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Remarks on Traces of H1-functions Defined in

a Domain with Corners

By Norikazu Saito∗ and Hiroshi Fujita†

Abstract. The set of traces of H1(Ω)-functions on a part γ of
the boundary ∂Ω is considered, where Ω is a bounded domain in R

2

with a certain singularity, particularly, with corners at the end points
of γ. The aim of the present paper is to show that the set of all traces
of functions in H1(Ω) is equal algebraically and topologically to the
domain of a certain fractional power of minus Laplacian on γ with the
zero boundary condition. The result is expected to be of use for the
mathematical analysis of the DDM (domain decomposition method)
applied to such Ω.

1. Introduction and Main Results

The present paper is concerned with the relationship between the set

of boundary values of functions of a certain Sobolev class defined in a two-

dimensional domain Ω and fractional powers of an elliptic partial differential

operator on a part of the boundary of Ω. Although a considerable part of

our result may be said to be a new version of the known result (cf. Grisvard

[8]), our method of analysis, which is a combination of the spectral approach

and elementary transformations of Ω, could give a better prospect for some

generalizations, for instance, to the case of solenoidal vector fields mentioned

in Section 4. We also note that our result plays some foundational role

in analysis of the domain decomposition method ([4], [5], [12], [13]). We

shall later give a remark about this issue (Remark 1.4), which clarifies our

motivation.
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Figure 1(a). Example of Ω. Figure 1(b). Example of Ω.

In order to present the result and our approach as clearly as possible, we

restrict our attention to a simple situation. We consider a bounded domain

Ω in R
2, the xy-plane, and assume that a part γ of the boundary ∂Ω is a

line segment. Without loss of generality, we suppose that γ = {(x, y); |x| <
1, y = 0}. In addition, we put Γ = ∂Ω\γ and assume that Γ is a piecewise

smooth curve. Our interest lies in the case where Γ intersects γ transversally.

Admissible geometries of Ω are exemplified in Figure 1.

As for function spaces and their norms, we follow the notation of Lions-

Magenes [11]. The trace operator from H1(Ω) to H1/2(γ) is denoted by γ0,

and the boundary value (trace) γ0v of v ∈ H1(Ω) will be written conve-

niently as v|γ . The meaning of v|Γ is similar. Then we introduce a closed

subspace of H1(Ω) by setting

K1(Ω) = {v ∈ H1(Ω); v|Γ = 0}.

We recall that the usual H1(Ω)-norm is equivalent to the Dirichlet norm

‖∇v‖2
L2(Ω) =

{∫∫
Ω
|∇v|2dxdy

}1/2

=

{∫∫
Ω
(v2

x + v2
y)dxdy

}1/2

in K1(Ω) by virtue of the Poincaré inequality. Here subscripts mean partial

derivatives. The focus of the present paper is on the set of boundary values

v|γ of v ∈ K1(Ω).

The basic Hilbert space in our consideration is L2(γ). The usual L2(γ)

inner product and norm are written as (·, ·) and ‖ · ‖, respectively. The

symbol L denotes the minus Laplacian on γ with the zero Dirichlet boundary

condition. More precisely, L is the Friedrichs extension in L2(γ) of the
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symmetric operator −d2/dx2 defined in C∞
0 (γ). The domain D(L) of L is

H2(γ)∩H1
0 (γ). Since, as is well-known, L is a positive-definite, self-adjoint

operator, its fractional power Lα, for 0 < α < 1, can be defined in a standard

way by the spectral resolution. The domain D(Lα) of Lα forms a Hilbert

space equipped with the graph norm

‖f‖D(Lα) =
{
‖f‖2 + ‖Lαf‖2

}1/2
.

The purpose of this paper is to show that the set {v|γ ; v ∈ K1(Ω)} is

equal to D(L1/4) algebraically and topologically. That is, we are going to

prove

Theorem 1.1. The following two claims hold true:

A. (Trace). Let v ∈ K1(Ω) and put f = v|γ. Then we have f ∈ D(L1/4)

and

‖f‖D(L1/4) ≤ C‖v‖H1(Ω),(1.1)

where C is a positive constant depending only on Ω.

B. (Extension). Let f ∈ D(L1/4). Then there exists a function v ∈ K1(Ω)

such that v|γ = f and

‖v‖H1(Ω) ≤ C ′‖f‖D(L1/4),(1.2)

where C ′ is a positive constant depending only on Ω.

At this stage, we recall the following result due to Fujiwara [6] which

gives a concrete characterization of D(L1/4):

D(L1/4) =
{
f ∈ H1/2(γ);

∫
γ
ρ−1f2dx < ∞

}
,(1.3)

where ρ = ρ(x) stands for the distance from the end points of γ (i.e.,

ρ(x) = 1 − |x|). Let V denote the function space of the right-hand side

of (1.3). Then, in view of the closed graph theorem (e.g. Kato [10] or

Yosida [14]), the V -norm defined by

‖f‖V =
{
‖f‖2

H1/2(γ)
+

∫
γ
ρ−1f2dx

}1/2
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is equivalent to ‖f‖D(L1/4) in V . Combining Theorem 1.1 with Fujirawa’s

result, we have

Corollary 1.1. There exist positive constants C̃ and C̃ ′ depending

only on Ω such that the following two assertions hold true:

(i) For every v ∈ K1(Ω), we have f = v|γ ∈ V and ‖f‖V ≤ C̃‖v‖H1(Ω),

(ii) For every f ∈ V , there exists v ∈ K1(Ω) such that v|γ = f and

‖v‖H1(Ω) ≤ C̃ ′‖f‖V .

Remark 1.1. Theorem 1.1 (therefore Corollary 1.1) remains true if

L is replaced by a more general elliptic partial differential operator of the

second order. In fact, our theorem is still valid with an arbitrary regularly

accretive operator L whose domain is D(L) = H2(γ)∩H1
0 (γ) (Fujiwara [6]).

Concerning the definition of such operator, we refer to Kato [9].

Remark 1.2. Other characterizations of the space V are possible,

which are useful in some contexts. For instance,

• V is equal to the real interpolation space [H1
0 (γ), L2(γ)]1/2, which is

denoted by H
1/2
00 (γ) in Lions-Magenes [11],

• V = {f ∈ H1/2(γ); f̃ ∈ H1/2(∂Ω)}, where f̃ is the zero extension of

f onto ∂Ω (Grisvard [8]).

Remark 1.3. It should be noted that Corollary 1.1 is a particular case

of Theorem 1.5.2.3 in Grisvard [8]. Conversely, combining Grisvard’s result

with Fujiwara’s one, we can derive Theorem 1.1. However, as we mentioned

previously, our objective of this paper is to clarify a direct relationship

between the space {v|γ ; v ∈ K1(Ω)} and D(L1/4).

Remark 1.4. As was described above, results of this paper are of im-

portance in analysis of the domain decomposition method. Here we explain

this matter with the aid of an example. We consider the Poisson equation

−�u = g(1.4)

in a two-dimensional bounded domain D with the boundary condition

u = 0 on ∂D.(1.5)



Traces in a Domain with Corners 329

We divide the whole domain D into two disjoint subdomains D1 and D2

by a line segment γ which we call the artificial boundary. Then, under a

certain regularity assumption, the problem (1.4)(1.5) is equivalent to the

transmission problem:

{
−�u1 = g in D1, u1 = 0 on ∂D1\γ, u1 = µ on γ,

−�u2 = g in D2, u2 = 0 on ∂D2\γ, u2 = µ on γ,

where µ is chosen such that ∂u1/∂n1 = −∂u2/∂n2 (nj is the unit normal to

γ outgoing from Dj , j = 1, 2). Several iterative algorithms to obtain such µ

are proposed by several authors. See, for more detail, the monograph [12]

by A. Quarteroni and A. Valli. Consequently, the problem

�w = 0 in Dj , w = 0 on ∂Dj\γ, w = ξ on γ, (j = 1, 2)(1.6)

appears. As is well-known, if we are going to deal with this problem in

the framework of the H1(Ωj)-space, we must regard ξ as an element of V .

However, in view of Theorem 1.1, we can also regard ξ as an element of

D(L1/4). This allows us to apply some properties or materials related to

L, for example the eigenvalues and the eigenfunctions of L, to the domain

decomposition analysis. Furthermore, we believe that an analysis carried

out in this paper gives a better view of the domain decomposition analysis.

The proof of Theorem 1.1 is established in Sections 2 and 3. In Section

4, we present a corresponding result concerning the solenoidal vector fields.

The final section 5 is devoted to a remark on higher dimensional cases.

Acknowledgment . The authors wish to express their heartfelt thanks

to Professor Hisashi Okamoto for his valuable advise.

2. Proof of Theorem 1.1

2.1. Plan of the proof

First of all, we show Theorem 1.1 in the case where Ω is a rectangle

QT = γ × (0, T ) with T a parameter. Theorem 1.1 in this case is easily

proved by the Fourier expansion.

Next, the case of a trapezoid ET,b, T and b being parameters, is consid-

ered in Subsection 2.3. The results obtained there are used in Subsection
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2.4. The key point of analysis is to introduce a certain transformation from

ET,b to QT . This allows us to reduce the problem to the case of QT .

Subsection 2.4 is devoted to the situation that Ω lies in the upper half

plane. Namely, we shall prove Theorem 1.1 under this additional assump-

tion. In fact, the claim A, which appears shortly, concerning traces of

K1(Ω)-functions can be proved by taking a trapezoid ET,b including Ω. On

the other hand, the proof of the claim B below concerning K1(Ω)-extensions

of functions of D(L1/4) can be accomplished by taking a trapezoid ET,b

which is included in Ω.

The general case which is exemplified in Figure 1(b) will be considered

in Section 3.

2.2. The case of a rectangle

Let T be an arbitrary positive constant and QT be a rectangular domain

defined by QT = {(x, y);−1 < x < 1, 0 < y < T}. In this subsection, we

are going to show

Lemma 2.1. Theorem 1.1 is true if Ω = QT . In particular, we can

take C as unity.

Before proving this lemma, we review a characterization of Lα, 0 < α <

1, in terms of the eigenvalues and the eigenfunctions of L. Let {λn}∞n=1

be the set of eigenvalues of L and φn = φn(x) be the eigenfunction corre-

sponding to λn which is normalized as ‖φn‖ = 1. In the present case, we

actually have λn = n2π2/4, φn(x) = sinnπ(x − 1)/2. However, we use the

generic symbols λn and φn since it is convenient when we consider higher

dimensional cases. Then Lα can be expressed as




D(Lα) =
{
f =

∞∑
n=1

cnφn ∈ L2(γ);
∞∑
n=1

c2nλ
2α
n < ∞

}
,

Lαf =

∞∑
n=1

cnλ
α
nφn, for f =

∞∑
n=1

cnφn ∈ D(Lα) with cn ∈ R,

and the following equality holds good

‖Lαf‖ =
( ∞∑

n=1

c2nλ
2α
n

)1/2
, for f =

∞∑
n=1

cnφn ∈ D(Lα) with cn ∈ R.
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Proof of Lemma 2.1 A. (Trace). Let v ∈ K1(QT ). By the density

argument, we may assume that v is continuous in QT . According to this,

we can write v by using the Fourier series as follows

v(x, y) =
∞∑
n=1

an(y)φn(x), an(y) =

∫ 1

−1
v(x, y)φn(x)dx.

Thanks to this expression, we get

∫ T

0

∫ 1

−1

∂v

∂x
(x, y)2dxdy =

∞∑
n=1

λn

∫ T

0
an(y)2dy,

∫ T

0

∫ 1

−1

∂v

∂y
(x, y)2dxdy =

∞∑
n=1

∫ T

0
a′n(y)2dy,

where a′n(y) denotes dan(y)/dy. These yield

‖∇v‖2
L2(QT ) =

∞∑
n=1

λn

∫ T

0
an(y)2dy +

∞∑
n=1

∫ T

0
a′n(y)2dy.(2.1)

On the other hand, we have

λ1/2
n an(0)2 = −λ1/2

n

∫ T

0

d

dy

{
an(y)2

}
dy(2.2)

= −
∫ T

0
2λ1/2

n an(y)a′n(y)dy

≤
∫ T

0

{
λnan(y)2 + a′n(y)2

}
dy.

Then noting that v|γ = f =
∞∑
n=1

an(0)φn, by virtue of (2.1) and (2.2), we

deduce

‖L1/4f‖2 =
∞∑
n=1

λ1/2
n an(0)2 ≤ ‖∇v‖2

L2(QT ).

Thus we arrive at

‖f‖D(L1/4) ≤ ‖v‖H1(QT ).
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B. (Extension). Let f =
∞∑
n=1

cnφn ∈ D(L1/4) with cn ∈ R. First we put

w(x, y) =
∞∑
n=1

cne
−
√
λnyφn(x).(2.3)

Then, by elementary calculations, we get

∫ T

0

∫ 1

−1

∂w

∂x
(x, y)2dxdy ≤ 1

2

∞∑
n=1

c2n
√
λn,

∫ T

0

∫ 1

−1

∂w

∂y
(x, y)2dxdy ≤ 1

2

∞∑
n=1

c2n
√
λn.

Hence we have

‖∇w‖2
L2(QT ) ≤

∞∑
n=1

c2n
√
λn = ‖L1/4f‖2.(2.4)

On the other hand, it is easy to verify that w(±1, y) = 0, y > 0, holds.

Therefore, the function w satisfies all requested properties except for the

boundary condition on y = T .

Take a smooth function ζ = ζ(y), 0 ≤ y ≤ T , such that 0 ≤ ζ ≤ 1 and

ζ(y) =

{
1 (0 ≤ y ≤ T/4)

0 (T/2 ≤ y ≤ T ).

Then the function v = ζw ∈ K1(QT ) satisfies v|γ = ζ(0)w|γ = w|γ = f and

‖∇v‖2
L2(QT ) =

∫∫
QT

(ζ ′w)2dxdy +

∫∫
QT

ζ2|∇w|2dxdy

≤ max{ max
0≤y≤T

ζ ′(y)2, 1}‖w‖2
H1(QT ).

This proves the lemma. �

We conclude this subsection with another proof of the latter half of

Lemma 2.1 which adopts the semi-group generated by −L1/2.
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Another Proof of Lemma 2.1 B. (Extension). By using the semi-

group {e−y
√
L}y≥0, the function w = w(x, y) defined in (2.3) can be written

as

w(y) = e−y
√
Lf, (y > 0).

Here y �→ w(y) is regarded as an element in L2((0,∞);L2(γ)). Now we are

going to derive the inequality (2.4) with the aid of this expression. Noting

that w(y) ∈ D(L1/2) for y > 0 and f ∈ D(L1/4), we can calculate as

‖L1/2w(y)‖2 = (L1/4e−y
√
LL1/4f, L1/4e−y

√
LL1/4f)(2.5)

= (L1/2e−y
√
LL1/4f, e−y

√
LL1/4f)

= −1

2

d

dy
‖e−y

√
LL1/4f‖2.

Here we have made use of the fundamental property of the semi-group

d

dy
e−y

√
Lf = −L1/2e−y

√
Lf, (f ∈ L2(γ)).(2.6)

Integrating (2.5) over (0, T ), we obtain

∫ T

0
‖L1/2w(y)‖2 dy =

1

2

(
‖L1/4f‖2 − ‖e−T

√
LL1/4f‖2

)
≤ 1

2
‖L1/4f‖2.

This, together with (2.6), gives

∫∫
QT

(∂w
∂y

)2
dxdy =

∫ T

0
‖L1/2w(y)‖2 dy ≤ 1

2
‖L1/4f‖2.(2.7)

On the other hand, it is immediate to see from the definition of L1/2 that

‖L1/2w(y)‖2 =

∫ 1

−1

(∂w
∂x

)2
dx.

Therefore we have ∫∫
QT

(∂w
∂x

)2
dxdy ≤ 1

2
‖L1/4f‖2.(2.8)

By virtue of (2.7) and (2.8), we deduce

‖∇w‖2
L2(QT ) ≤ ‖L1/4f‖2. �
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Figure 2(a). Example of ET,b (b > 1). Figure 2(b). Example of ET,b (b < 1).

2.3. The case of a trapezoid

Our next geometry of Ω is a trapezoid defined by

ET,b =
⋃

0<η<T

{(x, y); |x| < θ(η), y = η},(2.9)

where T , b are arbitrary positive constants and

θ = θT,b(η) = 1 +
(b− 1)

T
η.

See Figure 2. We note that ET,1 = QT holds.

The goal of this subsection is to prove

Lemma 2.2. Theorem 1.1 is true if Ω = ET,b.

Remark 2.1. In what follows, Cp1,···,pm denote positive constants de-

pending only on parameters p1, · · · , pm. The value of Cp1,···,pm may change

in the same context.

Proof of Lemma 2.2 A. (Trace). Let v ∈ K1(ET,b), and put f =

v|γ . We consider the transformation Φ from QT onto ET,b defined by

Φ : (x, y) �→ (θ(y)x, y).

Obviously, Φ is bijective, and by putting ξ = θ(y)x and η = y, we have

dxdy = θ(y)−1dξdη ≤ max(1, b−1)dξdη.

We introduce the function ṽ ∈ K1(QT ) as the pullback of v by Φ, that is,

ṽ(x, y) = (v ◦ Φ)(x, y) = v(θ(y)x, y), (x, y) ∈ QT .
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Then, we can calculate as

‖∇ṽ‖2
L2(QT )(2.10)

=

∫∫
QT

{(∂ṽ
∂x

)2
+

(∂ṽ
∂y

)2}
dxdy

=

∫∫
QT

{
θ(y)2vξ(θ(y)x, y)

2

+ [xθ′(y)vξ(θ(y)x, y) + vη(θ(y)x, y)]
2
}
dxdy

≤ CT,b

∫∫
ET,b

[vξ(ξ, η)
2 + vη(ξ, η)

2]dξdη = CT,b‖∇v‖2
L2(ET,b)

.

On the other hand, since θ(0) = 1, we have f = ṽ|γ . Therefore, on account

of Lemma 2.1 A, ‖f‖D(L1/4) ≤ ‖ṽ‖H1(QT ) holds. This, together with (2.10),

yields

‖f‖D(L1/4) ≤ CT,b‖v‖H1(ET,b).

B. (Extension). Let f ∈ D(L1/4). Suppose that ṽ ∈ K1(QT ) is an ex-

tension of f into QT as Lemma 2.1 B. Then, we introduce the function

v ∈ K1(ET,b) as the pullback of ṽ by Ψ;

v(x, y) = (ṽ ◦ Ψ)(x, y) = ṽ(θ(y)−1x, y), (x, y) ∈ ET,b,

where Ψ is the inverse of Φ and is defined by

Ψ : (x, y) �→ (θ(y)−1x, y).

Since Ψ is bijective and

dxdy = θ(y)dξdη ≤ max(1, b)dξdη with ξ = θ(y)x, η = y,

in the same manner as in the derivation of the inequality (2.10), we can get

‖∇v‖L2(ET,b) ≤ CT,b‖∇ṽ‖L2(QT ).

This leads to

‖v‖H1(ET,b) ≤ CT,b‖f‖D(L1/4).

Moreover it is clear from the definition that v|γ = f . Hence we completes

the proof. �
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2.4. The case where Ω lies in the upper half plane

In this subsection, we consider the case in which{
Ω ⊂ R

2
+ = {(x, y); y > 0} and

Γ intersects the x-axis transversally.
(2.11)

By virtue of results proved in the preceding two subsections, we can

prove the following lemma.

Lemma 2.3. Under the additional assumption (2.11), Theorem 1.1 is

true.

Proof A. (Trace). Let v ∈ K1(Ω) and take a trapezoid which in-

cludes Ω, specifically, choose positive constants T and b subject to Ω ⊆ ET,b,

where ET,b is the trapezoid defined by (2.9). Then the zero extension ṽ of

v into ET,b belongs to K1(ET,b), and ‖ṽ‖H1(ET,b) = ‖v‖H1(Ω) holds. There-

fore, by virtue of Lemma 2.2 A, we deduce v|γ = ṽ|γ ∈ D(L1/4) and (1.1).

B. (Extension). Let f ∈ D(L1/4). We then take a trapezoid ET,b which

is included in Ω. Firstly, we consider the extension ṽ ∈ K1(ET,b) of f into

ET,b subject to ṽ|γ = f and ‖ṽ‖H1(ET,b) ≤ CT,b‖f‖D(L1/4). Such a function

ṽ can be chosen by Lemma 2.2 B. Next, let v denote the zero extension of

ṽ into Ω. Then v is the desired function. �

3. Proof of Theorem 1.1 (continued)

3.1. General cases

In this section, the proof of Theorem 1.1 in the general case is presented.

Firstly, we consider the claim B concerning extensions. We note that the

proof of Lemma 2.3 B in the preceding subsection remains to be valid with-

out the assumption (2.11). This means that we have already compeleted

the proof of the claim B.

We proceed to prove the claim A concerning traces. In doing so, we

introduce an auxiliary domain ST,b,β1,β2 ⊃ Ω, where T , b are parameters

and β1, β2 are some suitable functions. Specifically, we introduce smooth

functions β1 = β1(y) and β2 = β2(y), −T ≤ y ≤ 0, satisfying{
β1(0) = 1, β2(0) = −1, −∞ < β′

1(0) < 0, 0 < β′
2(0) < ∞,

−1 < β2(y) < β1(y) < 1, (−T ≤ y ≤ 0).
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Figure 3. Example of ST,b,β1,β2 .

Then put

ST,b,β1,β2 = {(x, y); |x| < b, |y| < T}\SC
T,b,β1,β2

,(3.1)

where

SC
T,b,β1,β2

=
⋃

−T≤η≤0

{(x, y); β2(η) ≤ x ≤ β1(η), y = η}.

See Figure 3. Then we have

Lemma 3.1. The claim A of Theorem 1.1 is true if Ω = ST,b,β1,β2.

The claim A of Theorem 1.1 immediately follows from the above lemma.

In fact, since T , b, β1 and β2 can be so taken that Ω ⊂ ST,b,β1,β2 holds, the

same proof of Lemma 2.3 A works. Therefore it remains to prove Lemma

3.1.

3.2. Proof of Lemma 3.1

The proof is done in the following four steps, I)-IV).

I) Let v ∈ K1(ST,b,β1,β2). Assume that there exists a function h ∈
K1(QT ) satisfying h|γ = v|γ and

‖h‖H1(QT ) ≤ CT,b,β1,β2‖v‖H1(ST,b,β1,β2
).(3.2)
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Figure 4. Example of FT,b.

Then, in view of Lemma 2.1 A, we establish the proof. Hence it is enough

to show the existence of the function h above. Actually, in the similar

manner as in the proof of Lemma 2.2 A, we would like to construct h as the

pullback v by some suitable transformation from QT to ST,b,β1,β2 . However,

a direct construction of h seems troublesome, and we prefer to take a detour.

Namely, we shall intermediately introduce functions h1 and h2 which are

defined in special classes FT,b and GT,b, respectively, and then define h in

terms of h2. Specifically, the remainder of the proof is the following:

II) definition of h1 as the pullback of v;

III) definition of h2 as the pullback of h1;

IV) definition of h as the pullback of h2.

II) Set σ(y) = 1 − (ε/T )y with ε = (b− 1)/2. Then we introduce

FT,b = {(x, y); |x| < b, |y| < T}\FC
T,b,(3.3)

where

FC
T,b = {(x, y); |x| ≤ σ(y), −T ≤ y ≤ 0}.

See Figure 4. We consider the transformation Φ1 of FT,b → ST,b,β1,β2 defined

by

Φ1 : (x, y) �→ (φ(x, y), y), (x, y) ∈ FT,b.
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Here we have put

φ(x, y) =




b− β1(y)

b− 1
(x− σ(y)) + b (x > 0, y < 0),

b− β2(y)

b− 1
(x− σ(y)) + b (x < 0, y < 0),

x (y ≥ 0).

Note that, for a fixed y0 in −T < y0 < 0, the line segment I(y0) =

{(x, y0); σ(y0) < x < b} is mapped onto the line segment {(x, y0); β1(y0) <

x < b} by the restriction of Φ1 on I(y0), and this mapping is bijective. The

corresponding fact is also true for the left hand side of FT,b. Therefore, Φ1

is bijective. On the other hand, noting that

1 ≤ ∂φ

∂x
(x, y) ≤ CT,b, (x, y) ∈ FT,b,

it is easy to verify that

dxdy =
(∂φ
∂x

)−1
dξdη ≤ dξdη with ξ = φ(x, y), η = y.(3.4)

Now the function h1 ∈ K1(FT,b) is defined as the pullback of v by Φ1 as

follows:

h1(x, y) = (v ◦ Φ1)(x, y) = v(φ(x, y), y), (x, y) ∈ FT,b.

Then, taking (3.4) in mind, in the same way as in the derivation of (2.10),

we can obtain

‖∇h1‖L2(FT,b) ≤ CT,b,β1,β2‖∇v‖L2(ST,b,β1,β2
).(3.5)

Moreover h1|γ = v|γ is obvious by the definition.

III) Next we deal with the following domain

GT,b =
⋃

0<η<T

{(x, y); |x| < κ(η), y = η},(3.6)

with

κ(η) =




2(b− 1)

T
η + 1 (0 < η < T/2),

b (T/2 ≤ η < T ).



340 Norikazu Saito and Hiroshi Fujita

Figure 5. Example of GT,b.

See Figure 5. We introduce the transformation Φ2 of GT,b → FT,b by

Φ2 : (x, y) �→ (x, ψ(x, y)), (x, y) ∈ GT,b.

Here we have put

ψ(x, y) =




2T

T − τ(x)
(y − T ) + T (1 + ε < x < b),

T − ω(x)

T − τ(x)
(y − T ) + T (1 < x ≤ 1 + ε),

y (−1 ≤ x ≤ 1)
T − ω(−x)

T − τ(−x)
(y − T ) + T (−1 − ε ≤ x < −1),

2T

T − τ(−x)
(y − T ) + T (−b < x < −1 − ε),

where

ω(x) =
T

ε
(1 − x), τ(x) =

T

2(b− 1)
(x− 1).

We note that Φ2 is continuous and bijective. In fact, for a fixed x0 in

1 + ε < x0 < b, the line segment J(x0) = {(x0, y); τ(x0) < y < T} is

mapped onto the line segment {(x0, y); ω(x0) < y < T} and this mapping

is bijective. The same is true if 1 < x0 < 1 + ε. We define the function

h2 ∈ K1(GT,b) as the pullback of h1 by Φ2;

h2(x, y) = (h1 ◦ Φ2)(x, y) = h1(x, ψ(x, y)), (x, y) ∈ GT,b.

Then, in the same way as in the derivation of (2.10), we can deduce

‖∇h2‖L2(GT,b) ≤ CT,b‖∇h1‖L2(FT,b).(3.7)
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In order to derive this inequality, we have made use of∣∣∣∣∂ψ∂x (x, y)

∣∣∣∣ ≤ CT,b, 1 ≤ ∂ψ

∂y
(x, y) < CT,b, (x, y) ∈ GT,b

and

dxdy =
(∂ψ
∂y

)−1
dξdη ≤ dξdη with ξ = x, η = ψ(x, y).

Moreover, by the definition, we have h2|γ = h1|γ .

IV) We now define h ∈ K1(QT ) by

h(x, y) = (h2 ◦ Φ0)(x, y) = h2(Θ(y)x, y), (x, y) ∈ QT ,

where Φ0 is defined in an obvious way and

Θ(y) =


 2

b− 1

T
y + 1 (0 < y < T/2),

b (T/2 ≤ y < T ).

Then we have

‖∇h‖L2(QT ) ≤ CT,b‖∇h2‖L2(GT,b)(3.8)

and h2|γ = h|γ . Then, evidently, h is the function that we want to get. In

fact, it follows from the definitions of h1, h2 and h that v|γ = h|γ and, by

virtue of (3.5), (3.7) and (3.8), we have (3.2). This completes the proof. �

4. The Case of Solenoidal Vector Fields

In this section, we present corresponding results for the space of sole-

noidal vector functions. The facts described here are of use in analysis of

the domain decomposition method for the Stokes equations (for instance,

see Saito [13]). We are concerned with the following function spaces:

V = D(L1/4) × D(L1/4);

Vσ =
{
f ∈ V;

∫
γ
f · n dx = 0

}
;

H1(Ω) = H1(Ω) ×H1(Ω);

H1
0(Ω) =

{
v ∈ H1(Ω); v = 0 on ∂Ω

}
;

K1(Ω) = {v ∈ H1(Ω); v = 0 on Γ};
K1

σ(Ω) =
{
v ∈ K1(Ω); div v = 0 in Ω

}
,
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where n stands for the unit outward normal to γ, i.e., n = {0,−1}, and f ·n
means the usual inner product of f and n in R

2. The following notation is

employed

‖f‖V = {‖f1‖2
D(L1/4)

+ ‖f2‖2
D(L1/4)

}1/2, for f = {f1, f2} ∈ V;

‖v‖H1 = {‖v1‖2
H1(Ω) + ‖v2‖2

H1(Ω)}1/2, for v = {v1, v2} ∈ H1(Ω).

Theorem 4.1. The following two claims hold true:

A. (Trace). Let v ∈ K1
σ(Ω) and put f = v|γ. Then we have f ∈ Vσ and

‖f‖V ≤ CΩ‖v‖H1 .(4.1)

B. (Extension). Let f ∈ Vσ. Then there exists a v ∈ K1
σ(Ω) such that

v|γ = f and

‖v‖H1 ≤ CΩ‖f‖V.(4.2)

The claim A is a direst consequence of Theorem 1.1 A and the Gauss

divergence theorem

0 =

∫∫
Ω

div v dxdy =

∫
γ
v · n dx.

On the other hand, we can prove the claim B by the standard device1 which

apply the following lemma due to I. Babuška and A.K. Aziz ([2]):

Lemma 4.1. For any F ∈ L2(Ω) satisfying

∫∫
Ω
F dxdy = 0,

there is a vector function u ∈ H1
0(Ω) such that div u = F in Ω and

‖u‖H1 ≤ CΩ‖F‖L2(Ω).(4.3)

1For example, we refer to Arnold et al. [1].
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Remark 4.1. Babuška and Aziz [2] proved this lemma when the

boudary ∂Ω is smooth. However, it is easy to extend it to the case of a

piecewise smooth boundary. For exmaple, we refer to Girault and Raviart

[7].

The claim B is proved as follows: Let f ∈ Vσ. Take a vector function

w ∈ K1(Ω) such that w|γ = f and

‖w‖H1 ≤ CΩ‖f‖V.

Putting F = −div w, we have∫∫
Ω
F dxdy = −

∫∫
Ω

div w dxdy = −
∫
γ
f · n dx = 0.

Therefore, by virtue of Lemma 4.1, there is a u ∈ H1
0(Ω) such that div u = F

in Ω and (4.3). We then put v = w + u. This is the desired function.

5. A Remark on the Case of Ω ⊂ R
N

When Ω is a domain in R
N , N ≥ 3, similar results hold true. Here

we shall state only a result about a simple geometry. Let γ be a bounded

domain in R
N−1 whose boundary ∂γ is sufficiently smooth, and let L be an

operator defined by

L = −� = −
( ∂2

∂x2
1

+ · · · + ∂2

∂x2
N−1

)
(5.1)

with D(L) = H2(γ) ∩H1
0 (γ).

We consider a finite cylinder

ΩT = {(x1, · · · , xN ); (x1, · · · , xN−1) ∈ γ, 0 < xN < T}

with T > 0. Then the same proof as of Lemma 2.1 still remains valid for

this case. Namely, we have

Theorem 5.1. The following two claims hold good:

A. (Trace). Let v ∈ K1(ΩT ) and put f = v|γ. Then we have f ∈ D(L1/4)

and

‖f‖D(L1/4) ≤ CT,γ‖v‖H1(ΩT ).
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B. (Extension). Let f ∈ D(L1/4). Then there exists a function u ∈
K1(ΩT ) such that u|γ = f and

‖v‖H1(Ω) ≤ CT,γ‖f‖D(L1/4).

Remark 5.1. If γ is not smooth, as long as the operator L in (5.1) can

be defined, Theorem 5.1 remains true. This is, for example, the case where γ

is a two-dimensional convex polygon (Grisvard [8]). Moreover, in this case,

we know the concrete characterization of D(L1/4); if γ is a two-dimensional

convex polygon, we have

D(L1/4) =
{
ξ ∈ H1/2(γ);

∫
γ
ρ−1
j ξ2dγ < ∞ (j = 1, · · · ,m)

}
,(5.2)

where the boundary ∂γ is written as ∂γ = ∪m
j=1Gj with the line segment

Gj and ρj stands for the distance from Gj . In fact, Zolesio [15] proved that

the real interpolation space [K2(γ), L2(γ)]3/4 coincides with the space of the

right-hand side of (5.2). Here we have put K2(γ) = {f ∈ H2(γ); f |∂γ = 0}.
This, together with the well-known relation D(L1/4) = [K2(γ), L2(γ)]3/4,

implies (5.2). However, the concrete characterization of D(L1/4) in a higher

dimensional domain γ with the non-smooth boundary seems to have room

for further study.
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