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Laplace Approximations for Sums of Independent

Random Vectors — The Degenerate Case —

By Song Liana

Abstract. Let X;,i € N, be i.i.d. B-valued random variables,
where B is a real separable Banach space. Let ® : B — R be a
mapping. The problem is to give an asymptotic evaluation of Z,, =
E (exp (n®(}_;, Xi/n))), up to a factor (1 + o(1)). Bolthausen [1]
studied this problem in the case that there is a unique point maximiz-
ing ® — h, where h is the so-called entropy function, and the curvature
at the maximum is nonvanishing, (these two will be called as nonde-
generate assumptions), with some central limit theorem assumption.
Kusuoka-Liang [5] studied the same problem, and succeeded in elim-
inating the central limit theorem assumption, but the nondegenerate
assumptions are still left. In this paper, we study the same problem
not assuming the central limit theorem assumption and the nondegen-
erate assumptions.

1. Introduction

Let B be a real separable Banach space with norm || - ||, x be a proba-
bility measure on B. We assume that the smallest closed affined space that
contains suppu is B. Moreover we assume

(A1) There exists a constant C1 > 0, such that

| esp(Cilla|Putdz) < .
B

Let @ : B — R be a three times continuously Fréchet differentiable
function satisfying the following:
(A2) There exist constants C, C3 > 0, such that

O(z) < Car+ Csl|z||, for any x € B.
Let X,, and Sy, n € N, be the random variables defined by X, (z) = x,,
Sp(z) = P qmn, z = (x1,72,23,---) € BN, Let Z, =
Koo
ER Jexp(n®(S2)].
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By Donsker-Varadhan [3], we have that

1
lim —log Z,, = sup{®(x) — h(z)} = A,

n—oomn TeB

where h is the entropy function of u:

h(z) = sup {¢(z) —log M(¢)},

peB*
B* is the dual Banach space of B and M(¢) = [5e?@pu(dz), ¢ € B*. Let
V={zxeB:®x)—h(x)=A}.
For each x € V, let v, be the probability measure on B defined by
(1.1) vz (dy) = exp(D®(z)(y))u(dy) /M (DP(x)).

Then by the fact that z € V' maximizes ® — h, we have

(12) [ waldy) =,
h(z) = D®(x)(x) — log M(D®(x)).

Let v, 0 be the 0-centered v, that is,
dvyo(y) = dve(y + ),  Vy€ B,
and also, let I'; be the covariance on B* defined by
L(6.0) = [ SWevaoldy), V6,0 € B
Then by the fact that z € V' maximizes ® — h, we have
T2(¢,¢) > D*®(2)(Se, Sed), Vo € B,
where S, : B* — B is defined as Sy¢ = [5 ¢(y)yvz0(dy), V¢ € B*. Define

Ay ={¢ € B* : To(¢,9) = D*®(2)(S20, Su)}-
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Let H, = (B* *)*, where B* * means the completion of B* with respect
to 'y, denote by (-, ), the inner product in H,, and || - ||, the norm of it.
Then S;(B*) C Hy, ¥(Sz¢) = I'z(¢,7) for any ¢,¢ € B*, and

15282 = sup{(Se¢)* Tu(ep,¥p) < 1}
sup{T's (4, )% T (1, ¥) < 1}

So (829, S2¥)e = I'x(9, ) for any ¢,¢ € B*.
Also, as it has been shown in Kusuoka-Liang [5, Proposition 2.1, Propo-

sition 2.2], H, can be regarded as a dense subset of B, and for any continuous
bilinear function A : Bx B — R, A is a Hilbert-Schmidt function

for any x € V. e

Moreover, we assume the following:

(A3) There exist constants Cy > 0 and 69 > 0, and a continuous bilinear
symmetric function K : B x B — R, such that

|D*®(2)(y,y,y)| < Callyl|K(y,y),  for any y € B and z € V,,

where Vs, denotes the dp-neighborhood of V' in B.
Our result in this paper is the following:

THEOREM 1.1. Under the above assumptions, there exist an integer
d > 1 and a d-dimensional manifold M embedded in B with Riemann metric
such that V. C M and Sy(Ay) C T, M for any x € V, and there exist
continuous functions x: M — B, a: M — [0,00) and b: M — (0,00) such
that

(1) x(-) € C*(M), and x(2) = z for any z €V,

(2) a(z) =0 if and only if z€V, and
(3) for any bounded continuous function f: B — R,
oo Sn Sn
B [f( ") exp(n(>" >>}

A / fla ma(=)y)(d2) (1 + o(1)
as n — oo, where vy is the volume element on M.

See Lemma 5.2 for the precise expression of a(z) and b(z), z € M.
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As a corollary, we get the following;:

COROLLARY 1.2. Under the above assumptions, there exist an integer
d > 1 and a d-dimensional manifold M embedded in B with Riemann metric
such that V.- C M and Sy(Ay) C T, M for any x € V, and there exist
continuous functions a : M — [0,00) and b: M — (0,00) such that
(1) a(z) =0 if and only if z€V, and
(2)
Z, = ¢ /M b(2)e " Py (dz) (1 + o(1))

as n — oo, where vy is the volume element on M.

Chiyonobu [2] studied the same problem under a certain central limit
theorem assumption.

Acknowledgement. The author would like to express her deepest grat-
itude to Professor Kusuoka for his helpful suggestions and advice.

2. Manifold Reflecting Singularities

In this section, we will show the existance of the manifold M with the
properties described in our main theorem.
The following is well-known (c.f. Bolthausen [1]):

LEMMA 2.1. (1) h is non-negative, lower semicontinuous and convez,
and is strongly convex on {x € B : h(z) < oo}.

(2) h(z) =0 if and only if x = [yu(dy).

(3) For allr € [0,00), {z : h(z) <r} is compact in B.

(4) limy— o0 inf 4>, h(z) /7 = 00.

As in Kusuoka-Tamura [6] and Chiyonobu [2], we can show that
LEMMA 2.2. V is a non-void compact set.
PrROOF. First take z, € B,n =1,2,---, such that ®(z,) — h(z,) — A,

where A is the maximum of ® — h, as defined in section 1. Then z, is
bounded by assumption (A2) and Lemma 2.1 (4). So h(z,) is bounded. By
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Lemma 2.1 (3), this implies that there exists a subsequence ny and a z € B,
such that z,, — 2, as k — 00. So

®(2) — h(z) > limsup (®(zn, ) — h(zn,)) = A,

k—o00

which implies that z € V. Therefore, V' is non-void.
The same argument implies that V' is compact. [

DEFINITION 2.3. We say that M is a manifold reflecting singularities
if M is a submanifold embedded in B, V' C M, and S;(A,) C T, M for each
zeV.

In the rest of this section, we will show that a manifold reflecting singu-
larities exists.

Define I(6,4) = [ @(y)¢(y)e2 W u(dy)/ [ 2@ u(dy), 6,0 €
B*. Note that this is finite for all ¢, € B* by the assumption (A1).

PROPOSITION 2.4. There exists a common constant C' > 0 independent
to z € V, such that

I.(o, ¢)<02 (6, 9), for any ¢ € B* and any z € V.

PrOOF. From the compactness of V' and the continuity of D®, there
exist constants K7 > 0 and K > 0 such that ||z|| < K for all z € V and
|D®(2)(y)| < KQHyH for all z € V and all y € B. So from the fact that

e 3012’ < 6201 for all x € R, we have that for all z € V,

K3 )
/B o(y)2ePPEW y(dy) < e /B o(y)2e2 1197 ().
Therefore

[ d(y)2ePPEW u(dy)
Fz(¢:¢) - fB ED'I)(Z)(y)[L(dy) _¢(z)2

[ 6(y)2eP*EW u(dy)
5 €P2RW) pu(dy)

IN
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1 1
K2 fB¢(y)2e201Hy”2M(dy) fBGQCllly\Pu(dy)

s e VATIE e DIEW)
g ez I L (dy) [ eP®EW) u(dy)
K3 U y(dy)  ~
< e fBeimHynM( ) T(¢,¢),  forall$c B
Ipe p(dy)
. . . . K—g 1o lly||2
This gives our assertion with C = <62Cl - et Wi u(dy)/

1/2
J5 e‘K””u(dy)> O

Let H = (ﬁr)*, then H is a Hilbert space, Let S : B* — B be given by
~ 1 2 1 2 *
S¢ = /B@é(y)yezcl”y” u(dy)//B”ClHy” pdy), ¢ B

Then we have (S¢, glﬂ)ﬁ = T'(¢, 1) for any ¢,¢p € B*. The norm of H
will be denoted by || - ||

method as in Kusuoka-Liang [5, Proposition 2.1, Proposition 2.2], H can be
considered as a dense subset of B, and for any continuous bilinear function
A:BxB—R, A’f; = is a Hilbert-Schmidt function.

X

From Proposition 2.4 and the definition of || -

in this paper. His seperable, and by the same

Hﬁv

(2.1) ol < Cllell 5., for any ¢ € H* and any z € V.
Therefore

1
(2.2) HxHﬁSEHmHHZ, for any x € H, and any z € V.

That is, H, can be embedded into H naturally for each z € V.

Let {e,}22, be a complete orthonormal base of H* with {e,} C B*.
Then {gen}fle is the corresponding base of H. Let Q, : B — B be
defined by Qn(z) = 3%, ei(2)Se;,Vz € B, ¥n € N. Then Q, : B —
B,n € N, is a sequence of bounded operators that satisfies the following:
dim(ImageQy,) = n, Q% = Qn; Qni1Qn = Qnlni1 = Q@ for any n € N
and Upen@n(B) is dense in B.

LEMMA 2.5. There exists an integer di such that for any d > di,
PdD@‘V is injective, where P; : B* — B* denotes the adjoint operator

of Qq-
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PRrOOF. It is obvious that the lemma can be seen if we can show that
Pd1D(I)’V is injective for d; € N large enough. Suppose not. Then for
each d € N, there exist 2}, 22 € V such that P;D®(z}) = P;D®(2?) , and
2} # 22. Combining with (1.1) and (1.2), we see that D®(z}) # D®(23).

Since V is compact, we may assume that zé — z! and 23 — 22 as

d — 0o. Then D®(z')(Qqu) = D®(2%)(Qqu) for any u € B and any d € N.
So D®(z') = D®(2?), hence z! = 22. We write this same point by z € V.

Let f : B* — B* be defined by f(¢) = D®([5ye®? W u(dy)/M(9)), ¢ €
B*. Then f is continuous, Fréchet differenable, and f(D®(w)) = DP(w)
for any w € V. Therefore,

D®(zg) — DP(z))
= [(D®(z)) — f(DP(2]))
= Df(D®(2))(DP(z3) — D®(23))
1
+/0 [Df(D‘I’(Z?z) +H(DP(zg) — DP(27))) — Df(D<1>(Z))}
(D®(2)) — D®(23))dt.

D®(z})—Do(22)
ID®(23)— DO (=)l arx *
D®(22). Then from the fact that z) — 2,22 — z as d — oo, we see
from the equality above that ¢4 — Df(D®(2))pqs — 0in H} as d — oc.
From the fact z € V', we have that for any ¥ € B*,

Df(D®(z))(t)
_ d (D(I) (fB yeD‘P(z)(y)thw(y)M(dy)))

dt fB eD‘}(Z)(y)"‘“/’(y)/,L(dy)

Let ¢q = which is well-defined since D®(z}) #

t=0
_ g [ Jeye” PV uldy) | [ Jp v w)ye” W u(dy)
[ €PPEW u(dy) [ €PPEW p(dy)
JpyePPEWu(dy)  [pd(y)eP*OWu(dy)
5 €P2E) u(dy) [5eP2EW u(dy)

= D23(z) (/jgw(y)sz(dy)—¢(Z)z’ ' )

= D%®(z) ( /B Y(y)yvzo(dy), - )
= D*®(2)(S.%,-).




202 Song LiaANG

Since D?®(z) Hown is a compact operator, we see from the above that
Z>< z

there exists a ¢ € H} such that o5 — ¢ in H}. Then ||¢||g: = 1 since

l[¢dl|rrz = 1. On the other hand, ¢4q(Qqy) = 0 for all y € B, which implies
that ¢ = 0. This makes a contradiction. []

LEMMA 2.6. There exists an integer do large enough such that for any
d>dy, any z € V and any x € B with x # 0,

T — /B <D2(I>(z)(:1:, y) — D2(1>(z)(w, Qdy)) yvz 0(dy) # 0.

PrRoOOF. If not, then for any n € N, there exist d, € N, z, € V and
Tpn # 0, such that

23) @ = [ (D0(0)(@1) = D*0(z0)(@n Qu,0)) v, 0ldy)
= 8., (1= Pu,)D?®(20)(wn, "))

From the compactness of V', by taking subsequence if necessary, we may
assume that z, converge in V, i.e., 2z, — z € V as n — oco. Note that
&, € H, C H for any n € N, so by dividing the both side by ||zn | if
necessary, we may assume that |[z,|[7 = 1. Therefore, from the fact that

DQ(I)(Z)‘HXﬁ is a compact operator, by taking subsequence if necessary, we

may assume that D2®(z)(z,, -) converge in H*. On the same time, from the
assumption that [[z,|[7 = 1, we have that [|z,|| is bounded for n € N. So
from the continuity of D?®, D2®(z,)(x,, -) is also convergent in H*. This
implies that (I — Py, )D2®(z,)(2p, ) — 0 in H* as n — oo.

So from (2.3) and (2.1), ||zs||m., = ||(I — P4,)D?*®(2p)(xn, Mz, —0
as n — oo. By (2.2), this implies that [|z,|[7 — 0 as n — oo. This
contradicts with the assumption that |[z,||z =1 for all n € N. [J

LEMMA 2.7.  There exists an integer ds € N large enough such that for
any d > ds, any z €V, p € A, and ¢ # 0 imply QS # 0.

PRrROOF. As the way of proof is similar to that of Lemma 2.6, we only
give the sketch here.
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Same as in the proof of Lemma 2.6, we only need to show that for d3 € N
large enough, for any z € V, ¢ € A, and ¢ # 0 imply Qq,5.¢ # 0.

If not, then for any d € N, there exist zg € V and ¢4 € A,, with
wq # 0 but Q45.,04 = 0. Without loss of generality, we can assume, by
the compactness of V, that there exists a z € V, such that zg — z. Also,
we can assume that ||pg||z, = 1. Since ¢4 € A,,, it can be seen that
04 = D?®(24)(S,¢4, ). By Proposition 2.4, 182,917 < 1. So from the

fact that D?®(z)

il is a compact operator and D?®(-) is continuous,
X

04 = D?®(24)(S.,d,-) converges in H*. Write the limit as ¢o. Then
||g00|]ﬁ* = 1. On the other hand, Q4p¢ = 0 for any d € N, so @9 = 0. This
is a contradiction. [

Let d be the maximum of di, da, and ds, the integers chosen in Lemma
2.5, Lemma 2.6, and Lemma 2.7, respectively. Let W = ImagePy, let || - ||w
and distyy (-, -) denote the norm and the distance on it, respectively.

THEOREM 2.8. There exist a neighborhood U of {P;D®(z),z € V'} in
W small enough, and a map X () : U — B, which is a C?-diffeomorphism.
In particular, there is a manifold reflecting singularities.

PRrROOF. The proof will be divided into several steps.

Step 1. Let f: Bx W — B be defined by

o) — s fyeD<I>(z)(y)*D‘I’(Z)(Qdy)JF‘P(y)M(dy)
p) = [ eD®()(y)—D2(2)(Qay)+¢(¥) y(dy) ’

Vz€ B, YpeW.

Then f is twice continuously differentiable with respect to 2z, and
f(z,P4D®(z)) = 0 for any z € V. For any z € V, let ¢, = PyD®(2).
Then by Lemma 2.6, for any « € B not equal to 0,

D:f(z@)@)| _

— ae (fB (D23 (2)(w,y) — D*®(2)(x, Qay)) ye”* )W) u(dy)
N Jp eP*EW u(dy)

 JpyeP W) u(dy)
Jp eP* W) u(dy)
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[5 (D*®(2)(x,y) — D*®(2) (2, Qy)) eD‘I’<Z><y>u<dy>>
Jp €P*HW) u(dy)

- e /B (D?®(2)(x.9) — D*®(2)(z, Quy) ) yv=0(dy)
20

So by implicit function theorem, for any z € V, there exists U,,, a neigh-
borhood of ¢, in W, and a unique twice continuously differentialbe function
G- () defined on U, such that f(G.(p),¢) =0o0n ¢ € Uy,..

Step 2. In this step, we will show that the functions {G},cy are con-
sistent if the neighborhoods {Uy, }.cv are taken small enough.

For any z € V, let U, , = U,, N By (PyD®(2), %), where U, is the one
chosen before, and By (¢, €) means the neighborhood of ¢ in W with radius
€. Let U, = U,y U, . We only need to show that there exists an integer
n € N large enough, such that for any z,w € V, G, and G,, are consist
on U, , NUyp. If not, then for any n € N, there exist z,,w, € V and
on € U, m N Uy, n, such that G, (¢n) # Gu, (¢n). From the compactness
of V, by taking subsequence if necessary, we may suppose that there exist
z,w € V, such that z, — z, w, — w. If 2 # w, then U, , N Uy, n = 0
for n large enough from Lemma 2.5 and the continuity of D®. This is a
condradiction. So we have z = w. From the definition of U, ,, for any
€ > 0, there exists a integer N € N, such that for any n > N, ¢, €
By (P;D®(z),e). As has been shown in step 1, if we take ¢ > 0 small
enough, there exists only a unique G, (g, ) that satisfies f(G.(pn), ¢n) = 0.
This makes a contradiction since f(G., (¢n), on) = 0, f(Guw,(¥n),n) =0
and G, (¢n) # Gu, () from the assumption.

Step 3. Now, we have shown that there exist U, a neighborhood of
{P;D®(z);z € V} in W, and a twice continuously differentiable function
X(¢) on U, such that f(X(¢),p) =0o0n ¢ € U, i.e.

J3 ye PP )W)~ DEX () Qun) o) 1y ()
X(p) = [ ePPE @D W -DIX (@) Quv)+e W) y(dy)

and that X (¢p,) = z for any z € V. Differentiating the both side at ¢, and
we have for any z € V' and any ¢ € W,

(2.4) DX (2) (1)
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_ /B (D*®(2)(DX () (%), )
~D?®(2)(DX (.)(¥), Qay) + ¥ (y) ) yv-(dy)
~ (D*2(2)(DX (p:)(¥). 2)
—D20(2)(DX (p2) (1), Quz) +¥(2)) 2
_ /B (D*®()(DX () (¥), )
—D2®(2) (DX () (1), Qay) + ¥ (y) ) yv= o(dy).

So if DX (¢,)(¥)) =0, then [51¥(y)yvso(dy) = 0, hence [51(y)*v.o(dy) =
0. Therefore from the assumption that the smallest closed affined space
that contains suppu is B, we get ©» = 0. That is, DX (¢.)(¥) # 0 whenever
1 # 0. So we can take U small enough one more time again if needed, such
that ¢ — X (p),p € U, is a local diffeomorphism.

Step 4. In this step, we will show that we can take the neighborhood
U small enough such that ¢ — X (p),¢ € U, is an injective, which accom-
panying with the step 3 implies that ¢ — X(¢),p € U, is not only a local
diffeomorphism, but also a diffeomorphism.

If not, for any m € N, there exist @, ¥m € W, @ # Ym, X(pm) =
X (Ym), and distW(cpm,f/) + distw(wm,f/) — 0 as m — oo, where V =
{P;D®(2);z € V'}. V is compact in W, so by taking subsequence if nec-
essary, we may assume that there exist Yoo, Voo € 17, such that ¢, — @Yo
and ¥, — Yoo in W as m — 00. S0 X(poo) = X (¥oo) from the continuity
of the map ¢ — X(¢). Accompanying with the fact that pso, oo € V, this
implies that po = ¥s. From the fact that ¢ — X(p),p € U is a local
diffeomorphism, this implies that there exists a M € N large enough, such
that for all m > M, X(om) # X (¢n). This makes a contradiction.

Step 5. Let M = {X(p);¢ € U}. In the following, we will check that
M satisfies all of the conditions in Definition 2.3. The first is obvious from
the fact that ¢ — X(p),¢ € U is a diffeomorphism. The second is true
since z = X(P;D®(z)) for any z € V. For the third one, for any u € A,,
we have u = D?®(z)(S,u,-), where the operator S, is defined in section 1.
So

S.u=S.(D*®(2)(S.u,-)) — S.(PyD*®(2)(S.u,-)) + S.(Pyu).
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Combining this with (2.4), we see that both S,u and DX (¢,)(Paqu) (where
v, = P;D®(z) as before) are solutions of

(2.5) X = S.((I - P)D*®(2)(X. ) + S-(Pyu).

So from the uniqueness of the solution of the equatily (2.5), which comes
from Lemma 2.6, S,u = DX (p,)(Pyu). Hence S,u € T,M for any z € V
and any u € A,. This completes the proof of the fact that M is a manifold
reflecting singularities.

This finishes the proof of the theorem. [J

3. Resolution of Singularties

In this section, we construct a family of functions ®, defined on B,
z € M NVg, for § > 0 small enough, such that ®,, z € M N Vj, are not
degenerate.

First, we show the following

LEMMA 3.1. There exist an integer k € N large enough and a 6 €
(0,60) such that Qk’ - is injective, where 6q is the one in the assumption

(A3), and for any ¢ € {PdD<I>( ),z € V}iandyp € W, QeDX(p)(¢p) =0
implies 1 = 0.

PROOF. If not, then for any n € N, there exist z,,yn € M NV,
such that Qnz, = Qnyn, but z, # y,. It is easy to see that by taking
subsequence if necessary, we can assume that there exist x,y € M NV such
that z, — z and y, — y as n — 00. Qnry, = Qry, for any n € N implies
that x = y. That is, z, and y, converge to a same limit as n — oco. As
Tn,Yn € M, by the definition of M, there exist Yn,¥Yn € W, such that

n = X(pn) and y, = X(¢p), n € N. W € W is bounded, so by
taking subsequence if necessary, we can assume that it converges. Also, x,
and y, converge as n — oo implies that ¢, and v, converge as n — 00, too.
Note that ||z = ynl[s = [l¢n — ¥n[lw for any n € N. Therefore,

e /D”"*“ ‘”””(\@Z—ZH)“

converges as n — o0o. Write the limit as w € M. Then as done before, from
the assumption, |lw||pr = 1, but Q,w = 0 for any n € N, hence w = 0.
This is a contradiction.
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For the second part, we use the contradiction, too. If not, then for any
n € N, there exist a ¢, € {PyD®(2),z € V}, and a ¢, € W(= ImP;) with
Y # 0, such that Q, DX (¢n)(¥n) = 0. Without loss of generality, we may
assume that ||[¢,||lw = 1, n € N. So, by taking subsequence if necessary,
we may assume that v, converges to a ¢ € W in W. Hence, |[¢||w = 1.
On the same time, from the compactness of V', by taking subsequence if
necessary, we may assume that there exists a ¢ € {P;D®(z),z € V}, such
that ¢, — ¢. So, by the continuity, we get that Q, DX (¢)(¢) = 0 for every
n € N. Therefore, DX (p)(¢) = 0, which implies that ¢» = 0. This makes a
contradiction. [J

Obviously, we can assume that k > d. (Otherwise, just take max{k,d}
as the new k. ) For any z € M N Vj, let

1
(I)z(y) = (‘I)(y) - §‘|Qky - kaH%ka’ for any y € Bv

where || - ||, o, means the norm of Im@Q as considered as a subspace of

H. Let A, denote the supremum of ®, — h. (Note that A\, < A for all
z € M NVs.) Then we have the following

ProproSITION 3.2. The function z — A, z € M N Vg is continuous.

PROOF. During and after the proof of this proposition, we will use,
with alittle abuse of the notation, ||QrV —Qrz||1y g, to denote the distance
between @iV and Qrz under || - [|1y,q, -

Take an arbitrary € > 0 and fix it for a while. Now, note that for any
z€MNVs, As > A—3||QV — kaH%ka. So for any y € B with ||QrV —

QrYllimg, = 21QkV — QrzllImg, + &> Which implies ||Qry — Qrz|l1yg, =
|QrV — Qk2’||Ika + €, we have

1
®(y) = hly) — 5 llQuy — Qk:ZH%ka
1 2
< A =35 (1@ = QuAllmg, +2)

1 2

Write a; = 2||QkV — Qkzll1yg, +¢- Then we get

1
A = sup{®(y) — h(y) 5 11Qky —~ Qulfg 10V — Qutllimg, < az}.
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Therefore, for any z1, 20 € M N Vg,

1
A=A = sup{@(y) = hly) - S1IQuy — Qra1lfng,
HQkV - QkyHIka <a;V azz}
1
— sup {@(y) — h(y) — §||Qky - Qk@”%ka;
HQkV - QkyHIka <az V az2}
1 1
< sup{ — S 11Quy — Quzillfng, + 511Qky — Quzalfng,
HQkV - QkyHIka <az;V azz}'
Now, our proposition can be easily seen from the definition of || - ||, - U

For any z € M N Vs, let K, = {z;P,(z) — h(x) = X\,}. (Note that if
z € V, then K, = {z} by Lemma 3.1.) As in Bolthausen [1], K is compact
and non-empty. For any z, € K, the probability measure v?* defined by

v (dy) = ePP= W y(dy) /M (DD ()

has mean z,. Let 1]} be the O-centered v

on B* defined by

z, and let I'Y# be the inner product

T2 (p, 1) = /B S TH(dy), ¢ € B

Let H?= = (ﬁrgz)*, and S7=¢p = [(y)yv;5(dy), as done before. Then

e is a Hilbert-
4 >< z

Schmidt function for any z € M NVs and any z, € K,. Also, we can show
the following

as in Kusuoka-Liang [5], we can show that D?®,(x,)

PROPOSITION 3.3.  Choose z, € M NVy, with z, — z € V.. Then for
any rn, € K, , xp, — 2.

Proor. Choose any subsequence of the natural numbers N, for the
sake of simplicity, we write it as n, too. Since x,, maximizes ¢, — h,

1 1
@) = h(wa) = 511Qumn — Quznllfing, 2 A = 5107 = Qullfme,
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So [|Qran — Qrznllg = |Qrtn — Qrznllimg, < 1@k — Qrznllimg, — 0 as
n — oo. Therefore, Qrr, — Qrz in B as n — oo, and liminf,, . (®(x,)—
h(zy)) > A. By doing in the same way as in the proof of Lemma 2.2, there
exist a subsequence z,,; and a x € V such that x,;, — z. Qgzn;, — Qz,
too, hence Qrzr = Qkz, this and Lemma 3.1 imply that x = z, i.e., z,;, — 2
as j — oo. This is true for any subsequence of N.

This finishes the proof of our proposition. [

are

PROPOSITION 3.4. All of the eigenvalues of D*®,(x.) o
ZZX ZZ

smaller than 1, if 6 > 0 is small enough.

Proor. From the continuity showed in Proposition 3.3, we only need
to show that for any z € V' and any ¢ € B* with ¢ # 0,

(3.1) D*®(z,) (S, 527p)

1
- <§‘Q’“(') - kaH%ka> (2)(82* 0, 52°) < (82 ¢).

But here, from the definition of || - |1, ;

k

|Qry — QkZH%ka = (eily) —ei(2)),

i=1
SO

(ei(y) — ei(2)) ei(u)

1

D (11Qx() = Qul g, ) W) () =2

k
i—
for any y and any u in B. For any z € V| since x, = z, the above implies that
D®,(r,) = D®(x,) = D®(2), so from the definition of v7=, 175, I'7=, H=,
and S77 at the beginning of this section, we see that these quantities coincide
with v, v, 0, I';, H,, and S, the ones defined in section 1, respectively.

Moreover,

D’ (%”Qk(') - kaII%ka) () ) = 3_ei(w)” = [|Quullfng, (> 0)

i=1

So (3.1) is equivalent to

(3.2) D*®(2)(S:¢, 8:) — [|QkS:0llfyq, < #(S=0)-
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The inequality above is obviously if ¢ ¢ A, from the definition of A,. For
p € A,, by Lemma 2.7, Q45.¢ # 0, hence QrS,p # 0, too, so

D*®(2)(Sx, 5:0) = [1QrS=¢ll{me,
= 90(5290)_“@16*9,290”%111(’2,9
< o(S:p).

That is, (3.2) still holds.
This gives our assertion. [

LEMMA 3.5. 6 > 0 can be chosen small enough, such that for any
z € M NVs, there is a unique x, attains the mazimum of ®, —h. Moreover,
the map z — x,,2 € M N Vs is in C?.

PrOOF. First, we show the uniqueness. If not, for any n € N, there
exist z, € M NV, and xl 22 € B, such that x} # 22 and both of them
maximize ®, — h. By taking subsequence if necessary, we can assume that
there exists a z € V, such that z, — z as n — oo. Also, by Proposition 3.3,
we can assume that ) and 22 converge to z, too, by taking subsequence if
necesary.

From the definition of x} and 22, we have that
Jpye” e O Wp(dy)
fB eD®=, (mga)(y)u(dy) n

[ yeP®on @) y(dy) _ 2
[ D% @) W) 1 (dy) "

. f yqu)zn(z)(y)u(dy)
Let fn(z) = ﬁBeD‘I’Zn(@(y)#(dy) , then as before,

Tp =ty = falzp) = falan)

= Dfu()(a? — b
1
+ [ [Drulah + 4@t~ ok) = Dfa(2)] (= ahat.

But

[ D*®,, () (u, y)yeP e @W u(dy)

D fn(2)(u) [y D% @) i (dy)
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_JpyePt OWu(dy) [ D@, () (u, y)eP P O u(dy)
fB eD®=, (m)(y)ﬂ(dy) fB eD®z, (x)(y)u(dy)

So by a simple calculation and the fact that both x} and z2 converge to z
as n — 00, we get

2 1 1

Ty — Tp IL’% T .
w(H:CQ H) DQ@Zn(z)(m SQ,Z))HO, for anyq/}eB s
therefore,
2 —zk 22 — g} )
w(Hx; ||) DZ(I)Z(Z)(HZ;iH Sw)—)o for anwaB .

As in the proof of Lemma 2.5, we can get from this that % converges
as n — oo. Write the limit as z, then ¢(x) = D?®,(2)(x,S,) for any
1 € B*. This contradict with Proposition 3.4.

We just showed that for z € M N Vg with 6 > 0 small enough, z, is the
unique solution of the following equation with respect to x:

S yeP*= W) p(dy)
S PP u(dy)

Let the left hand side above be denoted by f(z,z). Then f is twice continu-
ously differentiable with respect to x, and by Proposition 3.4, %(mz, z)(u) #
0 whenever u # 0. So by implicit function theorem, we get that z — =z, is
twice continuously differentiable.

—x=0.

This finishes the proof of our lemma. []

From the uniqueness of z, from Lemma 3.5, from now on, we will ab-
breviate v7= VZ 0, I'7#, and HZ? as v, v, 9, I';, and H, respectively.

4. TUniform Estimate

As in Kusuoka-Liang [5], for any R > 2, let g be the probability mea-
sure of R given by

e e
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By a simple calculation, we have
E"RlY] =0, E"R[Y}=1
Let pg,a > 0, be the probability measures given by

R2
pa(dR) = C, exp(——)dR R > 2,

aR2
where C, is the normalizing constant, i.e. Cq = ([5° e_%dR)_l. Let

Vg, a > 0 be the probability measure given by

valdy) = [ 7r(dy)pa(dR)

LEMMA 4.1. For any a > 0, there exists a constant D,, depends only
on a, such that for i.i.d. random variables Y;,1 =1,2,--- with law v,

1
(4.1) |\/_ZY‘>Z < 2exp(— D 2?), Vz > 0.

PROPOSITION 4.2.  There exists a constant C] > 0, independent to z €
M N Vg, such that

/ 2
Cs = sup / eCrll=ll vy 0(dr) < oo
ZEMﬁV& B

Note. As mentioned above, the meaning of this proposition is that:
there exist a & > 0 and a C] > 0, where C] is independent to 8, such
that the expression holds. All of the lemmas that follows hold in the same
meaning, and we will not emphasize it any more.

ProOF. First, from the definition of =, ||z.||, 2 € M N Vs is bounded.
Write Cy as its upper bound.

Also, since V is compact and z — xz,,z € M N Vy is continuous at
V from Lemma 3.5, we see that if 6 > 0 is small enough, D®,(x,),z €



Laplace Approzimations for Sums of Independent Random Vectors 213

M N Vs is bounded in B*. So [z e?P®:(=)(*)(dz) is bounded above and
[ eP®=@=)(@) ;(dz) is bounded from 0 for z € M N V5. Therefore,

/B Ol o (de)
= /Becilac_lelzeD(DZ(wZ)(w)M(dl')/M(D‘I)z(xz))
< (i a2
([ P ) 2 [ P
B B
< / AR (1)) 1262613
B

_(/B€2D<I>z(xz)(x)u(d$))l/2//BeDCDZ(wZ)(x)M(dx)
< X

for C{ < Gt by the assumption (Al). O

The following can be gotten from proposition 4.2, by using the same
method as in Kusuoka-Liang [5], Lemma 3.2, Lemma 3.3, Lemma 3.5,
Lemma 3.6, Lemma 3.7. We omit the proofs here.

LEMMA 4.3.  Under the assumption (A1) in section 1, for any ¢ > 0,

there exists a ag > 0 small enough, such that for any a < ag, the following
holds:

1/2
c" (/ HxHQ”VZ’O(dx)) < / y"va(dy), Vn > 3,Vze M N V.
B R

LEMMA 4.4. Let V,,z € M N Vg be a family of symmetric bilinear
functions that satisfies:

1. [V (z,y)vo(dy) =0, Vxe B, Vze M.
2. There exists a constant Cy > 0, independent to z, such that

Ve (z, )| < Collll - [yl Ve,ye B, Vze MOV,

8. [ ¥z, y)?v.0(dz)v.o(dy) = 1.
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Then, there exists an a9 > 0, depends only on Cpy and
SUD, e MAV; I5 Hszuzp(dy), satisfying the following:

(4.3) B0 lH\If X )| < BT [H ” ]k],

VmeN,1<"i, <" jp<nk=1--,m,0<"a< ay,
Vze MNVg,

where { X;}52, is the sequence of random variables defined in section 1, and
{Yi}2, is defined by Yo (y) = yn, Yy = (Y1, %2, ) € RN.

LEMMA 4.5. Assume the same assumptions and use the same notations
as in lemma 4.4. Then for Vb < %, there exists € > 0, such that

oo 1
(4.4) sup supE”SZ’>O eXp(b'E Z . (X, Xj)),
zeMNVs neN 1<i#£j<n
1
= ) V(X X)) <el| <o
" icigj<n

LEMMA 4.6. Assume the same conditions as above. Then, for any Vb <
%, there exist constants €1 > 0 and €2 > 0, such that the following holds:

o0 Sn S
sup sup EY<0 [exp <b nW,(— )),
2zEMNVs nEN n o n

{‘;Z\Pz(Xqu)’ < 61}

i=1

1 n
ﬂ{||nZXZ~| < 52}] < 0.
=1

LEMMA 4.7. Assume that V,,z € M N Vs is a family of symmetric,
bilinear functions that satisfy the following conditions:

1. [V (z,y)v.0(dy) =0, Voe B VzeMNVs.
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2. There exists a constant Cy > 0, such that
V. (2,y)| < Collzll - [lyll,  Ve,yeB, VzeMnVs,

3. 5 U.(z,y)v.0(dx)v.o(dy) = b, <Zb < L.
Then there exists a € > 0, such that

®o0 1 " 1 “
(4.5)  sup sup E"z0 |exp(— Z V. (X5, X)), || = ZXZH <e| < oo.
2EMNVs neN =1 n=

5. Proof of the Theorem

First, note that by Donsker-Varadhan [3],

(5.1) lim sup 1 log E*™ [e”q)(STn), Sn ¢ %/2] <A
n—oo M n
So we only need to do with the integration on the set {Sn—” € Vs 2} from now
on.
Now, let M NVy be the new M. It is obvious that the new M still has the
same property as the old one. Equip with M the Riemann metric, written

as dy, and use vy (dx) to denote the volume element on M.

PROPOSITION 5.1.  There exists a continuous C': V5o — R, such that

Nl

(5.2) C(w)'n /
{Il—ull<é/2)nM

1
cexp (=5 1Quz — Quulffg, ) var(dz) — 1
uniformly in w € Vo as n — oo.

PROOF. From the definition of M, for any z € M, there exists a o € U
such that z = X(¢). Let g = X ~!(w), then

1
exp <—2n- |Qrz — kaH%mm) v (dz)

(V]IS

53) n /
{l—wll<s/2)AM

Nl

= n

/{Iwowllﬁé’/Q}ﬂU
1
exp (= 5n QX () - QX (6, ) vulde).
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But X (¢) = X(¢o) + DX (¢0)(¢ — o) +r(p), where r(p) is the 2nd Taylor
remainder, and by the continuity, there exists a constant K > 0, such that
r(p) < K||o — ¢o||?. Now, for any w € M N Vs /2, let

By, ) =Y [ei (DX(X ' @)@)]", v e W =1mP,

i=1
it is bilinear on W x W, and by Lemma 3.1, if § > 0 is small enough, there
exists a constant C' > 0, such that B, (¢,1) > C|[||? for all ) € W. So by
the definition of Q, if 6’ > 0 is small enough,

exp (= 5 1QUDX(0)(0 — 0)lfng, ) v0(d2)

[SIIsH

n

/{||90090§5’/2}ﬂU

[S]IsH

=N

1
/ exp <——n'Bw(90—<,00,g0—g00)) vaPd(dZ)v
{llpo—¢l||<8" /2INIm P, 2

which, by the discussion above, converges to (27r)g(det By)

As stated before, the 7(¢) is a high order of ||¢ — ¢o|[?, so (5.3) converges
to the same limit. The uniformness can be gotten in the same way by the
continuity. [

1
2. asn — oQ.

Now, we are ready to proof the following proposition, which certainly
gives our main theorem. Write C'(w) as C,, from now on.

LEMMA 5.2. For any bounded continuous function f: B — R,

B [1Eent, 22 e v,
n n

Nl

= "

/ F(2(2))b(z)e " " Pop(d2) (1 + o(1))
M

as n — oo, where b(z) = C;lexp(5 [ D*®.(z:)(y, y)v=0(dy)) x deto(I —
D2®,(2.))" Y2, a(z) = A=\, and 2(2) =z, z € M.

Note. From the definitions of x(2), a(z), and b(z), and the discussions
before, it is easy that they are continuous, and satisfy conditions (1), (2) of
Theorem 1.1.

Proor. By Proposition 5.1,

_1 4 1
Cutnt [ exp (~gn- 110z - Quulfyg, ) vurde) — 1
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uniformly in w € Vg, so

<. Su. roSa Sn
e R

n
~ E#@""’[f(&) ”(D(Tn)C;nln%
n "

./M exp <——HQ1€Z - Qk( )||ImQ )vM(dz)’ % < V‘S/z}

Sn

e gt [ogd f(Cnyent (), 21

Vm} v (dz),
where ), is the one defined in section 3.
Therefore, if we can show that e_”'AZE"@w[C'g_T}f(%")e"@ (5 Sa ¢

’n
Vs /2] is bounded for z € M(= M N Vy), and convernges to b(z)f(z(z)) for
each z € M, it will complete the proof of the lemma.
The convergence to b(z)f(x(z)) for each z € M can be shown by using
the same method as in Kusuoka-Liang [5]. In fact, as there, we have

o Sh ny Sn
e BT O5) F(E)en = (), 20 e V)
1) n
= FE"o0 [C{Snﬂz}f( - + )
exp (2D (I)Z(CL‘Z)(;, ?) + nR(xZ, n)) s ? +x, € ‘/;5/2 ,
where R(x., S”) is the 3rd remainder of the Taylor’s formula. But i—” —0

almost surely under u . So by Kusuoka-Liang [5], we get the convergence
here for each z € M.

For the boundedness, since C;',w € Vs/2 in bounded from the con-
tinuity of C : Vo — R, and f is bounded, we only need to show that
e*""\ZE“®OO[e”q>z(STn), % € V2] is bounded for z € M.

Here, for every z € M N Vg, let af and f7, I € N, be the eigenvalues and

the corresponding eigenvectors of D?®,(x.)

. where |q;|* is decreasing
z

with respect to [ for each z. Let

N
(N)

z,1 Zaf fla Hz(fla )Hz7
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N N
v (2,y) = D*®.(2.) (2, y) — Y (2, ).

Since D?®,(x,) . is a Hilbert-Schmidt function, for any n > 0, there exists

an n, € N large eilough, such that

L[ o vot@nmnldy) = Y lail? <n/2
BJB l=n,+1

Also, since D?®,(z,) is continuous with respect to z, we have that af is
upper semi-continuous with respect to z, therefore, for each zg € M N Vg,
we can find a neighborhood U, of zp in M NVj, such that for every z € U,,,

we have
o

> lafl? <.
l=nzy+1
Therefore, for any n > 0, we can find a N (independent to z € M N V),
such that

[e.9]

/ / \Pi{g)(x,y)2yz,0(d1:)yz70(dy) = Z laf | < n, for all z € M N V.
BJB I=N+1

Therefore, the boundness can be gotten from Lemma 4.7 and the Lemma
2.1 in Kusuoka-Tamura [6], since the boundness of D?®,,z € M N Vs in
B* x B* is easy from the fact that M is a manifold embedded in B.

This gives our assertion. [

6. Example

In this section, we will give an example, in which our conditions are
satisfied, but the central limit theorem is not.

Ezample. Let B be the space M(T) of all signed measures on the
torus T = R/27Z, which is equal to the dual space of C(T), with the norm
induced by it. (B is not seperable now, but our argument still works.) Let

Uz =2 i ( cos((4k +1)z)  cos((4k +3)2) ) '

= \(4k +1)log(4k +1)  (4k + 3)log(4k + 3)
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U(z) is well-defined, i.e., the series above converges for any z € [0,27),
and U(z) is continuous with respect to z. Actually, Fi(z) = 372, Jes
well-defined and absolutely continuous with respect to z by Edwards [4],
and U(z) = F(z+ §) + F(—z+ §). Let V(z,y) = CU(x — y), where the
constant C' is chosen so that fo% 02” V(z,y)?dxdy < 72, V is symmetric
and continuous. Let

is

27 27w
a(R) = [ [ Viw.p R R(dy)

for R € B. Let p(dz) = %dw, and consider

Z, = EF° [exp(nq)(nl i&xz))] .

=1

The entropy function now is

h(v) = /r (log %ﬁ) v(dr)

if v(dr) << dx and log d';gcx) is intergable, and h(v) = 0 otherwise. So by the

conditions above, vy(dz) = %dx maximize ® —h. Therefore, the eigenvalues

1 1 _
4k+1)log(4k+1)> =~ (4k+3)log(4k+3)’ k=
1,2,---. So, although D?®(1y) is a Hilbert-Schmidt function, it is not a
nuclear function, hence the central limit theorem does not hold.

of D2<I>(y0)‘ are constant times ¢
HxH
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