and multx0S = 2. There exists a rational

number t′ with ct + (1 − c) < t′ < 1. By Lemma 2.1 and σ2 ≥ 2
√

2, there

exists an effective Q-Cartier divisor DS on S such that DS ∼Q (t′ − ct)L|S
and ordx0DS = 2(1 − c).

The rest is the same as Step 2-1 of the proof of Theorem 3.1. �

We consider non Gorenstein singular points in the following.

The following theorem is generalization to dimension of 3 of the following

result of Kawachi [KM]: Let S be a normal projective surface, x0 ∈ S a

quotient singular point of type (1/r, 1/r) for an integer r and L a nef and

big Q-Cartier divisor such that KX + L is Cartier at x0. If LC ≥ 2/r for

any curve C through x0 and
√
L2 > 2/

√
r, then |KX + L| is free at x0.

Theorem 3.4. Let X be a normal projective variety of dimension 3,

x0 ∈ X a quotient singular point of type (1/r, 1/r, 1/r) for an integer r, and

L an ample Q-Cartier divisor such that KX + L is Cartier at x0. Assume

that there are positive numbers σp for p = 1, 2, 3 which satisfy the following

conditions:

(1) p
√

(L)p ·W ≥ σp for any subvariety W of dimension p which contains
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x0,

(2) σ1 ≥ 3/r, σ2 ≥ 3/
√
r, and σ3 > 3/ 3

√
r.

Then |KX + L| is free at x0.

Proof. Since X = C3/Zr(1/r, 1/r, 1/r) around x0, setting OC3,0 =

C{x, y, z}, we have OX,x0 = OC3,0
Zr(1/r,1/r,1/r) = C{xaybzc|a + b + c =

r, a ≥ 0, b ≥ 0, c ≥ 0} and mn
X,x0

= (xaybzc|a + b + c = nr) where mX,x0 is

the maximal ideal of x0 in X. Therefore

dimCOX,x0/m
n
X,x0

=

n−1∑
k=0

(kr + 2)(kr + 1)/2 = (r2/3!)n3+lower terms in n.

Hence multx0X = r2.

Step 0. Let t be a rational number such that t > (3/ 3
√
r)/ 3

√
(L3). Since

σ3 > 3/ 3
√
r, we can take t < 1. Let t0 be a rational number such that

t0 = (3/ 3
√
r)/ 3

√
(L3) − ε for 0 ≤ ε � 3

√
r2/(L3). By Lemma 2.1, there

exists an effective Q-Cartier divisor D such that D ∼Q tL and ordx0D ≥
(t0 + ε) 3

√
(L3)/r2. Hence ordx0D = 3/r.

Let f : X̄ → X be the blowing-up of X at x0, E ⊂ X̄ the exceptional

divisor of f , and D̄ the proper transform of D in X̄. Then

KX̄ = f∗KX + (3/r − 1)E.

f∗D = D̄ + (3/r)E.

Let c be the log canonical threshold of (X,D) at x0:

c = sup {t ∈ Q; KX + tD is LC at x0 }.

Then c ≤ 1. Let W be the minimal element of CLC(X,x0, cD). If W =

{x0}, then |KX + L| is free at x0 by Proposition 2.2, since ct < 1.

Step 1. We consider the case in which W = C is a curve. By Proposi-

tion 1.3, C is normal at x0, i.e., smooth at x0. Since σ1 ≥ 3/r, as in Step 1 of

the proof of Theorem 3.1, we take a rational number t′, an effective Q-Cartier

divisor D′ on X and a positive number c′ such that ct + (1 − c) < t′ < 1,

D′ ∼Q (t′− ct)L, ordx0D
′|C = (3/r)(1− c), (X, cD+ c′D′) is LC at x0, and
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that the minimal element W ′ of CLC(X,x0, cD+c′D′) is properly contained

in C, i.e., {x0}.

Step 2. We consider the case in which W = S is a surface. Let U be

a neighborhood at x0, and h : Ũ −→ U its closure of local universal cover,

i.e., U = C3/Zr(1/r, 1/r, 1/r) and Ũ = C3. Let S̃ be h∗(S|U ), and x1 be

h−1(x0). Since x0 ∈ S is a KLT point [K3, 1.7] and h is ramified only

over x0, S̃ ⊂ C3 is also irreducible and x1 ∈ S̃ is at most KLT . Moreover

S̃ ⊂ C3 is a hypersurface, S̃ is also Gorenstein. Therefore, x1 ∈ S̃ is a

rational Gorenstein point, that is, x1 ∈ S̃ is a smooth point or a rational

double point. If x1 is a smooth point of S̃, then S|U ∼= C2/Zr(1/r, 1/r).

Hence we have multx0S = r. If x1 is a rational double point of S̃, that

S̃ is Arn+1 type (n ∈ Z≥0), i.e., S̃ ∼= SpecC[xrn+2, yrn+2, xy], since S̃ is

invariant by the action of Zr(1/r, 1/r, 1/r). Since the action of Zr on C3 is

a scalar multiplication by ξ, we may assume that the equation of x1 ∈ S̃ is

of the standard form under the same coordinates of C3. Then by looking

the action of Zr on the equation and using the fact that the equation must

be semi-invariant, we conclude the result. Since

S|U = SpecC[(xrn+2)r, (xrn+2)r−1(xy), . . . , (xrn+2)(xy)r−1,

(xy)r, (yrn+2)r, . . . , (yrn+2)(xy)r−1],

the embedding dimension of S|U is 2r + 1. Hence we have multx0S = 2r

([A, Corollary 6]). Hence multx0S = 2r and ordx0S = 2/r or multx0S = r

and ordx0S = 1/r. Let d := multx0S/r = 1 or 2.

Step 2-1. We assume first that d = 1. As in Step 1, there exists a

rational number t′ with ct+(1−c) < t′ < 1. By Lemma 2.1 and σ2 ≥ 3/
√
r,

there exists an effective Q-Cartier divisor DS on S such that DS ∼Q (t′ −
ct)L|S and ordx0DS = (3/r)(1 − c).

The rest of Step 2-1 is the same as Step 2-1 of the proof of Theorem 3.1.

Step 2-2. We assume that d = 2. As in Step 2-1, we take a rational

number t′ with ct+
√

2(1− c) < t′ and an effective Q-Cartier divisor D′ on

X with D′ ∼Q (t′ − ct)L and ordx0D
′|S = (3/r)(1 − c). Here we need the

factor
√

2 because S has multiplicity 2r at x0. Then we take 0 < c′ ≤ 1
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such that (X, cD + c′D′) is LC and CLC(X,x0, cD + c′D′) has an element

which is properly contained in S.

We shall prove that we may assume ct +
√

2(1 − c) < 1. Then we can

take t′ < 1 as in Step 2-1, and the rest of the proof is the same. For this

purpose, we apply Lemma 2.3. In argument of Steps 0 through 2-1, the

number t was chosen under the only condition that t < 1. So we can take

t = 1 − ε1, where the εn for n = 1, 2, ... will stand for very small positive

rational numbers. Then k/r = 3/(r(1 − ε1)) = (3/r) + ε2 and e = 1/(3c).

This means the following: for any effective D ∼Q tL, if ordx0D ≥ 3/r, then

cD ≥ S. We look for k′ > 6/(3 −
√

2) so that there exists an effective

Q-Cartier divisor D ∼Q tL with t < (3 −
√

2)/2 and ordx0D ≥ 3/r. The

equation for k′ becomes

λ3 + (
1 − 2e− λ

1 − λ
)2{( 2

3 −
√

2
+

2λe

1 − 2e− λ
)3 − (λ +

2λe

1 − 2e− λ
)3} < 1.

We have λ ≤ 1/
√

6e, 1/3 ≤ e ≤ 1/2, and in particular, 0 ≤ λ ≤ 1/
√

2. By

[K3, 3.1 Step2-2], we obtain a desired D, and can choose a new t such that

t < (3−
√

2)/2. Then we repeat the preceding argument from Step 0. If we

arrive at Step 2-2 again, then we have 2/3 ≤ c ≤ 1 and ct+
√

2(1−c) < 1. �

The following example shows that the conditions in Theorem 3.4 is best

possible.

Example 3.5. Let X = P(1, 1, 1, r) and x0 = (0 : 0 : 0 : 1). Then x0

is a quotient singular point of type (1/r, 1/r, 1/r) and KX = O(−3 − r). If

KX +L is Cartier and L is effective, we have L = O(rk+3) (k ∈ Z, rk+3 ≥
0). If L = O(3), then |KX + L| is not free at x0. Hence the condition

σ3 > 3/ 3
√
r is necessary in Theorem 3.4.

We consider non Gorenstein terminal singular points in the following.

Theorem 3.6. Let X be a normal projective variety of dimension 3,

x0 ∈ X a quotient singular point of type (1/r, 1/r,−1/r) for an integer

r ≥ 3, and L an ample Q-Cartier divisor such that KX + L is Cartier at

x0. Assume that there are positive numbers σp for p = 1, 2, 3 which satisfy

the following conditions:

(1) p
√

(L)p ·W ≥ σp for any subvariety W of dimension p which contains
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x0,

(2) σ1 ≥ 1 + (1/r), σ2 ≥ (1 + (1/r))
√
r + 3, and σ3 > (1 + (1/r)) 3

√
r + 2.

Then |KX + L| is free at x0.

Proof. Since

C3/Zr(1/r, 1/r,−1/r) = SpecC[xr, xr−1y, . . . , xyr−1, yr, xz, yz, zr],

by Lemma 2.5, multx0X = embdimx0X−2 = r+2. Hence multx0X = r+2.

Step 0. Let t be a rational number such that t > (1+(1/r)) 3
√
r + 2/ 3

√
(L3).

Since σ3 > (1+(1/r)) 3
√
r + 2, we can take t < 1. Let t0 be a rational number

such that t0 = (1+(1/r)) 3
√
r + 2/ 3

√
(L3)−ε for 0 ≤ ε � 3

√
(r + 2)/(L3). By

Lemma 2.1, there exists an effective Q-Cartier divisor D such that D ∼Q tL

and ordx0D ≥ (t0 + ε) 3
√

(L3)/(r + 2). Hence ordx0D = 1 + (1/r).

Let f : X̄ → X be the weighted blowing-up of X at x0, E ⊂ X̄ the

exceptional divisor of f , and D̄ be the proper transform of D in X̄. Then

KX̄ = f∗KX + (1/r)E.

f∗D = D̄ + eE, e ≥ 1 + (1/r).

Let c be the log canonical threshold of (X,D) at x0:

c = sup {t ∈ Q; KX + tD is LC at x0 }.

Then c ≤ 1. Let W be the minimal element of CLC(X,x0, cD). If W =

{x0}, then |KX + L| is free at x0 by Proposition 2.2, since ct < 1.

Step 1. We consider the case in which W = C is a curve. By Proposi-

tion 1.3, C is normal at x0, i.e., smooth at x0. Since σ1 ≥ 1 + (1/r), as in

Step 1 of the proof of Theorem 3.1, we take a rational number t′, an effective

Q-Cartier divisor D′ on X and a positive number c′ such that ct+(1− c) <

t′ < 1, D′ ∼Q (t′ − ct)L, ordx0D
′|C = (1 + (1/r))(1 − c), (X, cD + c′D′) is

LC at x0, and that the minimal element W ′ of CLC(X,x0, cD + c′D′) is

properly contained in C, i.e., {x0}.

Step 2. We consider the case in which W = S is a surface. Since the

embedding dimension of X at x0 = r + 4, the embedding dimension of S

at x0 ≤ r + 4. Hence we have multx0S ≤ r + 3 ([A, Corollary 6]). There
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exists a rational number t′ with ct + (1 − c) < t′ < 1. By Lemma 2.1 and

σ2 ≥ (1 + (1/r))
√
r + 3, there exists an effective Q-Cartier DS on S such

that DS ∼Q (t′ − ct)L|S and ordx0DS = (1 + (1/r))(1 − c).

The rest of Step 2 is the same as Step 2-1 of the proof of Theorem 3.1. �

The following example shows that the estimates in some terminal sin-

gular cases is necessarily worse than the one for the smooth case.

Example 3.7. Let X = P(1, 1, r−1, r) and x0 = (0 : 0 : 0 : 1). Then x0

is a quotient singular point of type (1/r, 1/r,−1/r) and KX = O(−2r− 1).

If KX + L is Cartier at x0 and L is effective, we have L = O(rk + 1)

(k ∈ Z, rk + 1 ≥ 0). If L = O(r + 1), then |KX + L| is not free at x0 and

L3 = (r + 1)3/r(r − 1). Hence if r ≥ 23, then the condition σ3 > 3.

We obtain the following theorem based on [K3 Theorem 3.1] and [R,

Main Theorem].

Theorem 3.8. Let X be a projective variety of dimension 3 with only

canonical singularities, x0 ∈ X be a canonical and not terminal singular

point, L an ample Q-Cartier divisor on X such that KX + L is Cartier at

x0. Assume that there are positive numbers σp for p = 1, 2, 3 which satisfy

the following conditions:

(1) p
√

(L)p ·W ≥ σp for any subvariety W of dimension p which contains

x0,

(2) σ1 ≥ 3, σ2 ≥ 3, and σ3 > 3.

Then |KX + L| is free at x0.

Proof. By a theorem of Reid [R, Main Theorem], a partial resolution

f : Y → X such that KY = f∗KX , and Y has only terminal singularity

points. There exists a smooth point y0 ∈ f−1(x0).

Step 0. Let t be a rational number such that t > 3/ 3

√
(f∗L3). Since

σ3 > 3, we can take t < 1. Let t0 be a rational number such that t0 =

3/ 3

√
(f∗L3) − ε for 0 ≤ ε � 3

√
1/(L3). By Lemma 2.1, there exists an

effective Q-Cartier divisor D such that D ∼Q tL and ordy0f
∗D ≥ (t0 +

ε) 3
√

(L3). Hence ordy0f
∗D = 3.
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Let g : Ȳ → Y be the blowing-up of Y at y0, E ⊂ Ȳ the exceptional

divisor of g, and ¯f∗D the proper transform of f∗D in Ȳ . Then

KȲ = g∗KY + 2E.

g∗f∗D = ¯f∗D + 3E.

KȲ + ¯f∗D + E = g∗f∗(KX + D).

Let c be the log canonical threshold of (X,D) at x0:

c = sup {t ∈ Q; KX + tD is LC at x0 }.

Then c ≤ 1. Let W be the minimal element of CLC(X,x0, cD). If W =

{x0}, then |KX + L| is free at x0 by Proposition 2.2, since ct < 1.

Step 1. We consider the case in which W = C is a curve. By Proposi-

tion 1.3, C is normal at x0, i.e., smooth at x0. Since σ1 ≥ 3, as in Step 1 of

the proof of Theorem 3.1, we take a rational number t′, an effective Q-Cartier

divisor D′ on X and a positive number c′ such that ct + (1 − c) < t′ < 1,

D′ ∼Q (t′− ct)L, ordx0D
′|C = 3(1− c), (X, cD+ c′D′) is LC at x0, and that

the minimal element W ′ of CLC(X,x0, cD + c′D′) is properly contained in

C, i.e., {x0}.

Step 2. We consider the case in which W = S is a surface. We have

S′ = f−1S ∈ CLC(Y, y0, f
∗cD). By Proposition 1.4, S′ has at most a

rational singularity at y0.

Step 2-1. We assume first that S′ is smooth at y0. As in Step 1, there

exists a rational number t′ with ct + (1 − c) < t′ < 1. By Proposition 2.1

and σ2 ≥ 3, there exists an effective Q-Cartier divisor f∗(DS) on S′ such

that DS ∼Q (t′ − ct)L|S and ordy0f
∗(DS) = 3(1 − c).

The rest of Step 2-1 is the same as Step 2-1 of the proof of Theorem 3.1.

Step 2-2. We assume that d = 2. As in Step 2-1, we take a rational

number t′ with ct+
√

2(1− c) < t′ and an effective Q-Cartier divisor D′ on

X with D′ ∼Q (t′ − ct)L and ordy0f
∗(D′|S) = 3(1 − c). Here we need the

factor
√

2 because S′ has multiplicity 2 at y0. Then we take 0 < c′ ≤ 1 such
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that (X, cD+ c′D′) is LC and CLC(X,x0, cD+ c′D′) has an element which

is properly contained in S.

We shall prove that we may assume ct+
√

2(1−c) < 1. Then we can take

t′ < 1 as in Step 2-1, and the rest of the proof is the same. For this purpose,

we apply Lemma 2.3. In argument of Steps 0 through 2-1, the number t was

chosen under the only condition that t < 1. So we can take t = 1−ε1, where

the εn for n = 1, 2, ... will stand for very small positive rational numbers.

Then k = 3/(1 − ε1) = 3 + ε2 and e = 1/(3c). This means the following:

for any effective D ∼Q tL, if ordy0f
∗D ≥ 3, then cf∗D ≥ S′. We look for

k′ > 6/(3−
√

2) so that there exists an effective Q-Cartier divisor D ∼Q tL

with t < (3 −
√

2)/2 and ordy0f
∗D ≥ 3. The equation for k′ becomes

λ3 + (
1 − 2e− λ

1 − λ
)2{( 2

3 −
√

2
+

2λe

1 − 2e− λ
)3 − (λ +

2λe

1 − 2e− λ
)3} < 1.

We have λ ≤ 1/
√

6e, 1/3 ≤ e ≤ 1/2, and in particular, 0 ≤ λ ≤ 1/
√

2. By

[K2, 3.1 Step2-2], we obtain a desired f∗D, and can choose a new t such that

t < (3−
√

2)/2. Then we repeat the preceding argument from Step 0. If we

arrive at Step 2-2 again, then we have 2/3 ≤ c ≤ 1 and ct+
√

2(1−c) < 1. �

Theorem 3.1, Theorem 3.8, and the result for the smooth case [K3 The-

orem 3.1] imply the following corollary in which the estimate is better than

the one in [OP, Theorem 2]

Corollary 3.9. Let X be a projective variety of dimension 3 with

only Gorenstein canonical singularities, and H an ample Cartier divisor.

Then |KX + mH| is free if m ≥ 4. Moreover, if (H3) ≥ 2, then |KX + 3H|
is also free.

We obtain the following corollary from Corollary 3.9 and [OP Theorem

1,3] ( cf. [OP Theorem I,II] ).

Corollary 3.10. Let (X,L) be a polarized canonical Calabi-Yau

threefolds. (1) |mL| gives a birational map when m ≥ 5. (2) |mL| is free if

m ≥ 4. (3) |mL| is very ample when m ≥ 10.
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