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Laplace Approximations for Sums of Independent

Random Vectors – The Degenerate Case –

By Song Liang

Abstract. Let Xi, i ∈ N, be i.i.d. B-valued random variables,
where B is a real separable Banach space. Let Φ : B → R be a
mapping. The problem is to give an asymptotic evaluation of Zn =
E (exp (nΦ(

∑n
i=1 Xi/n))), up to a factor (1 + o(1)). Bolthausen [1]

studied this problem in the case that there is a unique point maximiz-
ing Φ−h, where h is the so-called entropy function, and the curvature
at the maximum is nonvanishing, (these two will be called as nonde-
generate assumptions), with some central limit theorem assumption.
Kusuoka-Liang [5] studied the same problem, and succeeded in elim-
inating the central limit theorem assumption, but the nondegenerate
assumptions are still left. In this paper, we study the same problem
not assuming the central limit theorem assumption and the nondegen-
erate assumptions.

1. Introduction

Let B be a real separable Banach space with norm || · ||, µ be a proba-

bility measure on B. We assume that the smallest closed affined space that

contains suppµ is B. Moreover we assume

(A1) There exists a constant C1 > 0, such that∫
B

exp(C1||x||2)µ(dx) < ∞.

Let Φ : B → R be a three times continuously Fréchet differentiable

function satisfying the following:

(A2) There exist constants C2, C3 > 0, such that

Φ(x) ≤ C2 + C3||x||, for any x ∈ B.

Let Xn and Sn, n ∈ N, be the random variables defined by Xn(x) = xn,

Sn(x) =
∑n

k=1 xk, x = (x1, x2, x3, · · ·) ∈ BN. Let Zn =

Eµ⊗∞
[
exp(nΦ(Sn

n ))
]
.
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By Donsker-Varadhan [3], we have that

lim
n→∞

1

n
logZn = sup

x∈B
{Φ(x) − h(x)} ≡ λ,

where h is the entropy function of µ:

h(x) = sup
φ∈B∗

{φ(x) − logM(φ)} ,

B∗ is the dual Banach space of B and M(φ) =
∫
B eφ(x)µ(dx), φ ∈ B∗. Let

V = {x ∈ B : Φ(x) − h(x) = λ}.

For each x ∈ V , let νx be the probability measure on B defined by

νx(dy) = exp(DΦ(x)(y))µ(dy)/M(DΦ(x)).(1.1)

Then by the fact that x ∈ V maximizes Φ − h, we have∫
B
yνx(dy) = x,(1.2)

h(x) = DΦ(x)(x) − logM(DΦ(x)).

Let νx,0 be the 0-centered νx, that is,

dνx,0(y) = dνx(y + x), ∀y ∈ B,

and also, let Γx be the covariance on B∗ defined by

Γx(φ, ψ) =

∫
B
φ(y)ψ(y)νx,0(dy), ∀φ, ψ ∈ B∗.

Then by the fact that x ∈ V maximizes Φ − h, we have

Γx(φ, φ) ≥ D2Φ(x)(Sxφ, Sxφ), ∀φ ∈ B∗,

where Sx : B∗ → B is defined as Sxφ ≡
∫
B φ(y)yνx,0(dy),∀φ ∈ B∗. Define

Ax ≡ {φ ∈ B∗ : Γx(φ, φ) = D2Φ(x)(Sxφ, Sxφ)}.
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Let Hx ≡ (B∗Γx)∗, where B∗Γx means the completion of B∗ with respect

to Γx, denote by (·, ·)x the inner product in Hx, and || · ||x the norm of it.

Then Sx(B
∗) ⊂ Hx, ψ(Sxφ) = Γx(φ, ψ) for any φ, ψ ∈ B∗, and

||Sxφ||2x = sup{ψ(Sxφ)2; Γx(ψ,ψ) ≤ 1}
= sup{Γx(φ, ψ)2; Γx(ψ,ψ) ≤ 1}
= Γx(φ, φ).

So (Sxφ, Sxψ)x = Γx(φ, ψ) for any φ, ψ ∈ B∗.
Also, as it has been shown in Kusuoka-Liang [5, Proposition 2.1, Propo-

sition 2.2], Hx can be regarded as a dense subset ofB, and for any continuous

bilinear function A : B × B → R, A
∣∣∣
Hx×Hx

is a Hilbert-Schmidt function

for any x ∈ V .

Moreover, we assume the following:

(A3) There exist constants C4 > 0 and δ0 > 0, and a continuous bilinear

symmetric function K : B ×B → R, such that

|D3Φ(x)(y, y, y)| ≤ C4||y||K(y, y), for any y ∈ B and x ∈ Vδ0 ,

where Vδ0 denotes the δ0-neighborhood of V in B.

Our result in this paper is the following:

Theorem 1.1. Under the above assumptions, there exist an integer

d ≥ 1 and a d-dimensional manifold M embedded in B with Riemann metric

such that V ⊂ M and Sx(Ax) ⊂ TxM for any x ∈ V , and there exist

continuous functions x : M → B, a : M → [0,∞) and b : M → (0,∞) such

that

(1) x(·) ∈ C2(M), and x(z) = z for any z ∈ V ,

(2) a(z) = 0 if and only if z ∈ V , and

(3) for any bounded continuous function f : B → R,

Eµ⊗∞
[
f(
Sn

n
) exp(nΦ(

Sn

n
))

]
= enλn

d
2

∫
M
f(x(z))b(z)e−n·a(z)vM (dz)(1 + o(1))

as n → ∞, where vM is the volume element on M .

See Lemma 5.2 for the precise expression of a(z) and b(z), z ∈ M .
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As a corollary, we get the following:

Corollary 1.2. Under the above assumptions, there exist an integer

d ≥ 1 and a d-dimensional manifold M embedded in B with Riemann metric

such that V ⊂ M and Sx(Ax) ⊂ TxM for any x ∈ V , and there exist

continuous functions a : M → [0,∞) and b : M → (0,∞) such that

(1) a(z) = 0 if and only if z ∈ V , and

(2)

Zn = enλn
d
2

∫
M
b(z)e−n·a(z)vM (dz)(1 + o(1))

as n → ∞, where vM is the volume element on M .

Chiyonobu [2] studied the same problem under a certain central limit

theorem assumption.

Acknowledgement . The author would like to express her deepest grat-

itude to Professor Kusuoka for his helpful suggestions and advice.

2. Manifold Reflecting Singularities

In this section, we will show the existance of the manifold M with the

properties described in our main theorem.

The following is well-known (c.f. Bolthausen [1]):

Lemma 2.1. (1) h is non-negative, lower semicontinuous and convex,

and is strongly convex on {x ∈ B : h(x) < ∞}.
(2) h(x) = 0 if and only if x =

∫
yµ(dy).

(3) For all r ∈ [0,∞), {x : h(x) ≤ r} is compact in B.

(4) limr→∞ inf |x|≥r h(x)/r = ∞.

As in Kusuoka-Tamura [6] and Chiyonobu [2], we can show that

Lemma 2.2. V is a non-void compact set.

Proof. First take zn ∈ B,n = 1, 2, · · ·, such that Φ(zn) − h(zn) → λ,

where λ is the maximum of Φ − h, as defined in section 1. Then zn is

bounded by assumption (A2) and Lemma 2.1 (4). So h(zn) is bounded. By
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Lemma 2.1 (3), this implies that there exists a subsequence nk and a z ∈ B,

such that znk
→ z, as k → ∞. So

Φ(z) − h(z) ≥ lim sup
k→∞

(Φ(znk
) − h(znk

)) = λ,

which implies that z ∈ V . Therefore, V is non-void.

The same argument implies that V is compact. �

Definition 2.3. We say that M is a manifold reflecting singularities

if M is a submanifold embedded in B, V ⊂ M , and Sx(Ax) ⊂ TxM for each

x ∈ V .

In the rest of this section, we will show that a manifold reflecting singu-

larities exists.

Define Γ̃(φ, ψ) ≡
∫
B φ(y)ψ(y)e

1
2
C1||y||2µ(dy)/

∫
B e

1
2
C1||y||2µ(dy), φ, ψ ∈

B∗. Note that this is finite for all ϕ,ψ ∈ B∗ by the assumption (A1).

Proposition 2.4. There exists a common constant C > 0 independent

to z ∈ V , such that

Γz(φ, φ) ≤ C2Γ̃(φ, φ), for any φ ∈ B∗ and any z ∈ V.

Proof. From the compactness of V and the continuity of DΦ, there

exist constants K1 > 0 and K2 > 0 such that ||z|| ≤ K1 for all z ∈ V and

|DΦ(z)(y)| ≤ K2||y|| for all z ∈ V and all y ∈ B. So from the fact that

eK2·x− 1
2
C1·x2 ≤ e

K2
2

2C1 for all x ∈ R, we have that for all z ∈ V ,

∫
B
φ(y)2eDΦ(z)(y)µ(dy) ≤ e

K2
2

2C1

∫
B
φ(y)2e

1
2
C1||y||2µ(dy).

Therefore

Γz(φ, φ) =

∫
B φ(y)2eDΦ(z)(y)µ(dy)∫

B eDΦ(z)(y)µ(dy)
− φ(z)2

≤
∫
B φ(y)2eDΦ(z)(y)µ(dy)∫

B eDΦ(z)(y)µ(dy)
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≤ e
K2

2
2C1 ·

∫
B φ(y)2e

1
2
C1||y||2µ(dy)∫

B e
1
2
C1||y||2µ(dy)

·
∫
B e

1
2
C1||y||2µ(dy)∫

B eDΦ(z)(y)µ(dy)

≤ e
K2

2
2C1 ·

∫
B e

1
2
C1||y||2µ(dy)∫

B e−K2||y||µ(dy)
· Γ̃(φ, φ), for all φ ∈ B∗.

This gives our assertion with C ≡
(
e

K2
2

2C1 ·
∫
B e

1
2
C1||y||2µ(dy)/

∫
B e−K2||y||µ(dy)

)1/2

. �

Let H̃ ≡ (B∗Γ̃
)∗, then H̃ is a Hilbert space, Let S̃ : B∗ → B be given by

S̃φ ≡
∫
B
φ(y)ye

1
2
C1||y||2µ(dy)/

∫
B
e

1
2
C1||y||2µ(dy), φ ∈ B∗.

Then we have (S̃φ, S̃ψ)
H̃

= Γ̃(φ, ψ) for any φ, ψ ∈ B∗. The norm of H̃

will be denoted by || · ||
H̃

in this paper. H̃ is seperable, and by the same

method as in Kusuoka-Liang [5, Proposition 2.1, Proposition 2.2], H̃ can be

considered as a dense subset of B, and for any continuous bilinear function

A : B ×B → R, A
∣∣∣
H̃×H̃

is a Hilbert-Schmidt function.

From Proposition 2.4 and the definition of || · ||
H̃

,

||ϕ||H∗
z
≤ C||ϕ||

H̃∗ , for any ϕ ∈ H̃∗ and any z ∈ V.(2.1)

Therefore

||x||
H̃

≤ 1

C
||x||Hz , for any x ∈ Hz and any z ∈ V.(2.2)

That is, Hz can be embedded into H̃ naturally for each z ∈ V .

Let {en}∞n=1 be a complete orthonormal base of H̃∗ with {en} ⊂ B∗.
Then {S̃en}∞n=1 is the corresponding base of H̃. Let Qn : B → B be

defined by Qn(z) =
∑n

i=1 ei(z)S̃ei,∀z ∈ B, ∀n ∈ N. Then Qn : B →
B,n ∈ N, is a sequence of bounded operators that satisfies the following:

dim(ImageQn) = n,Q2
n = Qn, Qn+1Qn = QnQn+1 = Qn for any n ∈ N

and ∪n∈NQn(B) is dense in B.

Lemma 2.5. There exists an integer d1 such that for any d ≥ d1,

PdDΦ
∣∣∣
V

is injective, where Pd : B∗ → B∗ denotes the adjoint operator

of Qd.
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Proof. It is obvious that the lemma can be seen if we can show that

Pd1DΦ
∣∣∣
V

is injective for d1 ∈ N large enough. Suppose not. Then for

each d ∈ N, there exist z1
d, z

2
d ∈ V such that PdDΦ(z1

d) = PdDΦ(z2
d) , and

z1
d �= z2

d. Combining with (1.1) and (1.2), we see that DΦ(z1
d) �= DΦ(z2

d).

Since V is compact, we may assume that z1
d → z1 and z2

d → z2 as

d → ∞. Then DΦ(z1)(Qdu) = DΦ(z2)(Qdu) for any u ∈ B and any d ∈ N.

So DΦ(z1) = DΦ(z2), hence z1 = z2. We write this same point by z ∈ V .

Let f : B∗ → B∗ be defined by f(φ) = DΦ(
∫
B yeφ(y)µ(dy)/M(φ)), φ ∈

B∗. Then f is continuous, Fréchet differenable, and f(DΦ(w)) = DΦ(w)

for any w ∈ V . Therefore,

DΦ(z1
d) −DΦ(z2

d)

= f(DΦ(z1
d)) − f(DΦ(z2

d))

= Df(DΦ(z))(DΦ(z1
d) −DΦ(z2

d))

+

∫ 1

0

[
Df(DΦ(z2

d) + t(DΦ(z1
d) −DΦ(z2

d))) −Df(DΦ(z))
]

(DΦ(z1
d) −DΦ(z2

d))dt.

Let ϕd =
DΦ(z1

d)−DΦ(z2
d)

||DΦ(z1
d
)−DΦ(z2

d
)||H∗

z

, which is well-defined since DΦ(z1
d) �=

DΦ(z2
d). Then from the fact that z1

d → z, z2
d → z as d → ∞, we see

from the equality above that ϕd − Df(DΦ(z))ϕd → 0 in H∗
z as d → ∞.

From the fact z ∈ V , we have that for any ψ ∈ B∗,

Df(DΦ(z))(ψ)

=
d

dt

(
DΦ

(∫
B yeDΦ(z)(y)+tψ(y)µ(dy)∫
B eDΦ(z)(y)+tψ(y)µ(dy)

))∣∣∣∣∣
t=0

= D2Φ

(∫
B yeDΦ(z)(y)µ(dy)∫
B eDΦ(z)(y)µ(dy)

)(∫
B ψ(y)yeDΦ(z)(y)µ(dy)∫

B eDΦ(z)(y)µ(dy)

−
∫
B yeDΦ(z)(y)µ(dy)∫
B eDΦ(z)(y)µ(dy)

·
∫
B ψ(y)eDΦ(z)(y)µ(dy)∫

B eDΦ(z)(y)µ(dy)
, ·

)

= D2Φ(z)

(∫
B
ψ(y)yνz(dy) − ψ(z)z, ·

)
= D2Φ(z)

(∫
B
ψ(y)yνz,0(dy), ·

)
= D2Φ(z)(Szψ, ·).
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Since D2Φ(z)
∣∣∣
Hz×Hz

is a compact operator, we see from the above that

there exists a ϕ ∈ H∗
z such that ϕd → ϕ in H∗

z . Then ||ϕ||H∗
z

= 1 since

||ϕd||H∗
z

= 1. On the other hand, ϕd(Qdy) = 0 for all y ∈ B, which implies

that ϕ ≡ 0. This makes a contradiction. �

Lemma 2.6. There exists an integer d2 large enough such that for any

d ≥ d2, any z ∈ V and any x ∈ B with x �= 0,

x−
∫
B

(
D2Φ(z)(x, y) −D2Φ(z)(x,Qdy)

)
yνz,0(dy) �= 0.

Proof. If not, then for any n ∈ N, there exist dn ∈ N, zn ∈ V and

xn �= 0, such that

xn =

∫
B

(
D2Φ(zn)(xn, y) −D2Φ(zn)(xn, Qdny)

)
yνzn,0(dy)(2.3)

= Szn

(
(I − Pdn)D2Φ(zn)(xn, ·)

)
.

From the compactness of V , by taking subsequence if necessary, we may

assume that zn converge in V , i.e., zn → z ∈ V as n → ∞. Note that

xn ∈ Hzn ⊂ H̃ for any n ∈ N, so by dividing the both side by ||xn||H̃ if

necessary, we may assume that ||xn||H̃ = 1. Therefore, from the fact that

D2Φ(z)
∣∣∣
H̃×H̃

is a compact operator, by taking subsequence if necessary, we

may assume that D2Φ(z)(xn, ·) converge in H̃∗. On the same time, from the

assumption that ||xn||H̃ = 1, we have that ||xn|| is bounded for n ∈ N. So

from the continuity of D2Φ, D2Φ(zn)(xn, ·) is also convergent in H̃∗. This

implies that (I − Pdn)D2Φ(zn)(xn, ·) → 0 in H̃∗ as n → ∞.

So from (2.3) and (2.1), ||xn||Hzn
= ||(I − Pdn)D2Φ(zn)(xn, ·)||H∗

zn
→ 0

as n → ∞. By (2.2), this implies that ||xn||H̃ → 0 as n → ∞. This

contradicts with the assumption that ||xn||H̃ = 1 for all n ∈ N. �

Lemma 2.7. There exists an integer d3 ∈ N large enough such that for

any d ≥ d3, any z ∈ V , ϕ ∈ Az and ϕ �= 0 imply QdSzϕ �= 0.

Proof. As the way of proof is similar to that of Lemma 2.6, we only

give the sketch here.
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Same as in the proof of Lemma 2.6, we only need to show that for d3 ∈ N

large enough, for any z ∈ V , ϕ ∈ Az and ϕ �= 0 imply Qd3Szϕ �= 0.

If not, then for any d ∈ N, there exist zd ∈ V and ϕd ∈ Azd with

ϕd �= 0 but QdSzdϕd = 0. Without loss of generality, we can assume, by

the compactness of V , that there exists a z ∈ V , such that zd → z. Also,

we can assume that ||ϕd||H̃∗ = 1. Since ϕd ∈ Azd , it can be seen that

ϕd = D2Φ(zd)(Szdϕd, ·). By Proposition 2.4, ||Szdϕ||H̃ ≤ 1. So from the

fact that D2Φ(z)
∣∣∣
H̃×H̃

is a compact operator and D2Φ(·) is continuous,

ϕd = D2Φ(zd)(Szdϕd, ·) converges in H̃∗. Write the limit as ϕ0. Then

||ϕ0||H̃∗ = 1. On the other hand, Qdϕ0 = 0 for any d ∈ N, so ϕ0 = 0. This

is a contradiction. �

Let d be the maximum of d1, d2, and d3, the integers chosen in Lemma

2.5, Lemma 2.6, and Lemma 2.7, respectively. Let W ≡ ImagePd, let || · ||W
and distW (·, ·) denote the norm and the distance on it, respectively.

Theorem 2.8. There exist a neighborhood U of {PdDΦ(z), z ∈ V } in

W small enough, and a map X(·) : U → B, which is a C2-diffeomorphism.

In particular, there is a manifold reflecting singularities.

Proof. The proof will be divided into several steps.

Step 1. Let f : B ×W → B be defined by

f(z, ϕ) = z −
∫
yeDΦ(z)(y)−DΦ(z)(Qdy)+ϕ(y)µ(dy)∫
eDΦ(z)(y)−DΦ(z)(Qdy)+ϕ(y)µ(dy)

, ∀z ∈ B, ∀ϕ ∈ W.

Then f is twice continuously differentiable with respect to z, and

f(z, PdDΦ(z)) = 0 for any z ∈ V . For any z ∈ V , let ϕz ≡ PdDΦ(z).

Then by Lemma 2.6, for any x ∈ B not equal to 0,

Dzf(z, ϕ)(x)
∣∣∣
ϕ=ϕz

= x−
(∫

B

(
D2Φ(z)(x, y) −D2Φ(z)(x,Qdy)

)
yeDΦ(z)(y)µ(dy)∫

B eDΦ(z)(y)µ(dy)

−
∫
B yeDΦ(z)(y)µ(dy)∫
B eDΦ(z)(y)µ(dy)
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·
∫
B

(
D2Φ(z)(x, y) −D2Φ(z)(x,Qdy)

)
eDΦ(z)(y)µ(dy)∫

B eDΦ(z)(y)µ(dy)

)

= x−
∫
B

(
D2Φ(z)(x, y) −D2Φ(z)(x,Qdy)

)
yνz,0(dy)

�= 0.

So by implicit function theorem, for any z ∈ V , there exists Uϕz , a neigh-

borhood of ϕz in W , and a unique twice continuously differentialbe function

Gz(ϕ) defined on Uϕz , such that f(Gz(ϕ), ϕ) = 0 on ϕ ∈ Uϕz .

Step 2. In this step, we will show that the functions {Gz}z∈V are con-

sistent if the neighborhoods {Uϕz}z∈V are taken small enough.

For any z ∈ V , let Uz,n ≡ Uϕz ∩BW (PdDΦ(z), 1
n), where Uϕz is the one

chosen before, and BW (ϕ, ε) means the neighborhood of ϕ in W with radius

ε. Let Un = ∪z∈V Uz,n. We only need to show that there exists an integer

n ∈ N large enough, such that for any z, w ∈ V , Gz and Gw are consist

on Uz,n ∩ Uw,n. If not, then for any n ∈ N, there exist zn, wn ∈ V and

ϕn ∈ Uzn,n ∩ Uwn,n, such that Gzn(ϕn) �= Gwn(ϕn). From the compactness

of V , by taking subsequence if necessary, we may suppose that there exist

z, w ∈ V , such that zn → z, wn → w. If z �= w, then Uzn,n ∩ Uwn,n = ∅
for n large enough from Lemma 2.5 and the continuity of DΦ. This is a

condradiction. So we have z = w. From the definition of Uzn,n, for any

ε > 0, there exists a integer N ∈ N, such that for any n > N , ϕn ∈
BW (PdDΦ(z), ε). As has been shown in step 1, if we take ε > 0 small

enough, there exists only a unique Gz(ϕn) that satisfies f(Gz(ϕn), ϕn) = 0.

This makes a contradiction since f(Gzn(ϕn), ϕn) = 0, f(Gwn(ϕn), ϕn) = 0

and Gzn(ϕn) �= Gwn(ϕn) from the assumption.

Step 3. Now, we have shown that there exist U , a neighborhood of

{PdDΦ(z); z ∈ V } in W , and a twice continuously differentiable function

X(ϕ) on U , such that f(X(ϕ), ϕ) = 0 on ϕ ∈ U , i.e.

X(ϕ) =

∫
B yeDΦ(X(ϕ))(y)−DΦ(X(ϕ))(Qdy)+ϕ(y)µ(dy)∫
B eDΦ(X(ϕ))(y)−DΦ(X(ϕ))(Qdy)+ϕ(y)µ(dy)

,

and that X(ϕz) = z for any z ∈ V . Differentiating the both side at ϕz, and

we have for any z ∈ V and any ψ ∈ W ,

DX(ϕz)(ψ)(2.4)
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=

∫
B

(
D2Φ(z)(DX(ϕz)(ψ), y)

−D2Φ(z)(DX(ϕz)(ψ), Qdy) + ψ(y)
)
yνz(dy)

−
(
D2Φ(z)(DX(ϕz)(ψ), z)

−D2Φ(z)(DX(ϕz)(ψ), Qdz) + ψ(z)
)
z

=

∫
B

(
D2Φ(z)(DX(ϕz)(ψ), y)

−D2Φ(z)(DX(ϕz)(ψ), Qdy) + ψ(y)
)
yνz,0(dy).

So if DX(ϕz)(ψ) = 0, then
∫
B ψ(y)yνz,0(dy) = 0, hence

∫
B ψ(y)2νz,0(dy) =

0. Therefore from the assumption that the smallest closed affined space

that contains suppµ is B, we get ψ = 0. That is, DX(ϕz)(ψ) �= 0 whenever

ψ �= 0. So we can take U small enough one more time again if needed, such

that ϕ �→ X(ϕ), ϕ ∈ U , is a local diffeomorphism.

Step 4. In this step, we will show that we can take the neighborhood

U small enough such that ϕ �→ X(ϕ), ϕ ∈ U , is an injective, which accom-

panying with the step 3 implies that ϕ �→ X(ϕ), ϕ ∈ U , is not only a local

diffeomorphism, but also a diffeomorphism.

If not, for any m ∈ N, there exist ϕm, ψm ∈ W , ϕm �= ψm, X(ϕm) =

X(ψm), and distW (ϕm, Ṽ ) + distW (ψm, Ṽ ) → 0 as m → ∞, where Ṽ ≡
{PdDΦ(z); z ∈ V }. Ṽ is compact in W , so by taking subsequence if nec-

essary, we may assume that there exist ϕ∞, ψ∞ ∈ Ṽ , such that ϕm → ϕ∞
and ψm → ψ∞ in W as m → ∞. So X(ϕ∞) = X(ψ∞) from the continuity

of the map ϕ �→ X(ϕ). Accompanying with the fact that ϕ∞, ψ∞ ∈ V , this

implies that ϕ∞ = ψ∞. From the fact that ϕ �→ X(ϕ), ϕ ∈ U is a local

diffeomorphism, this implies that there exists a M ∈ N large enough, such

that for all m ≥ M , X(ϕm) �= X(ψm). This makes a contradiction.

Step 5. Let M = {X(ϕ);ϕ ∈ U}. In the following, we will check that

M satisfies all of the conditions in Definition 2.3. The first is obvious from

the fact that ϕ �→ X(ϕ), ϕ ∈ U is a diffeomorphism. The second is true

since z = X(PdDΦ(z)) for any z ∈ V . For the third one, for any u ∈ Az,

we have u = D2Φ(z)(Szu, ·), where the operator Sz is defined in section 1.

So

Szu = Sz(D
2Φ(z)(Szu, ·)) − Sz(PdD

2Φ(z)(Szu, ·)) + Sz(Pdu).
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Combining this with (2.4), we see that both Szu and DX(ϕz)(Pdu) (where

ϕz ≡ PdDΦ(z) as before) are solutions of

X = Sz((I − Pd)D
2Φ(z)(X, ·)) + Sz(Pdu).(2.5)

So from the uniqueness of the solution of the equatily (2.5), which comes

from Lemma 2.6, Szu = DX(ϕz)(Pdu). Hence Szu ∈ TzM for any z ∈ V

and any u ∈ Az. This completes the proof of the fact that M is a manifold

reflecting singularities.

This finishes the proof of the theorem. �

3. Resolution of Singularties

In this section, we construct a family of functions Φz defined on B,

z ∈ M ∩ Vδ, for δ > 0 small enough, such that Φz, z ∈ M ∩ Vδ, are not

degenerate.

First, we show the following

Lemma 3.1. There exist an integer k ∈ N large enough and a δ ∈
(0, δ0) such that Qk

∣∣∣
M∩Vδ

is injective, where δ0 is the one in the assumption

(A3), and for any ϕ ∈ {PdDΦ(z), z ∈ V } and ψ ∈ W , QkDX(ϕ)(ψ) = 0

implies ψ = 0.

Proof. If not, then for any n ∈ N, there exist xn, yn ∈ M ∩ V1/n,

such that Qnxn = Qnyn, but xn �= yn. It is easy to see that by taking

subsequence if necessary, we can assume that there exist x, y ∈ M ∩ V such

that xn → x and yn → y as n → ∞. Qnxn = Qnyn for any n ∈ N implies

that x = y. That is, xn and yn converge to a same limit as n → ∞. As

xn, yn ∈ M , by the definition of M , there exist ϕn, ψn ∈ W , such that

xn = X(ϕn) and yn = X(ψn), n ∈ N. ϕn−ψn

||ϕn−ψn||W ∈ W is bounded, so by

taking subsequence if necessary, we can assume that it converges. Also, xn
and yn converge as n → ∞ implies that ϕn and ψn converge as n → ∞, too.

Note that ||xn − yn||M = ||ϕn − ψn||W for any n ∈ N. Therefore,

wn ≡ xn − yn
||xn − yn||

=

∫ 1

0
DX(ψn + t(ϕn − ψn))

(
ϕn − ψn

||ϕn − ψn||

)
dt

converges as n → ∞. Write the limit as w ∈ M . Then as done before, from

the assumption, ||w||M = 1, but Qnw = 0 for any n ∈ N, hence w = 0.

This is a contradiction.
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For the second part, we use the contradiction, too. If not, then for any

n ∈ N, there exist a ϕn ∈ {PdDΦ(z), z ∈ V }, and a ψn ∈ W (≡ ImPd) with

ψn �= 0, such that QnDX(ϕn)(ψn) = 0. Without loss of generality, we may

assume that ||ψn||W = 1, n ∈ N. So, by taking subsequence if necessary,

we may assume that ψn converges to a ψ ∈ W in W . Hence, ||ψ||W = 1.

On the same time, from the compactness of V , by taking subsequence if

necessary, we may assume that there exists a ϕ ∈ {PdDΦ(z), z ∈ V }, such

that ϕn → ϕ. So, by the continuity, we get that QnDX(ϕ)(ψ) = 0 for every

n ∈ N. Therefore, DX(ϕ)(ψ) = 0, which implies that ψ = 0. This makes a

contradiction. �

Obviously, we can assume that k ≥ d. (Otherwise, just take max{k, d}
as the new k. ) For any z ∈ M ∩ Vδ, let

Φz(y) = Φ(y) − 1

2
||Qky −Qkz||2ImQk

, for any y ∈ B,

where || · ||ImQk
means the norm of ImQk as considered as a subspace of

H̃. Let λz denote the supremum of Φz − h. (Note that λz ≤ λ for all

z ∈ M ∩ Vδ.) Then we have the following

Proposition 3.2. The function z �→ λz, z ∈ M ∩ Vδ is continuous.

Proof. During and after the proof of this proposition, we will use,

with a little abuse of the notation, ||QkV −Qkz||ImQk
to denote the distance

between QkV and Qkz under || · ||ImQk
.

Take an arbitrary ε > 0 and fix it for a while. Now, note that for any

z ∈ M ∩ Vδ, λz ≥ λ− 1
2 ||QkV −Qkz||2ImQk

. So for any y ∈ B with ||QkV −
Qky||ImQk

≥ 2||QkV −Qkz||ImQk
+ ε, which implies ||Qky −Qkz||ImQk

≥
||QkV −Qkz||ImQk

+ ε, we have

Φ(y) − h(y) − 1

2
||Qky −Qkz||2ImQk

≤ λ− 1

2

(
||QkV −Qkz||ImQk

+ ε
)2

< λ− 1

2
||QkV −Qkz||2ImQk

≤ λz.

Write az ≡ 2||QkV −Qkz||ImQk
+ ε. Then we get

λz = sup{Φ(y) − h(y) − 1

2
||Qky −Qkz||2ImQk

; ||QkV −Qky||ImQk
≤ az}.
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Therefore, for any z1, z2 ∈ M ∩ Vδ,

λz1 − λz2 = sup
{
Φ(y) − h(y) − 1

2
||Qky −Qkz1||2ImQk

;

||QkV −Qky||ImQk
≤ az1 ∨ az2

}
− sup

{
Φ(y) − h(y) − 1

2
||Qky −Qkz2||2ImQk

;

||QkV −Qky||ImQk
≤ az1 ∨ az2

}
≤ sup

{
− 1

2
||Qky −Qkz1||2ImQk

+
1

2
||Qky −Qkz2||2ImQk

;

||QkV −Qky||ImQk
≤ az1 ∨ az2

}
.

Now, our proposition can be easily seen from the definition of || · ||ImQk
. �

For any z ∈ M ∩ Vδ, let Kz ≡ {x; Φz(x) − h(x) = λz}. (Note that if

z ∈ V , then Kz = {z} by Lemma 3.1.) As in Bolthausen [1], Kz is compact

and non-empty. For any xz ∈ Kz, the probability measure νxz
z defined by

νxz
z (dy) = eDΦz(xz)(y)µ(dy)/M(DΦz(xz))

has mean xz. Let νxz
z,0 be the 0-centered νxz

z , and let Γxz
z be the inner product

on B∗ defined by

Γxz
z (φ, ψ) =

∫
B
φ(y)ψ(y)νxz

z,0(dy), φ, ψ ∈ B∗.

Let Hxz
z ≡ (B∗Γxz

z )∗, and Sxz
z ϕ ≡

∫
ϕ(y)yνxz

z,0(dy), as done before. Then

as in Kusuoka-Liang [5], we can show that D2Φz(xz)
∣∣∣
Hxz

z ×Hxz
z

is a Hilbert-

Schmidt function for any z ∈ M ∩ Vδ and any xz ∈ Kz. Also, we can show

the following

Proposition 3.3. Choose zn ∈ M ∩ V1/n with zn → z ∈ V . Then for

any xn ∈ Kzn, xn → z.

Proof. Choose any subsequence of the natural numbers N, for the

sake of simplicity, we write it as n, too. Since xn maximizes Φzn − h,

Φ(xn) − h(xn) − 1

2
||Qkxn −Qkzn||2ImQk

≥ λ− 1

2
||Qkz −Qkzn||2ImQk

.



Laplace Approximations for Sums of Independent Random Vectors 209

So ||Qkxn −Qkzn||H̃ = ||Qkxn −Qkzn||ImQk
≤ ||Qkz −Qkzn||ImQk

→ 0 as

n → ∞. Therefore, Qkxn → Qkz in B as n → ∞, and lim infn→∞ (Φ(xn)−
h(xn)) ≥ λ. By doing in the same way as in the proof of Lemma 2.2, there

exist a subsequence xnj and a x ∈ V such that xnj → x. Qkxnj → Qkx,

too, hence Qkx = Qkz, this and Lemma 3.1 imply that x = z, i.e., xnj → z

as j → ∞. This is true for any subsequence of N.

This finishes the proof of our proposition. �

Proposition 3.4. All of the eigenvalues of D2Φz(xz)
∣∣∣
Hxz

z ×Hxz
z

are

smaller than 1, if δ > 0 is small enough.

Proof. From the continuity showed in Proposition 3.3, we only need

to show that for any z ∈ V and any ϕ ∈ B∗ with ϕ �= 0,

D2Φ(xz)(S
xz
z ϕ, Sxz

z ϕ)(3.1)

− D2
(

1

2
||Qk(·) −Qkz||2ImQk

)
(xz)(S

xz
z ϕ, Sxz

z ϕ) < ϕ(Sxz
z ϕ).

But here, from the definition of || · ||ImQk
,

||Qky −Qkz||2ImQk
=

k∑
i=1

(ei(y) − ei(z))
2 ,

so

D
(
||Qk(·) −Qkz||2ImQk

)
(y)(u) = 2

k∑
i=1

(ei(y) − ei(z)) ei(u)

for any y and any u in B. For any z ∈ V , since xz = z, the above implies that

DΦz(xz) = DΦ(xz) = DΦ(z), so from the definition of νxz
z , νxz

z,0, Γxz
z , Hxz

z ,

and Sxz
z at the beginning of this section, we see that these quantities coincide

with νz, νz,0, Γz, Hz, and Sz, the ones defined in section 1, respectively.

Moreover,

D2
(

1

2
||Qk(·) −Qkz||2ImQk

)
(z)(u, u) =

k∑
i=1

ei(u)2 = ||Qku||2ImQk
(≥ 0).

So (3.1) is equivalent to

D2Φ(z)(Szϕ, Szϕ) − ||QkSzϕ||2ImQk
< ϕ(Szϕ).(3.2)
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The inequality above is obviously if ϕ /∈ Az, from the definition of Az. For

ϕ ∈ Az, by Lemma 2.7, QdSzϕ �= 0, hence QkSzϕ �= 0, too, so

D2Φ(z)(Szϕ, Szϕ) − ||QkSzϕ||2ImQk

= ϕ(Szϕ) − ||QkSzϕ||2ImQk

< ϕ(Szϕ).

That is, (3.2) still holds.

This gives our assertion. �

Lemma 3.5. δ > 0 can be chosen small enough, such that for any

z ∈ M ∩Vδ, there is a unique xz attains the maximum of Φz −h. Moreover,

the map z �→ xz, z ∈ M ∩ Vδ is in C2.

Proof. First, we show the uniqueness. If not, for any n ∈ N, there

exist zn ∈ M ∩ V1/n and x1
n, x

2
n ∈ B, such that x1

n �= x2
n and both of them

maximize Φzn − h. By taking subsequence if necessary, we can assume that

there exists a z ∈ V , such that zn → z as n → ∞. Also, by Proposition 3.3,

we can assume that x1
n and x2

n converge to z, too, by taking subsequence if

necesary.

From the definition of x1
n and x2

n, we have that∫
B yeDΦzn (x1

n)(y)µ(dy)∫
B eDΦzn (x1

n)(y)µ(dy)
= x1

n,∫
B yeDΦzn (x2

n)(y)µ(dy)∫
B eDΦzn (x2

n)(y)µ(dy)
= x2

n.

Let fn(x) ≡
∫
B
yeDΦzn (x)(y)µ(dy)∫

B
eDΦzn (x)(y)µ(dy)

, then as before,

x2
n − x1

n = fn(x2
n) − fn(x1

n)

= Dfn(z)(x2
n − x1

n)

+

∫ 1

0

[
Dfn(x1

n + t(x2
n − x1

n)) −Dfn(z)
]
(x2

n − x1
n)dt.

But

Dfn(x)(u) =

∫
B D2Φzn(x)(u, y)yeDΦzn (x)(y)µ(dy)∫

B eDΦzn (x)(y)µ(dy)
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−
∫
B yeDΦzn (x)(y)µ(dy)∫
B eDΦzn (x)(y)µ(dy)

·
∫
B D2Φzn(x)(u, y)eDΦzn (x)(y)µ(dy)∫

B eDΦzn (x)(y)µ(dy)
.

So by a simple calculation and the fact that both x1
n and x2

n converge to z

as n → ∞, we get

ψ(
x2
n − x1

n

||x2
n − x1

n||
) −D2Φzn(z)(

x2
n − x1

n

||x2
n − x1

n||
, Szψ) → 0, for any ψ ∈ B∗,

therefore,

ψ(
x2
n − x1

n

||x2
n − x1

n||
) −D2Φz(z)(

x2
n − x1

n

||x2
n − x1

n||
, Szψ) → 0, for any ψ ∈ B∗.

As in the proof of Lemma 2.5, we can get from this that x2
n−x1

n
||x2

n−x1
n||

converges

as n → ∞. Write the limit as x, then ψ(x) = D2Φz(z)(x, Szψ) for any

ψ ∈ B∗. This contradict with Proposition 3.4.

We just showed that for z ∈ M ∩ Vδ with δ > 0 small enough, xz is the

unique solution of the following equation with respect to x:∫
B yeDΦz(x)(y)µ(dy)∫
B eDΦz(x)(y)µ(dy)

− x = 0.

Let the left hand side above be denoted by f(x, z). Then f is twice continu-

ously differentiable with respect to x, and by Proposition 3.4, ∂f
∂x (xz, z)(u) �=

0 whenever u �= 0. So by implicit function theorem, we get that z �→ xz is

twice continuously differentiable.

This finishes the proof of our lemma. �

From the uniqueness of xz from Lemma 3.5, from now on, we will ab-

breviate νxz
z , νxz

z,0, Γxz
z , and Hxz

z as νz, νz,0, Γz, and Hz, respectively.

4. Uniform Estimate

As in Kusuoka-Liang [5], for any R > 2, let ν̃R be the probability mea-

sure of R given by

ν̃R({R}) =
3

4R2 − 1
, ν̃R({1

2
}) =

R− 2

2R− 1
, ν̃R({−1

2
}) =

R + 2

2R + 1
.
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By a simple calculation, we have

E ν̃R [Y ] = 0, E ν̃R [Y 2] = 1.

Let ρa, a > 0, be the probability measures given by

ρa(dR) = Ca exp(−aR2

2
)dR, R > 2,

where Ca is the normalizing constant, i.e. Ca = (
∫∞
2 e−

aR2

2 dR)−1. Let

νa, a > 0 be the probability measure given by

νa(dy) =

∫
ν̃R(dy)ρa(dR).

Lemma 4.1. For any a > 0, there exists a constant Da, depends only

on a, such that for i.i.d. random variables Yi, i = 1, 2, · · · with law νa,

P (| 1√
n

n∑
i=1

Yi| ≥ z) ≤ 2 exp(− 1

4Da
z2), ∀z ≥ 0.(4.1)

Proposition 4.2. There exists a constant C ′
1 > 0, independent to z ∈

M ∩ Vδ, such that

C5 ≡ sup
z∈M∩Vδ

∫
B
eC

′
1||x||2νz,0(dx) < ∞

Note. As mentioned above, the meaning of this proposition is that:

there exist a δ > 0 and a C ′
1 > 0, where C ′

1 is independent to δ, such

that the expression holds. All of the lemmas that follows hold in the same

meaning, and we will not emphasize it any more.

Proof. First, from the definition of xz, ||xz||, z ∈ M ∩ Vδ is bounded.

Write C6 as its upper bound.

Also, since V is compact and z �→ xz, z ∈ M ∩ Vδ is continuous at

V from Lemma 3.5, we see that if δ > 0 is small enough, DΦz(xz), z ∈
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M ∩ Vδ is bounded in B∗. So
∫
B e2DΦz(xz)(x)µ(dx) is bounded above and∫

B eDΦz(xz)(x)µ(dx) is bounded from 0 for z ∈ M ∩ Vδ. Therefore,∫
B
eC

′
1||x||2νz,0(dx)

=

∫
B
eC

′
1||x−xz ||2eDΦz(xz)(x)µ(dx)/M(DΦz(xz))

≤ (

∫
B
e2C

′
1||x−xz ||2µ(dx))1/2

· (
∫
B
e2DΦz(xz)(x)µ(dx))1/2/

∫
B
eDΦz(xz)(x)µ(dx)

≤ (

∫
B
e4C

′
1||x||2µ(dx))1/2e2C

′
1C

2
6

· (
∫
B
e2DΦz(xz)(x)µ(dx))1/2/

∫
B
eDΦz(xz)(x)µ(dx)

< ∞

for C ′
1 ≤ C1

4 by the assumption (A1). �

The following can be gotten from proposition 4.2, by using the same

method as in Kusuoka-Liang [5], Lemma 3.2, Lemma 3.3, Lemma 3.5,

Lemma 3.6, Lemma 3.7. We omit the proofs here.

Lemma 4.3. Under the assumption (A1) in section 1, for any c > 0,

there exists a a0 > 0 small enough, such that for any a < a0, the following

holds:

cn
(∫

B
||x||2nνz,0(dx)

)1/2

≤
∫
R
ynνa(dy), ∀n ≥ 3,∀z ∈ M ∩ Vδ.(4.2)

Lemma 4.4. Let Ψz, z ∈ M ∩ Vδ be a family of symmetric bilinear

functions that satisfies:

1.
∫
B Ψz(x, y)ν0(dy) = 0, ∀x ∈ B,∀z ∈ M .

2. There exists a constant C0 > 0, independent to z, such that

|Ψz(x, y)| ≤ C0||x|| · ||y||, ∀x, y ∈ B, ∀z ∈ M ∩ Vδ,

3.
∫
B Ψz(x, y)

2νz,0(dx)νz,0(dy) = 1.
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Then, there exists an a0 > 0, depends only on C0 and

supz∈M∩Vδ

∫
B ||y||2νz,0(dy), satisfying the following:

Eν⊗∞
z,0

[
m∏

k=1

Ψz(Xik , Xjk)

]
≤ Eν⊗∞

a

[
m∏

k=1

YikYjk

]
,(4.3)

∀m ∈ N, 1 ≤∀ ik <
∀ jk ≤ n, k = 1, · · · ,m, 0 < ∀a < a0,

∀z ∈ M ∩ Vδ,

where {Xi}∞i=1 is the sequence of random variables defined in section 1, and

{Yi}∞i=1 is defined by Yn(y) = yn,∀y = (y1, y2, · · ·) ∈ RN.

Lemma 4.5. Assume the same assumptions and use the same notations

as in lemma 4.4. Then for ∀b < 1
2 , there exists ε > 0, such that

sup
z∈M∩Vδ

sup
n∈N

Eν⊗∞
z,0

exp(b · 1

n

∑
1≤i�=j≤n

Ψz(Xi, Xj)),(4.4)

| 1

n2

∑
1≤i�=j≤n

Ψz(Xi, Xj)| < ε

 < ∞.

Lemma 4.6. Assume the same conditions as above. Then, for any ∀b <
1
2 , there exist constants ε1 > 0 and ε2 > 0, such that the following holds:

sup
z∈M∩Vδ

sup
n∈N

Eν⊗∞
z,0

[
exp

(
b · nΨz(

Sn

n
,
Sn

n
)

)
,{

| 1

n2

n∑
i=1

Ψz(Xi, Xi)| < ε1

}

∩
{
|| 1
n

n∑
i=1

Xi|| < ε2

}]
< ∞.

Lemma 4.7. Assume that Ψz, z ∈ M ∩ Vδ is a family of symmetric,

bilinear functions that satisfy the following conditions:

1.
∫
B Ψz(x, y)νz,0(dy) = 0, ∀x ∈ B,∀z ∈ M ∩ Vδ.
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2. There exists a constant C0 > 0, such that

|Ψz(x, y)| ≤ C0||x|| · ||y||, ∀x, y ∈ B, ∀z ∈ M ∩ Vδ,

3.
∫
B Ψz(x, y)

2νz,0(dx)νz,0(dy) ≡ bz ≤ ∃b < 1
2 .

Then there exists a ε > 0, such that

sup
z∈M∩Vδ

sup
n∈N

Eν⊗∞
z,0

exp(
1

n

n∑
i,j=1

Ψz(Xi, Xj)), ||
1

n

n∑
i=1

Xi|| < ε

 < ∞.(4.5)

5. Proof of the Theorem

First, note that by Donsker-Varadhan [3],

lim sup
n→∞

1

n
logEµ⊗∞

[
enΦ(Sn

n
),
Sn

n
/∈ Vδ/2

]
< λ.(5.1)

So we only need to do with the integration on the set {Sn
n ∈ Vδ/2} from now

on.

Now, let M∩Vδ be the new M . It is obvious that the new M still has the

same property as the old one. Equip with M the Riemann metric, written

as dM , and use vM (dx) to denote the volume element on M .

Proposition 5.1. There exists a continuous C : Vδ/2 → R, such that

C(w)−1n
d
2

∫
{||z−w||≤δ/2}∩M

(5.2)

· exp

(
−1

2
n · ||Qkz −Qkw||2ImQk

)
vM (dz) → 1

uniformly in w ∈ Vδ/2 as n → ∞.

Proof. From the definition of M , for any z ∈ M , there exists a ϕ ∈ U

such that z = X(ϕ). Let ϕ0 ≡ X−1(w), then

n
d
2

∫
{||z−w||≤δ/2}∩M

exp

(
−1

2
n · ||Qkz −Qkw||2ImQk

)
vM (dz)(5.3)

= n
d
2

∫
{||ϕ0−ϕ||≤δ′/2}∩U

· exp

(
−1

2
n · ||QkX(ϕ) −QkX(ϕ0)||2ImQk

)
vU (dϕ).
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But X(ϕ) = X(ϕ0)+DX(ϕ0)(ϕ−ϕ0)+ r(ϕ), where r(ϕ) is the 2nd Taylor

remainder, and by the continuity, there exists a constant K > 0, such that

r(ϕ) ≤ K||ϕ− ϕ0||2. Now, for any w ∈ M ∩ Vδ/2, let

Bw(ψ,ψ) =
k∑

i=1

[
ei
(
DX(X−1(w))(ψ)

)]2
, ψ ∈ W = ImPd,

it is bilinear on W ×W , and by Lemma 3.1, if δ > 0 is small enough, there

exists a constant C > 0, such that Bw(ψ,ψ) ≥ C||ψ||2 for all ψ ∈ W . So by

the definition of Qk, if δ′ > 0 is small enough,

n
d
2

∫
{||ϕ0−ϕ||≤δ′/2}∩U

exp

(
−1

2
n · ||QkDX(ϕ0)(ϕ− ϕ0)||2ImQk

)
vU (dz)

= n
d
2

∫
{||ϕ0−ϕ||≤δ′/2}∩ImPd

exp

(
−1

2
n ·Bw(ϕ− ϕ0, ϕ− ϕ0)

)
vImPd

(dz),

which, by the discussion above, converges to (2π)
d
2 (detBw)−

1
2 as n → ∞.

As stated before, the r(ϕ) is a high order of ||ϕ − ϕ0||2, so (5.3) converges

to the same limit. The uniformness can be gotten in the same way by the

continuity. �

Now, we are ready to proof the following proposition, which certainly

gives our main theorem. Write C(w) as Cw from now on.

Lemma 5.2. For any bounded continuous function f : B → R,

Eµ⊗∞
[
f(
Sn

n
)enΦ(Sn

n
),
Sn

n
∈ Vδ/2

]
= enλn

d
2

∫
M
f(x(z))b(z)e−n·a(z)vM (dz)(1 + o(1))

as n → ∞, where b(z) = C−1
xz

exp(1
2

∫
B D2Φz(xz)(y, y)νz,0(dy)) × det2(I −

D2Φz(xz))
−1/2, a(z) = λ− λz, and x(z) = xz, z ∈ M .

Note. From the definitions of x(z), a(z), and b(z), and the discussions

before, it is easy that they are continuous, and satisfy conditions (1), (2) of

Theorem 1.1.

Proof. By Proposition 5.1,

C−1
w n

d
2

∫
M

exp

(
−1

2
n · ||Qkz −Qkw||2ImQk

)
vM (dz) → 1
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uniformly in w ∈ Vδ/2, so

Eµ⊗∞
[
f(
Sn

n
)enΦ(Sn

n
),
Sn

n
∈ Vδ/2

]
∼ Eµ⊗∞[

f(
Sn

n
)enΦ(Sn

n
)C−1

Sn
n

n
d
2

·
∫
M

exp

(
−n

2
||Qkz −Qk(

Sn

n
)||2ImQk

)
vM (dz),

Sn

n
∈ Vδ/2

]
= enλn

d
2

∫
M
e−n(λ−λz)

· e−n·λzEµ⊗∞
[
C−1

Sn
n

f(
Sn

n
)enΦz(Sn

n
),
Sn

n
∈ Vδ/2

]
vM (dz),

where λz is the one defined in section 3.

Therefore, if we can show that e−n·λzEµ⊗∞
[C−1

Sn
n

f(Sn
n )enΦz(Sn

n
), Sn

n ∈
Vδ/2] is bounded for z ∈ M(= M ∩ Vδ), and converges to b(z)f(x(z)) for

each z ∈ M , it will complete the proof of the lemma.

The convergence to b(z)f(x(z)) for each z ∈ M can be shown by using

the same method as in Kusuoka-Liang [5]. In fact, as there, we have

e−n·λzEµ⊗∞
[C−1

Sn
n

f(
Sn

n
)enΦz(Sn

n
),
Sn

n
∈ Vδ/2]

= Eν⊗∞
z,0

[
C−1

{Sn
n

+xz}
f(
Sn

n
+ xz)

· exp

(
n

2
D2Φz(xz)(

Sn

n
,
Sn

n
) + nR(xz,

Sn

n
)

)
,
Sn

n
+ xz ∈ Vδ/2

]
,

where R(xz,
Sn
n ) is the 3rd remainder of the Taylor’s formula. But Sn

n → 0

almost surely under ν⊗∞
z,0 . So by Kusuoka-Liang [5], we get the convergence

here for each z ∈ M .

For the boundedness, since C−1
w , w ∈ Vδ/2 in bounded from the con-

tinuity of C : Vδ/2 → R, and f is bounded, we only need to show that

e−n·λzEµ⊗∞
[enΦz(Sn

n
), Sn

n ∈ Vδ/2] is bounded for z ∈ M .

Here, for every z ∈ M ∩Vδ, let azl and fz
l , l ∈ N, be the eigenvalues and

the corresponding eigenvectors of D2Φz(xz)
∣∣∣
Hz

, where |al|z is decreasing

with respect to l for each z. Let

Ψ
(N)
z,1 (x, y) =

N∑
l=1

azl (fl, x)Hz(fl, y)Hz ,
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Ψ
(N)
z,2 (x, y) = D2Φz(xz)(x, y) − Ψ

(N)
z,1 (x, y).

Since D2Φz(xz)
∣∣∣
Hz

is a Hilbert-Schmidt function, for any η > 0, there exists

an nz ∈ N large enough, such that

∫
B

∫
B

Ψ
(nz)
z,2 (x, y)2νz,0(dx)νz,0(dy) =

∞∑
l=nz+1

|azl |2 < η/2.

Also, since D2Φz(xz) is continuous with respect to z, we have that azl is

upper semi-continuous with respect to z, therefore, for each z0 ∈ M ∩ Vδ,

we can find a neighborhood Uz0 of z0 in M ∩Vδ, such that for every z ∈ Uz0 ,

we have
∞∑

l=nz0+1

|azl |2 < η.

Therefore, for any η > 0, we can find a N (independent to z ∈ M ∩ Vδ),

such that∫
B

∫
B

Ψ
(N)
z,2 (x, y)2νz,0(dx)νz,0(dy) =

∞∑
l=N+1

|azl |2 < η, for all z ∈ M ∩ Vδ.

Therefore, the boundness can be gotten from Lemma 4.7 and the Lemma

2.1 in Kusuoka-Tamura [6], since the boundness of D2Φz, z ∈ M ∩ Vδ in

B∗ ×B∗ is easy from the fact that M is a manifold embedded in B.

This gives our assertion. �

6. Example

In this section, we will give an example, in which our conditions are

satisfied, but the central limit theorem is not.

Example. Let B be the space M(T) of all signed measures on the

torus T = R/2πZ, which is equal to the dual space of C(T), with the norm

induced by it. (B is not seperable now, but our argument still works.) Let

U(z) = 2
∞∑
k=1

(
cos((4k + 1)z)

(4k + 1) log(4k + 1)
− cos((4k + 3)z)

(4k + 3) log(4k + 3)

)
.
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U(z) is well-defined, i.e., the series above converges for any z ∈ [0, 2π),

and U(z) is continuous with respect to z. Actually, F (z) =
∑∞

n=4
sinnz
n logn is

well-defined and absolutely continuous with respect to z by Edwards [4],

and U(z) = F (z + π
2 ) + F (−z + π

2 ). Let V (x, y) = CU(x − y), where the

constant C is chosen so that
∫ 2π
0

∫ 2π
0 V (x, y)2dxdy ≤ π2. V is symmetric

and continuous. Let

Φ(R) =

∫ 2π

0

∫ 2π

0
V (x, y)R(dx)R(dy)

for R ∈ B. Let µ(dx) = 1
2πdx, and consider

Zn = Eµ⊗∞
[
exp(nΦ(n−1

n∑
i=1

δXi))

]
.

The entropy function now is

h(ν) =

∫
T

(
log

2πdν(x)

dx

)
ν(dx)

if ν(dx) << dx and log dν(x)
dx is intergable, and h(ν) = 0 otherwise. So by the

conditions above, ν0(dx) = 1
2πdx maximize Φ−h. Therefore, the eigenvalues

of D2Φ(ν0)
∣∣∣
H×H

are constant times 1
(4k+1) log(4k+1) , − 1

(4k+3) log(4k+3) , k =

1, 2, · · ·. So, although D2Φ(ν0) is a Hilbert-Schmidt function, it is not a

nuclear function, hence the central limit theorem does not hold.
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