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Global Fuchsian Cauchy Problem

By Hideshi Yamane

Abstract. We show the unique solvability of a Fuchsian Cauchy
problem in the space of entire functions. As immediate corollaries,
we give some injectivity and bijectivity results for a class of partial
differential operators on the space of entire functions of exponential
type.

1. Introduction

First let us review some known results on a noncharacteristic Cauchy

problem in which the coefficients of the operator and the data are all entire.

The uniqueness of the solution is trivial and one tries to prove the existence

of an entire solution.

As [2] showed by using a classical result due to Bieberbach, such a

solution does not always exist; a solution exists near the initial surface

but in some cases it is impossible to extend it to the whole space.

Several authors have given sufficient conditions on the operator for the

existence of an entire solution. For example, [4] proved the following result

(see also [5] for a proof based on majorant functions).

In Ct × Cn
x, let us consider the Cauchy problem

(∗)



Dm

t u(t, x) =
m∑
�=1

∑
|β|≤�

a�β(t, x)Dm−�
t Dβ

xu(t, x) + v(t, x),

Dλ
t u(0, x) = wλ(x) (0 ≤ λ ≤ m− 1),

where a�β(t, x) is entire. Moreover, if |β| = �, it has the form a�β(t, x) =∑
|γ|≤� a�βγ(t)x

γ with entire functions a�βγ(t).

Theorem (Persson). For any entire functions v(t, x) and wλ(x), the

Cauchy problem (∗) has a (unique) entire solution u(t, x).
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On the other hand, [1] studied a characteristic Cauchy problem for local

holomorphic functions.

In the present paper we treat a characteristic Cauchy problem for entire

functions. Moreover, in §5. we prove some injectivity and bijectivity results

for a class of partial differential operators on the space of entire functions

of exponential type.

2. Statement of Main Result

We will consider a Fuchsian Cauchy problem for entire functions in Ct×
Cn

x, x = (x1, . . . , xn).

Let P = P (t, x,Dt, Dx) be a linear partial differential operator of order

m with entire coefficients. Here Dt = ∂/∂t and Dx = (D1, . . . , Dn) =

(∂/∂x1, . . . , ∂/∂xn). We assume that P has the following form:

P (t, x,Dt, Dx) = tm
′
Dm

t + am−1t
m′−1Dm−1

t + · · · + am−m′Dm−m′
t

+
m−1∑
j=0

∑
|β|=m−j

finite∑
k=α(j)

tkajkβ(x)Dj
tD

β
x

+
m−1∑
j=0

∑
|β|≤m−j−1

tα(j)ajβ(t, x)Dj
tD

β
x ,

where 0 ≤ m′ ≤ m, α(j) = max{0, j − (m −m′) + 1}, Dβ
x = Dβ1

1 · · ·Dβn
n ,

and |β| = β1 + · · · + βn. Here we assume that

• am−j (j = 1, . . . ,m′) is a constant,

• ajkβ(x) is a polynomial in x of degree ≤ m− j− 1 (if j = m− 1, then

ajkβ is a constant),

• ajβ(t, x) is entire in Ct × Cn
x.

Obviously P is a Fuchsian operator of weight m−m′ in the sense of [1].

We call the ordinary differential operator

Pm(t,Dt) = tm
′
Dm

t + am−1t
m′−1Dm−1

t + · · · + am−m′Dm−m′
t

the Fuchsian principal part of P .
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The characteristic polynomial associated with P is

C(λ) = t−λtm−m′
Pmt

λ

= λ(λ− 1) · · · (λ−m+ 1) + am−1λ(λ− 1) · · · (λ−m+ 2)

+ · · · + am−m′λ(λ− 1) · · · (λ−m+m′ + 1)

and its roots, called the characteristic roots, are denoted by

λ1, . . . , λm′ , λm′+1 = 0, λm′+2 = 1, . . . , λm = m−m′ − 1.

Our main result is

Theorem 1. If C(λ) �= 0 for any integer λ ≥ m − m′, then for any

entire function f(t, x) in Ct × Cn
x and entire functions fλ(x) (0 ≤ λ ≤

m−m′−1) in Cn
x, the following Cauchy problem has a unique entire solution

u(t, x):

Pu = f, Dλ
t u(0, x) = fλ(x) (0 ≤ λ ≤ m−m′ − 1).(1)

Remark. If m = m′, we impose no initial condition: the equation

Pu = f has a unique solution u.

3. Integral Operators

In this section we follow [1]. See also [9].

Assume that m = m′ and that Reλr < 0 for all r. If g(t) is entire, then

v(t) = H[g](t)

=

∫
[0,1]m

s−λ1−1
1 · · · s−λm−1

m g(s1 · · · smt)ds1 · · · dsm

gives the unique entire solution to Pmv = g.

We see that there exists a positive constant C independent of g and t

such that

|H[g](t)| ≤ C sup
|τ |≤|t|

|g(τ)|.

We will need other estimates on H[g]. Set H0[g] = g and

Hk[g](t) =

∫
[0,1]k

s−λ1−1
1 · · · s−λk−1

k g(s1 · · · skt)ds1 · · · dsk
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for k = 1, 2, . . . ,m. It is trivial that Hm = H and that |Hk[g](t)| ≤
Ck sup

|τ |≤|t|
|g(τ)|, where Ck is a positive constant independent of g and t.

By the repeated application of the formula tDtHk[g] = λkHk[g] +Hk−1[g]

(k = 1, 2, . . . ,m), we find that

|(tDt)
jH[g](t)| ≤ C ′ sup

|τ |≤|t|
|g(τ)| (j = 0, 1, . . . ,m) ,

where C ′ is a positive constant independent of g and t.

Since (Dtt)
j is a linear combination of 1, tDt, . . . , (tDt)

j , we obtain

Proposition 1. There exists a positive constant A independent of g

and t such that

|(Dtt)
jH[g](t)| ≤ A sup

|τ |≤|t|
|g(τ)| (j = 0, 1, . . . ,m).

Set for � ≥ 1,

G�[g](t) =

∫
[0,1]�

g(s1 · · · s�t)ds1 · · · ds� for g = g(t).

Then it is easy to see that

G� = G1 ◦ · · · ◦G1︸ ︷︷ ︸
� factors

, G1 ◦Dtt = identity.

Hence G� ◦ (Dtt)
� = identity, (Dtt)

j = Gm−j ◦ (Dtt)
m. Moreover we have

Lemma 1. If |g(t)| ≤
p̄∑

p=0

Cp|t|p, where p̄ ∈ N = {0, 1, 2, . . .} and Cp ≥

0 for all p, then we have

|G�[g](t)| ≤
p̄∑

p=0

Cp
|t|p

(p+ 1)�

Proof. |G�[g](t)| ≤
∑p̄

p=0Cp
∫ 1
0 ds1 · · ·

∫ 1
0 ds�

{
sp1 · · · s

p
� |t|p

}
. �
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4. Proof of Theorem 1

First we will prove Theorem 1 in the weight 0 case. In other words we

assume that m = m′. In this case we impose no initial condition.

For r > 0 and R > 1, set

B(r) = {t ∈ C; |t| < r}, D(R) = {x ∈ Cn; max
j=1,...,n

|xj | < R}.

The distance from x ∈ D(R) to the boundary of D(R) is denoted by dR(x)

and we have dR(x) = min
j=1,...,n

(R− |xj |). It is easy to see that

dR(x) ∼ R as R→ ∞(2)

uniformly on any bounded subset of Cn
x.

When f and u are expressed in the form f(t, x) =
∑∞

λ=0 fλ(x)t
λ,

u(t, x) =
∑∞

λ=0 uλ(x)t
λ, we have the following recurrence relation:

C(0)u0(x) = f0(x)

C(λ)uλ(x) = fλ(x) +
λ−1∑
ν=0

P ν
λ (x,Dx)uν(x), λ = 1, 2, . . . ,

for some differential operator P ν
λ (x,Dx). By the assumption C(λ) �= 0, we

can find a unique holomorphic function uλ(x) for all λ.

Next assume that Reλr < h ∈ Z+ = {1, 2, . . .} for r = 1, . . . ,m. Obvi-

ouslyQ = t−hPth is anm-th order Fuchsian operator of weight 0. We denote

its characteristic roots by µr. Then we have µr = λr − h and Reµr < 0 for

all r. Put u(t, x) =
∑h−1

λ=0 uλ(x)t
λ + thv(t, x). Then we have

P (thv) = f − P
(
h−1∑
λ=0

uλ(x)t
λ

)
,

which is equivalent to the equation

Qv = t−h

{
f − P

(
h−1∑
λ=0

uλ(x)t
λ

)}
.

The right hand side, which we denote by g(t, x), is a known entire function.

We have only to solve Qv = g. So we may assume from the beginning that

all the characteristic roots of P have a negative real part.
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We have

Pm − P =
m−1∑
j=0

{
k̄∑

k=1

tkPjk(x,Dx) + tSj(t, x,Dx)}(Dtt)
j .

Here k̄ is a positive integer and

Pjk(x,Dx) =
∑

|α|=m−j

Pjkα(x)Dα
x ,

where Pjkα(x) is a polynomial in x of degree ≤ m− j − 1. Notice that Pjk
has no lower order terms. The operator Sj has entire coefficients, commutes

with t and is of order ≤ m− j − 1.

Set max
|α|=m−j

degPjkα(x) = djk ≤ m − j − 1 and S = {(j, k);Pjk �= 0}.
Obviously S is a finite set.

We are going to prove

Theorem 2. There exists a positive constant C independent of R such

that Pu = f has a unique holomorphic solution in the open set

ΩR =


(t, x) ∈ B(R) ×D(R); t ∈

⋂
(j,k)∈S

B(CR−djk/kdR(x)(m−j)/k)


 .

By (2), any bounded subset of Ct × Cn
x is contained in ΩR for a suffi-

ciently large R. Therefore Theorem 1 (weight 0 case) is a direct consequence

of Theorem 2.

Our equation Pu = f is equivalent to the following differential-integral

equation:

u = H


f +

m−1∑
j=0

{
k̄∑

k=1

tkPjk(x,Dx) + tSj(t, x,Dx)}(Dtt)
ju


 .

Here H is the integral operator introduced in §3. Define a sequence of

functions {up(t, x)}p by

u0 = 0,

up+1 = H


f +

m−1∑
j=0

{
k̄∑

k=1

tkPjk + tSj}(Dtt)
jup


 for p ≥ 0.
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The solution u will be obtained as u = limp up. We set vp =

(Dtt)
m(up+1 − up), which satisfies for p ≥ 0,

vp+1 = (Dtt)
mH


m−1∑

j=0

{
k̄∑

k=1

tkPjk(x,Dx) + tSj(t, x,Dx)}Gm−j [vp]


 .

To show the existence of the limit u = limp up, it is enough to prove the

convergence of
∑

p vp.

Now we fix R > 1. Then we have

|f(t, x)| ≤ Cf,R

dR(x)
, |v0(t, x)| ≤

C ′
f,R

dR(x)

in B(R) × D(R) for some positive constants Cf,R and C ′
f,R. As a matter

of fact, the functions f and v0 are bounded in B(R) × D(R). We have

introduced a negative power of dR(x) in order to employ Lemmas 3 and 4

below.

Lemma 2. Assume that a holomorphic function g(x) in D(R) satisfies

|g(x)| ≤ ∑�̄
�=1C�dR(x)−�, where �̄ ∈ Z+ and C� ≥ 0 for � = 1, . . . , �̄. Then

we have

|Djg(x)| ≤ e(�̄+ 1)
�̄∑

�=1

C�dR(x)−(�+1)

for x ∈ D(R), j = 1, 2, . . . , n.

Proof. We may assume that j = 1. We have

D1g(x) =
1

2πi

∮
Γx

g(y, x′)

(y − x1)2
dy,(3)

where x′ = (x2, . . . , xn) and Γx ⊂ Cy is a circle defined by Γx = {y ∈
Cy; |y − x1| = dR(x)/(�̄+ 1)}. If y ∈ Γx, then (y, x′) ∈ D(R) and

dR(y, x′) ≥ dR(x) − 1

�̄+ 1
dR(x) =

�̄

�̄+ 1
dR(x),

from which we deduce

|g(y, x′)| ≤
�̄∑

�=1

C�(
�̄

�̄+ 1
)−�dR(x)−�(4)

≤ e
�̄∑

�=1

C�dR(x)−�.
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By (3) and (4), we obtain the desired estimate. �

In the situation of Lemma 2, we have the following two lemmas:

Lemma 3. If |α| = m− j, then

|Dαg(x)| ≤ em−j(�̄+ 1)m−j

�̄∑
�=1

C�dR(x)−(�+m−j).

Here we employ the Pochhammer symbol: (λ)n = λ(λ+ 1) · · · (λ+ n− 1).

Proof. Use Lemma 2 repeatedly. �

Lemma 4. If |α| ≤ m− j − 1, then

|Dαg(x)| ≤ (eR)m(�̄+ 1)m−j−1dR(x)−(m−j)
�̄∑

�=1

C�dR(x)−�,(5)

|Dαg(x)| ≤ (eR)m−1(�̄+ 1)m−j−1dR(x)−(m−1)
�̄∑

�=1

C�dR(x)−�.(6)

Proof. By using Lemma 2 and the inequality dR(x) ≤ R, we have

|Dαg(x)| ≤ e|α|(�̄+ 1)|α|dR(x)−|α|
�̄∑

�=1

C�dR(x)−�

≤ em−j−1(�̄+ 1)m−j−1dR(x)−|α|+m−jdR(x)−(m−j)

×
�̄∑

�=1

C�dR(x)−�

≤ em(�̄+ 1)m−j−1R
−|α|+m−jdR(x)−(m−j)

�̄∑
�=1

C�dR(x)−�,

from which we obtain (5). Similarly we can prove (6) in the following way:

|Dαg(x)| ≤ e|α|(�̄+ 1)|α|dR(x)−|α|
�̄∑

�=1

C�dR(x)−�
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≤ em−j−1(�̄+ 1)m−j−1dR(x)−|α|+m−1dR(x)−(m−1)

×
�̄∑

�=1

C�dR(x)−�

≤ em−1(�̄+ 1)m−j−1R
−|α|+m−1dR(x)−(m−1)

�̄∑
�=1

C�dR(x)−�. �

Proposition 2. There exists a constant CR > 0 such that

|vp(t, x)| ≤ Cp+1
R

|t|p
dR(x)mp+1

(7)

for (t, x) ∈ B(R) ×D(R) and p ≥ 0.

Proof. The case p = 0 has already been proved. Assume that (7) is

true for p. Then by Lemma 1 we have

|Gm−j [vp](t, x)| ≤
Cp+1
R

(p+ 1)m−j

|t|p
dR(x)mp+1

(8)

for (t, x) ∈ B(R) ×D(R).

We can write

k̄∑
k=1

tkPjk + tSj = t
∑

|α|≤m−j

ajα(t, x)Dα
x ,

where ajα(t, x) is entire. Put CRjα = sup
B(R)×D(R)

|ajα(t, x)|, then Lemma 3,

(8) and (5) imply that

|ajαDα
xGm−j [vp]| ≤ CRjαe

m−j(mp+ 2)m−j
Cp+1
R

(p+ 1)m−j

|t|p
dR(x)mp+m−j+1

if |α| = m− j, and that

|ajαDα
xGm−j [vp]| ≤ CRjα(eR)m(mp+ 2)m−j

Cp+1
R

(p+ 1)m−j

|t|p
dR(x)mp+m−j+1

if |α| ≤ m− j − 1.
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Set

C ′
R = max

j


em−j

∑
|α|=m−j

CRjα + (eR)m
∑

|α|≤m−j−1

CRjα


 .

It is independent of p.

We have for all j,∣∣∣∣∣∣(
k̄∑

k=1

tkPjk + tSj)Gm−j [vp]

∣∣∣∣∣∣ ≤ C ′
RC

p+1
R

(mp+ 2)m−j

(p+ 1)m−j

|t|p+1

dR(x)mp+m−j+1

≤ C ′
RC

p+1
R (m+ 1)mRm−1 |t|p+1

dR(x)m(p+1)+1
.

Induction proceeds because of Proposition 1, if CR is sufficiently large.

The proof of Proposition 2 is now complete. �

The proposition above is proved in [1] in a slightly different formulation.

It is good enough to prove local existence, but it is not sufficient to show

our global result because of the dependence of CR on R. So we give the

following Lemma 5 and Proposition 3.

Lemma 5. Let I be a finite subset of {(a, b) ∈ Z2
+; a ≥ p, b ≤ mp} for

p ∈ Z+. Assume that

|w(t, x)| ≤
∑

(a,b)∈I
Cab

|t|a
dR(x)b+1

holds for (t, x) ∈ B(R) × D(R). Then there exist positive constants C
(1)
jk ,

independent of R and p, and C
(2)
j,R, independent of p (but dependent on R),

such that

|tkPjk(x,Dx)Gm−j [w](t, x)|(9)

≤ C
(1)
jk

Rdjk |t|k
dR(x)m−j

∑
(a,b)∈I

Cab
|t|a

dR(x)b+1
,

|tSj(t, x,Dx)Gm−j [w](t, x)|(10)

≤ C
(2)
j,R

1

p

|t|
dR(x)m−1

∑
(a,b)∈I

Cab
|t|a

dR(x)b+1
,
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for all (t, x) ∈ B(R) ×D(R).

Proof. By Lemmas 1 and 3, we have, if |α| = m− j,

|Dα
xGm−j [w](t, x)| ≤

∑
(a,b)∈I

em−j (mp+ 2)m−j

(a+ 1)m−j
Cab

|t|a
dR(x)m−j+b+1

≤ em−j (mp+ 2)m−j

(p+ 1)m−j

∑
(a,b)∈I

Cab
|t|a

dR(x)m−j+b+1
.

Recall that Pjk(x,Dx) =
∑

|α|=m−j

Pjkα(x)Dα
x and that degPjkα ≤ djk. There

exists a constant C(Pjk) > 0 such that
∑

|α|=m−j

sup
D(R)

|Pjkα(x)| ≤ C(Pjk)R
djk

for all R > 1. Therefore we have

|Pjk(x,Dx)Gm−j [w](t, x)|

≤ C(Pjk)R
djkem−j (mp+ 2)m−j

(p+ 1)m−j

∑
(a,b)∈I

Cab
|t|a

dR(x)m−j+b+1
.

Then (9) follows from the fact that (mp + 2)m−j/(p + 1)m−j ≤ (m + 1)m.

Next, by Lemma 1 and (6), we have, if |α| ≤ m− j − 1,

|Dα
xGm−j [w](t, x)|

≤
∑

(a,b)∈I
(eR)m−1 (mp+ 2)m−j−1

(a+ 1)m−j
Cab

|t|a
dR(x)(m−1)+(b+1)

≤ (eR)m−1 (mp+ 2)m−j−1

(p+ 1)m−j

∑
(a,b)∈I

Cab
|t|a

dR(x)(m−1)+(b+1)
.

The operator Sj(t, x,Dx) can be expressed as

Sj(t, x,Dx) =
∑

|α|≤m−j−1

Sjα(t, x)Dα
x ,

where Sjα(t, x) is entire. Set C(Sj , R) =
∑

|α|≤m−j−1

sup
B(R)×D(R)

|Sjα(t, x)|.

Then

|Sj(t, x,Dx)Gm−j [w](t, x)|

≤ C(Sj , R)(eR)m−1 (mp+ 2)m−j−1

(p+ 1)m−j

∑
(a,b)∈I

Cab
|t|a

dR(x)(m−1)+(b+1)
.
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The estimate (10) is a consequence of the inequality

(mp+ 2)m−j−1

(p+ 1)m−j
≤ 1

p+ 1
· (mp+ 2)m−j−1

(p+ 1)m−j−1
≤ 1

p
· (m+ 1)m−1. �

Put CS = A max
(j,k)∈S

C
(1)
jk , C

(2)
R = A

m−1∑
j=0

C
(2)
j,R, where A is the one in Propo-

sition 1. Notice that CS is independent of R.

Fix temporarily a positive integer q ≥ 1. We have

Proposition 3. If p ≥ q, we have

|vp(t, x)| ≤


CS

∑
(j,k)∈S

Rdjk |t|k
dR(x)m−j

+
C

(2)
R

q

|t|
dR(x)m−1


p−q

· Cq+1
R

|t|q
dR(x)mq+1

for (t, x) ∈ B(R) ×D(R).

Proof. The case p = q is included in (7).

Assume that the estimate holds for p. It can be written in the following

form:

|vp(t, x)| ≤
∑

(a,b)∈Ip
C

{p}
ab

|t|a
dR(x)b+1

,

where Ip is a finite subset of {(a, b) ∈ Z2
+; a ≥ p, b ≤ mp} and C

{p}
ab is a

positive constant. By using Lemma 5 and Proposition 1, we obtain

|vp+1(t, x)|

≤ A


 ∑

(j,k)∈S
C

(1)
jk

Rdjk |t|k
dR(x)m−j

+
m−1∑
j=0

C
(2)
j,R

1

p

|t|
dR(x)m−1




×
∑

(a,b)∈Ip
C

{p}
ab

|t|a
dR(x)b+1

≤


CS

∑
(j,k)∈S

Rdjk |t|k
dR(x)m−j

+
C

(2)
R

q

|t|
dR(x)m−1


 ∑

(a,b)∈Ip
C

{p}
ab

|t|a
dR(x)b+1

.

Hence induction proceeds. �
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Set C = min{1, (3CS cardS)−1}. It is independent of q and R.

If t ∈ ⋂(j,k)∈S B(CR−djk/kdR(x)(m−j)/k), then Rdjk |t|k/dR(x)m−j < C

for all (j, k) ∈ S and

CS

∑
(j,k)∈S

Rdjk |t|k
dR(x)m−j

<
1

3
.(11)

For q = 1, 2, . . . , let ΩR,q ⊂ Ct × Cn
x be the intersection of

ΩR =


(t, x) ∈ B(R) ×D(R); t ∈

⋂
(j,k)∈S

B(CR−djk/kdR(x)(m−j)/k)




and

ωR,q =

{
(t, x) ∈ B(R) ×D(R); |t| < q

3C
(2)
R

dR(x)m−1

}
.

Then we have

Proposition 4. The series
∑

p≥0 vp is convergent in ΩR,q.

Proof. We have only to prove the convergence of
∑

p≥q vp. In ΩR,q,

we have

CS

∑
(j,k)∈S

Rdjk |t|k
dR(x)m−j

+
C

(2)
R

q

|t|
dR(x)m−1

<
2

3
.

By using Proposition 3, we obtain

|vp| ≤
(

2

3

)p−q

Cq+1
R

|t|q
dR(x)mq+1

, p ≥ q.

The convergence of
∑

p≥q vp follows immediately. �

Since
⋃∞

q=1 ωR,q = B(R)×D(R), we have
⋃∞

q=1 ΩR,q = ΩR. So Theorem 2

is a consequence of Proposition 4.

Last of all, let us prove Theorem 1 in the case of positive weight. We

look for u in the form

u(t, x) =
m−m′−1∑

λ=0

1

λ!
fλ(x)t

λ + tm−m′
v(t, x).
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The initial condition is satisfied. The equation Pu = f is equivalent to

Ptm−m′
v = f − P




m−m′−1∑
λ=0

1

λ!
fλ(x)t

λ


 ,

of which the right hand side is a known entire function. It is easy to see that

v can be obtained by applying the result of the weight 0 case to Ptm−m′
.

5. Entire Functions of Exponential Type

In this section we investigate the action of a class of partial differential

operators on entire functions of exponential type. The operators to be

studied are the Laplace transform of some Fuchsian operators.

Let H(Cn+1) be the space of entire functions in Cn+1 = Ct × Cn
x. Its

dual, the space of analytic functionals, is denoted by H′(Cn+1). An element

f(t, x) of H(Cn+1) is said to be of exponential type if and only if there exists

a positive constant C such that for all (t, x) ∈ Cn+1,

|f(t, x)| ≤ C exp(C|(t, x)|), |(t, x)| = (|t|2 +
∑n

j=1 |xj |2)1/2.

We denote the space of such functions by Exp(Cn+1). It is known (see [3]

for example) that the Laplace transformation maps H′(Cn+1) bijectively

onto Exp(Cn+1).

Consider the following partial differential operator Q(t, x,Dt, Dx) with

polynomial coefficients:

Q(t, x,Dt, Dx) = tmDm′
t + am−1t

m−1Dm′−1
t + · · · + am−m′tm−m′

+
m−1∑
j=0

∑
|β|=m−j

finite∑
k=α(j)

tjxβDk
t ajkβ(Dx)

+
m−1∑
j=0

∑
|β|≤m−j−1

tjxβD
α(j)
t ajβ(Dt, Dx).

Here 0 ≤ m′ ≤ m, α(j) = max{0, j − (m−m′) + 1} and

• am−j (j = 1, 2, . . . ,m′) is a constant,

• ajkβ(ξ) is a polynomial in ξ = (ξ1, . . . , ξn) of degree ≤ m − j − 1 (if

j = m− 1, then ajkβ is a constant),
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• ajβ(τ, ξ) is a polynomial in τ and ξ of arbitrary degree.

Moreover we assume that for any integer λ ≥ m−m′,

λ(λ− 1) · · · (λ−m+ 1) + am−1λ(λ− 1) · · · (λ−m+ 2)

+ · · · + am−m′λ(λ− 1) · · · (λ−m+m′ + 1) �= 0.

In this situation we have

Theorem 3. (i) The operator Q is injective on Exp(Cn+1).

(ii) If m = m′, then Q maps Exp(Cn+1) bijectively onto itself.

Proof. Consider the following Fuchsian partial differential operator

P of weight m−m′ with polynomial coefficients:

P (t, x,Dt, Dx) = tm
′
Dm

t + am−1t
m′−1Dm−1

t + · · · + am−m′Dm−m′
t

+
m−1∑
j=0

∑
|β|=m−j

finite∑
k=α(j)

tkajkβ(x)Dj
tD

β
x

+
m−1∑
j=0

∑
|β|≤m−j−1

tα(j)ajβ(t, x)Dj
tD

β
x .

By Theorem 1 it induces a continuous surjection from H(Cn+1) onto itself

and its transpose tP : H′(Cn+1) → H′(Cn+1) is an injection. By using the

Laplace transformation we get (i).

If m = m′, then P induces a topological automorphism of H(Cn+1) and
tP is a bijection. �

Example. Let us consider the operator Q = Dj
t + Dk

tD
�
x + Dm′

t t
m in

C2. (It is the Laplace transform of the transpose of tj + tkx� +Dm
t t

m′
.) We

assume that 0 ≤ m′ ≤ m, k ≥ 1.

By Theorem 3, the operator Q is injective on Exp(C2). If m = m′, it

maps Exp(C2) bijectively onto itself.

On the other hand, it is known that Q is not injective on H(C2) if

j > max(k + �,m′). More precisely, the Cauchy problem for Q with the

noncharacteristic initial hypersurface t = 0 has a unique solution in H(C2);

see [4] Theorem 3 or [5] Théorème 3.1 for the precise statement.
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The injectivity of Q on Exp(C2) implies that the (noncharacteristic)

Cauchy problem for Q does not always have a solution in that space. How-

ever, it has a unique solution in the space of functions of exponential type

of higher order. This fact is included in [5] Théorème 2.5. See also [6]

Corollary 4 for a result on operators with constant coefficients.
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