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A Limit Theorem for Weyl Transformation in

Infinite-Dimensional Torus and Central Limit

Theorem for Correlated Multiple Wiener Integrals

By Hiroshi Sugita and Satoshi Takanobu

Abstract. We show that under many of the probabilities on T∞,
infinite-dimensional torus, a random system (1/

√
N
∑N

i=1 f(xi +pαi))
converges to a centered Gaussian system whose covariance is deter-
mined only by the distribution of (αi)

∞
i=1 over T. Moreover we show

the convergence of a system of symmetric statistics to that of corre-
lated multiple Wiener integrals defined by the Gaussian system.

Also we study the central limit theorem for a sequence of the cor-
related multiple Wiener integrals.

0. Introduction and Notation

We study a limit theorem for a random system of Weyl transformation

in infinite-dimensional torus T∞.

In the previous paper [16], taking infinite-dimensional Lebesgue proba-

bility P∞ as underlying probability on T∞, we showed that on (T∞,P∞)

(
1√
N

N∑
i=1

f(xi + pαi)
)
p∈Z,f∈CL2

f.d.
=⇒

(
I(p)(f)

)
p∈Z,f∈CL2

as N → ∞,(0.1)

if and only if α = (α1, α2, . . .) ∈ T∞
dx, i.e., α is uniformly distributed over

T. (We expressed this phenomenon by saying that the disappearance of

dependency happens.) Here CL2 is the totality of square integrable real

functions on T with
∫
T
f(x)dx = 0, “

f.d.
=⇒ ” means the convergence in finite

dimensional distribution, I(p)(f) is the Wiener integral of f with respect

to B(p) and {B(p) = (B(p)(t))0≤t≤1}p∈Z is a sequence of independent 1-

dimensional Brownian motions starting at 0. Moreover this was generalized
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to the convergence of a system of symmetric statistics to that of multiple

Wiener integrals, i.e.,(
( 1√

N
)n

∑
1≤i1<···<in≤N

h(xi1 + pαi1 , . . . , xin + pαin)
)
p∈Z,h∈CSLn2

f.d.
=⇒

(
1
n!I

(p)
n (h)

)
p∈Z,h∈CSLn2

as N → ∞.(0.2)

Here I
(p)
n (h) is the n-ple Wiener integral of h ∈ CSLn2 (for which see (0.7)

below) with respect to B(p).

In the present paper we take, as underlying probability, product proba-

bility and generally absolutely continuous one relative to it. When a product

probability µ is mostly dominated by P∞, i.e., the singular part of µ with

respect to P∞ is small in a certain sense, we show that on any absolutely

continuous probability space relative to µ,(
1√
N

N∑
i=1

f(xi + pαi)
)
p∈Z,f∈C(T)∩CL2

f.d.
=⇒

(
I(p)(f)

)
p∈Z,f∈C(T)∩CL2

as N → ∞,(0.3)

if and only if α ∈ T∞
dx, and that for general α ∈ T∞, chosen a subsequence

{Nm}∞m=1 of {1, 2, 3, . . .} and a probability µ on T so that α ∈ T∞
µ,{Nm}

(for which see (0.8) below), the convergence (0.3) holds by replacing {N}
and (I(p)(f)) by {Nm} and (I(p)(f ;µ)), respectively, where (I(p)(f ;µ)) is a

centered, correlated Gaussian system (cf. (1.1)). For details, see Theorem

1.2. For this reason one may say that under many of the probabilities on T∞

a random system ( 1√
N

N∑
i=1

f(xi+pαi))p∈Z,f∈C(T)∩CL2
converges to a centered

Gaussian system whose covariance is determined only by the distribution of

(α1, α2, . . .) over T.

We further improve the convergence (0.2) in the following way: In case

the µ above satisfies some additional conditions and α ∈ T∞
µ,{Nm}, on any

absolutely continuous probability space relative to µ(
( 1√

Nm
)n

∑
1≤i1<···<in≤Nm

h(xi1 + pαi1 , . . . , xin + pαin)
)
p∈Z,h∈CSLn2

f.d.
=⇒

(
1
n!I

(p)
n (h;µ)

)
p∈Z,h∈CSLn2

as m→ ∞,(0.4)
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where I
(p)
n (·;µ) is the n-ple multiple Wiener integral with respect to

I(p)(·;µ). See Theorem 2.1.

Next we study the central limit theorem (abbr. CLT) for a sequence

{I(p)
n (·;µ)}∞p=1. For general µ(dx), the sequence is correlated in p, but when

µ(dx) is the Lebesgue measure dx, it is independent. So it is expected

that if µ(dx) is not very far from dx in some sense, then the dependence of

{I(p)
n (·;µ)}∞p=1 will be not very large, so that the CLT for {I(p)

n (·;µ)}∞p=1 must

hold. Indeed, when µ(dx) is absolutely continuous relative to dx, and its

density is continuous and positive, we show that for any non-zero h ∈ CSLn2 ,

1√
P

P∑
p=1

I
(p)
n (h;µ) converges to a nondegenerate Gaussian as P → ∞. See

Theorem 3.3.

In Section 4, combining this with the convergence (0.4), we present a jus-

tification of the claim of Sobol’ et al, by which our study in [16] was inspired.

In the last section, related topics on the disappearance of dependency are

introduced.

Let us here explain the notation used in this paper.

Let T ∼= [0, 1) be the 1-dimensional torus and P(dx) = dx the Lebesgue

measure on it. For m = 1, 2, . . . ,∞ let Tm be the m-dimensional torus, i.e.,

Tm = T × · · · × T︸ ︷︷ ︸
m

. Let F be a σ-algebra on T∞ generated by cylindrical

sets and P∞ the Lebesgue measure on (T∞,F), i.e., P∞(dx1dx2 · · ·) =
∞∏
i=1

dxi. The addition and scalar multiplication on Tm are always considered

coordinatewise in the sense of modulo 1.

Let

Ln2 = L2(T
n; dx1 · · · dxn),(0.5)

SLn2 =

h ∈ Ln2 ;
h is symmetric in each two variables, i.e.,

h(. . . ,
i
x, . . . ,

j
y, . . .) = h(. . . ,

i
y, . . . ,

j
x, . . .)

 ,(0.6)

CSLn2 =

h ∈ SLn2 ;

∫
T

h(x1, . . . , xn−1, y)dy = 0

a.a. (x1, . . . , xn−1) ∈ Tn−1

 .(0.7)

When n = 1, L1
2 = SL1

2 and CSL1
2 are simply written as L2 and CL2,



102 Hiroshi Sugita and Satoshi Takanobu

respectively. The norm and inner product on Ln2 are denoted by ‖·‖Ln2 and

(·, ∗)Ln2 , respectively. In some cases, they may be written in dropping the

subscript Ln2 . For f1, . . . , fn ∈ L2, f1 ⊗ · · · ⊗ fn ∈ Ln2 is defined by

f1 ⊗ · · · ⊗ fn(x1, . . . , xn) := f1(x1) × · · · × fn(xn).

If f1 = · · · = fn = f , this is denoted by f⊗n. Note that f⊗n ∈ CSLn2 if

f ∈ CL2.

Functions on T are identified with 1-periodic functions on R in an ob-

vious way. By this identification a continuous function on T is regarded as

a continuous 1-periodic function on R. Let C(T) be the space of all such

functions with the supremum norm ‖·‖∞.

For f ∈ L1(T; dx) and generally a finite measure ν(dx) on T, f̂(n)

and ν̂(n) are the n-th Fourier coefficients of f and ν, respectively, i.e.,

f̂(n) =
∫
T
f(x)e−

√
−1 2nπxdx and ν̂(n) =

∫
T
e−

√
−1 2nπxν(dx). For a proba-

bility measure µ on T and a subsequence {Nm}∞m=1 of {1, 2, 3, . . .}, let

T∞
µ,{Nm} =


α = (α1, α2, . . .) ∈ T∞;

lim
m→∞

1
Nm

Nm∑
i=1

δαi(dx) = µ(dx) weakly

 .(0.8)

If Nm = m, this is simply written as T∞
µ .

1. Convergence to a Centered Gaussian System

In this section underlying probability space (T∞,F,µ) is a product prob-

ability space, i.e., for a sequence {Pi}∞i=1 of probability measures on T,

µ =
∞∏
i=1

Pi. Set Fn := σ(X1, . . . , Xn), where Xi is the coordinate function,

i.e., Xi(x) = xi, x = (xj)
∞
j=1 ∈ T∞. Note that F = σ(

⋃
n

Fn). For a probabil-

ity measure µ on T let (I(p)(f ;µ))p∈Z,f∈CL2 be a centered Gaussian system

on a probability space (Ω,F, P ) such that

E
[
I(p)(f ;µ)I(q)(g;µ)

]
=
∑
|i|≥1

f̂(i) ĝ(i) µ̂(i(q − p)),(1.1)

∀f, g ∈ CL2,
∀p, q ∈ Z.
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Theorem 1.1. Let α ∈ T∞ and let {Nm}∞m=1 be a subsequence of

{1, 2, 3, . . .}. The following (A) and (B) are equivalent:

(A)
(

1√
Nm

Nm∑
i=1

f(xi + pαi)
)
p∈Z,f∈C(T)∩CL2

under µ

f.d.
=⇒

(
I(p)(f ;µ)

)
p∈Z,f∈C(T)∩CL2

as m→ ∞.

(B) (B.1) lim
m→∞

1
Nm

Nm∑
i=1

(∫
T

f(x+ pαi)Pi(dx)
)2

= 0,

∀f ∈ C(T) ∩ CL2,
∀p ∈ Z

(B.2) lim
m→∞

1√
Nm

Nm∑
i=1

∫
T

f(x+ pαi)Pi(dx) = 0,

∀f ∈ C(T) ∩ CL2,
∀p ∈ Z

(B.3) lim
m→∞

1
Nm

Nm∑
i=1

∫
T

f(x+ pαi)g(x+ qαi)Pi(dx)

= E
[
I(p)(f ;µ)I(q)(g;µ)

]
,

∀f, g ∈ C(T) ∩ CL2,
∀p, q ∈ Z ; p �= q.

To prove the theorem we present a lemma:

Lemma 1.1. Let α ∈ T∞. Let p0 ∈ Z, K ∈ N and f1, . . . , fL ∈ C(T) ∩
CL2. For (apk)1≤p≤K

1≤k≤L
∈ SKL−1, i.e., (apk)1≤p≤K

1≤k≤L
∈ RKL with

∑
1≤p≤K
1≤k≤L

a2
pk =

1, set

ζNi := 1√
N

∑
1≤p≤K
1≤k≤L

apkfk(xi + (p+ p0)αi), 1 ≤ i ≤ N,

TN (t) :=

N∏
i=1

(1 +
√
−1 tζNi), t ∈ R.

Let λ be a probability measure on (T∞,F). Then, for ∀v ≥ 0 and ∀ sub-
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sequence {Nj}∞j=1 of {1, 2, 3, . . .}

lim sup
j→∞

Eλ
[
|e

√
−1 t

∑ Nj
i=1 ζNji − TNj (t)e

− t2

2
v|
]

≤
(
1 + e

t2

2
K
∑ L
k=1 ‖fk‖2

∞
)

lim
ε↓0

lim sup
j→∞

λ
(
|
Nj∑
i=1

ζ2
Nji − v| > ε

)
.

Proof. Using an expression

ez = (1 + z)e
z2

2
−r(z), Re z > −1(1.2)

where

r(z) = z3

∫ 1

0

s2

1 + zs
ds,(1.3)

we write for 0 < ε ≤ 1 and v ≥ 0

e
√
−1 t

∑ N
i=1 ζNi

= e
√
−1 t

∑ N
i=1 ζNi1max1≤i≤N |ζNi|>ε

+ e
√
−1 t

∑ N
i=1 ζNi1{max1≤i≤N |ζNi|≤ε, |

∑ N
i=1 ζ

2
Ni−v|>ε}

− TN (t)e−
t2

2
v1{max1≤i≤N |ζNi|>ε or |

∑ N
i=1 ζ

2
Ni−v|>ε}

+ TN (t)
(
e−

t2

2

∑ N
i=1 ζ

2
Ni−

∑ N
i=1 r(

√
−1 tζNi) − e−

t2

2
v
)

× 1{max1≤i≤N |ζNi|≤ε, |
∑ N
i=1 ζ

2
Ni−v|≤ε}

+ TN (t)e−
t2

2
v.

Then

|e
√
−1 t

∑ N
i=1 ζNi − TN (t)e−

t2

2
v|

≤ 1max1≤i≤N |ζNi|>ε + 1|
∑ N
i=1 ζ

2
Ni−v|>ε

+ |TN (t)|1{max1≤i≤N |ζNi|>ε or |
∑ N
i=1 ζ

2
Ni−v|>ε}

+ |TN (t)| sup

{
|ez − ew| ; |z|, |w| ≤ ( t

2

2 + |t|3
3 )(1 + v),

|z − w| ≤ ε( t
2

2 + |t|3
3 (1 + v))

}
.
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Hence, noting that

|TN (t)| ≤ e
t2

2
K
∑ L
k=1 ‖fk‖2

∞ ,(1.4)

max
1≤i≤N

|ζNi| ≤ 1√
N

√
K

L∑
k=1

‖fk‖2∞,(1.5)

we have the conclusion. �

Proof of “ (B) ⇒ (A) ”. We suppose (B). Let K,L ∈ N be fixed

arbitrarily. Let p0 ∈ Z, f1, . . . , fL ∈ C(T) ∩ CL2 and (apk)1≤p≤K
1≤k≤L

∈ SKL−1.

By the Cramér-Wold device (cf. [1]) it suffices to show that for ∀t ∈ R

lim
m→∞

Eµ
[
e
√
−1 t

∑ K
p=1

∑ L
k=1 apk

1√
Nm

∑ Nm
i=1 fk(xi+(p+p0)αi)

]
= e−

t2

2
E[(

∑ K
p=1

∑ L
k=1 apkI

(p+p0)(fk;µ))
2
].

Let ζNi and TN (t) be as in Lemma 1.1. From (B.2) note that

lim
m→∞

1
Nm

Nm∑
i=1

Ei[f(· + pαi)] = E[f ], ∀f ∈ C(T), ∀p ∈ Z.

We write

N∑
i=1

ζ2
Ni =

∑
1≤p≤K
1≤k≤L

∑
1≤q≤K
1≤l≤L

apkaql

×
(

1
N

N∑
i=1

(fk(xi + (p+ p0)αi)fl(xi + (q + p0)αi)

− Ei[fk(· + (p+ p0)αi)fl(· + (q + p0)αi)])

+ 1
N

N∑
i=1

Ei[fk(· + (p+ p0)αi)fl(· + (q + p0)αi)]
)
.

By the note above and (B.3)

lim
m→∞

1
Nm

Nm∑
i=1

Ei[fk(· + pαi)fl(· + qαi)] = E
[
I(p)(fk;µ)I(q)(fl;µ)

]
,



106 Hiroshi Sugita and Satoshi Takanobu

and also by the strong law of large numbers (abbr. SLLN)

lim
N→∞

1
N

N∑
i=1

(fk(xi + pαi)fl(xi + qαi)

− Ei[fk(· + pαi)fl(· + qαi)]) = 0 µ-a.s.

Hence substituting these into the expression of
Nm∑
i=1

ζ2
Nmi

, we have

lim
m→∞

Nm∑
i=1

ζ2
Nmi = E

[
(
∑

1≤p≤K
1≤k≤L

apkI
(p+p0)(fk;µ))2

]
µ-a.s.(1.6)

Next let us check

lim
m→∞

Eµ [TNm(t) ;A] = µ(A), ∀t ∈ R, ∀A ∈ F.(1.7)

To do so, for m > n ≥ 1 we divide Eµ [TNm(t) ;A] as

Eµ [TNm(t) ; A] = Eµ
[
TNm(t)(µ(A |FNm) − µ(A |FNn))

]
+ Eµ

[
TNm(t)µ(A |FNn)

]
.

By (1.4)

|the first term| ≤ e
t2

2
K
∑ L
k=1 ‖fk‖2

Eµ
[
|µ(A |FNm) − µ(A |FNn)|

]
.

Since µ(A |FN ) → 1A in L1 as N → ∞,

lim sup
m→∞

|the first term| ≤ e
t2

2
K
∑ L
k=1 ‖fk‖2

Eµ
[
|1A − µ(A |FNn)|

]
−→ 0 as n→ ∞.

By the independence of FNn and σ(ζNmi;Nn + 1 ≤ i ≤ Nm) and by (1.2),

the second term

= Eµ
[Nn∏
i=1

(
1 +

√
−1 t√
Nm

∑
1≤p≤K
1≤k≤L

apkfk(xi + (p+ p0)αi)
)
µ(A |FNn)

]
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× e
√
−1 t

∑ K
p=1

∑ L
k=1 apk

1√
Nm

∑ Nm
i=Nn+1 Ei[fk(·+(p+p0)αi)]

× e
t2

2
1
Nm

∑ Nm
i=Nn+1(

∑ K
p=1

∑ L
k=1 apkEi[fk(·+(p+p0)αi)])

2

× e
∑ Nm
i=Nn+1 r(

√
−1 t√
Nm

∑ K
p=1

∑ L
k=1 apkEi[fk(·+(p+p0)αi)]).

Clearly

the first product −→ Eµ
[
µ(A |FNn)

]
= µ(A) as m→ ∞.

By (B.2) and (B.1), the second and third products → 1. By the fact

|r(
√
−1x)| ≤ |x|3

3 (cf. (1.3)), the fourth product → 1. Hence, putting

the above we have (1.7).

By (1.6) and (1.7), Lemma 1.1 gives us the desired conclusion. �

Proof of “ (A) ⇒ (B) ”. We suppose (A). The proof is done in three

steps.

1◦ For ∀f ∈ C(T) and ∀p ∈ Z

lim
m→∞

1
Nm

Nm∑
i=1

f(xi + pαi) = E[f ] µ-a.s.

Proof. Let p ∈ Z and f ∈ C(T) ∩ CL2. By the assumption

1√
Nm

Nm∑
i=1

f(xi + pαi) =⇒ I(p)(f ;µ) as m→ ∞,

and so

lim
m→∞

1
Nm

Nm∑
i=1

f(xi + pαi) = 0 in µ.

But, since
{

1
N

N∑
i=1

f(xi + pαi)
}∞
N=1

is uniformly bounded, and hence uni-

formly integrable, this convergence also holds in L1(µ). Therefore, by taking

expectation

lim
m→∞

1
Nm

Nm∑
i=1

Ei[f(· + pαi)] = 0.
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On the other hand, by the SLLN

lim
N→∞

1
N

N∑
i=1

(
f(xi + pαi) − Ei[f(· + pαi)]

)
= 0 µ-a.s.

Combining these we have

lim
m→∞

1
Nm

Nm∑
i=1

f(xi + pαi) = 0 µ-a.s.

From this the assertion for general f ∈ C(T) will be clear. �

2◦ (B.1) and (B.2) hold.

Proof. Let p ∈ Z and f ∈ C(T)∩CL2. We may suppose that E[f2] =∫
T
f(x)2dx = 1. For simplicity set ζNi := 1√

N
f(xi + pαi), 1 ≤ i ≤ N . By

the assumption
Nm∑
i=1

ζNmi ⇒ I(p)(f ;µ) ∼ N(0, 1), and by 1◦
Nm∑
i=1

ζ2
Nmi

→ 1

µ-a.s. Therefore we apply Lemma 1.1 to have

lim
m→∞

Eµ
[Nm∏
i=1

(1 +
√
−1 tζNmi)

]
= 1, ∀t ∈ R.

Since, by (1.2)

e
√
−1 t 1√

Nm

∑ Nm
i=1 Ei[f(·+pαi)]

= Eµ
[Nm∏
i=1

(1 +
√
−1 tζNmi)

]
× e−

t2

2
1
Nm

∑ Nm
i=1 (Ei[f(·+pαi)])

2

e
−
∑ Nm
i=1 r(

√
−1 t√
Nm

Ei[f(·+pαi)]),

and hence

e
t2

2
1
Nm

∑ Nm
i=1 (Ei[f(·+pαi)])

2

=
∣∣∣Eµ
[Nm∏
i=1

(1 +
√
−1 tζNmi)

]∣∣∣ ∣∣∣e−∑ Nm
i=1 r(

√
−1 t√
Nm

Ei[f(·+pαi)])∣∣∣,



A Limit Theorem for Weyl Transformation 109

letting m→ ∞ in the second expression yields

lim
m→∞

1
Nm

Nm∑
i=1

(
Ei[f(· + pαi)]

)2
= 0,

which says (B.1), and next putting this into the first expression yields

lim
m→∞

e
√
−1 t 1√

Nm

∑ Nm
i=1 Ei[f(·+pαi)] = 1, ∀t ∈ R,

i.e.,

lim
m→∞

1√
Nm

Nm∑
i=1

Ei[f(· + pαi)] = 0,

which says (B.2). �

3◦ (B.3) holds.

Proof. Let f, g ∈ C(T) ∩ CL2 and p �= q. We may suppose that∫
T
f(x)2dx =

∫
T
g(x)2dx = 1. Set

ζNi := 1√
N

(
1√
2
f(xi + pαi) + 1√

2
g(xi + qαi)

)
, 1 ≤ i ≤ N.

By the assumption

Nm∑
i=1

ζNmi =⇒ 1√
2

(
I(p)(f ;µ) + I(q)(g;µ)

)
as m→ ∞.(1.8)

Since we have (B.1) and (B.2), in the same way as in the proof of (1.7)

lim
m→∞

Eµ
[Nm∏
i=1

(1 +
√
−1 tζNmi)

]
= 1, ∀t ∈ R.
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To view the convergence of
Nm∑
i=1

ζ2
Nmi

, we write

Nm∑
i=1

ζ2
Nmi = 1

2
1
Nm

Nm∑
i=1

f(xi + pαi)
2 + 1

2
1
Nm

Nm∑
i=1

g(xi + qαi)
2

+ 1
Nm

Nm∑
i=1

(
f(xi + pαi)g(xi + qαi)

− Ei[f(· + pαi)g(· + qαi)]
)

+ 1
Nm

Nm∑
i=1

Ei[f(· + pαi)g(· + qαi)].

By 1◦, the first and second terms → 1
2 µ-a.s. By the SLLN, the third term

→ 0 µ-a.s. The fourth term is bounded in m, and so for ∀ subsequence {m′}
we can take a further subsequence {m′′} of {m′} and c ∈ R such that

1
Nm′′

Nm′′∑
i=1

Ei[f(· + pαi)g(· + qαi)] −→ c.

Then putting these into the expression of
Nm∑
i=1

ζ2
Nmi

yields that
Nm′′∑
i=1

ζ2
Nm′′ i →

1 + c µ-a.s.

Now Lemma 1.1 tells us that
Nm′′∑
i=1

ζNm′′ i ⇒ N(0, 1 + c). Combined with

(1.8) this implies that

c = E
[
I(p)(f ;µ)I(q)(g;µ)

]
.

Therefore, since the convergence above holds with this value for ∀ sub-

sequence {m′}, we must have

lim
m→∞

1
Nm

Nm∑
i=1

Ei[f(· + pαi)g(· + qαi)] = E
[
I(p)(f ;µ)I(q)(g;µ)

]
,

which says (B.3). �
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Claim 1.1. Let α ∈ T∞ and {Nm}∞m=1 be as in Theorem 1.1. Suppose

the conditions (B.1) and (B.2). The convergence of (A) holds under some

absolutely continuous probability relative to µ, if and only if the condition

(B.3) holds. In this case the convergence of (A) remains valid under any

absolutely continuous one.

Proof. Suppose the convergence of (A) under an absolutely continu-

ous probability ν relative to µ. Let ζNi be as in 3◦ above. By the assumption

Nm∑
i=1

ζNmi under ν =⇒ 1√
2

(
I(p)(f ;µ) + I(q)(g;µ)

)
as m→ ∞.(1.9)

By virtue of the conditions (B.1) and (B.2)

lim
m→∞

Eν
[Nm∏
i=1

(1 +
√
−1 tζNmi)

]
= 1, ∀t ∈ R,

which is easily seen from (1.7). In the same way as in 3◦, for any subsequence

{m′} we take a further subsequence {m′′} such that lim
m′′

Nm′′∑
i=1

ζ2
Nm′′ i = 1 + c

in ν, where

c = lim
m′′

1
Nm′′

Nm′′∑
i=1

Ei[f(· + pαi)g(· + qαi)].

Then, by Lemma 1.1 and (1.9), c = E[I(p)(f ;µ)I(q)(g;µ)]. This implies the

condition (B.3).

Conversely suppose the condition (B.3). This time let ζNi be as in

Lemma 1.1. It suffices to show that for ∀Z ∈ L1(T∞,F,µ) and ∀t ∈ R

lim
m→∞

Eµ [Ze
√
−1 t

∑ Nm
i=1 ζNmi ] = Eµ [Z]e−

t2

2
E[(

∑ K
p=1

∑ L
k=1 apkI

(p+p0)(fk;µ))
2
].

Since elements in L1(T∞,F,µ) are approximated by F-simple functions, we

may assume the Z above to be a defining function.

Let A ∈ F and t ∈ R be fixed arbitrarily. Then by (1.6) and (1.7),

Lemma 1.1 implies that

lim
m→∞

Eµ
[
e
√
−1 t

∑ Nm
i=1 ζNmi ;A

]
= µ(A)e−

t2

2
E[(

∑ K
p=1

∑ L
k=1 apkI

(p+p0)(fk;µ))
2
],
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which is just the desired conclusion. �

Claim 1.2. The condition (B.1) + (B.3) is equivalent to that (C)k
(k = 1 or 2) + (M):

(C)k lim
m→∞

1
Nm

Nm∑
i=1

|P̂i(n)|k = 0, ∀n ∈ Z \ {0},

(M) α ∈ T∞
µ,{Nm}.

Proof. The implications (B.1) ⇒ (C)2 ⇒ (C)1 ⇒ (B.1) are easily

seen. Indeed, the first implication follows from an equality(∫
T

cos 2nπ(x+ pαi)Pi(dx)
)2

+
(∫

T

sin 2nπ(x+ pαi)Pi(dx)
)2

= |P̂i(∓n)|2;

the second does from an inequality |a| ≤ 1
2(ε2 + |a|2

ε2
), ε > 0; the third does

from the Weierstrass approximation theorem.

Next we show the implication (C)1 + (M) ⇒ (B.3). Let f, g ∈ C(T) ∩
CL2 and let p, q ∈ Z be such that p �= q. By virtue of the Weierstrass

approximation theorem we may assume the f and g to be real trigonometric

polynomials. Letting

f(x) =
∑

1≤|k|≤N
cke

√
−1 2πkx, g(x) =

∑
1≤|l|≤N

dle
√
−1 2πlx,

where ck = c−k and dl = d−l, we write

1
Nm

Nm∑
i=1

Ei[f(· + pαi)g(· + qαi)]

=
∑

1≤|k|≤N
ckdk

1
Nm

Nm∑
i=1

e
√
−1 2πk(p−q)αi

+
∑

1≤|k|,|l|≤N ;
k �=l

ckdl
1
Nm

Nm∑
i=1

e
√
−1 2π(kp−lq)αiP̂i(l − k).
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By (M), the first term →
∑

1≤|k|≤N
ckdkµ̂(k(q − p)) = E[I(p)(f ;µ)I(q)(g;µ)],

and by (C)1, the second term → 0. Hence we have (B.3).

Finally we show the implication (B.3) + (C)1 ⇒ (M). Let {m′} be

any subsequence. Because of the compactness of T there exist a further

subsequence {m′′} and a probability measure ν on T so that α ∈ T∞
ν,{Nm′′}.

From what we have shown above and our assumption∑
|i|≥1

f̂(i) ĝ(i) ν̂(i(q − p))

=
∑
|i|≥1

f̂(i) ĝ(i) µ̂(i(q − p)), ∀f, g ∈ C(T) ∩ CL2,
∀p, q ∈ Z.

This easily implies ν = µ, so that we have α ∈ T∞
µ,{Nm}, which is just (M). �

We present a sufficient condition for {Pi}∞i=1 to satisfy the conditions

(B.1) and (B.2).

Theorem 1.2. Suppose that a sequence {Pi}∞i=1 of probability mea-

sures on T satisfies the following: For some N0 ⊂ N,

(i) Pi(dx) � dx (∀i ∈ N0) and
∏
i∈N0

∫
T

√
dPi
dx (x)dx > 0,

(ii) #(N \ N0) ∩ {1, . . . , N} = O(
√
N) as N → ∞ and

lim
N→∞

1√
N

∑
i∈(N\N0)∩{1,...,N}

|P̂i(n)| = 0, ∀n �= 0.

Then, for ∀α ∈ T∞, (B.1) and (B.2) hold with the whole sequence

{1, 2, 3, . . .}. Thus, the convergence of (A) holds under some / any absolutely

continuous probability relative to µ =
∞∏
i=1

Pi, if and only if α ∈ T∞
µ,{Nm}.

In particular the disappearance of dependency happens as N → ∞ in the

sense that on some / any absolutely continuous probability space relative to

µ =
∞∏
i=1

Pi

(
1√
N

N∑
i=1

f(xi + pαi)
)
p∈Z,f∈C(T)∩CL2
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f.d.
=⇒

(
I(p)(f)

)
p∈Z,f∈C(T)∩CL2

as N → ∞,

if and only if α ∈ T∞
dx. Here

{
(B(p)(t))0≤t≤1

}
p∈Z

is a sequence of inde-

pendent 1-dimensional Brownian motions starting at 0, and I(p)(f) is the

Wiener integral of f ∈ L2 with respect to B(p), i.e., I(p)(f) =∫ 1
0 f(s)dB(p)(s).

Proof. It suffices to check (C)2 and (B.2) with Nm = m. First of all

note that for a sequence {ak}∞k=1 with 0 < ak ≤ 1 (∀k)

∞∏
k=1

ak > 0 ⇐⇒
iff

∞∑
k=1

(1 − ak) <∞.

Set ρi(x) := dPi
dx (x), i ∈ N0. By the assumption (i) and the note above∑

i∈N0

(1 −
∫
T

√
ρi(x) dx) < ∞.

Also, by the fact
∫
T
ρi(x)dx = 1∫

T

|1 −
√
ρi(x)|2dx = 2(1 −

∫
T

√
ρi(x) dx),

∫
T

|1 − ρi(x)|dx ≤ 2

√∫
T

|1 −
√
ρi(x)|2dx.

Therefore ∑
i∈N0

∫
T

|1 −
√
ρi(x)|2dx < ∞,(1.10)

∑
i∈N0

(

∫
T

|1 − ρi(x)|dx)2 < ∞.(1.11)

Now we show (C)2. Let n ∈ Z\{0}. Then, by (1.11) and the assumption

(ii) we have

1
N

N∑
i=1

|P̂i(n)|2 = 1
N

∑
i∈N0∩{1,...,N}

∣∣∣∫
T

e−
√
−1 2nπxρi(x)dx

∣∣∣2
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+ 1
N

∑
i∈(N\N0)∩{1,...,N}

∣∣∣∫
T

e−
√
−1 2nπxPi(dx)

∣∣∣2
≤ 1

N

∑
i∈N0∩{1,...,N}

(∫
T

|1 − ρi(x)|dx
)2

+ 1√
N

1√
N

# (N \ N0) ∩ {1, . . . , N}

−→ 0 as N → ∞,

which is just (C)2.

Next we show (B.2). Let f ∈ C(T) ∩ CL2 and p ∈ Z. We divide

1√
N

N∑
i=1

Ei[f(· + pαi)] into two terms as

1√
N

N∑
i=1

Ei[f(· + pαi)] = 1√
N

∑
i∈N0∩{1,...,N}

Ei[f(· + pαi)]

+ 1√
N

∑
i∈(N\N0)∩{1,...,N}

Ei[f(· + pαi)].

As for the first term, noting that

Ei[f(· + pαi)] =

∫
T

f(x+ pαi)(
√
ρi(x) + 1)(

√
ρi(x) − 1)dx,

we have by (1.10)

|the first term|

=
∣∣∣ 1√
N

∑
i∈N0∩{1,...,M}

Ei[f(· + pαi)]

+ 1√
N

∑
i∈N0∩{M+1,...,N}

∫
T

f(x+ pαi)(
√
ρi(x) + 1)(

√
ρi(x) − 1)dx

∣∣∣
≤ M√

N
‖f‖∞ + 1√

N

( ∑
i∈N0∩{M+1,...,N}

∫
T

f(x+ pαi)
2(
√
ρi(x) + 1)2dx

) 1
2

×
( ∑
i∈N0∩{M+1,...,N}

∫
T

|1 −
√
ρi(x)|2dx

) 1
2

−→
first N→∞

second M→∞
0.



116 Hiroshi Sugita and Satoshi Takanobu

As for the second term, for ∀ε > 0 we take a trigonometric polynomial

Pε(x) =
∑

1≤|k|≤n
cke

√
−1 2kπx such that ‖f − Pε‖∞ < ε. Then we have by the

assumption (ii)

|the second term|

=
∣∣∣ 1√
N

∑
i∈(N\N0)∩{1,...,N}

∫
T

(f − Pε)(x+ pαi)Pi(dx)

+
∑

1≤|k|≤n
ck

1√
N

∑
i∈(N\N0)∩{1,...,N}

e
√
−1 2kπpαi

∫
T

e
√
−1 2kπxPi(dx)

∣∣∣
≤ ε 1√

N
# (N \ N0) ∩ {1, . . . , N}

+
∑

1≤|k|≤n
|ck| 1√

N

∑
i∈(N\N0)∩{1,...,N}

|P̂i(−k)|

−→
first N→∞
second ε→0

0.

These convergences clearly imply (B.2). �

2. Convergence to a System of Correlated Multiple Wiener In-

tegrals

In this section we study the convergence of a system of symmetric statis-

tics to that of correlated multiple Wiener integrals. As in the previous sec-

tion let (I(p)(f ;µ))p∈Z,f∈CL2 be a centered Gaussian system with covariance

(1.1), and let us denote by µ a product probability
∞∏
i=1

Pi.

We begin with the following definition:

Definition 2.1. For κ ∈ [0,∞), we define a real Hilbert space

(Hκ, (·, ∗)Hκ) by

Hκ :=

(hn)
∞
n=1;

hn ∈ CSLn2 (n = 1, 2, . . .),

∞∑
n=1

(
1
n! +

n∑
r=1

κr

r!
1√

(n−r)!

)
‖hn‖2

Ln2 <∞

 ,

(h(1), h(2))Hκ :=
∞∑
n=1

(
1
n! +

n∑
r=1

κr

r!
1√

(n−r)!

)
(h(1)
n , h(2)

n )Ln2 , h(1), h(2) ∈ Hκ.
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Clearly

{hf := (f⊗n)∞n=1; f ∈ CL2} ⊂ Hκ,

and moreover the following holds (cf. Lemma 1 of [16]):

c.l.s.{hf ; f ∈ CL2} = Hκ.(2.1)

Also it holds that (cf. Lemma 3 of [16])

‖hφ − hψ‖Hκ ≤ const(κ, ‖φ‖ ∨ ‖ψ‖)‖φ− ψ‖(2.2)

for ∀φ, ψ ∈ CL2, where

const(κ, t) =

√
∞∑
n=1

(
1
n! +

n∑
r=1

κr

r!
1√

(n−r)!

)
n2t2(n−1).

Definition 2.2. We define symmetric statistics σNn (· ;h) (h ∈ SLn2 )

and YN (· ;h) (h = (hn) ∈ H0) by

σNn (y;h) :=


∑

1≤i1<···<in≤N
h(yi1 , . . . , yin) n ≤ N

0 n > N,

YN (y;h) :=

∞∑
n=1

(
1√
N

)n
σNn (y;hn).

As a CONS of CL2, we take

{φk}∞k=1 =
{√

2 cos 2πnx,
√

2 sin 2πmx
}
n,m∈N

.

Claim 2.1. For ψ ∈ CL2 and R ∈ N, set ψ(R) :=
R∑
k=1

(ψ, φk)φk. Sup-

pose that a sequence {Pi}∞i=1 satisfies the conditions (i) and (ii) in Theorem
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1.2. Then, for ∀α ∈ T∞
µ,{Nm} and ∀ν � µ(

1 + YNm(· + pα ;hψ
(R)

)
)
p∈Z,ψ∈CL2

under ν

f.d.
=⇒

(
eI

(p)(ψ(R);µ)− 1
2
‖ψ(R)‖2

)
p∈Z,ψ∈CL2

as m→ ∞.

Proof. Let α ∈ T∞
µ,{Nm} and ν � µ. By Theorem 1.2

(
1√
Nm

Nm∑
i=1

φk(xi + pαi)
)
p∈Z,k∈N

under ν

f.d.
=⇒

(
I(p)(φk;µ)

)
p∈Z,k∈N

as m→ ∞.(2.3)

Also, by 1◦ in the proof of the implication “ (A) ⇒ (B) ”

lim
m→∞

1
Nm

Nm∑
i=1

φk(xi + pαi)φl(xi + pαi) = δkl in ν.(2.4)

For fixed (c1, . . . , cR) ∈ RR, set zNi := 1√
N

R∑
k=1

ckφk(xi + pαi). Let N ≥

(2
√

2
R∑
k=1

|ck|)2. Then |zNi| ≤ 1
2 , and so, by (1.2)

1 + zNi = ezNi−
1
2
z2Ni+rNi ,

|rNi| = |r(zNi)| ≤ 2
3 |zNi|

3.

This tells us that∣∣∣∣∣
N∏
i=1

(1 + zNi) − e
∑ N
i=1 zNi− 1

2

∑ N
i=1 z

2
Ni

∣∣∣∣∣
2

≤ e
∑ N
i=1 zNi− 1

2

∑ N
i=1 z

2
Ni

(
e

2
√

2
3

1√
N

∑ R
k=1 |ck|

∑ N
i=1 z

2
Ni − 1

)
.

By (2.3) and (2.4), the inequality above yields that(
Nm∏
i=1

(
1 + 1√

Nm

R∑
k=1

ckφk(xi + pαi)
))

p∈Z,(c1,...,cR)∈RR
under ν
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f.d.
=⇒

(
eI

(p)(
∑ R
k=1 ckφk;µ)− 1

2
‖
∑ R
k=1 ckφk‖2

)
p∈Z,(c1,...,cR)∈RR

as m→ ∞.

But

1 + YN (y ;hψ
(R)

) =
N∏
i=1

(
1 + 1√

N

R∑
k=1

(ψ, φk)φk(yi)
)
.

From this together with the above the assertion follows immediately. �

We state a main theorem in this section.

Theorem 2.1. Suppose that a sequence {Pi}∞i=1 satisfies the following:

(a) Pi(dx) � dx (∀i ∈ N).

(b) There exists a subset N0 of {1, 2, 3, . . .} such that

(b.i)
∏
i∈N0

∫
T

√
dPi
dx (x) dx > 0,

(b.ii) sup
N∈N

1√
N

#(N \ N0) ∩ {1, . . . , N} =: C < ∞,

(b.iii) lim
N→∞

1√
N

∑
i∈(N\N0)∩{1,...,N}

∣∣∣ d̂Pidx (n)
∣∣∣ = 0 for ∀n ∈ Z \ {0},

(b.iv) sup
i∈N\N0

√∫
T
(dPidx (x))2dx =: M < ∞.

Then, for ∀α ∈ T∞
µ,{Nm} and ∀ν � µ(

YNm(· + pα;h)
)
p∈Z,h=(hn)∈HCM

under ν

f.d.
=⇒

( ∞∑
n=1

1
n!I

(p)
n (hn;µ)

)
p∈Z,h=(hn)∈HCM

as m→ ∞.

Here I
(p)
n (hn;µ) is an n-ple Wiener integral of hn ∈ CSLn2 with respect to

I(p)(· ;µ).

Corollary 1. For ∀(hn)∞n=1 such that hn ∈ CSLn2 (n ≥ 1)(
N

−n
2

m σNmn (· + pα;hn)
)
p∈Z,n∈N

f.d.
=⇒

(
1
n!I

(p)
n (hn;µ)

)
p∈Z,n∈N

as m→ ∞.
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Remark 2.1. (i) The conditions on {Pi}∞i=1 in Theorem 2.1 are

stronger than those in Theorem 1.2.

(ii) When N0 = N, we can regard the conditions (b.ii), (b.iii) and (b.iv)

as satisfied, and we understand as C = M = 0. In this case, by Kakutani

dichotomy theorem, the condition (b.i) is equivalent to that
∞∏
i=1

Pi � P∞.

For the proof of Theorem 2.1, we present two propositions:

Proposition 1. (i) For ∀f ∈ CL2

I(p)
n (f⊗n;µ) = n!‖f‖nHn

(
I(p)( f

‖f‖ ;µ)
)
.

Here (Hn)
∞
n=0 are Hermite polynomials, i.e., Hn(ξ) = (−1)n

n! e
ξ2

2
dn

dξn

(
e−

ξ2

2

)
.

(ii) For ∀h ∈ CSLn2 and ∀k ∈ CSLm2
E
[
I(p)
n (h;µ)

]
= 0,

E
[
I(p)
n (h;µ)I(p)

m (k;µ)
]

= n! δnm (h, k)Ln2 .

For the proof see [8].

Proposition 2. Suppose the conditions (a) and (b) in Theorem 2.1.

Then there exists an increasing function ξ : [0,∞) → [0,∞) with ξ(0+) =

ξ(0) = 0 such that

µ
(
|YN (· + pα ;h)| > η

)
≤ ξ

(‖h‖HCM
η

)
for ∀N ∈ N, ∀p ∈ Z, ∀α ∈ T∞, ∀h ∈ HCM and ∀η > 0. Here C and M are

constants in (b.ii) and (b.iv), respectively.

Proof. For simplicity set N1 := N \ N0 and ρi := dPi
dx (i ∈ N). Let

N ∈ N and h = (hn)
∞
n=1 ∈ HCM . We rewrite

YN (y;h) =
N∑
n=1

(
1√
N

)n
1
n!

∑
i1,...,in∈N0∩{1,...,N};
i1,...,in are distinct

hn(yi1 , . . . , yin)
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+

N∑
n=1

(
1√
N

)n n∑
r=1

1
r!(n−r)!

×
∑

i1,...,in−r∈N0∩{1,...,N},
j1,...,jr∈N1∩{1,...,N};
i1,...,in−r are distinct,
j1,...,jr are distinct

hn(yi1 , . . . , yin−r , yj1 , . . . , yjr).

Let α ∈ T∞, p ∈ N and η > 0. Then, by Fubini’s theorem

µ
(
|YN (· + pα;h)| > η

)
≤
( ∏
k∈N0

Pk

)(∣∣∣ N∑
n=1

(
1√
N

)n
1
n!

∑
i1,...,in∈N0∩{1,...,N};
i1,...,in are distinct

× hn(xi1 + pαi1 , . . . , xin + pαin)
∣∣∣ > η

2

)

+ E
∏
k∈N0

Pk

[( ∏
k∈N1

Pk

)(∣∣∣ N∑
n=1

(
1√
N

)n n∑
r=1

1
r!(n−r)!

∑
i1,...,in−r∈N0∩{1,...,N},
j1,...,jr∈N1∩{1,...,N};
i1,...,in−r are distinct,
j1,...,jr are distinct

× hn(xi1 + pαi1 , . . . , xin−r + pαin−r ,

xj1 + pαj1 , . . . , xjr + pαjr)
∣∣∣ > η

2

)]
=: the first term + the second term.

First we estimate the first term. By Chebyshev’s inequality

( ∏
k∈N0

dxk

)(∣∣∣ N∑
n=1

(
1√
N

)n
1
n!

∑
i1,...,in∈N0∩{1,...,N};
i1,...,in are distinct

× hn(xi1 + pαi1 , . . . , xin + pαin)
∣∣∣ > η

2

)
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≤ 2
η

(
E
∏
k∈N0

dxk

[ ∑
1≤n,m≤N

(
1√
N

)n(
1√
N

)m
× 1
n!

1
m!

∑
i1,...,in∈N0∩{1,...,N};
i1,...,in are distinct

∑
j1,...,jm∈N0∩{1,...,N};
j1,...,jm are distinct

× hn(xi1 + pαi1 , . . . , xin + pαin)

× hm(xj1 + pαj1 , . . . , xjm + pαjm)

]) 1
2

.

By the fact
∫
T
hn(x1, . . . , xn−1, y)dy = 0, the right hand side equals

2
η

(
N∑
n=1

(
1
N

)n ∑
i1,...,in∈N0∩{1,...,N};
i1,...,in are distinct

1
n!‖hn‖

2

) 1
2

,

and this is dominated by 2
η

( N∑
n=1

1
n!‖hn‖2

) 1
2 ≤ 2

η‖h‖HCM . Hence it turns

out that

the first term ≤ sup
{( ∏

k∈N0

Pk

)
(A);
( ∏
k∈N0

dxk

)
(A) ≤ 2

η‖h‖HCM
}
.(2.5)

Next we estimate the second term. To do so, we temporarily denote by

Φ the integrand in expectation E
∏
k∈N0

Pk . Since 0 ≤ Φ ≤ 1,

the second term ≤ δ +
( ∏
k∈N0

Pk

)
(Φ > δ)(2.6)

for ∀δ > 0. In the following we treat the right hand side.

By Chebyshev’s inequality and then by Schwarz inequality

Φ ≤ 2
η

N∑
n=1

(
1√
N

)n n∑
r=1

1
r!(n−r)!

∑
j1,...,jr∈N1∩{1,...,N};
j1,...,jr are distinct

×
∫
Tr

∣∣∣ ∑
i1,...,in−r∈N0∩{1,...,N};
i1,...,in−r are distinct

hn(xi1 + pαi1 , . . . , xin−r + pαin−r ,

xj1 + pαj1 , . . . , xjr + pαjr)
∣∣∣
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× ρj1(xj1) × · · · × ρjr(xjr)dxj1 · · · dxjr

≤ 2
η

N∑
n=1

(
1√
N

)n n∑
r=1

1
r!(n−r)!

∑
j1,...,jr∈N1∩{1,...,N};
j1,...,jr are distinct

×
∥∥∥∥∥ ∑
i1,...,in−r∈N0∩{1,...,N};
i1,...,in−r are distinct

hn(xi1 + pαi1 , . . . , xin−r + pαin−r , · )
∥∥∥∥∥
Lr2

× ‖ρj1‖ × · · · × ‖ρjr‖

≤ 2
η

N∑
n=1

n∑
r=1

(CM)r

r!(n−r)!

(
1√
N

)n−r
×
∥∥∥∥∥ ∑
i1,...,in−r∈N0∩{1,...,N};
i1,...,in−r are distinct

hn(xi1 + pαi1 , . . . , xin−r + pαin−r , · )
∥∥∥∥∥
Lr2

.

Here we have used the conditions (b.ii) and (b.iv) in the last line. By this

estimate, and then by Chebyshev’s inequality and Schwarz one again( ∏
k∈N0

dxk

)
(Φ > δ)

≤ 1
δ

2
η

N∑
n=1

n∑
r=1

(CM)r

r!(n−r)!

(
1√
N

)n−r
×
(

E
∏
k∈N0

dxk

[∫
Tr

∣∣∣ ∑
i1,...,in−r∈N0∩{1,...,N};
i1,...,in−r are distinct

× hn(xi1 + pαi1 , . . . , xin−r + pαin−r ,

y1, . . . , yr)
∣∣∣2dy1 · · · dyr

]) 1
2

= 1
δ

2
η

N∑
n=1

n∑
r=1

(CM)r

r!(n−r)!

(
1√
N

)n−r( ∑
i1,...,in−r∈N0∩{1,...,N};
i1,...,in−r are distinct

(n− r)!‖hn‖2

) 1
2
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≤ 1
δ

2
η

N∑
n=1

n∑
r=1

(CM)r

r!
‖hn‖√
(n−r)!

≤ 1
δ

2
η (e

CM − 1)

∞∑
m=0

1√
m!

‖h‖HCM .

Hence, combining this with (2.6) yields that

the second term

≤ δ + sup
{( ∏

k∈N0

Pk

)
(A);
( ∏
k∈N0

dxk

)
(A)(2.7)

≤ 1
δ

2
η (e

CM − 1)
∞∑
m=0

1√
m!

‖h‖HCM
}
.

Now, letting δ = ( 2
η‖h‖HCM )

1
2 in (2.7), and then putting (2.5) and (2.7)

we have

µ
(
|YN (· + pα;h)| > η

)
≤ ξ

(‖h‖HCM
η

)
,

where

ξ(t) = sup
{( ∏

k∈N0

Pk

)
(A);
( ∏
k∈N0

dxk

)
(A) ≤ 2t

}
+

√
2t+ sup

{( ∏
k∈N0

Pk

)
(A);
( ∏
k∈N0

dxk

)
(A)

≤ (eCM − 1)
∞∑
m=0

1√
m!

√
2t
}
.

Since our condition (b.i) is equivalent to that
∏
k∈N0

Pk �
∏
k∈N0

dxk by Kaku-

tani dichotomy theorem, ξ satisfies ξ(0+) = ξ(0) = 0, and thus this is the

desired function. The proof is complete. �

Proof of Theorem 2.1. Let α ∈ T∞
µ,{Nm} and ν � µ. Set Z := dν

dµ .

Note that Z ≥ 0 and Eµ [Z] = 1. The proof is done in two steps.

1◦
(
1 + YNm(· + pα ;hψ)

)
p∈Z,ψ∈CL2

under ν

f.d.
=⇒

(
eI

(p)(ψ;µ)− 1
2
‖ψ‖2
)
p∈Z,ψ∈CL2

as m→ ∞.
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Proof. By Proposition 2 and (2.2),

µ
(
|YN (· + pα ;hψ) − YN (· + pα ;hψ

(R)
)| > η

)
≤ ξ

(
const(CM, ‖ψ‖) 1

η

√√√√ ∞∑
k=R+1

(ψ, φk)2

)
.(2.8)

Clearly

E
[
|I(p)(ψ;µ) − I(p)(ψ(R);µ)|2

]
=

∞∑
k=R+1

(ψ, φk)
2.(2.9)

Let p0 ∈ Z, ψ1, . . . , ψL ∈ CL2 and (apl)1≤p≤K
1≤l≤L

∈ RKL. For ∀ε > 0

∣∣∣Eν
[
e
√
−1
∑ K
p=1

∑ L
l=1 apl(1+YNm (·+(p+p0)α;hψl ))

]
− E
[
e
√
−1
∑ K
p=1

∑ L
l=1 apl e

I(p+p0)(ψl;µ)− 1
2 ‖ψl‖

2]∣∣∣
≤
∣∣∣Eµ
[
Z
(
e
√
−1
∑ K
p=1

∑ L
l=1 apl(1+YNm (·+(p+p0)α;hψl ))

− e
√
−1
∑ K
p=1

∑ L
l=1 apl(1+YNm (·+(p+p0)α;h

ψ
(R)
l ))
)]∣∣∣

+
∣∣∣Eν
[
e
√
−1
∑ K
p=1

∑ L
l=1 apl(1+YNm (·+(p+p0)α;h

ψ
(R)
l ))
]

− E
[
e
√
−1
∑ K
p=1

∑ L
l=1 apl e

I(p+p0)(ψ
(R)
l

;µ)− 1
2 ‖ψ(R)

l
‖2]∣∣∣

+
∣∣∣E[e√−1

∑ K
p=1

∑ L
l=1 apl e

I(p+p0)(ψ
(R)
l

;µ)− 1
2 ‖ψ(R)

l
‖2

− e
√
−1
∑ K
p=1

∑ L
l=1 apl e

I(p+p0)(ψl;µ)− 1
2 ‖ψl‖

2]∣∣∣
≤ 2 sup

µ(B)≤δR(ε)
Eµ [Z ;B] + ε

+
∣∣∣Eν
[
e
√
−1
∑ K
p=1

∑ L
l=1 apl(1+YNm (·+(p+p0)α;h

ψ
(R)
l ))
]

− E
[
e
√
−1
∑ K
p=1

∑ L
l=1 apl e

I(p+p0)(ψ
(R)
l

;µ)− 1
2 ‖ψ(R)

l
‖2]∣∣∣
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+
∣∣∣E[e√−1

∑ K
p=1

∑ L
l=1 apl e

I(p+p0)(ψ
(R)
l

;µ)− 1
2 ‖ψ(R)

l
‖2

− e
√
−1
∑ K
p=1

∑ L
l=1 apl e

I(p+p0)(ψl;µ)− 1
2 ‖ψl‖

2]∣∣∣.
Here δR(ε) in the first term is

sup
N∈N

µ
(
|
∑

1≤p≤K
1≤l≤L

apl(YN (·+ (p+ p0)α ;hψl) − YN (·+ (p+ p0)α ;hψ
(R)
l ))| > ε

)
.

By (2.8) this converges to 0 as R → ∞. Also, by (2.9) the fourth term → 0

as R → ∞, and by Claim 2.1 the third term → 0 as m → ∞. Hence we

have

lim sup
m→∞

∣∣∣Eν
[
e
√
−1
∑ K
p=1

∑ L
l=1 apl(1+YNm (·+(p+p0)α;hψl ))

]
− E
[
e
√
−1
∑ K
p=1

∑ L
l=1 apl e

I(p+p0)(ψl;µ)− 1
2 ‖ψl‖

2]∣∣∣ ≤ ε −→
ε→0

0,

which implies the assertion. �

2◦ Take h(1), . . . , h(L) ∈ HCM arbitrarily. By virtue of (2.1), for ∀ε > 0 and

1 ≤ ∀l ≤ L there exist ψl1, . . . , ψlkl ∈ CL2 and tl1, . . . , tlkl ∈ R such that

‖h(l) −
kl∑
i=1

tlih
ψli‖HCM < ε. By Propositions 2 and 1(ii)

µ
(
|YN (· + pα ;h(l)) −

kl∑
i=1

tliYN (· + pα ;hψli)| >
√
ε
)

≤ ξ(
√
ε),

E
[
|
∞∑
n=1

1
n!I

(p)
n

( kl∑
i=1

tliψ
⊗n
li ;µ

)
−

∞∑
n=1

1
n!I

(p)
n (h(l)

n ;µ)|2
]

< ε2.

On the other hand, by Proposition 1(i)

eI
(p)(ψ;µ)− 1

2
‖ψ‖2

= 1 +
∞∑
n=1

1
n!I

(p)
n (ψ⊗n;µ), ∀ψ ∈ CL2,

and hence

kl∑
i=1

tli

(
eI

(p)(ψli;µ)− 1
2
‖ψli‖2 − 1

)
=

∞∑
n=1

1
n!I

(p)
n

( kl∑
i=1

tliψ
⊗n
li ;µ

)
.
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Therefore, collecting these we have that for ∀(apl)1≤p≤K
1≤l≤L

∈ RKL

∣∣∣Eν
[
e
√
−1
∑ K
p=1

∑ L
l=1 aplYNm (·+(p+p0)α;h(l))

]
− E
[
e
√
−1
∑ K
p=1

∑ L
l=1 apl

∑ ∞
n=1

1
n!
I
(p+p0)
n (h

(l)
n ;µ)
]∣∣∣

≤
∣∣∣Eµ
[
Z
(
e
√
−1
∑ K
p=1

∑ L
l=1 aplYNm (·+(p+p0)α;h(l))

− e
√
−1
∑ K
p=1

∑ L
l=1 apl

∑ kl
i=1 tliYNm (·+(p+p0)α;hψli )

)]∣∣∣
+
∣∣∣Eν
[
e
√
−1
∑ K
p=1

∑ L
l=1

∑ kl
i=1 apltliYNm (·+(p+p0)α;hψli )

]
− E
[
e
√
−1
∑ K
p=1

∑ L
l=1

∑ kl
i=1 apltli (e

I(p+p0)(ψli;µ)− 1
2 ‖ψli‖

2
−1)
]∣∣∣

+
∣∣∣E[e√−1

∑ K
p=1

∑ L
l=1 apl

∑ ∞
n=1

1
n!
I
(p+p0)
n (

∑ kl
i=1 tliψ

⊗n
li ;µ)

− e
√
−1
∑ K
p=1

∑ L
l=1 apl

∑ ∞
n=1

1
n!
I
(p+p0)
n (h

(l)
n ;µ)
]∣∣∣

≤ 2 sup
µ(B)≤KLξ(√ε)

Eµ [Z ;B] + max
1≤p≤K
1≤l≤L

|apl|KL
√
ε

+
∣∣∣Eν
[
e
√
−1
∑ K
p=1

∑ L
l=1

∑ kl
i=1 apltliYNm (·+(p+p0)α;hψli )

]
− E
[
e
√
−1
∑ K
p=1

∑ L
l=1

∑ kl
i=1 apltli (e

I(p+p0)(ψli;µ)− 1
2 ‖ψli‖

2
−1)
]∣∣∣

+
∑

1≤p≤K
1≤l≤L

|apl|ε

−→
first m→∞
second ε→0

0,

which implies the conclusion of the theorem. �

3. Central Limit Theorem for Correlated Multiple Wiener Inte-

grals

In this section we study the CLT for a sequence {I(p)
n (·;µ)}∞p=1.

We begin with the following. The system
(
I(p)(f)

)
p∈Z,f∈CL2

in Theorem

1.2 is nondegenerate in the sense that for ∀linearly independent f1, . . . , fL ∈
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CL2,
∀p0 ∈ Z and ∀K ∈ N, a random vector

(
I(p+p0)(fi)

)
1≤p≤K,1≤i≤L

is

nondegenerate Gaussian. This nondegeneracy is completely determined for

general Gaussian system
(
I(p)(f ;µ)

)
p∈Z,f∈CL2

:

Theorem 3.1. The Gaussian system
(
I(p)(f ;µ)

)
p∈Z,f∈CL2

is nonde-

generate in the sense above, i.e., it holds that for ∀linearly independent

f1, . . . , fL ∈ CL2,
∀p0 ∈ Z and ∀K ∈ N, a random vector(

I(p+p0)(fi;µ)
)

1≤p≤K,1≤i≤L
is nondegenerate Gaussian, if and only if

# suppµ = ∞.

Proof. First as for the “ if ” part. We suppose # suppµ = ∞ and

show the nondegeneracy of
(
I(p+p0)(fi;µ)

)
1≤p≤K,1≤i≤L

where f1, . . . , fL ∈
CL2 are linearly independent, p0 ∈ Z and K ∈ N. For this let

(ξpi)1≤p≤K,1≤i≤L ∈ RKL be such that
K∑
p=1

L∑
i=1

ξpiI
(p+p0)(fi;µ) = 0. Then

0 = E
[
(

K∑
p=1

L∑
i=1

ξpiI
(p+p0)(fi;µ))2

]

=
∑
|n|≥1

∫
T

∣∣∣ K∑
p=1

L∑
i=1

ξpif̂i(n)e
√
−1 2πnpx

∣∣∣2µ(dx),

and hence

µ
(
{x ∈ T; e

√
−1 2πnx ∈ Z(n)}

)
= 1, ∀n ≥ 1,

where

Z(n) :=
{
z ∈ C ;

K∑
p=1

(

L∑
i=1

ξpif̂i(n))zp = 0
}
.

Since {x ∈ T; e
√
−1 2πnx ∈ Z(n)} is closed in T, this implies

suppµ ⊂ {x ∈ T; e
√
−1 2πnx ∈ Z(n)},
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so from the assumption

#{x ∈ T; e
√
−1 2πnx ∈ Z(n)} = ∞.

But, by the fundamental theorem of algebra we observe that( L∑
i=1

ξpif̂i(n)
)

1≤p≤K
�= 0 implies #Z(n) ≤ K. Consequently( L∑

i=1
ξpif̂i(n)

)
1≤p≤K

= 0 (∀n ≥ 1), i.e.,
L∑
i=1

ξpifi = 0 (1 ≤ ∀p ≤ K). By

the linear independence of f1, . . . , fL, this implies (ξpi)1≤p≤K,1≤i≤L = 0,

and the nondegeneracy of
(
I(p+p0)(fi;µ)

)
1≤p≤K,1≤i≤L

is obtained.

Next as for the “ only if ” part. We suppose # suppµ <∞. Then there

exist 0 ≤ θ1 < · · · < θm < 1 and a1, . . . , am > 0 such that
m∑
i=1

ai = 1 and

µ =
m∑
i=1

aiδθi . For N ∈ N we define (β0, . . . , β2Nm) ∈ R2Nm+1 as

2Nm∑
p=0

βpz
p =

N∏
n=1

m∏
i=1

(z − e
√
−1 2πnθi)(z − e−

√
−1 2πnθi)

=
N∏
n=1

m∏
i=1

(z2 − 2(cos 2πnθi)z + 1).

By definition, for f ∈ CL2 such that f̂(n) = 0 (∀|n| ≥ N + 1)

E
[
(

2Nm+1∑
p=1

βp−1I
(p+p0)(f ;µ))2

]

=
∑

1≤|n|≤N
|f̂(n)|2

m∑
i=1

ai

∣∣∣2Nm∑
p=0

βp(e
√
−1 2πnθi)p

∣∣∣2
= 0,

and also (β0, . . . , β2Nm) �= 0 because β0 = β2Nm = 1. These say the degen-

eracy of
(
I(p+p0)(f ;µ)

)
1≤p≤2Nm+1

, so that # suppµ = ∞ is necessary. �
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For hk ∈ CSLk2 (1 ≤ k ≤ L),
{

(I
(p)
1 (h1), . . . , I

(p)
L (hL))

}
p∈Z

is a sequence

of i.i.d. random vectors with mean zero and finite covariance. The Lindeberg

CLT says

1√
P

P∑
p=1

(I
(p)
1 (h1), . . . , I

(p)
L (hL)) =⇒

P→∞
N

(
0,

[
1!‖h1‖2 0

. . .
0 L!‖hL‖2

])
.

For a sequence {I(p)
n (·;µ)}∞p=1 of general multiple Wiener integrals this is

also valid when µ is a “ good ” probability measure on T. To see this, in the

following we suppose that µ(dx) � dx, i.e., µ(dx) is absolutely continuous

relative to dx, and let m := dµ
dx .

Proposition 3. For ∀hn ∈ CSLn2 , ∀kl ∈ CSLl2 and ∀p, q ∈ Z

E
[
I(p)
n (hn;µ)I

(q)
l (kl;µ)

]

=


n!

∑
|i1|,...,|in|≥1

ĥn(i1, . . . , in)k̂n(i1, . . . , in)

× µ̂(i1(q − p)) · · · µ̂(in(q − p))

if n = l,

0 if n �= l.

Here

ĥn(i1, . . . , in) :=

∫
Tn
e−

√
−1 2π(i1x1+···+inxn)hn(x1, . . . , xn)dx1 · · · dxn.

Proof. The proof is done in three steps.

1◦ For ∀p, q ∈ Z, ∀n, l ∈ N and ∀f, g ∈ CL2 such that ‖f‖ = ‖g‖ = 1

E
[
Hn(I

(p)(f ;µ))Hl(I
(q)(g;µ))

]
= δnl

1
n!

(
E
[
I(p)(f ;µ)I(q)(g;µ)

])n
.

Proof. In case p = q and |(f, g)| = 1 (i.e., f = ±g), we have

the left hand side = (±1)n
∫
R

Hn(x)Hl(x) 1√
2π
e−

x2

2 dx

= (±1)nδnl
1
n! = the right hand side.
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In case p �= q or |(f, g)| < 1, by Theorem 3.1 (I(p)(f ;µ), I(q)(g;µ)) is

nondegenerate Gaussian and its density is as follows:

P
(
(I(p)(f ;µ), I(q)(g;µ)) ∈ dxdy

)
= 1

2π
1√

1−c2 e
− 1

2
1

1−c2 (x2−2cxy+y2)
dxdy,

where c := E
[
I(p)(f ;µ)I(q)(g;µ)

]
. Without loss of generality let n ≤ l. By

the expression above

the left hand side

=

∫
R

1√
2π(1−c2)

e
− x2

2(1−c2)dx

∫
R

Hl(y)Hn(x+ cy) 1√
2π
e−

y2

2 dy.

To compute the y-integral, note that

Hj(y)e
− y2

2 = (−1)j

j!
dj

dyj

(
e−

y2

2

)
, j ≥ 0,

H ′
j(y) = Hj−1(y), j ≥ 1.

By integrating by parts n-times it turns out that∫
R

Hl(y)Hn(x+ cy) 1√
2π
e−

y2

2 dy = δnl
cn

n! .

Hence substituting this into the above we have the desired identity. �

2◦ For ∀n, l ∈ N and ∀p, q ∈ Z

E
[
I(p)
n (

∑
i:finite sum

cif
⊗n
i ;µ)I

(q)
l (

∑
j:finite sum

djg
⊗l
j ;µ)

]

=



n!
∑

|k1|,...,|kn|≥1

∑̂
i:finite sum

cif
⊗n
i (k1, . . . , kn)

×
∑̂

j:finite sum

djg
⊗n
j (k1, . . . , kn)

× µ̂(k1(q − p)) · · · µ̂(kn(q − p)) if n = l,

0 if n �= l.
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Proof. Combining Proposition 1 and 1◦ we have that for ∀p, q ∈ Z,
∀n, l ∈ N and ∀f, g ∈ CL2

E
[
I(p)
n (f⊗n;µ)I

(q)
l (g⊗l;µ)

]
= δnln!

(
E
[
I(p)(f ;µ)I(q)(g;µ)

])n
= δnln!

∑
|k1|,...,|kn|≥1

f̂⊗n(k1, . . . , kn)ĝ⊗n(k1, . . . , kn)

× µ̂(k1(q − p)) · · · µ̂(kn(q − p)).

From this the assertion follows immediately. �

3◦ Let hn, kn ∈ CSLn2 . From (2.1) we take, for ∀ε > 0,
∑

i:finite sum

cif
⊗n
i =:

hnε and
∑

j:finite sum

djg
⊗n
j =: knε such that ‖hn − hnε‖, ‖kn − knε‖ < ε. By

Proposition 1 this implies∣∣∣E[I(p)
n (hn;µ)I(q)

n (kn;µ)
]
− E
[
I(p)
n (hnε;µ)I(q)

n (knε;µ)
]∣∣∣

≤ n!(‖hn‖ + ‖kn‖ + ε)ε.

On the other hand∣∣∣ ∑
|i1|,...,|in|≥1

ĥn(i1, . . . , in)k̂n(i1, . . . , in) µ̂(i1(q − p)) · · · µ̂(in(q − p))

−
∑

|i1|,...,|in|≥1

ĥnε(i1, . . . , in)k̂nε(i1, . . . , in) µ̂(i1(q − p)) · · · µ̂(in(q − p))
∣∣∣

≤ ε(‖hn‖ + ‖kn‖ + ε).

Combining these with 2◦ we have∣∣∣E[I(p)
n (hn;µ)I

(q)
n (kn;µ)

]
− n!

∑
|i1|,...,|in|≥1

ĥn(i1, . . . , in)k̂n(i1, . . . , in) µ̂(i1(q − p)) · · · µ̂(in(q − p))
∣∣∣

≤ 2n!ε(‖hn‖ + ‖kn‖ + ε) −→
ε→0

0,

which is the conclusion of the proposition for n = l. The conclusion for

n �= l will follow from the first part and 2◦. �
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Claim 3.1. Suppose m ∈ C(T) and let hn ∈ CSLn2 .

(i) E
[(

1√
P

P∑
p=1

I(p)
n (hn;µ)

)2]
≤ π2

4 n!‖m‖n∞‖hn‖2, ∀P ≥ 1.

(ii) lim
P→∞

E
[(

1√
P

P∑
p=1

I(p)
n (hn;µ)

)2]

=


g(0) if n = 1,

n!

∫
Tn−1

g(−t1, t1 − t2, . . . ,

tn−2 − tn−1, tn−1)dt1 · · · dtn−1 if n ≥ 2.

Here

g(x1, . . . , xn) :=
∑

k1,...,kn≥1

∑
ε1,...,εn∈{−1,1}

|ĥn(ε1k1, . . . , εnkn)|2

× 1
k1···kn

k1∑
j1=1

· · ·
kn∑
jn=1

m
(
ε1x1+j1− ε1+1

2
k1

)
× · · · ×m

(
εnxn+jn− εn+1

2
kn

)
.

Proof. Let hn ∈ CSLn2 . By Proposition 3

E
[( P∑
p=1

I(p)
n (hn;µ)

)2]
= n!

∑
|i1|,...,|in|≥1

|ĥn(i1, . . . , in)|2

×
∫
Tn

∣∣∣ P∑
p=1

e
√
−1 2πp(i1x1+···+inxn)

∣∣∣2m(x1) · · ·m(xn)dx1 · · · dxn

= n!
∑

i1,...,in≥1

∑
ε1,...,εn∈{−1,1}

|ĥn(ε1i1, . . . , εnin)|2

×
∫
Tn

∣∣∣ P∑
p=1

e
√
−1 2πp(ε1i1x1+···+εninxn)

∣∣∣2m(x1) · · ·m(xn)dx1 · · · dxn.
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The (x1, . . . , xn)-integral in the last line can be further computed as∫
Tn

∣∣∣ P∑
p=1

e
√
−1 2πp(ε1i1x1+···+εninxn)

∣∣∣2m(x1) · · ·m(xn)dx1 · · · dxn

=
∑

1≤j1≤i1···
1≤jn≤in

∫ j1
i1

j1−1
i1

· · ·
∫ jn

in

jn−1
in

∣∣∣ P∑
p=1

e
√
−1 2πp(ε1i1x1+···+εninxn)

∣∣∣2

×m(x1) · · ·m(xn)dx1 · · · dxn

=
∑

1≤j1≤i1···
1≤jn≤in

∫ 1
i1

0
· · ·
∫ 1

in

0

∣∣∣ P∑
p=1

e
√
−1 2πp(ε1i1x1+···+εninxn)

∣∣∣2

×m(x1 + j1−1
i1

) · · ·m(xn + jn−1
in

)dx1 · · · dxn

=
∑

1≤j1≤i1···
1≤jn≤in

∫
Tn

∣∣∣ P∑
p=1

e
√
−1 2πp(x1+···+xn)

∣∣∣2

×m
(
ε1x1+j1− ε1+1

2
i1

)
· · ·m

(
εnxn+jn− εn+1

2
in

)
dx1
i1

· · · dxnin ,

so that

E
[( P∑
p=1

I(p)
n (hn;µ)

)2]

= n!

∫
Tn

∣∣∣ P∑
p=1

e
√
−1 2πp(x1+···+xn)

∣∣∣2g(x1, . . . , xn)dx1 · · · dxn.

From the definition of g it is easily seen that g ≥ 0,
∫
Tn
g(x1, . . . ,

xn)dx1 · · · dxn = ‖hn‖2 < ∞, and

g(x1, . . . , xk + 1, . . . , xn) = g(x1, . . . , xk, . . . , xn),(3.1)

g(−x1, . . . ,−xn) = g(x1, . . . , xn).(3.2)

By (3.1) we can check that∫
Tn

∣∣∣ P∑
p=1

e
√
−1 2πp(x1+···+xn)

∣∣∣2g(x1, . . . , xn)dx1 · · · dxn
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=

∫
T

∣∣∣sinπPx
sinπx

∣∣∣2κ(x)dx,

where

κ(x) :=


g(x) if n = 1,∫
Tn−1

g(x− t1, t1 − t2, . . . ,

tn−2 − tn−1, tn−1)dt1 · · · dtn−1 if n ≥ 2.

Consequently, combining two expressions above we have

E
[(

1√
P

P∑
p=1

I(p)
n (hn;µ)

)2]
= n! 1

P

∫
T

∣∣∣sinπPx
sinπx

∣∣∣2κ(x)dx.

Now let m ∈ C(T). Then g ∈ C(Tn) with ‖g‖∞ ≤ ‖m‖n∞‖hn‖2, and

hence κ ∈ C(T) with ‖κ‖∞ ≤ ‖m‖n∞‖hn‖2. Also, by (3.1) and (3.2),

κ(−x) = κ(x). From these facts

1
P

∫
T

∣∣∣sinπPx
sinπx

∣∣∣2κ(x)dx = 2
P

∫ 1
2

0

∣∣∣sinπPx
sinπx

∣∣∣2κ(x)dx

= 2

∫ ∞

0
κ( yP )1y<P

2

∣∣∣ π yP
sinπ yP

∣∣∣2∣∣∣sinπy
πy

∣∣∣2dy
≤ 2‖κ‖∞(π2 )2

∫ ∞

0

∣∣∣sinπy
πy

∣∣∣2dy
≤ π2

4 ‖m‖n∞‖hn‖2.

By putting the above the assertion (i) is obtained immediately. Also, by

letting P → ∞ the assertion (ii) follows from the Lebesgue convergence

theorem. �

Theorem 3.2. Suppose m ∈ C(T). Then {I(p)(·;µ)}∞p=1 satisfies the

CLT in the sense that for ∀f1, . . . , fL ∈ CL2

1√
P

P∑
p=1

(I(p)(f1;µ), . . . , I(p)(fL;µ)) =⇒
P→∞

N

(
0,Σ(f1, . . . , fL)

)
.
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Here Σ(f1, . . . , fL) is a nonnegative symmetric matrix whose (i, j)-com-

ponent is

Σij(f1, . . . , fL) =
∑
|n|≥1

f̂i(n)f̂j(n) 1
|n|

|n|∑
k=1

m(k−1
|n| )

=

∞∑
n=1

2Re(f̂i(n)f̂j(n)) 1
n

n∑
k=1

m(k−1
n ).

Moreover, if m is positive, i.e., min
x∈T

m(x) > 0, then the limiting Gaussian

N

(
0,Σ(f1, . . . , fL)

)
is nondegenerate in the sense that a matrix

Σ(f1, . . . , fL) is nonsingular whenever f1, . . . , fL ∈ CL2 are linearly inde-

pendent.

Proof. Since, for ξ = (ξ1, . . . , ξL) ∈ RL

E
[
e
√
−1
∑ L
i=1 ξi

1√
P

∑ P
p=1 I

(p)(fi;µ)
]

= exp
{
−1

2E
[(

1√
P

P∑
p=1

I(p)(
L∑
i=1

ξifi;µ)
)2]}

,

Claim 3.1(ii) says

lim
P→∞

E
[
e
√
−1
∑ L
i=1 ξi

1√
P

∑ P
p=1 I

(p)(fi;µ)
]

= exp
{
−1

2

∑
|n|≥1

∣∣∣ L∑
i=1

ξif̂i(n)
∣∣∣2 1

|n|

|n|∑
k=1

m(k−1
|n| )
}
,

which implies the first part of the theorem. The second part will be clear

from 1
n

n∑
k=1

m(k−1
n ) ≥ min

x∈T
m(x). �

Let us proceed to the CLT for {I(p)
n (·;µ)}∞p=1. For this we define the

following:
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Definition 3.1. For a stationary sequence
{

(I(p)(f ;µ))f∈CL2

}
p∈Z

we

define the α-mixing coefficients (α(N))N≥1 by

α(N)

:= sup

{
|P (A ∩B) − P (A)P (B)| ; A ∈ σ(I(p)(f ;µ); f ∈ CL2, p ≤ 0)

B ∈ σ(I(p)(f ;µ); f ∈ CL2, p ≥ N + 1)

}
.

Claim 3.2. Suppose m ∈ C(T) and positive. Then

α(N) ≤ EN (m)

minx∈Tm(x)
.

Here

EN (m) := inf
(an)|n|≤N∈C2N+1

max
x∈T

∣∣∣m(x) −
∑

|n|≤N
ane

√
−1 2πnx

∣∣∣.
Proof. The proof is done in exactly the same way as in Th.17.3.3 of

[7]. We set

Fba := σ(I(p)(f ;µ); f ∈ CL2, a ≤ p ≤ b)

for a, b ∈ Z ∪ {±∞}, a < b, and

ρ(N) := sup

{
|cov(X,Y )|√

var(X)
√

var(Y )
; X ∈ L2(F

0
−∞), Y ∈ L2(F

∞
N+1)

}
.

From [9] this equals

sup

{
|E[XY ]|√

E[X2]
√
E[Y 2]

;
X ∈ l.s.{I(p)(f ;µ); f ∈ CL2, p ≤ 0}, �= 0

Y ∈ l.s.{I(p)(f ;µ); f ∈ CL2, p ≥ N + 1}, �= 0

}
and satisfies α(N) ≤ ρ(N) ≤ 2πα(N). In the following we treat ρ(N).

We take arbitrarily X and Y from the linear spans above, respectively.

Let

X =
∑

p≤0,k≥1:finite sum

cpkI
(p)(fk;µ),

Y =
∑

q≥N+1,l≥1:finite sum

dqlI
(q)(gl;µ).
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For ∀ trigonometric polynomial PN (x) =
∑

|j|≤N
aje

√
−1 2πjx of degree N we

observe

|E[XY ]| =

∣∣∣∣∣∑
|i|≥1

∫
T

( ∑
p≤0,k≥1:finite sum

cpkf̂k(i)e
√
−1 2πipx

)

×
( ∑
q≥N+1,l≥1:finite sum

dqlĝl(i)e
−
√
−1 2πiqx

)
m(x)dx

∣∣∣∣∣
=

∣∣∣∣∣∑
|i|≥1

∫
T

( ∑
p≤0,k≥1:finite sum

cpkf̂k(i)e
√
−1 2πipx

)
×
( ∑
q≥N+1,l≥1:finite sum

dqlĝl(i)e
−
√
−1 2πiqx

)
× (m(x) − PN (x))dx

∣∣∣∣∣
≤ ‖m− PN‖∞

∑
|i|≥1

√∫
T

∣∣∣ ∑
p≤0,k≥1:finite sum

cpkf̂k(i)e
√
−1 2πipx

∣∣∣2dx
×
√∫

T

∣∣∣ ∑
q≥N+1,l≥1:finite sum

dqlĝl(i)e−
√
−1 2πiqx

∣∣∣2dx
≤ ‖m− PN‖∞

miny∈Tm(y)

×
√√√√∑

|i|≥1

∫
T

∣∣∣ ∑
p≤0,k≥1:finite sum

cpkf̂k(i)e
√
−1 2πipx

∣∣∣2m(x)dx

×
√√√√∑

|i|≥1

∫
T

∣∣∣ ∑
q≥N+1,l≥1:finite sum

dqlĝl(i)e−
√
−1 2πiqx

∣∣∣2m(x)dx

=
‖m− PN‖∞
miny∈Tm(y)

√
E[X2]

√
E[Y 2].
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This implies

ρ(N) ≤ ‖m− PN‖∞
miny∈Tm(y)

,

and the assertion follows at once. �

Now we state the CLT for {I(p)
n (·;µ)}∞p=1.

Theorem 3.3. Suppose m ∈ C(T) and positive. Then for
∀(h1, h2, . . . , hL) ∈ CL2 × CSL2

2 × · · · × CSLL2 ,

1√
P

P∑
p=1

(I
(p)
1 (h1;µ), . . . , I

(p)
L (hL;µ)) =⇒

P→∞
N

(
0,

[
v1 0

. . .
0 vL

])
.

Here

vk = v(hk) := lim
P→∞

E
[(

1√
P

P∑
p=1

I
(p)
k (hk;µ)

)2]
.

Remark 3.1. Since, by Claim 3.1(ii), v(hk) ≥ k!
(
minx∈Tm(x)

)k
×

‖hk‖2, the limiting Gaussian is nondegenerate when h1 �= 0, . . ., hL �= 0.

Proof. Let (h1, h2, . . . , hL) ∈ CL2 ×CSL2
2 × · · · × CSLL2 . The proof is

done in three steps.

1◦ Let ε > 0 be fixed arbitrarily. By (2.1), for each hk we take tk1, . . . , tknk ∈
R and fk1, . . . , fknk ∈ CL2 with ‖fki‖ = 1 such that ‖hk −

nk∑
i=1

tkif
⊗k
ki ‖ <

ε. For simplicity write h
(ε)
k :=

nk∑
i=1

tkif
⊗k
ki . Claim 3.1(i) tells us that for

∀(ξ1, . . . , ξL) ∈ RL∣∣∣E[e√−1
∑ L
k=1 ξk

1√
P

∑ P
p=1 I

(p)
k (hk;µ)

]
− E
[
e
√
−1
∑ L
k=1 ξk

1√
P

∑ P
p=1 I

(p)
k (h

(ε)
k ;µ)
]∣∣∣

≤
( L∑
k=1

|ξk|(k!)
1
2 ‖m‖

k
2∞
)
π
2 ε,
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∣∣∣e− 1
2

∑ L
k=1 ξ

2
kv(hk) − e−

1
2

∑ L
k=1 ξ

2
kv(h

(ε)
k )
∣∣∣

≤ 1
2

( L∑
k=1

ξ2
kk!‖m‖k∞(2‖hk‖ + ε)

)
π2

4 ε.

2◦ Let (ξ1, . . . , ξL) ∈ RL be fixed and set

Xp :=

L∑
k=1

ξkI
(p)
k (h

(ε)
k ;µ), p ∈ Z.

{Xp}p∈Z is a stationary sequence, and it satisfies

σ(Xp; a ≤ p ≤ b) ⊂ σ(I(p)(f ;µ); f ∈ CL2, a ≤ p ≤ b),

because by Proposition 1

I
(p)
k (h

(ε)
k ;µ) =

nk∑
i=1

tkiI
(p)
k (f⊗kki ;µ) =

nk∑
i=1

tkik!Hk(I
(p)(fki;µ)).(3.3)

By Claim 3.2 the α-mixing coefficients (α(N)) of {Xp}p∈Z are estimated as

α(N) := sup

{
|P (A ∩B) − P (A)P (B)|; A ∈ σ(Xp; p ≤ 0),

B ∈ σ(Xp; p ≥ N + 1)

}

≤ EN (m)

minx∈Tm(x)
, N ≥ 1.

Consequently {Xp}p∈Z is α-mixing (or strongly mixing in terms of [7]).

Let us apply Th.18.4.2 of [7] for {Xp}p∈Z. To do so we need to check

that a sequence {( 1√
P

P∑
p=1

Xp)
2}∞P=1 is uniformly integrable. But, by Lemma

3.4 of [17]

lim
P→∞

E
[(

1√
P

P∑
p=1

Hk(I
(p)(f ;µ))

)4]
= 3v2

k

where f ∈ CL2 with ‖f‖ = 1 and vk = v( 1
k!f

⊗k) = lim
P→∞

E[( 1√
P

P∑
p=1

Hk

(I(p)(f ;µ)))2] > 0. This together with (3.3) clearly implies the L4-bounded-

ness of 1√
P

P∑
p=1

Xp, P ∈ N, so the uniform integrability above is valid.
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Now, as mentioned earlier, we can apply Th.18.4.2 of [7] to have

lim
P→∞

E
[
e
√
−1
∑ L
k=1 ξk

1√
P

∑ P
p=1 I

(p)
k (h

(ε)
k ;µ)
]

= e−
1
2

∑ L
k=1 ξ

2
kv(h

(ε)
k ).

3◦ Collecting 1◦ and 2◦ yields

lim
P→∞

E
[
e
√
−1
∑ L
k=1 ξk

1√
P

∑ P
p=1 I

(p)
k (hk;µ)

]
= e−

1
2

∑ L
k=1 ξ

2
kv(hk),

which is just the conclusion of the theorem. �

4. A Justification of the Claim of Sobol’ et al

First let us state the claim of Sobol’ et al ([13], [14]).

There are several kinds of deterministic sequences {xp =

(x1p, . . . , xNp)}∞p=1 on TN , which are called low discrepancy sequences ([2]),

having the following property: For ∀F : TN → R of finite variation

1
P

P∑
p=1

F (xp) =

∫
TN

F (x)dx+O
(

1
P 1−ε

)
as P → ∞ (∀ε > 0).

This convergence can be used for numerical integrations in TN , which is

called the quasi Monte Carlo method. Since the usual Monte Carlo method

converges at the rate of O( 1√
P

), this method is theoretically more effective.

However many authors have reported that practically the quasi Monte

Carlo method does not converge so fast as it is expected, if the dimension

N is very high. Among others there is the following claim of Sobol’ et al:

Claim. In high dimensions, the quasi Monte Carlo method seems to

converge at the rate of exactly O( 1√
P

), if the integrands F depend equally

on each coordinate.

We try to give a probabilistic explanation to this claim. From Theorems

2.1 and 3.3 let us view the following generously.

Let (h1, . . . , hL) ∈ CL2 × · · · × CSLL2 be such that hk �= 0 (1 ≤ k ≤ L).

Corollary to Theorem 2.1 says that for α = (α1, α2, . . .) ∈ T∞
µ(

1√
N

∑
1≤i1≤N

h1(xi1 + pαi1),

. . . , L!( 1√
N

)L
∑

1≤i1<···<iL≤N
hL(xi1 + pαi1 , . . . , xiL + pαiL)

)
p∈N
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f.d.
=⇒

(
I

(p)
1 (h1;µ), . . . , I

(p)
L (hL;µ)

)
p∈N

as N → ∞.

Consequently, for sufficiently large N we think that(
1√
N

∑
1≤i1≤N

h1(xi1 + pαi1),

. . . , L!( 1√
N

)L
∑

1≤i1<···<iL≤N
hL(xi1 + pαi1 , . . . , xiL + pαiL)

)
p∈N

“ = ”
(
I

(p)
1 (h1;µ), . . . , I

(p)
L (hL;µ)

)
p∈N

.

On the other hand, Theorem 3.3 says that

1√
P

P∑
p=1

(
I

(p)
1 (h1;µ), . . . , I

(p)
L (hL;µ)

)

=⇒ N

(
0,

[
v(h1) 0

. . .
0 v(hL)

])
(nondegenerate Gaussian) as P → ∞

provided m = dµ
dx is continuous and positive. Hence combining these yields

1√
P

P∑
p=1

(
1√
N

∑
1≤i1≤N

h1(xi1 + pαi1),

. . . , L!( 1√
N

)L
∑

1≤i1<···<iL≤N
hL(xi1 + pαi1 , . . . , xiL + pαiL)

)

=⇒ N

(
0,

[
v(h1) 0

. . .
0 v(hL)

])
(nondegenerate Gaussian) as P → ∞,

so that for k = 1, . . . , L

1
P

P∑
p=1

( 1√
N

)k
∑

1≤i1<···<ik≤N
hk(xi1 + pαi1 , . . . , xik + pαik)


= O

(
1√
P

)
�= O

(
1√
P

1+ε

)
(∀ε > 0)

as P → ∞.
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This observation tells us that when α = (α1, α2, . . .) is “ regularly ” dis-

tributed over the whole T (it need not be uniformly distributed), the claim

of Sobol’ et al “ holds ” for a low discrepancy sequence {(x1 +pα1, . . . , xN +

pαN )}∞p=1 and an integrand F (y1, . . . , yN ) = ( 1√
N

)k
∑

1≤i1<···<ik≤N
hk(yi1 , . . . , yik).

5. Concluding Remarks

Our interest in this paper is when the disappearance of dependency

happens, in other words, how the distribution of α = (α1, α2, . . .) in T
influences the dependency. For this subject there are two works close to

ours. We briefly introduce them to conclude this paper.

5.1. Fukuyama’s work ([5], [6])

Let θ ∈ (1,∞). We define ϕθ : T → T∞ by

ϕθ(x) =
(
{θi−1x}

)∞
i=1

,

where {y} denotes the fractional part of y ∈ R. Let µ be a probability

measure on T∞ induced by ϕθ, i.e., µ = P ◦ϕ−1
θ . Clearly µ is singular

relative to P∞, and not a product probability measure. So it is not in a

class of probability measures considered above. Also, for ∀α ∈ T

µ
(
{x ∈ T∞;x+ ϕθ(α) ∈ ∗}

)
= µ(∗).

Let us state a result of Fukuyama. To do so, for f ∈ CL2 we set

D(f) :=

∞∑
k=0

√ ∑
2k≤|n|<2k+1

|f̂(n)|2.

By definition ‖f‖ ≤ D(f), but D(f) ∈ [0,∞] (i.e., D(f) is not necessarily

convergent). Let µ be a probability measure on T, {Nm}∞m=1 a subsequence

of N and α ∈ T for which ϕθ(α) ∈ T∞
µ,{Nm}, i.e.,

1
Nm

Nm∑
i=1

δ{θi−1α}(dx) =⇒ µ(dx) as m→ ∞.
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Then the following holds: For ∀f ∈ CL2 with D(f) <∞(
1√
Nm

Nm∑
i=1

f(xi + jϕθ(α)i)
)
j∈Z

=⇒ N(0,Σ(f)) as m→ ∞.

Here Σ(f) is an infinite nonnegative symmetric matrix whose (i, j)-compo-

nent is given by the following manner: In case θr �∈ Q for ∀r ∈ N,

Σij(f) =

∫
T

µ(dx)

∫
T

f(t)f(t+ |i− j|x)dt;

in case θr ∈ Q for some r ∈ N, by letting s = min{n ∈ N; θn ∈ Q} and

writing θs = p
q to be irreducible

Σij(f) =
∑
k∈Z

∫
T

µ(dx)

∫
T

f(p|k|t)f(q|k|(t+ s̃gn(k)|i− j|x))dt,

where s̃gn(k) :=

{
1 k ≥ 0

−1 k < 0
. Putting µ(dx) = dx in the expression above,

we readily see

Σij(f) = 0, i �= j,

and hence we have the disappearance of dependency whenever ϕθ(α) ∈
T∞
dx. This is valid at least for f ∈ CL2 with D(f) < ∞. For θ = 2,

Fukuyama remarks that the condition D(f) <∞ is necessary for the CLT:

1√
N

N∑
i=1

f(xi) ⇒ N(0, σ2) as N → ∞ (under µ = P ◦ϕ−1
2 ). For this reason,

when θ is in the second case above, this condition is the best possible for

the disappearance of dependency. On the other hand, when θ is in the first

case, is this really necessary? For, in this case, Σij(f) = δij‖f‖2. Anyway

this question remains open.

5.2. Sugita’s work ([15])

We first note that our and Fukuyama’s works originate in [15].

Let µ = P ◦ϕ−1
2 . For N ∈ N, we define a random variable X(N) on

(T∞,F,µ) by

X(N)(x) :=

N∑
i=1

1[ 1
2
,1)(xi) (mod 2).
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Clearly for ∀α ∈ T, ∀N ≥ 1 and ∀j ∈ Z

µ
(
X(N)(· + jϕ2(α)) = 1

)
= µ

(
X(N)(· + jϕ2(α)) = 0

)
= 1

2 .

We have a question whether the disappearance of dependency happens as

N → ∞ for a stationary sequence
(
X(N)(· + jϕ2(α))

)
j∈Z

. For this Sugita

gives an affirmative answer: If, at least ϕ2(α) ∈ T∞
dx, in other words α

is a dyadic normal number, a sequence
(
X(N)(· + jϕ2(α))

)
j∈Z

converges

to the {0, 1}-valued fair Bernoulli random variables in finite dimensional

distribution as N → ∞, i.e., for ∀j1 < · · · < jk and ∀ε1, . . . , εk ∈ {0, 1}

lim
N→∞

µ
(
X(N)(· + j1ϕ2(α)) = ε1, . . . , X

(N)(· + jkϕ2(α)) = εk

)
= (1

2)k.

He says that this assumption on α is technical, and in fact the statement

above will hold for every irrational number α. However, this is still open.
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