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The Lp-continuity of Wave Operators for

One Dimensional Schrödinger Operators

By Galtbayar Artbazar∗ and Kenji Yajima†

Abstract. We consider the wave operators W±u = s−
limt→±∞ eitHe−itH0u for a pair of Schrödinger operators H0 = − d2

dx2

and H = H0 + V (x) on the line R. We show that W± is
bounded in Lp(R) for any 1 < p < ∞ under the condition that∫
R1

(1 + |x|)|V (x)|γdx < ∞, where γ = 3 if V is of generic type and

γ = 4 if V is of exceptional type.

1. Introduction

We consider the Schrödinger operator H = H0 + V (x), H0 = − d2

dx2
on

the line R1. We assume that V is real valued and

∫
R1

(1 + |x|)|V (x)|dx < ∞.

Then the quadratic form in the Hilbert space L2(R1) defined by

Q(u) =

∫
R1

(|u′(x)|2 + V (x)|u(x)|2)dx, u ∈ D(Q) = H1(R1),

H1(R1) being the first order Sobolev space, is closed and bounded from

below, and Q defines a unique selfadjoint operator H. It is well-known that

the spectrum of H consists of the absolutely continuous spectrum [0,∞) and

the finite number of simple negative eigenvalues; the singular continuous

spectrum is absent; and the wave operators defined by the limits W±u =

s− limt→±∞ eitHe−itH0u exist. The wave operators W± are unitary from

L2(R2) onto the absolutely continuous spectral subspace L2
ac(H) for H and
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intertwine H0 and the absolutely continuous part Hac of H: W±H0W
∗
± =

HPac, where Pac is the projection onto L2
ac(H), hence

f(H)Pac = W±f(H0)W
∗
±(1.1)

for any Borel functions on R1. It follows that various mapping properties of

f(H)Pac may be derived from those of f(H0) if corresponding properties are

established for W± and W ∗
±. Note that f(H0) is the convolution operator

by the Fourier transform of the function f(ξ2).

When the spatial dimensions m ≥ 3, one of the authors has shown in

[11] and [12] that the wave operators W± are bounded in Lp(Rm) for all

1 ≤ p ≤ ∞ under suitable conditions on the smoothness and the decay at

infinity of V (x) and the additional spectral condition for H at zero energy,

viz. λ = 0 is not an eigenvalue nor resonance of H. In lower dimensions,

however, because of the high singularities at z = 0 of the free resolvent

R0(z) = (H0 − z)−1, the methods in [11] and [12] do not apply at least

directly and it has been an open question whether or not the wave operators

are bounded in Lp. The purpose of this paper is to give a positive answer to

this question for the one dimensional case and show that the wave operators

are bounded in Lp for any 1 < p < ∞ under suitable decay conditions at

infinity on the potential V . The two dimensional case is treated in the

accompanying paper ([13]) by employing techniques slightly different from

here.

For stating our main result, we introduce some notation. We denote

by f±(x, k) the solution of the Schrödinger equation −f ′′ + V f = k2f

which satisfies |f±(x, k) − e±ikx| → 0 as x → ±∞. We write [u(x), v(x)] =

u′(x)v(x) − u(x)v′(x) for the Wronskian of u and v. For γ ∈ R, L1
γ(R

1) is

the weighted L1-space:

L1
γ(R

1) = {u(x) :

∫
R1

(1 + |x|)γ |u(x)|dx < ∞}.

Definition 1.1. We say that the potential V is of generic type if

[f+(x, 0), f−(x, 0)] �= 0. We say V is of exceptional type otherwise.

Thus, the potential V is of exceptional type if and only if f+(x, 0) and

f−(x, 0) are linearly dependent, or the equation −f ′′ + V f = 0 admits
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a solution f(x) which converges to non-vanishing constants as x → ±∞.

Recall that 0 is not an eigenvalue of H (cf. e.g. [2]).

Theorem 1.2. Assume either V ∈ L1
3(R

1) and V is of generic type, or

V ∈ L1
4(R

1) and V is of exceptional type. Assume further that V ′ ∈ L1
2(R).

Then W± is a bounded operator in Lp(R1) for any 1 < p < ∞. More

precisely, the operator W± defined on Lp(R1) ∩ L2(R1) has an (unique)

extension which is bounded in Lp(R1).

The rest of the paper is devoted to the proof of the Theorem 1.2. We

shall prove the Theorem for W− only. The proof for W+ is similar. As is well

known and is easy to show, the free resolvent R0(k
2) = (H0−k2)−1, Im k >

0, has the integral kernel
eik|x−y|

−2ik
and R0(k

2) has a very strong singularity

at k = 0. This singularity prevents us from applying to one dimension

the method used for the higher dimensional cases, which is based on the the

resolvent estimates and the representation formulae for the terms appearing

in the perturbation expansion of W± as superpositions of compositions of

essentially one dimensional convolution operators. However, because of the

simplicity of structures in one dimension, we are able to circumvent this

difficulty by representing the wave operator W− in the form

W−f(x) =
1

2π

∫ ∞

−∞

(∫ ∞

−∞
φ(x, k)e−iykdk

)
f(y)dy(1.2)

using the generalized eigenfunctions φ(x, k) of H characterized by the

Lippmann-Schwinger equation, and by estimating the integral kernel∫ ∞

−∞
φ(x, k)e−iykdk by exploiting the detailed properties of φ(x, k).

In Section 2, we recall the derivation of the representation formula (1.2)

starting from Kato-Kuroda’s abstract theory of scattering [4] and prove

that the high energy part of the wave operator is bounded in Lp for any

1 < p < ∞. In the high energy region, the singularity at 0 is irrelevant and

the properties of φ(x, k) may be studied by the perturbation expansion,

viz. the iteration method for the Lippmann-Schwinger equation. We prove

that the low energy part is also bounded in Lp, 1 < p < ∞, in Section 4.

For studying φ(x, k) for small |k|, it is more convenient to use the solution

f±(x, k) mentioned above or the Jost functions m±(x, k) which are defined
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by m±(x, k) = e∓ikxf±(x, k). These functions are related by

φ(x,±k) = T (k)f±(x, k) = e±ixkT (k)m±(x, k), k > 0,

where T (k) is the transmission coefficient, and in Section 3, we study some

properties of m±(x, k), T (k) and the reflection coefficients Rj(k) which will

be used in Section 4. After submission of the paper, we are informed of a

work by Weder[10] where a similar result is obtained under slightly weaker

assumptions.

We shall use the following notation and convention. We write 〈x〉 =

(1 + |x|2)1/2. We denote the norm of u in Lp(R) by ‖u‖p. û(k) =
1√
2π

∫
R
e−ikxu(x)dx is the Fourier transform of u. For Banach spaces X

and Y , B(X,Y ) is the Banach space of all bounded operators from X to

Y . B(X) = B(X,X). Various constants whose specific values are not im-

portant are denoted by the same letter C and it may differ from one place

to another. The letter k stands for real numbers. Complex momentum will

not be used in this paper. When the region of integration is not specified,

the integral is understood to be taken on the whole line.

2. High Energy Estimate

We set φ0±(x, λ) = e±i
√
λx and c(λ) = 2−1/2λ−1/4(2π)−1/2 for λ > 0.

Then, {φ0±(x, λ), λ > 0} is a complete set of generalized eigenfunctions

of H0, −φ′′0±(x, λ) = λφ0±(x, λ), and, if we define F0(λ)f = (F0+(λ)f,

F0−(λ)f) ∈ C2 for f ∈ L1 ∩ L2 by

F0±(λ)f = c(λ)〈f, φ0±(·, λ)〉 = c(λ)

∫
R
f(x)φ0±(x, λ)dx(2.1)

and (F0f)(λ) = F0(λ)f , then F0 is a spectral representation of H0, viz. F0

extends to a unitary operator from L2(R) onto L2([0,∞),C2) and F0H0F
∗
0

is the multiplication operator by the variable λ. Moreover, in virtue of

Riemann-Lebesgue theorem, F0(λ), λ ≥ 0, is a strongly continuous family

of bounded operators from L1(R) to C2. A spectral representation for H

is constructed by a perturbation of F0. Under the assumption, the limiting

absorption principle holds and the resolvent R(z) = (H − z)−1 defined on

L1∩L2 extends to a bounded operator from L1 to L∞ and, as a B(L1, L∞)-

valued function of z ∈ C± = {z : ±Im z > 0}, admits a strongly continuous
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extensions to C± ∪ (0,∞). We denote the boundary values on (0,∞) from

the upper and the lower half planes by R±(λ) = lim
ε→+0

R(λ± iε) and define

for f ∈ L1 ∩ L2,

F (λ)f = (F0+(λ)(1 − V R−(λ))f, F0−(λ)(1 − V R−(λ))f)(2.2)

= (F+(λ)f, F−(λ)f) ∈ C2,

and (Ff)(λ) = F (λ)f . Then F is a spectral representation of the abso-

lutely continuous part Hac of H, viz. F extends to a unitary operator from

the absolutely continuous subspace L2
ac(H) for H onto L2([0,∞),C2) and

FHacF
∗ is the multiplication operator by the variable λ. In terms of the

spectral representations F0 and F , the wave operator W− is represented by

by

W−f = F ∗F0f =
∑
±

∫ ∞

0
F±(λ)∗F0,±(λ)fdλ.(2.3)

The equation (2.3) can be translated to the representation formula via the

generalized eigenfunctions of H as follows. Define

φ±(·, λ) = (1 − V R−(λ))∗φ0±(·, λ)(2.4)

Then, φ±(x, λ) satisfies −φ′′± + V (x)φ± = λφ± and we have from (2.1) and

(2.2) that

F±(λ)f = c(λ)〈f, φ±(·, λ)〉 = c(λ)

∫
R
f(x)φ±(x, λ)dx,(2.5)

and from (2.1), (2.3) and (2.5) that

W−f(x) =
∑
±

1

(2π)2
√
λ

∫ ∞

0
φ±(x, λ)

(∫
R
φ0±(y, λ)f(y)dy

)
dλ.(2.6)

Define now

φ0(x, k) =

{
φ0+(x, k2), k > 0,

φ0−(x, k2), k < 0,

φ(x, k) =

{
φ+(x, k2), k > 0,

φ−(x, k2), k < 0,

(2.7)

Then, φ0(x, k) = eikx, φ(x, k) = (1 − V R−(k2))∗eikx and (2.6) may be

rewritten as

W−f(x) =
1

2π

∫
R
φ(x, k)

(∫
R
e−ikyf(y)dy

)
dk.(2.8)
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Because (1− V R−(k2))∗ = (1 +R+
0 (k2)V )−1, the defining equation (2.4) of

φ(x, k) may be written as φ(x, k) = eikx−R+
0 (k2)V φ(x, k), which, when the

integral kernel is written explicitly, is nothing but the celebrated Lippmann-

Schwinger equation:

φ(x, k) = eixk +
1

2i|k|

∫
ei|k||x−y|V (y)φ(y, k)dy(2.9)

It is obvious that ‖R+
0 (k2)V ‖B(L∞) ≤

‖V ‖L1

2|k| and (2.9) may be solved

by a uniformly convergent series

φ(x, k) =
+∞∑
n=0

(−1)n
(
R+

0 (k2)V
)n

eikx(2.10)

for |k| > ‖V ‖L1/2. We set l1 = 4‖V ‖L1
2
+ 1 and l2 = 2l1.

Lemma 2.3. For |k| > l1 the generalized eigenfunction φ(x, k) can be

written in the form

φ(x, k) = eikx +
eikx

2ik
Φ+(x, k) +

e−ikx

2ik
Φ−(x, k)(2.11)

+
eixk

(2ik)2
Ψ+(x, k) +

e−ixk

(2ik)2
Ψ−(x, k),

where, for k > 0, Φ+(x,±k) = ±
∫ x

∓∞
V (y)dy and Φ−(x,±k) =

±
∫ ±∞

x
e2ikyV (y)dy, and Ψ± satisfy the estimate for α = 0, 1, 2:

|(∂/∂k)αΨ±(x, k)| ≤ C, x ∈ R, l1 < |k|.(2.12)

Proof. We prove the lemma for k > l1. The proof for k < −l1 is

similar. Decomposing −R+
0 (k2)V f into two parts, one with positive and

the other with negative phases:

1

2ik

∫
eik|x−y|V (y)f(y)dy =

eixk

2ik

∫ x

−∞
e−ikyV (y)f(y)dy

+
e−ixk

2ik

∫ ∞

x
eikyV (y)f(y)dy,
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we see that (−R+
0 (k2)V )neikx can be written as (2ik)−n(eixkΨ+,n(x, k) +

e−ixkΨ−,n(x, k)) where Ψ+,n and Ψ−,n are determined by the recurrent for-

mulae: Ψ+,0 = 1, Ψ−,0 = 0 and for n ≥ 0,

Ψ+,n+1(x, k) =

∫ x

−∞
V (z)

(
Ψ+,n(z, k) + Ψ−,n(z, k)e−2ikz

)
dz,(2.13)

Ψ−,n+1(x, k) =

∫ ∞

x
V (z)

(
Ψ+,n(z, k)e2ikz + Ψ−,n(z, k)

)
dz.(2.14)

We obtain (2.11) from (2.10) by setting Ψ±(x, k) =
∞∑
n=2

(2ik)2−nΨ±,n(x, k).

From the equations (2.13) and (2.14), we have ‖Ψ+,n+1‖∞ + ‖Ψ−,n+1‖∞ ≤
2‖V ‖L1(‖Ψ+,n‖∞ + ‖Ψ−,n‖∞), and hence ‖Ψ+,n‖∞ + ‖Ψ−,n‖∞ ≤ 2n‖V ‖nL1 .

Thus, (2.12) is satisfied for α = 0. We next show

|Ψ̇±,n(x, k)| ≤ (2‖V ‖L1
1
)n, |Ψ̈±,n(x, k)| ≤ (4‖V ‖L1

2
)n,(2.15)

n = 0, 1, . . . ,

by induction. Here and hereafter we denote Ψ̇±,n = ∂Ψ±,n/∂k, Ψ̈±,n =

∂2Ψ±,n/∂k
2 and etc.

When n = 0, (2.15) is obvious and we suppose that (2.15) is satisfied

upto n. Differentiating (2.13) and using the induction hypothesis, we esti-

mate

∣∣∣Ψ̇+,n+1(x, k)
∣∣∣ =

∣∣∣∣
∞∫
x

V (y)
(
Ψ̇+,n + Ψ̇−,ne

−2iky − 2iyΨ−,ne
−2iky

)
dy

∣∣∣∣
≤ 2‖V ‖L1

(
2‖V ‖L1

1

)n
+ 2‖yV ‖L1 (2‖V ‖L1)n

≤
(
2‖V ‖L1

1

)n+1
;

∣∣∣Ψ̈+,n+1(x, k)
∣∣∣

=

∣∣∣∣
+∞∫
x

V (y)
(
Ψ̈+,n +

(
Ψ̈−,n − 4iyΨ̇−,n − 4y2Ψ−,n

)
e−2iky

)
dk

∣∣∣∣
≤ 2‖V ‖L1

(
4‖V ‖L1

2

)n
+ 4‖yV ‖L1

(
2‖V ‖L1

1

)n
+ 4‖y2V ‖L1 (2‖V ‖L1)n ≤

(
4‖V ‖L1

2

)n+1
.
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Likewise, we obtain
∣∣∣Ψ̇−,n+1(x, k)

∣∣∣ ≤ (
2‖V ‖L1

1

)n+1
and

∣∣∣Ψ̈−,n+1(x, k)
∣∣∣ ≤(

4‖V ‖L1
2

)n+1
by estimating the derivatives of (2.14). Hence, (2.15) holds

for all n = 0, 1, . . . and the Lemma follows. �

We now state and prove the main result of this section. We let ϕ2(k) ∈
C∞(R) be such that ϕ2(k) = 1 for |k| ≥ l2, ϕ2(k) = 0 if |k| ≤ l1 and

0 ≤ ϕ2(k) ≤ 1 if l1 ≤ |k| ≤ l2, and consider the operator W−ϕ2(H0). It

follows from (2.8) that

W−ϕ2(H0)f(x) =
1

2π

∫
R
φ(x, k)ϕ2(k

2)

(∫
R
e−ikyf(y)dy

)
dk.(2.16)

Theorem 2.4. Let V and V ′ ∈ L1
2 and let l1 > 4‖V ‖L1

2
. Then for any

1 ≤ p ≤ ∞, W−ϕ2(H0) is bounded in Lp:

‖W−ϕ2(H0)f‖p ≤ Cp‖f‖p, f ∈ L2 ∩ Lp,(2.17)

where Cp > 0 is a constant.

Proof. By inserting (2.11) into (2.16) we decompose W−ϕ2(H0) into

five pieces:

W−ϕ2(H0)f(x) =
1√
2π

∫
R
eikxϕ2(k

2)f̂(k)dk(2.18)

+
1√
2π

∫
R

eikx

2ik
Φ+(x, k)ϕ2(k

2)f̂(k)dk

+
1√
2π

∫
R

e−ikx

2ik
Φ−(x, k)ϕ2(k

2)f̂(k)dk

+
1√
2π

∫
R

eixk

(2ik)2
Ψ+(x, k)ϕ2(k

2)f̂(k)dk

+
1√
2π

∫
R

e−ixk

(2ik)2
Ψ−(x, k)ϕ2(k

2)f̂(k)dk.

We denote the operators in the right of (2.18) by T1, . . . , T5, respectively,

and we show that they are bounded in Lp for any 1 < p < ∞ separately.

Because ϕ1(k
2) = 1 − ϕ2(k

2) ∈ C∞
0 (R), ϕ1(H0) is a convolution with a

rapidly decreasing function and T1 = I − ϕ1(H0) is bounded in Lp(R)
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for any 1 ≤ p ≤ ∞. We next estimate T4. Let f ∈ L1 ∩ L2. Since

(2ik)−2Ψ+(x, k)ϕ2(k
2) is integrable with respect to the variable k, we may

write by using Fubini’s theorem

T4f(x) =

∫
R
dy

(
1

2π

∫
ei(x−y)k

(2ik)2
ϕ2(k

2)Ψ+(x, k)dk

)
f(y)dy

≡
∫
R
K4(x, y)f(y)dy.

We apply integration by part to the integral in the parenthesis, which we

wrote K4(x, y), by using the identity

1

〈x− y〉2

(
1 − ∂2

∂k2

)
ei(x−y)k = ei(x−y)k.

In virtue of the decaying factor (2ik)−2 and (2.12) the boundary term does

not appear and

2π|K4(x, y)| =

∣∣∣∣∣ 1

〈x− y〉2
∫
ei(x−y)k

(
1 − ∂2

∂k2

)(
ϕ2(k

2)Ψ+(x, k)

(2ik)2

)
dk

∣∣∣∣∣
≤ C〈x− y〉−2.

If follows that T4 is bounded in Lp for any 1 ≤ p ≤ ∞. Entirely similarly,

we can show that T5 may be written as an integral operator T5f(x) =∫
R
K5(x, y)f(y) with the kernel K5(x, y) satisfying |K5(x, y)| ≤ C(1 + |x+

y|)−2, and T5 is also bounded in Lp for any 1 ≤ p ≤ ∞.

Recalling Φ+(x,±k) = ±
∫ x
∓∞ V (y)dy, k > 0, are independent of k, we

write

T2f(x) = V1(x)

∫
R
G(x− y)f(y)dy + V2(x)

∫
R
G(y − x)f(y)dy.

Here V1(x) =

x∫
−∞

V (z)dz and V2(x) =

∞∫
x

V (z)dz are bounded and G(t) =

1

2π

+∞∫
0

ϕ2(k
2)

2ik
eiktdk is integrable. Indeed, G(t) ∈ L2(R) because

ϕ2(k
2)/(2ik) ∈ L2(R) and integration by parts shows that G(t) is rapidly
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decreasing as t → ±∞. It follows by Young’s inequality that T2 is bounded

in Lp(R) for any 1 ≤ p ≤ ∞. T3 may be written as a sum:

T3f(x) =

∫
R
S+(x, y)f(y)dy +

∫
R
S−(x, y)f(y)dy

where S± are given by S±(x, y) =
±1

2π

∫ ±∞

0

ϕ2(k
2)

2ik

(∫ ±∞

x
V (z)e±2ikzdz

)
·

e∓ik(x+y)dk. Here integration by parts shows that

±∞∫
x

V (z)e±2ikzdz =
±i
2k

(
V (x)e±2ikx +

∫ ±∞

x
V ′(x)e±2ikzdz

)

and S±(x, y) may be written in the form

1

2π

∫ ∞

0

ϕ2(k
2)

(2k)2
V (x)e±ik(x−y)dy

+
1

2π

∫ ∞

0

ϕ2(k
2)

(2k)2

(∫ ±∞

x
V ′(z)e±2ikzdz

)
e±ik(x+y)dy.

The first term produces an operator of the form T2;

∫ ±∞

x
V ′(z)e±2ikzdz are

bounded with first two derivatives with respect to k by the assumption and

the second term produces an operator of the form T4. Hence T3 is also

bounded in Lp(R) for all 1 ≤ p ≤ ∞. This completes the proof of the

Theorem 2.4. �

3. Jost Function

From the Lippmann-Schwinger equation (2.9), we can read off the

asymptotic behavior of the generalized eigenfunction φ(x, k) as x → ±∞:

For k > 0,

φ(x, k) ∼



eikx + e−ikx

(
1

2ik

∫
eikyV (y)φ(y, k)dy

)
, x → −∞,

eikx
(

1 +
1

2ik

∫
e−ikyV (y)φ(y, k)dy

)
, x → ∞,

(3.1)

and for k < 0,

φ(x, k) ∼



eikx

(
1 − 1

2ik

∫
e−ikyV (y)φ(y, k)dy

)
, x → −∞,

eikx − e−ikx
(

1

2ik

∫
eikyV (y)φ(y, k)dy

)
, x → ∞.

(3.2)
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For relating the solutions φ(x, k) to f±(x, k), we recall some definitions

([2], [1], [5]). We do so in an ad hoc way as systematic derivation is not our

purpose here. Pairs of functions {f+(x, k), f+(x,−k)} and {f−(x, k),

f−(x,−k)} are both basis of the solution space of −f ′′ + V f = k2f . The

transmission Tj(k) and the reflection coefficients Rj(k), j = 1, 2, are defined

through the coefficients of the linear transformation relating these two bases

as follows:

f−(x, k) =
R1(k)

T1(k)
f+(x, k) +

1

T1(k)
f+(x,−k),(3.3)

f+(x, k) =
R2(k)

T2(k)
f−(x, k) +

1

T2(k)
f−(x,−k),(3.4)

By computing the Wronskians and by employing the relations f+(x, k) =

f+(x,−k) and etc. we easily see that T1(k) = T2(k) ≡ T (k), T (k) =

T (−k), Rj(k) = Rj(−k), j = 1, 2, and the matrix S(k) defined by S(k) =(
T (k) R2(k)

R1(k) T (k)

)
is unitary. S(k) is called the scattering matrix.

By comparing (3.1) and (3.2) with (3.3) and (3.4), we conclude

φ(x, k) =

{
T (k)f+(x, k), for k > 0;

T (−k)f−(x,−k), for k < 0,
(3.5)

and, defining the Jost functions by m±(x, k) = e∓ikxf±(x, k), we obtain

W−u(x) =
1

2π

∫
R

(∫ ∞

0
T (k){eik(x−y)m+(x, k)(3.6)

+ e−ik(x−y)m−(x, k)}dk
)
u(y)dy.

The function m± satisfies m′′
± ± 2ikm′

± = V m± and m±(x, k) → 1 as

x → ±∞ and is the unique solution of the Volterra equations

m±(x, k) = 1 ±
∫ ±∞

x
Dk(±(t− x))V (t)m±(t, k)dt,(3.7)

where Dk(x) =

∫ x

0
e2iktdt =

e2ikx − 1

2ik
. The following Lemma 3.5 is well

known and may be proved by solving (3.7) by iteration (see [2] and [3] for

the details).
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Lemma 3.5. Suppose V ∈ L1
1. Then m±(x, k) are of C1 -class for

k �= 0 and kṁ±(x, k) are continuous on R2. m± satisfy

|m±(x, k) − 1| ≤ CeC/|k|

|k| , k �= 0(3.8)

|m±(x, k) − 1| ≤ C
1 + max(∓x, 0)

1 + |k| , (x, k) ∈ R2.(3.9)

If V ∈ L1
2, then m±(x, k) are of C1-class on R2 and satisfy

|ṁ±(x, k)| ≤ C(1 + max(∓x, 0)|x|), (x, k) ∈ R2.(3.10)

The iteration method used for the proof of Lemma 3.5 in [2] applies

to the estimation of higher derivatives (∂/∂k)αm±(x, k) and we obtain the

following lemma.

Lemma 3.6. Let V ∈ L1
γ, γ ≥ 2. Then, (∂/∂k)nm±(x, k) exist for

0 ≤ n ≤ γ − 1, are continuous in (x, k) ∈ R2 and satisfy

|(∂/∂k)nm±(x, k)| ≤ C(1 + max(∓x, 0))n+1, (x, k) ∈ R2.(3.11)

Proof. We give the proof for m+ by induction. The proofs for m−
is similar. We prove the estimate (3.11) only assuming the existence of

the derivatives. The latter may be proved by replacing one of ∂/∂k by the

difference quotient �h in the formulae to appear and taking the limit h → 0.

Estimate (3.10) proves (3.11) for the case n = 1. Differentiating (3.7) by

using Leibniz’ formula, we have

∂nkm+(x, k) =

∫ ∞

x

n−1∑
j=0

nCj∂
n−j
k Dk(t− x)V (t)∂jkm+(t, k)dt

+

∫ ∞

x
Dk(t− x)V (t)∂nkm+(t, k)dt.

By the induction hypothesis and by the obvious estimate |(∂/∂k)jDk(x)| ≤
Cj |x|j+1, we have∫ ∞

x
|∂n−j

k Dk(t− x)V (t)∂jkm+(t, k)|dt(3.12)

≤ C

∫ ∞

x
|(t− x)n−j+1V (t)(1 + max(−t, 0))j+1|dt.
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When x > 0, it obvious that (3.12) ≤ C‖V ‖L1
γ
. If x < 0, then (3.12) is

bounded by

C

∫ ∞

0
|(t− x)n−j+1V (t)|dt+

∫ 0

x
|(t− x)n−j+1V (t)(1 − t)j+1|dt

≤ C‖V ‖L1
γ
(1 − x)n+1

for j = 0, . . . , n− 1. It follows that

|∂nkm+(x, k)| ≤ C(1 + max(−x, 0))n+1 +

∫ ∞

x
(t− x)|V (t)∂nkm+(t, k)|dt.

Dividing through by (1 + max(−x, 0))n+1 and noticing that

|t− x|
{

1 + max(−t, 0)

1 + max(−x, 0))

}n+1

≤ (|t| + 1)n+1, x < t < ∞,

we see h(x, k) =
|∂nkm±(x, k)|

(1 + max(0,−x))n+1
satisfies the integral inequality

|h(x, k)| ≤ C +

∫ ∞

x
(1 + |t|)n+1|V (t)h(t, k)|dt.(3.13)

Here (1 + |t|)n+1V (t) is integrable on R by the assumption and Gronwall’s

inequality implies |h(x, k)| ≤ C < ∞. The lemma follows. �

We set n±(x, k) =
m±(x, k) −m±(x, 0)

k
. The following lemma is obvious

from the previous Lemma 3.6.

Lemma 3.7. Suppose V ∈ L1
4. Then for each fixed x, (d/dk)jn±(x, k),

j = 0, 1, 2, exist, are continuous in (x, k) and obey the following estimates:

|(d/dk)jn±(x, k)| ≤ C〈x〉2+j , (x, k) ∈ R2, j = 0, 1, 2.(3.14)

On the scattering coefficients the followings is well known ([2], [1] and

[5]).

Lemma 3.8. Assume that V ∈ L1
2. Then:

1). T (k) and Rj(k) are bounded and continuous and as k → ±∞, T (k) =
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1 +O(1/|k|) and Rj(k) = O(1/|k|), j = 1, 2.

2). If V is of generic type, then, as k → 0, T (k) = αk + o(k), α �= 0 and

Rj(k) = −1 +O(k) for j = 1, 2.

3). If V is of exceptional type, then, as k → 0, we have, with a =

limx→−∞ f+(x, 0),

T (k) =
2a

1 + a2
+ o(1),

R1(k) =
1 − a2

1 + a2
+ o(1), R2(k) =

a2 − 1

1 + a2
+ o(1).

(3.15)

We need estimate the derivatives of the scattering coefficients. For this

we use the following integral representation:

1

T (k)
=

1

2ik
[f+(x, k), f−(x, k)] = 1 − 1

2ik

∫ +∞

−∞
V (t)m+(t, k)dk,(3.16)

R1(k)

T (k)
=

1

2ik
[f−(x, k), f+(x,−k)](3.17)

=
1

2ik

∫ +∞

−∞
e−2iktV (t)m−(t, k)dk,

R2(k)

T (k)
=

1

2ik
[f−(x,−k), f+(x, k)](3.18)

=
1

2ik

∫ +∞

−∞
e2iktV (t)m+(t, k)dk.

Thus, V is of generic type if and only if

∫ +∞

−∞
V (t)m+(t, 0)dt �= 0.

Lemma 3.9 (the generic case). Assume V ∈ L1
3 and generic. Then

T (k) and R1(k), R2(k) are of C2-class and

2∑
i=1


|(∂/∂k)iT (k)| +

2∑
j=1

|(∂/∂k)iRj(k)|


 ≤ C

1 + |k| . k ∈ R.(3.19)
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Proof. Set g(k) = k − 1

2i

∫ +∞

−∞
V (t)m+(t, k)dt so that T (k) =

k

g(k)
.

When V is generic, g(k) �= 0 for any k ∈ R. In virtue of (3.11), we may

differentiate g(k) under the integral sign and obtain

|ġ(k)| =
∣∣∣1 − 1

2i

∫
V (t)ṁ+(t, k)dt

∣∣∣ ≤ 1 + C

∫
|V (t)|(1 + t2)dt ≤ C(3.20)

|g̈(k)| =
∣∣∣ 1
2i

∫
V (t)m̈+(t, k)dt

∣∣∣ ≤ C

∫
|V (t)|(1 + |t|)3dt ≤ C.(3.21)

Then, it is clear that T (k) ∈ C2(R). From Lemma 3.8, 2) and |T (k)| ≤ 1

we have ∣∣∣∣T (k)

k

∣∣∣∣ =
∣∣∣∣ 1

g(k)

∣∣∣∣ ≤ M

1 + |k| , k ∈ R,(3.22)

where M > 0 is independent of k. Hence, by (3.20), (3.21), (3.22) and

|T (k)| ≤ 1:

|Ṫ (k)| =

∣∣∣∣ 1

g(k)
− kġ(k)

g2(k)

∣∣∣∣ ≤
∣∣∣∣ 1

g(k)

∣∣∣∣
(

1 +

∣∣∣∣ k

g(k)
˙g(k)

∣∣∣∣
)
≤ C1

1 + |k| .(3.23)

|T̈ (k)| =

∣∣∣∣ 1

g(k)

∣∣∣∣
(∣∣∣∣ ġ(k)g(k)

∣∣∣∣+
∣∣∣∣k(g̈g − 2ġ2)

g2(k)

∣∣∣∣
)

≤ C

∣∣∣∣ 1

g(k)

∣∣∣∣ ≤ C1

1 + |k| .(3.24)

Using (3.18) and (3.16), we write R2(k) in the form

R2(k) = T (k)

(
1 +

∫ +∞

−∞
Dk(t)V (t)m+(t, k)dt

)
− 1, k ∈ R.

Recall that Dk(x) satisfies |(∂/∂k)jDk(x)| ≤ Cj |x|j+1. It is easy to see that

Dk(x) also satisfies the estimate |k(∂/∂k)jDk(x)| ≤ Cj |x|j , j = 0, 1, 2 as

well. Then, we estimate

|Ṙ2(k)| ≤ |Ṫ (k)| ·
∣∣∣∣1 +

∫
Dk(t)V (t)m+(t, k)dt

∣∣∣∣
+

∣∣∣∣T (k)

k

∣∣∣∣
∫ ∣∣∣ (kḊk(t)m+(t, k) + kDk(t)ṁ+(t, k)

)
V (t)

∣∣∣dt
≤ C

1 + |k|

(
1 +

∫
(1 + |t|)2|V (t)|dt

)
≤ C

1 + |k|‖V ‖L1
2
.

Likewise we have |R̈2(k)| ≤
C3

1 + |k|‖V ‖L1
3
. The proof for R1(k) is similar. �



236 Galtbayar Artbazar and Kenji Yajima

Lemma 3.10 (the exceptional case). Suppose V is of exceptional type

and V ∈ L1
4. Then, T (k), R1(k) and R2(k) are of C2-class and are bounded

with their first two derivatives.

Proof. If V is exceptional,

∫ +∞

−∞
V (t)m+(t, 0)dt = 0 and in virtue of

(3.16)

1

T (k)
= 1 − 1

2i

∫
V (t)

m+(t, k) −m+(t, 0)

k
dt = 1 − 1

2i

∫
V (t)n+(t, k)dt.

Write p(k) ≡ 1 − 1

2i

∫
V (t)n+(t, k)dt. It follows, in virtue of Lemma 3.7

and the assumption V ∈ L1
4, that p(k) is of C2-class and p, ṗ and p̈ are

bounded. Since T (k) is continuous on the line R, p(k) �= 0 for k ∈ R and,

taking into account of the behavior at infinity of T (k) in Lemma 3.8, we see

that C ≤ |T (k)| for some C > 0. Hence, T (k) = p−1(k) is of C2-class and

is bounded with derivatives.

Using (3.18) and the identity

∫
V (t)m+(t, 0)dt = 0, we write R2(k) as

follows.

R2(k) = T (k)

∫
e2ikt

2ik
V (t)m+(t, k)dt− T (k)

2ik

∫
V (t)m+(t, 0)dt

= T (k)

∫
Dk(t)V (t)m+(t, k)dt+

T (k)

2i

∫
V (t)n+(t, k)dt.

The integrals
1

2i

∫
V (t)n+(t, k)dt and

∫
Dk(t)V (t)m+(t, k)dt and their

derivatives have been estimated above and are bounded. Hence, the result

on T (k) which has just been proved above implies that Ṙ2(k) and R̈2(k) are

bounded. The proof for R1(k) is similar. �

4. The Low Energy Estimate

In this section we prove the following

Theorem 4.11. Assume either V ∈ L1
3(R) and V is of generic type,

or V ∈ L1
4(R) and V is of exceptional type. Then, W−ϕ1(H0) is a bounded

operator in Lp for any 1 < p < ∞.

‖W−ϕ1(H0)f‖p ≤ Cp‖f‖p, f ∈ L2 ∩ Lp,(4.1)
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where Cp > 0 is a constant.

Proof. We recall the representation formula (3.6) and write

W−ϕ1(H0) as an integral operator

W−ϕ1(H0)u(x) =
1

2π

∫
R
K(x, y)u(y)dy(4.2)

with the integral kernel

K(x, y) =

∫ ∞

0
ϕ1(k

2){eik(x−y)T (k)m+(x, k)(4.3)

+ e−ik(x−y)T (k)m−(x, k)}dk.

We have proven in Section 3 that m±(x, k) and its derivatives upto second

order are uniformly bounded for ±x > 0. The following equations which

may be derived from (3.3)

T (k)m−(x, k) = R1(k)e
2ikxm+(x, k) +m+(x,−k),(4.4)

T (k)m+(x, k) = R2(k)e
−2ikxm−(x, k) +m−(x,−k).(4.5)

make it possible to estimate T (k)m±(x, k) in the complementary set ∓x > 0.

Taking this into account, for x > 0, we replace T (k)m−(x, k) by (4.4) in(4.3)

and write

K(x, y) =

∫ ∞

0
eik(x−y)ϕ1(k

2)T (k)m+(x, k)dk(4.6)

+

∫ ∞

0
e−ik(x−y)ϕ1(k

2)m+(x,−k)dk

+

∫ ∞

0
eik(x+y)ϕ1(k

2)R1(k)m+(x, k)dk.

Likewise, for x < 0, we replace T (k)m+(x, k) by (4.5) in (4.3) and write

K(x, y) =

∫ ∞

0
e−ik(x−y)ϕ1(k

2)T (k)m−(x, k)dk(4.7)

+

∫ ∞

0
eik(x−y)ϕ1(k

2)m−(x,−k)dk

+

∫ ∞

0
e−ik(x+y)ϕ1(k

2)R2(k)m−(x, k)dk.
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It is clear from the boundedness of T (k) and Rj(k) and Lemma 3.5 that

K(x, y) is bounded. Note that K is the integral kernel of W−ϕ1(H0) which

is a fortiori bounded in L2(R). For proving the Theorem 4.11, therefore, in

virtue of Marcinkiewicz’ interpolation theorem, it suffices to show that the

integral operator K with the integral kernel K(x, y) and its adjoint operator

K∗ are weak-type (1, 1), viz. maps L1(R) into weak-L1(R) continuously:

sup
λ>0

λ|{x : |Kf(x)| ≥ λ}| ≤ C‖f‖1, sup
λ>0

λ|{x : |K∗f(x)| ≥ λ}| ≤ C‖f‖1.

For this purpose we show that the functions given by the integrals in the

right hand sides (4.6) (or (4.7)) may be written as linear combinations of

functions of the following forms:

G+(x, y)

1 + (x+ y)2
,

G−(x, y)

1 + (x− y)2
,

H+(x)(x+ y)

1 + (x+ y)2
,

H−(x)(x− y)

1 + (x− y)2
,(4.8)

and those with H±(x) being replaced by H±(y), where G±(x, y) and H±(x)

are bounded in x > 0 (resp. x < 0). Once this is shown, then we are done

because:

• If M ∈ L∞(R), then integral operator

∫
M(x, y)

1 + |x± y|2 f(y)dy is

bounded in Lp(R1) for all 1 ≤ p ≤ ∞.

• The multiplication operator by a bounded function and the reflection

operator f(x) → f(−x) are continuous both in L1 and in weak-L1

spaces.

• The integral operator with integral kernel (x− y)/(1 + (x− y)2) is of

weak type (1, 1) because (x − y)/(1 + (x − y)2) satisfies Hörmander

condition:

∫
|x−y|≥2δ

∣∣∣∣ x− y

(1 + (x− y)2)
− x− y′

1 + (x− y′)2

∣∣∣∣ dx ≤ C, |y−y′| < δ, δ > 0.

As a prototype we show that the integral K3(x, y) =∫ ∞

0
eik(x+y)ϕ1(k

2)R1(k)m+(x, k)dk may be written as a linear combination

of the functions of the forms in (4.8). The proof for other integrals in (4.6)
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and (4.7) are similar and are left to the readers. By integration by parts,

we have

K3(x, y) =

∫ ∞

0

(
1 − i(x+ y)(∂/∂k)

1 + (x+ y)2
eik(x+y)

)
ϕ1(k

2)R1(k)m+(x, k)dk

=
K3(x, y)

1 + (x+ y)2
+

i(x+ y)

1 + (x+ y)2
ϕ1(0)R1(0)m+(x, 0)

+
i(x+ y)

1 + (x+ y)2

∫ ∞

0
eik(x+y)(∂/∂k)(ϕ1(k

2)R1(k)m+(x, k))dk

The first term
K3(x, y)

1 + (x+ y)2
is of the type of the first function in (4.8) because

K3(x, y) is bounded as noticed above; the second summand
i(x+ y)

1 + (x+ y)2
ϕ1(0)R1(0)m+(x, 0) is of the type of third function of (4.8)

because m+(x, 0) is bounded in x > 0. We apply the integration by parts

again to the last term in the right hand side and write it in the form

−1

1 + (x+ y)2
{(∂/∂k)(ϕ1(k

2)R1(k)m+(x, k))}|k=0

+
−1

1 + (x+ y)2

∫ ∞

0
eik(x+y)(∂/∂k)2{ϕ1(k

2)R1(k)m+(x, k)}dk.

It is easy to check by using Lemma 3.5 and Lemma 3.7 ∼ Lemma 3.10 that

this is again of the form G+(x, y)(1 + (x + y)2)−1 with G+(x, y) bounded

for x > 0. This completes the proof of Theorem 4.11 and hence of the main

Theorem 1.2. �
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