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Exact Hausdorff Dimension of Self-avoiding Processes

on the Multi-dimensional Sierpinski Gasket

By Kumiko Hattori

Abstract. We determine the ‘exact Hausdorff dimension’ for a
class of multi-type random constructions. As an application, we con-
sider a model of self-avoiding walk called the ‘branching model’ on
the multi-dimensional Sierpinski gasket. We take its continuum limit
and determine the exact Hausdorff dimension of the path of the limit
process.

1. Introduction

We consider a model of self-avoiding walk on the d-dimensional pre-

Sierpinski gasket (the Sierpinski gasket lattice). In our model we assign

weights to self-avoiding paths in such a way that each step of a path on a

coarser lattice splits into finer structures according to a given probability

law to yield a path on a finer lattice. In view of this construction, we call

our model the ‘branching model.’ We take the continuum limit of our self-

avoiding walk, that is, the limit as the lattice spacing tends to zero. With

an appropriate time-scale transformation, we obtain a non-trivial stochastic

process on the d-dimensional Sierpinski gasket in the limit. The limit path

K of the branching model is a random closed subset of Rd. We are concerned

with determining the ‘exact Hausdorff dimension’ of the limit path.

Let h : (0, 1) → R+ be a non-decreasing, continuous function. We call

h(t) with such properties, a dimension function. The Hausdorff measure

Hh with regard to a dimension function h is defined as follows. Let E be a

subset of Rd. A countable family of subsets of Rd, {Ui} is called a δ-cover of

E if E ⊂
∞⋃
i=1

Ui and |Ui| ≤ δ, i = 1, 2, · · ·, where |Ui| denotes the diameter
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of Ui. For δ > 0, set

Hhδ (E) = inf{
∞∑
i=1

h(|Ui|) : {Ui} is a δ-cover of E},

and

Hh(E) = sup
δ>0

Hhδ (E).

Hh is an outer meausure such that all Borel sets of Rd are Hh-measurable.

If we find a dimension function h satisfying

0 < Hh(E) <∞,

we say that we have determined the exact Hausdorff dimension.

We will show that for the limit path K of the branching model,

0 < Hh(K) <∞ a.s.,

where

h(t) = tα| log | log t||θ,

α is almost surely the Hausdorff dimension of K, and θ is a constant deter-

mined by the dimension d and some parameters.

Hh is a generalization of the usual s-dimensional Hausdorff measure Hs,
which corresponds to the dimension function h(t) = ts for s ≥ 0. The

Hausdorff dimension of E, dimH(E) is defined by

dimH(E) = inf{s ≥ 0 : Hs(E) = 0} (= sup{s ≥ 0 : Hs(E) =∞}).

It was shown that if E ⊂ Rd is a deterministic self-similar set (for example,

the Sierpinski gaskets) (see [9]), or a deterministic set defined by a strongly

connected graph directed construction (multi-type) (see [8], [10]),

0 < HD(E) <∞,

where D = dimH(E). In contrast, for the limit path K of the branching

model considered here, dimH(K) = α a.s., and

Hα(K) = 0 a.s.
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(The Hausdorff dimensions for d = 2 and 3 were determined in [4].) The

occurence of zero Hausdorff measure is caused by stochastic fluctuations

and is often the case with random sets. (See [2], [3], [7], [10].) We seek for

a measure that gives a finite and positive value for K.

When we study the exact Hausdorff dimension, we regard the limit path

as a multi-type random construction. In [3], Graf, Mauldin and Williams

have shown for a wide class of single-type random constructions such that

Hα(K) = 0 a.s., that

0 < Hh(K) <∞, if K(ω) �= ∅, a.s.,

where

h(t) = tα| log | log t||θ,

and θ is determined by the construction.

On the other hand, in [10], Tsujii studied a certain class of N-type

random constructions with stochastic geometric self-similarity. (He calls

them the random Markov-self-similar sets.) He showed that under some

conditions,

0 < Hα(K(r)) <∞ for all r ∈ {1, 2, · · · , N} a.s.,

where α is almost surely the Hausdorff dimension of all K(r)’s, if and only

if
N∑
j=1

Tαrjxj = xr for all r ∈ {1, 2, · · · , N} a.s.,(1.1)

where Tij ’s are the random ratios that govern the construction of the random

sets and {xi} is the Frobenius’ eigenvector of the ratio matrix R(α). Tij ’s

and R(α) are defined in Section 2. (1.1) is a quite restrictive condition.

In this paper, we will concern ourselves with determining the exact Haus-

dorff dimension for multi-type random constructions which do not satisfy

(1.1). Our limit path of the self-avoiding walk belongs to this case. In Sec-

tion 2, we introduce definitions, notations and basic tools that were prepared

in previous works. In Section 3, we extend the result of [3] to multi-type ran-

dom constructions and obtain a general theorem that determines the exact

Hausdorff dimension. In Section 4, we apply the theorem to the branching

model on the d-dimensional Sierpinski gasket.
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2. Notation and Definitions

A multi-type random construction is defined as follows: Let J be a non-

empty compact subset of Rd such that J = cl(int(J)), where cl(A) and

int(A) denote the closure and the interior of a set A, respectively. Let

C = {1, 2, · · · , N}, Cn = {1, · · · , N}n, and C∗ =
∞⋃
n=0

Cn, where C0 stands

for {∅}. For σ, τ ∈ C∗, σ = (σ1, σ2, · · · , σn), τ = (τ1, τ2, · · · , τm), denote

σ ∗ τ = (σ1, · · · , σn, τ1, · · · , τm), |σ| = n and t(σ) = σn. For m ∈ N and

σ = (σ1, · · · , σk) ∈ ∪∞
n=mCn, denote σ|m = (σ1, · · · , σm). Set σ|0 = ∅.

On a probability space (Ω,F , P ), consider N families of random subsets

of Rd,

J(k)(ω) = {J (k)
σ (ω) : σ ∈ C∗}, k ∈ C.

Assume each J(k) satisfies the following conditions:

(J1) J
(k)
∅ (ω) = J for a.a. ω ∈ Ω. For all σ ∈ C and for a.a. ω ∈ Ω, if

J
(k)
σ (ω) �= ∅, then J

(k)
σ (ω) is geometrically similar to J , and the map

ω �→ J
(k)
σ (ω) is measurable with respect to the Hausdorff metric on

the space of compact subsets of Rd.

(J2) For all σ ∈ C∗ and for all i ∈ C,

J
(k)
σ∗i(ω) ⊂ J (k)

σ (ω), for a.a. ω ∈ Ω.

For all σ ∈ C∗ and for i, j ∈ C with i �= j,

int(J
(k)
σ∗i(ω)) ∩ int(J

(k)
σ∗j(ω)) = ∅, for a.a. ω ∈ Ω.

(J3) There are mutually independent random vectors T
(k)
σ (ω) = (T

(k)
σ∗1(ω),

· · ·, T (k)
σ∗N (ω)), σ ∈ C∗, such that for all σ ∈ C∗ and for all i ∈ C,

diam(J
(k)
σ∗i(ω)) = T

(k)
σ∗i(ω) diam(J (k)

σ (ω)) for a.a. ω ∈ Ω,
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and T
(k)
σ is equal in law to T

(r)
∅ if t(σ) = r, r ∈ C.

Throughout this paper, we denote

T
(r)
∅ (ω) = (T

(r)
1 (ω), · · · , T (r)

N (ω)) = (Tr1(ω), · · · , TrN (ω)).(2.1)

We call the system {J(k)} a multi-type random construction. We define

the random sets K(k), k ∈ C by

K(k)(ω) =
∞⋂
n=1

⋃
σ∈Cn

J (k)
σ (ω).

For β ≥ 0, define an N ×N matrix R(β) = {R(β)ij}i,j=1,···,N by,

R(β)ij = E[T βij ],(2.2)

where 00 = 0.

An M×M matrix A is called irreducible if for every (i, j) ∈ {1, · · · ,M}2,
there is an m ∈ N such that (Am)ij > 0.

If R(β) is irreducible, Frobenius’ theorem implies that there exists a

positive eigenvalue that is simple and greater in absolute value than any

other eigenvalues (the Frobenius’ root), and a positive eigenvector associated

with it. We denote by λ(β) the Frobenius’ root of R(β). Assume λ(0) > 1.

From the definition of J
(k)
σ ’s, considering the d-dimensional volumes of J

(k)
j ’s

and J , we have
N∑
j=1

T dkj ≤ 1 almost surely, where d is the dimension of the

Euclidean space. Thus λ(d) ≤ 1. This combined with λ(0) > 1 and that

λ(β) is continuous and strictly decreasing with respect to β leads to the

unique existence of an α > 0 such that λ(α) = 1. Let {xi} be the positive

right eigenvector associated with λ(α) = 1.

Suppose R(0) is irreducible and λ(0) > 1. It was proved that for each

k, K(k) is non-empty with positive probability, and if K(k) is non-empty,

almost surely K(k) has Hausdorff dimension α independent of k. (See [10].)

If random vectors T
(r)
∅ = (Tr1, · · · , TrN ), r = 1, · · · , N have the same

distribution, it corresponds to a (single-type) random construction studied

in [2], [3] and [7].
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We give a simple example of multi-type random constructions. Let C =

{1, 2}. Let T
(k)
σ , σ ∈ C∗, be mutually independent random vectors such

that

P [ T
(1)
∅ = (

1

2
,
1

4
) ] = p,

P [ T
(1)
∅ = (

1

2
, 0) ] = 1− p,

P [ T
(2)
∅ = (

1

2
,
1

4
) ] = q,

P [ T
(2)
∅ = (0,

1

4
) ] = 1− q,

where 0 < p, q < 1, and for each σ �= ∅, T
(k)
σ is equal in law to T

(τ(σ))
∅ . We

define a family of random sets J
(k)
σ inductively as follows. For each k ∈ C,

set

J
(k)
∅ (ω) = [0, 1],

for all ω ∈ Ω. Set

J
(k)
1 (ω) = [0,

1

2
], if T

(k)
1 (ω) =

1

2
,

J
(k)
2 (ω) = [

3

4
, 1], if T

(k)
2 (ω) =

1

4
,

and

J
(k)
i (ω) = ∅, otherwise .

Suppose J
(k)
σ (ω), σ ∈ C∗, is defined and is either ∅ or a closed interval [a, b]

with 0 ≤ a < b ≤ 1. J
(k)
σ∗i(ω), i ∈ C, is defined in the following way. Set

J
(k)
σ∗i(ω) = ∅, if J (k)

σ (ω) = ∅.

If J
(k)
σ (ω) = [a, b], 0 ≤ a < b ≤ 1, set

J
(k)
σ∗1(ω) = [a, a +

1

2
(b− a)], if T

(k)
σ∗1(ω) =

1

2
,

J
(k)
σ∗2(ω) = [b− 1

4
(b− a), b], if T

(k)
σ∗2(ω) =

1

4
,

J
(k)
σ∗i(ω) = ∅, otherwise .
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This two-type random construction defines Cantor-like random subsets K(1)

and K(2) of R. It is obvious that for any α > 0 and any positive vector
t(x1, x2) the condition (1.1) is not satisfied.

Let {J(k)} be a multi-type random construction such that R(0) is irre-

ducible and λ(0) > 1. Set

*(k)σ = diamJ (k)
σ , σ ∈ C∗.

Then

*(k)σ =

|σ|∏
m=0

T
(k)
σ|m,(2.3)

where T
(k)
σ|0 = diamJ . In [10] it was shown that for each k ∈ C,

lim sup
n→∞

{*(k)σ : σ ∈ Cn} = 0 a.s.(2.4)

Define

f (k)
n =

∑
σ∈Cn

n∏
m=0

(T
(k)
σ|m)αxt(σ),

f
(k)
0 = xk(diamJ)α,

where {xi} is the positive right eigenvector corresponding to λ(α). Let Fσ
be the σ-field genereted by (T

(k)
(σ|i)∗1, · · · , T

(k)
(σ|i)∗N ), i = 0, · · · , |σ|−1, k ∈ C,

and Fn = ∨σ∈CnFσ.
It was shown that for every p ∈ N and for every k ∈ C, {f (k)

n }n∈N is a

Lp-bounded martingale with respect to {Fn} and converges a.s. and in Lp

to a random variable X(k). It satisfies

E[X(k)] = xk(diamJ)α.(2.5)

(See [10].) For σ ∈ C∗ ∪ {∅} and k ∈ C, define random variables X
(k)
σ by

X(k)
σ = lim

n→∞

∑
τ∈Cn

n∏
m=1

(T
(k)
σ∗(τ |m))

αxt(τ).

This limit exists a.s. and in Lp. For σ ∈ C∗, X(k)
σ has the same distribution

as X(t(σ))/(diamJ)α, thus its distribution does not depend on k. X
(k)
∅ is
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distributed as X(k)/(diamJ)α. From the definition, it is clear that X
(k)
σ is

independent of Fσ. For any σ ∈ C∗ ∪ {∅}, we have

X(k)
σ =

N∑
i=1

(T
(k)
σ∗i)

αX
(k)
σ∗i, a.s.(2.6)

Set

D = {1, · · · , N}N,

For m ∈ N and σ = (σ1, σ2, · · ·) ∈ D, denote σ|m = (σ1, · · · , σm). For

η ∈ D ∪ C∗ and σ ∈ C∗, write η � σ if η|m = σ for some m ∈ N.

The following definitions are the extension of those in [3] to multi-type

constructions. We define a family of probability measures {Q(k)}, k ∈ C on

the product space (D × Ω,B(D)×F), where B(D) is the Borel field of D.

For σ ∈ C∗, let A(σ) = {η ∈ D : η � σ}. Let µ
(k)
ω be the random Borel

measure on Ω uniquely determined by

µ(k)
ω (A(σ)) = (*(k)σ (ω))αX(k)

σ (ω).

For B ∈ B(D)×F , let

Bω = {η ∈ D : (η, ω) ∈ B}.

For each k ∈ C, Q(k) is defined by

Q(k)(B) =
1

xk (diamJ)α
{
∫

µ(k)
ω (Bω)dP (ω)}.

From the definition, we have the following property. If m ∈ N and

a random variable Y satisfies Y (η, ω) = Y (η′, ω) for any η, η′ ∈ D with

η|m = η′|m, then

E
(k)
Q [Y ] =

1

xk (diamJ)α
E[

∑
σ∈Cm

(*(k)σ )αX(k)
σ Y (σ, ·)],(2.7)

where E
(k)
Q denotes the expectation with regard to Q(k). Define random

variables {*m}m=1,2,··· and {Tm}m=1,2,··· on (D × Ω,B(D)×F , Q(k)) by

*m(η, ω) = *
(k)
η|m(ω),(2.8)
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Tm(η, ω) = T
(k)
η|m(ω).(2.9)

A maximal antichain is a subset Γ of C∗ such that if σ, τ ∈ Γ then

neither τ � σ or σ � τ holds, and for each η ∈ D there is a unique k such

that η|k ∈ Γ. From (2.6), the following holds for every maximal antichain

Γ ⊂ C∗,

X(k)
σ (ω) =

∑
τ∈Γ

|τ |∏
m=1

(T
(k)
σ∗(τ |m))

α(ω)X
(k)
σ∗τ (ω), P -a.s.(2.10)

(See [3].)

3. Exact Hausdorff Dimension for Multi-type Random Construc-

tions

In this section, we extend the results in [3] and obtain a multi-type

version of theorems for the Hausdorff measures.

Throughout this section, assume that R(0) is irreducible and λ(0) > 1 .

α denotes the positive number such that λ(α) = 1.

Let β > 0. For k ∈ C, let r
(k)
β ∈ [0,∞] be the radius of convergence of

E[exp{t(X(k))β}], the moment generating function of (X(k))β. As in [3], we

use r
(k)
β to obtain the estimate of the Hausdorff measure.

Theorem 3.1 through Theorem 3.3 below are obtained as extensions

of Theorems 2.5, 2.7, and 2.11 in [3] to the multi-type case. Since these

extensions are straightforward and the proofs are lengthy, we omit the proofs

and just show the multi-type version of the recursion formula essential for

their proofs in Appendix A.

Let Tij be as in (2.1).

Theorem 3.1. Let β > 1.

(1) If P [
∑N
i=1 T

α/(1− 1
β

)

ki > 1] > 0 for all k ∈ C, then r
(k)
β = 0 for all k ∈ C.

(2) If P [
∑N
i=1 T

α/(1− 1
β

)

ki ≤ 1] = 1 for all k ∈ C, then r
(k)
β > 0, for all

k ∈ C.

Theorem 3.2. Assume

sup{β > 1 :
N∑
i=1

T
α/(1− 1

β
)

ki ≤ 1, P-a.s. }



66 Kumiko Hattori

has the same finite value for all k ∈ C. Denote this value by 1/θ. Then

0 < θ < 1 and for every 0 < β < 1/θ, r
(k)
β =∞ for all k ∈ C, and for every

β > 1/θ, r
(k)
β = 0 for all k ∈ C. Moreover, r

(k)
1/θ > 0 for all k ∈ C.

As a sufficient condition for r
(k)
1/θ <∞, we have the following theorem.

Theorem 3.3. Let γ = α/(1− θ). Assume there exists an a ∈ ( 1
N , 1)\

{1/ν : ν = 1, · · · , N − 1} such that

∞∏
ν=0

min
�∈C

(E[(
N∑
j=1

T γ�j)
a−ν

N∏
i=1

1{T γ�i/
N∑
j=1

T γ�j ≤ a}])aν > 0.

Then r
(k)
1/θ <∞, for all k ∈ C.

Let δ > 0 and L ∈ {1, · · · , N −1}. In the following, for i ∈ C, we denote

by i + L the integer m ∈ C such that i + L ≡ m (mod N). Define N × N

matrices, RA = RA(δ, L) and RB = RB(δ, L) by

RAi,j = E[ Tαij , Ti,j+L ≥ δ ]
xj
xi
,

RBi,j = E[ Tαij , Ti,j+L < δ ]
xj
xi
, i, j ∈ C.

Let R(δ, L) be a 2N × 2N matrix defined by

R(δ, L) =

(
RA RB

RA RB

)
.

Theorem 3.4. ( Upper bound )

Assume λ(0) > 1. Suppose there are a δ > 0 and an L ∈ {1, · · · , N − 1}
such that R(δ, L) is irreducible. Suppose β > 1 is such that r

(i)
β < ∞ for

some i ∈ C. Let h : (0, 1) −→ R+ be defined by

h(t) = tα| log log(1/t)|1/β .

Then there is a constant c > 0 such that for all r ∈ C,

Hh(K(r)(ω)) ≤ cX(r)(ω) <∞, P-a.s.
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The following lemma is the key to the proof of Theorem 3.4, and its

proof requires considerable modifications to obtain our multi-type version.

The proofs of Lemma 3.5 and Theorem 3.4 are found in Appendix B.

Lemma 3.5. Let β > 1, i ∈ C, δ > 0 and L ∈ {1, 2, · · · , N − 1} be as

in Theorem 3.4. Choose t > 0 such that

E[exp(tδαβX(i)β/{3(diamJ)α})] =∞.(3.1)

For k ∈ N, r ∈ C and ω ∈ Ω, define

B
(r)
k (ω) = {σ ∈ Ck : X

(r)
σ|ν(ω) < (

1

t
| log | log *

(r)
σ|ν(ω)||)

1
β

for ν = [log k], · · · , k}.

Then for each r ∈ C, there exists a sequence {k(r)
j }j∈N satisfying

lim
j→∞

∑
σ∈B(r)

kj

(*(r)σ )α| log | log *(r)σ ||
1
β = 0, P-a.s.(3.2)

For ε > 0, k ∈ C and ω ∈ Ω, define

C(k)
ε = C(k)

ε (ω) = {σ ∈ C∗ : *
(k)
σ||σ|−1(ω) ≥ ε, *(k)σ (ω) < ε}.

Then C(k)
ε is a maximal antichain defined in Section 2. For τ ∈ C(k)

ε , let

C(k)
ε,τ = {σ ∈ C(k)

ε : dist(J (k)
σ , J (k)

τ ) < ε},

where dist(∅, E) = ∞, for any set E. For η ∈ D, let ηε = η(k)(ε, ω) be the

unique σ ∈ C(k)
ε with η � σ. Let G(k)

ε (η, ω) = C(k)
ε,ηε .

The following theorem gives a sufficient condition for Hh to be positive.

Theorem 3.6. ( Lower bound )

Suppose a value θ as in Theorem 3.2 exists. Let γ = α/(1− θ). Assume

further
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(1) For some r ∈ C,

sup
ε>0

‖ 1

εγ

∑
σ∈Gε

(*(r)σ )γ ‖∞<∞,

where ‖ · ‖∞ denotes the L∞(Q(r))-norm.

(2) For the same r as in (1), there exist c > 0 and 0 < b < 1 such that

Q(r)[7G(r)
ε = m] ≤ cbm for all ε > 0 and all m ∈ N.

Then

Hh(K(r)(ω)) > 0, if K(r)(ω) �= ∅, P-a.s.,

where h(t) = tα| log | log t||θ.

Since Theorem 3.6 is obtained as an extension of the results in Section

4 of [3], we omit the proof here.

Combining Theorem 3.4 and Theorem 3.6, we summerize our main theo-

rem on the exact Hausdorff dimension for multi-type random constructions

in a general setting as follows.

Theorem 3.7. Let (J(1), · · · ,J(N)) be a random construction satisfying

λ(0) > 1. Let α be the solution to λ(α) = 1. Suppose

(1) There exists a θ > 0 such that

sup{β > 1 :
N∑
i=1

(Tki)
α/(1− 1

β
) ≤ 1, P-a.s.} =

1

θ
, for all k ∈ C.

(2) r
(i)
1/θ is finite for some i ∈ C.

(3) There exist a δ > 0 and an L ∈ {1, 2, · · · , N − 1} such that R(δ, L) is

irreducible.

(4) For some r ∈ C,

sup
ε>0

‖ 1

εγ

∑
σ∈Gε

(diamJ (r)
σ )γ ‖∞<∞.
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(5) For the same r as in (4), there exist c > 0 and 0 < b < 1 such that

Q(r)[7G(r)
ε = m] ≤ cbm, for all ε > 0 and all m ∈ N.

Then

0 < Hh(K(r)(ω)) <∞, if K(r)(ω) �= ∅, for P-a.a. ω,

where

h(t) = tα| log | log t||θ.

In the case that each Tij takes only finitely many values almost surely,

the theorem is considerably simplified as follows.

Theorem 3.8. Let (J(1), · · · ,J(N)) be a random construction satisfying

λ(0) > 1 such that each Tij takes only finitely many values strictly less than

1 almost surely. Let α be the solution to λ(α) = 1. Suppose

(1) There exists a θ > 0 such that

sup{β > 1 :
N∑
i=1

(Tki)
α/(1− 1

β
) ≤ 1, P-a.s.} =

1

θ
, for all k ∈ C.

(3) There exist a δ > 0 and an L ∈ {1, 2, · · · , N − 1} such that R(δ, L) is

irreducible.

Then for all k ∈ C,

0 < Hh(K(k)(ω)) <∞, if K(k)(ω) �= ∅, for P-a.a. ω,

where

h(t) = tα| log | log t||θ.

The derivation of Theorem 3.8 from Theorem 3.7 is given in Appendix

C. In the next section, we apply Theorem 3.8 to the branching model.

Here let us apply Theorem 3.8 to the example given in Section 2. By ex-

plicit calculation, it is easily seen that both R(0) and R(1
4 , 1) are irreducible

and λ(0) > 1.
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The common Hausdorff dimension α of K(1) and K(2) is given almost

surely as the solution to

(
1

2
)α+1{1 + (

1

2
)α +

√
1 + (

1

2
)2α + (4pq − 2)(

1

2
)α } = 1,

and satisfies

0 < α <
log 1+

√
5

2

log 2
.

θ in Condition (1) exists as the solution to

(
1

2
)α/(1−θ) + (

1

4
)α/(1−θ) = 1,

thus,

θ = 1− α log 2

log 1+
√

5
2

.

For any k ∈ C and a.a. ω ∈ Ω,
⋃
σ∈Cn

J (k)
σ (ω), n = 1, 2, · · ·, is a nested

sequence of non-empty closed sets. This implies that K(k)(ω) is non-empty

for a.a. ω ∈ Ω. From Theorem 3.8 we have for a.a. ω,

0 < Hh(K(k)(ω)) <∞,

where

h(t) = tα| log | log t||θ.

So far we assumed only stochastic ratio self-similarity, that is, T
(k)
σ has

the same distribution as T
(t(σ))
∅ . In that case,

N⋃
i=1

J
(k)
σ∗i does not necessarily

have the same distribution as
N⋃
i=1

J
(t(σ))
i . If we further assume stochastic

geometrical self-similarity, Hh(K(k)(ω)) is shown to be almost surely equal

to X(k)(ω) up to a constant.

Let Jn be the σ-algebra on Ω generated by {J (k)
σ : |σ| ≤ n} and B(J)

be the Borel field of J . Suppose for all σ ∈ Cn and k ∈ C, P [J
(k)
σ �= ∅] > 0,

and F
(k)
σ : Ω× J −→ Rd satisfies

(1) F
(k)
σ is Jn × B(J) measurable.
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(2) F
(k)
σ (ω, J) = J

(k)
σ (ω), if J

(k)
σ (ω) �= ∅, for P -a.a. ω.

(3) F
(k)
σ (ω, ·) is a geometric similarity map with domain J for P -a.a. ω,

that is, there exists a postive constant c = c(k, σ, ω) such that for any

x, y ∈ J ,

‖ F (k)
σ (ω, x)− F (k)

σ (ω, y) ‖= c ‖ x− y ‖, P -a.s.

Define

J̃(k)
σ = {J̃ (k)

σ;η : η ∈ C∗},

by

J̃ (k)
σ;η = [F (k)

σ (ω, ·)]−1(J
(k)
σ∗η(ω)).

Then given J
(k)
σ (ω) �= ∅, J̃

(k)
σ is a random construction. We say a multi-type

construction is ‘stochastically geometrically self-similar’ if under J
(k)
σ �= ∅,

J̃
(k)
σ has the same distribution as J

(k)
σ , i.e., if B is a Borel subset of (2J)C

∗

and σ ∈ Cn, then

P [J̃(k)
σ ∈ B | Jn, J (k)

σ �= ∅] = P [J(t(σ)) ∈ B].

Theorem 3.9. Suppose our multi-type construction is stochastically

geometrically self-similar and has the property that for all k ∈ C,

7(J
(k)
i ∩ J

(k)
j ) <∞ for i, j ∈ C, i �= j, P-a.s.

Let h(t) = tα| log log(1/t)|θ, α > 0, and assume that for all k ∈ C,

0 < Hh(K(k)(ω)) <∞, P-a.s.

Then there exists a constant a > 0 such that

Hh(K(k)(ω)) = aX(k)(ω), for all k ∈ C, P-a.s.

Since it is straightforward to extend Theorem 5.5 in [3] to obtain Theo-

rem 3.9, we omit the proof here.
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4. Self-avoiding Paths on the d-dimensional Sierpinski Gasket

We start with the definition of the finite d-dimensional Sierpinski gasket

for d ≥ 2. Consider a unit d-dimensional simplex, that is, a polyhedron

made up of (d + 1) vertices, each of which is connected to the other d

vertices by edges of unit length. Embed it in Rd so that one vertex lies on

the origin O. Let a1 = O. Name the other vertices a2, a3, · · · , ad+1. Let

G0 = {a1, · · · , ad+1} and let F0 be the set of all the points on the edges of

the unit d-dimensional simplex whose vertices belong to G0. Let us define

two sequences of sets inductively by,

Gn+1 =
1

2
{
⋃
y∈G0

(Gn + y)},

Fn+1 =
1

2
{
⋃
y∈G0

(Fn + y)} , n ∈ Z+ ,

where, A + y = {x + y ∈ Rd : x ∈ A} , y ∈ Rd, and k A = {k x ∈
Rd : x ∈ A} , k ∈ R. Fn’s are called (finite) pre-Sierpinski gaskets. Let

F = cl(
∞⋃
n=0

Fn) . F is the (finite) d-dimensional Sierpinski gasket. We define

Tn to be the set of closed d-simplices in Rd which are the translations of

the d-simplex with vertices 2−na1, · · · , 2−nad+1, and whose edges lie in Fn.

Next, for a, b ∈ G0, we define Wn(a, b) to be the set of sequences

w = (w(0), w(1), · · · , w(L(w))) ∈ ∪∞
m=1(Gn)

m, L(w) ∈ N, satisfying the

following conditions.

(W1) w(0) = a.

(W2) w(L(w)) = b.

(W3) |w(i)−w(i+1)| = 2−n, w(i)w(i + 1) ⊂ Fn , i = 0, 1, 2, · · · , L(w)−1,

where w(i)w(i + 1) denotes the line segment connecting w(i) and

w(i + 1).

(W4) w(i) �= w(j) , i, j = 0, 1, 2 · · · , L(w) , i �= j.

(W5) There is no ∆ ∈ Tn and no k, 0 ≤ k ≤ L(w)−2 , satisfying w(k), w(k+

1), w(k + 2) ∈ ∆.
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Wn(a, b) is a set of paths on Gn starting from a and ending at b, and

L(w) is the arrival time at b. (W4) means that w ∈ Wn
1 is self-avoiding.

We will comment on the assumption (W5) in Section 5.

Let Wn
1 = Wn(a1, a2). To describe the large-scale (coarse) behavior of

each path w ∈ Wn
1 , we define a sequence of ‘hitting times’ {Tmi (w)}, for

m ≤ n. Let Tm0 (w) = 0, and by induction,

Tmi (w) = inf
{
t > Tmi−1(w) : w(t) ∈ Gm

}
, i ≥ 1 ,

if the right hand side is finite, otherwise, Tmi (w) = ∞. Tmi (w) is the time

when w hits the points in Gm for the i-th time. Noting that w(L(w)) = a2,

we obtain an integer M = M(w) and a finite sequence {Tmi (w)}i=1,···,M
such that w(TmM (w)) = a2, w(Tmi (w)) �= a2, i = 0, · · · ,M − 1.

Let {Tmi (w)}, i = 0, 1, 2, · · · ,M , be the sequence obtained above. For

m ∈ Z+, we define a ‘decimation’ map Qm :
∞⋃
k=m

W k
1 →Wm

1 , by

(Qmw)(i) = w (Tmi (w)) , i = 0, 1, · · · ,M ,

and

M = L(Qmw).

Qmw shows the behavior of w on the scale of 2−m. Note that if k ≤ m, we

have Qk ◦Qm = Qk .

Since a d-simplex has (d + 1) vertices, a self-avoiding path in Wn
1 is

permitted to go through any d-simplex in Tn at most [d+1
2 ] times, where

[d+1
2 ] is the largest integer that does not exceed d+1

2 . Here we meant by ”w

goes through a d-simplex ∆” that w visits two vertices of ∆ in succession.

Throughout the following, we write K = [d+1
2 ].

We define also Wn
k , k = 2, · · · ,K as the set of k-tuples of mutually

avoiding, self-avoiding paths, w = (w1, · · · , wk) such that

wj ∈Wn(a2j−1, a2j), j = 1, · · · , k.

{wi(t) : t = 1, · · · , L(wi)} ∩ {wj(t) : t = 1, · · · , L(wj)} = ∅, if i �= j.

For w ∈Wn
k , k = 1, · · · ,K, define

Mn,�(w) = 7{∆ ∈ Tn : 7({wj(i) : i = 1, · · · , L(wj), j = 1, · · · , k}∩∆) = 2*}.
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Mn,� is the number of ∆ ∈ Tn through which w goes just * times. We say

a ∆ ∈ Tn is of Type * with regard to w if w goes through it just * times.

For x = (x1, · · · , xK) with xi > 0 , i = 1, · · · ,K, we define polynomials

φk(x) =
∑
w∈W 1

k

K∏
i=1

x
M1,i(w)
i , k = 1, · · · ,K.

Define a probability measure Λk(x) on W 1
k k = 1, · · · ,K by

Λk(x)[w] = φk(x)−1
K∏
i=1

x
M1,i(w)
i , for each w ∈W 1

k .

Set P1(x) = Λ1(x). For n = 2, 3, · · ·, we define Pn(x) on Wn
1 inductively

by

Pn(x)[w] = Pn−1(x)[Qn−1w]
K∏
i=1

{φi(x)−Mn−1,i(Qn−1w) x
Mn,i(w)
i },

for each w ∈Wn
1 .

The inductive definition of Pn(x) on Wn
1 can be interpreted as follows:

Choose w ∈ Wn−1
1 randomly according to Pn−1(x). Then add finer struc-

tures to each step of w independently. Add them in such a way that if

∆ ∈ Tn−1 is of Type k with regard to w, then the part of the finer path

within ∆ is similar to some w′ ∈W 1
k or its reflection. We get a part similar

to w′ (or a reflection of w′) with probability Λk[w
′]. Pn−1(x)[Qn−1w] is the

weight of the ”parent” path in Wn−1
1 and the rest corresponds to those of

children born in the elements of Tn−1 through which the parent goes.

From the definition of Pn(x)’s, we see

QmPn(x) = Pm(x),(4.1)

for m < n, where QmPn denotes the image measure of Pn induced by Qm.

By virtue of (4.1) and Kolmogorov’s extension theorem, for each x, there

is a probability measure P (x) on (Ω,F), where Ω =
∏∞
n=0 Wn

1 and F is the

product Borel field, such that

P (x)[ ω = {wk}∞k=1 : Qmwn = wm, n ≥ m ] = 1,
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and

πn P (x) = Pn(x),

where πn denotes the natural projection from Ω to Wn
1 , and πnω = wn.

Now we construct a multi-type random construction from our self-

avoiding paths in such a way that the picture of self-avoiding paths is kept

apparent. Let J be the closed d-simplex a1a2 · · · ad+1, N = (d + 1)K and

C = {1, 2, · · · , N}. On (Ω,F , P ), let us define JSAP = {Jσ(ω) : σ ∈ C∗}
as follows. First set J∅(ω) = J , for all ω ∈ Ω, and then define Jσ, σ ∈ Cn,

n = 1, 2, · · ·, inductively as follows. Assume for each σ ∈ Cn, Jσ is defined

and satisfies for P -a.e. ω,

(1) Jσ(ω) ∈ Tn ∪ {∅}.

(2) If Jσ(ω) ∈ Tn, then wn passes through Jσ(ω).

(3) int(Jσ(ω)) ∩ int(Jτ (ω)) = ∅, for any σ, τ ∈ Cn, τ �= σ.

We define Jσ∗i(ω), i ∈ C as follows. First, consider the case that Jσ(ω) ∈ Tn.
If it is of Type * with regard to wn, then there are integers 0 ≤ i1 <

i1 + 1 < i2 < · · · < i� and distinct points u1, · · · , u2� ∈ Jσ(ω) ∩ Gn
such that u2j−1 = wn(ij), u2j = wn(ij + 1), j = 1, · · · , *. Name the

other d + 1 − 2* vertices of Jσ(ω) as u2�+1, · · · , ud+1 (the assignment is

arbitrary: for example, assign them in the lexicographical order with re-

gard to the coordinates). Denote the d + 1 elements of Tn+1 in Jσ(ω) by

∆1, · · · ,∆d+1, so that ui ∈ ∆i, i = 1, · · · , d + 1. We classify ∆i’s into

types with regard to wn+1. For each i ∈ {1, · · · , d + 1}, if ∆i is of Type *

with regard to wn+1, set Jσ∗{(�−1)(d+1)+i}(ω) = ∆i, and for k ∈ {1, · · · ,K},
k �= *, set Jσ∗{(k−1)(d+1)+i}(ω) = ∅. If wn+1 does not go through ∆i, set

Jσ∗{(k−1)(d+1)+i}(ω) = ∅, for all k ∈ {1, · · · ,K}. Next, in the case that

Jσ(ω) �∈ Tn, set Jσ∗j(ω) = ∅ for all j ∈ C. Jσ∗i’s defined in this way satisfy

for P -a.e. ω,

(0) Jσ∗i(ω) ⊂ Jσ(ω).

(1) Jσ∗i(ω) ∈ Tn+1 ∪ {∅}.

(2) If Jσ∗i(ω) ∈ Tn+1, wn+1 passes through Jσ∗i(ω).

(3) int(Jσ∗i(ω)) ∩ int(Jτ∗j(ω)) = ∅, for any σ, τ ∈ Cn, i, j ∈ C, with

τ �= σ, or i �= j.
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Now we construct independent random vectors Tσ’s in (J3) from Jσ’s.

Let ∆1, · · · ,∆d+1 be the elements of T1 such that ai ∈ ∆i. For each k ∈
{1, · · · ,K}, let {T̃k,(�−1)(d+1)+j}, * = 1, · · · ,K, j = 1, · · · , d + 1, be a set of

random variables on (W 1
k ,Λk(x)) defined by

T̃k,(�−1)(d+1)+j(w) =

{
1
2 , if ∆j is of Type * with regard to w,

0, otherwise .
(4.2)

For σ ∈ C∗ and for ω ∈ Ω such that Jσ(ω) �= ∅, set

Tσ(ω) = (Tσ∗1(ω), · · · , Tσ∗N (ω)),

Tσ∗i =
diam(Jσ∗i(ω))

diam(Jσ(ω))
.

The following facts follow from the definitions of Pn(x) and Jσ’s.

(1) (Tσ1 , · · · , Tσ∗N ) under Jσ �= ∅ is distributed as (T̃k1, · · · , T̃kN ), if t(σ) =

(k − 1)(d + 1) + r for some r = 1, · · · , d + 1.

(2) Let σ ∈ C∗ and let F∗
σ be the σ-field generated by {diam(Jτ ), σ �≺ τ}.

For any Borel set A of RN , and for any B ∈ F∗
σ such that {Jσ �=

∅} ∩B �= ∅,

P [ Tσ ∈ A | Jσ �= ∅, B ] = P [ Tσ ∈ A | Jσ �= ∅ ].

These facts allow us to extend Tσ’s to {ω ∈ Ω : Jσ(ω) = ∅} with-

out changing the distribution so that Tσ’s are independent random vectors

defined on the whole sample space (if necessary, by enlarging the sample

space). Actually, what is relevant in determining the exact Hausdorff di-

mension is only the distribution of Tσ’s under Jσ �= ∅, but this extension

simplifies the description considerably. Thus in the following we regard Tσ’s

as independent random vectors defined on the whole Ω.

JSAP constructed this way forms a random construction corresponding

to J(1) defined in Section 2. (We could define also J(2), · · · ,J(N), but we are

interested only in paths that go through the whole d-simplex J once.)

Let

K(ω) =
∞⋂
n=1

⋃
σ∈Cn

Jσ(ω).
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K(ω) corresponds to the ‘continuum limit path’ in the following sense. For

ω = (w1, w2, · · ·) ∈ Ω, and for each n let w∗
n be the continuous path obtained

by connecting wn(0), wn(1), · · ·wn(L(wn)) in this order by line segments of

length 2−n. For P -a.e. ω ∈ Ω, as n tends to infinity, the limit of w∗
n exists

with regard to the Hausdorff metric and coincides with K(ω).

We turn to the (d+1)K×(d+1)K matrix R(β) = R(β,x) = {R(β)ij} =

{E[T βij ]}, where Ti = (Ti1, · · · , TiN ), i ∈ C. We have

Lemma 4.1.

R(β)ij = (
1

2
)βR(0)ij = (

1

2
)βP [Tij > 0].

R(0) is irreducible and its Frobenius’ root, ρ(x) satisfies 2 < ρ(x) < d+ 1.

Proof. The first statement is straightforward because Tij is either 1
2

or 0.

Assume w1 ∈ W 1
1 goes through ∆ ∈ T1. Let ∆1, · · · ,∆d+1 ⊂ ∆ be

the elements of T2 named as in the inductive definition of Jσ∗i from Jσ.

Since every ∆′ ∩ F2, ∆′ ∈ T1 has the same substructure, we have for

i ∈ C, j = 1, · · · , d + 1 and k = 1, · · · ,K,

T(k−1)(d+1)+j,i
d
= T(k−1)(d+1)+1,i.(4.3)

Taking expectation, it follows that

R(0)(k−1)(d+1)+j,i = R(0)(k−1)(d+1)+1,i.(4.4)

Suppose ∆ ∈ T1 is of Type k with regard to w1 ∈ W 1
1 . From the

assignment of ∆1, · · · ,∆d+1 ⊂ ∆, we see for r = 1, · · · , 2k,

7(w1 ∩∆r ∩G1) = 7({w1(t) : t = 0, · · · , L(w1)} ∩∆r ∩G1) = 1, a.s.,

thus

7(w2 ∩∆r ∩G1) = 1, a.s.

On the other hand, for r = 2k+1, · · · , d+1, (W5) prohibits w2 to visit ∆r∩
G1. Thus, these two groups behave differently, and within each group w2 ∩
∆r has the same distribution up to translations, rotations and reflections.
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To express these in terms of R(0), for k, * = 1, · · · ,K, j = 1, · · · , d+1, r =

1, · · · , 2k, and s = 2k + 1, · · · , d + 1,

R(0)(k−1)(d+1)+j,(�−1)(d+1)+r = R(0)(k−1)(d+1)+1,(�−1)(d+1)+1.(4.5)

R(0)(k−1)(d+1)+j,(�−1)(d+1)+s = R(0)(k−1)(d+1)+1,�(d+1).(4.6)

(4.4) through (4.6) implies that to show the irreducibility of R(0), it

suffices to show

R(0)(k−1)(d+1)+1,1 > 0, for k = 1, · · · ,K.(4.7)

R(0)1,(�−1)(d+1)+1 > 0, for * = 1, · · · ,K.(4.8)

R(0)1,(�−1)(d+1)+3 > 0, for 1 ≤ * ≤ d

2
.(4.9)

R(0)(K−1)(d+1)+1,(K−1)(d+1)+1 > 0 if K =
d + 1

2
.(4.10)

In fact, from (4.4) and (4.7), we have

R(0)i1 > 0, i = 1, · · · ,K(d + 1).(4.11)

(4.5) and (4.8) implies

R(0)1,(�−1)(d+1)+1 = R(0)1,(�−1)(d+1)+2 > 0 * = 1, · · · ,K.(4.12)

(4.6) and (4.9) gives

R(0)1,(�−1)(d+1)+s > 0 s = 3, · · · , d + 1, * ≤ d

2
.(4.13)

Combining (4.11) through (4.13), we have

R(0)i1R(0)1j > 0,

for all i, j ∈ C if K = d
2 (d is even), and for all i ∈ C and j ∈ {1, · · · , (K −

1)(d + 1)} if K = d+1
2 (d is odd). In the case that d is odd, we need also

(4.10) to show that for j > (K − 1)(d + 1)

R(0)i1R(0)1,(K−1)(d+1)+1R(0)(K−1)(d+1)+1,j > 0.
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Now we will turn to the derivation of (4.7) through (4.10). Since for

any ∆′ ∈ T1, ∆′ ∩ F2 is similar to F1, in the following let us consider in

terms of paths in W 1
k instead of the part of w2 inside ∆′, using the fact that

T(k−1)(d+1)+r,(�−1)(d+1)+j is distributed as T̃k,(�−1)(d+1)+j defined in (4.2).

Let a1, · · · , ad+1 be the vertices of G0 defined as above and let ∆i’s be the

elements of T1 such that ai ∈ ∆i, i = 1, · · · , d+1. Denote bij = bji = ∆i∩∆j ,

for i �= j. Note that

R(0)(k−1)(d+1)+i,(�−1)(d+1)+j

= P [T(k−1)(d+1)+i,(�−1)(d+1)+j > 0]

= Λk[w ∈W 1
k : ∆j is of Type * with regard to w ].

We will show (4.7) through (4.10) by explicitly constructing paths on G1.

For (4.7), consider an k-tuple of paths, w = (w1, · · · , wk), with w1 =

(a1, b12, a2), w2 = (a3, b34, a4), ..., wk = (a2k−1, b2k−1,2k, a2k). Obviously,

w ∈W 1
k , and ∆1 is of Type 1 with regard to w and Λk[w] > 0, thus we have

(4.7).

To show (4.8), consider

w = (a1, b13, b34, b41, b15, b56, · · · , br,1, b1,r+1, br+1,r+2, · · · , b2�,1, b12, a2).

w ∈ W 1
1 and w visits T1-simplices in the order: ∆1 → ∆3 → ∆4 → ∆1 →

∆5 → ∆6 → ∆1 → · · · → ∆2� → ∆1 → ∆2. Hence ∆1 is of Type * with

regard to w. In the following we will express long paths in terms of the

sequences of T1-simplices they visit.

We can show (4.9) by constructing a path w ∈ W 1
1 such that ∆3 is of

Type * with regard to it. We can realize it by: ∆1 → ∆3 → ∆4 → ∆5 →
∆3 → ∆6 → ∆7 → · · · → ∆3 → ∆2� → ∆2�+1 → ∆3 → ∆2. This path

exists if and only if * ≤ d
2 . In fact, for d = 3, we get Rij(0) = 0 for

i = 1, · · · , 4 , j = 7, 8.

To show (4.10), let w = (w1, · · · , wK) ∈ W 1
K be w1: ∆1 → ∆i1 →

∆i2 → ∆1 → ∆i3 → ∆i4 → ∆1 → · · · → ∆i2K−3 → ∆i2K−2 → ∆1 → ∆2,

where (i1, · · · , i2K−2) is a permutation of (3, 4, · · · , 2K) and (i2n−1, i2n) �=
(3, 4), (5, 6), · · · , (2K − 1, 2K), for n = 1, · · · ,K − 1,

w2 = (a3, b34, a4),
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w3 = (a5, b56, a6),

· · · ,
wK = (a2K−1, b2K−1,2K , a2K).

Here ∆1 is of Type K with regard to w.

Thus we have shown that R(0) is irreducible. Combining this with the

non-negativity that is obvious from the definition, we have, by virtue of

Frobenius’ theorem, the existence of the Frobenius’ root ρ(x).

Finally, we will show 2 < ρ(x) < d + 1. Note

2 <

K(d+1)∑
j=1

R(0)ij ≤ d + 1,(4.14)

K(d+1)∑
j=1

R(0)1j < d + 1.(4.15)

The lower bound in (4.14) can be seen from the fact that for any k ∈
{1, · · · ,K}, every w ∈ W 1

k goes through at least two simplices in T1 and

more than two with positive probability. (4.15) is seen from

P [

K(d+1)∑
j=1

T 0
1j = 2] ≥ P1(x)[w = (a1, b12, a2)] = φ1(x)−1x2

1 > 0.

From (4.14) and (4.15), we have 2 < ρ(x) < d + 1. This completes the

proof. �

Next, we consider R(δ, L) defined in Section 3.

Lemma 4.2. R(1
2 , 1) is irreducible.

Proof. Recall N = K(d + 1). It suffices to show for any i, j ∈
{1, 2, · · · , 2N},

R(
1

2
, 1)i,(K−1)(d+1)+1+NR(

1

2
, 1)(K−1)(d+1)+1+N,j > 0.

We will show this by constructing appropriate paths in
K⋃
�=1

W 1
� , as in the

proof of Lemma 4.1. Let ∆i’s be the elements of T1 such that ai ∈ ∆i,
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i = 1, · · · , d + 1. In the following, we interpret j + 1 as in Ti,j+1 as the

integer j0 ∈ {1, · · · , N} such that j + 1 ≡ j0 (mod N). From the definition

of R(δ, L), it suffices to show for any i ∈ {1, · · · , N},

P [Ti,(K−1)(d+1)+1 > 0, Ti,(K−1)(d+1)+2 = 0] > 0,(4.16)

P [T(K−1)(d+1)+1,i > 0, T(K−1)(d+1)+1,i+1 > 0] > 0,(4.17)

P [T(K−1)(d+1)+1,i > 0, T(K−1)(d+1)+1,i+1 = 0] > 0.(4.18)

First we will show (4.16). (4.3) implies that it suffices to show (4.16)

for i = (*− 1)(d + 1) + 1, * = 1, · · · ,K. We show it by constructing a path

w = (w1, · · · , w�) ∈W 1
� regard to which ∆1 is of Type K and ∆2 is of Type

1. Let w1 be the path segment we constructed to show (4.10), and if * ≥ 2,

let wi’s be the path segments (a2i−1, b2i−1,2i, a2i) , i = 2, · · · , *. This *-tuple

satisfies the condition.

Now we will go on to (4.17). Let i = (*− 1)(d+1)+ j, * = 1, · · · ,K and

j = 1, · · · , d + 1. In the case that j �= d + 1 and j < 2K, since all ∆i ∩ F2’s

have the same structure, it is enough to show for j = 1 and j = 2. For

* = 1, the path wi = (a2i−1, b2i−1,2i, a2i) , i = 1, · · · ,K will do. For * ≥ 2,

∆1, ∆2 and ∆3 are all of Type * with regard to the following path, which

proves both cases of j = 1 and j = 2. w1: ∆1 → ∆i1 → ∆2 → ∆i2 → ∆1 →
∆i3 → ∆2 → ∆i4 → ∆1 → · · · → ∆i2�−3

→ ∆2 → ∆i2�−2
→ ∆1 → ∆2,

where (i1, · · · , i2�−2) is a permutation of (3, 4, · · · , 2*) and (i2n−1, i2n) �=
(3, 4), (5, 6), · · · , (2*− 1, 2*). w2: ∆3 → ∆k1 → ∆k2 → ∆3 → ∆k3 → ∆k4 →
∆3 → · · · → ∆k2�−5

→ ∆k2�−4
→ ∆3 → ∆4, where (k1, · · · , k2�−4) is a

permutation of (5, 6, · · · , 2*) and (k2n−1, k2n) �= (3, 4), (5, 6), · · · , (2*−1, 2*).

wi : (a2i−1, b2i−1,2i, a2i) , i = 3, · · · , *.
We deal with the case that j = d = 2K separately, because the path

does not visit ad+1. Let wK be ∆d−1 → ∆d → ∆d+1 → ∆i2 → ∆d →
∆i3 → ∆i4 → ∆d → · · · → ∆i2�−3

→ ∆i2�−2
→ ∆d, where (i2, · · · , i2�−2)

is a permutation of (1, 2, · · · , d− 2) and (i2n−1, i2n) �= (3, 4), (5, 6), · · · , (d−
3, d − 2). Let w1 be ∆1 → ∆d+1 → ∆j1 → ∆j2 → ∆d+1 → ∆j3 → ∆j4 →
∆d+1 → · · · → ∆i2�−5

→ ∆i2�−4
→ ∆d+1 → ∆2, where (j1, · · · , j2�−4) is

a permutation of (3, 4, · · · , d − 2) and (j2n−1, j2n) �∈ {(3, 4), (5, 6), · · · , (d −
3, d − 2), (i2m−1, i2m), m = 2, · · · , * − 1}. For i = 2, · · · ,K − 1, set wi =

(a2i−1, b2i−1,2i, a2i). ∆d and ∆d+1 are of Type * with regard to w =

(w1, · · · , wK).
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(4.17) for j = d + 1 is shown from the existence of a K-tuple w ∈ W 1
K

with regard to which ∆d+1 is of Type * and ∆1 is of Type *+1 ( Type 1 if

* = K). (4.18) is shown in a similar way by constructing paths explicitly.

We omit further details here. This completes the proof. �

Since λ(α) = (1
2)αρ(x), we have

α = α(x) =
log ρ(x)

log 2
.

Now we apply Theorem 3.8 to JSAP defined above. As we saw in Lemma

4.1, R(0) is irreducible and has the Frobenius’ root greater than 1. Next,

we show that (1) holds. We see by an explicit construction as in the proof

of Lemma 4.1, that P [
∑N
j=1 T

0
ij = d+1] > 0 for every i ∈ C. This combined

with the fact that P [
∑N
j=1 T

0
ij ≤ d+ 1] = 1 for every i ∈ C, we see that θ as

in Theorem 3.8 exists and obtained as the solution to

(d + 1)(
1

2
)α/(1−θ) = 1,

hence,

θ = θ(x) = 1− log ρ(x)

log(d + 1)
.

From Lemma 4.2, R(1
2 , 1) is irreducible, thus (3) is satisfied. Thus we have

shown that the conditions in Theorem 3.8 are all satisfied. Furthermore,

K(ω) �= ∅ P -a.s.. In fact, for P -a.e. ω, {
⋃
σ∈Cn

Jσ(ω)}, n = 1, 2, · · · is a nested

sequence of decreasing non-empty compact sets, therefore
∞⋂
n=1

⋃
σ∈Cn

Jσ(ω) �=

∅, P -a.s.

Thus we have

Theorem 4.3. Let K(ω) = Kd(ω,x) be the limit path of the branching

model of self-avoiding paths on the d-dimensional Sierpinski gasket. Then

K(ω) �= ∅, P-a.s.,

dimH(K(ω)) = α, P-a.s.,
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and

0 < Hh(K(ω)) <∞, P-a.s.,

where

h(t) = tα| log | log t||θ,

α = α(x) =
log ρ(x)

log 2
, 1 < α <

log(d + 1)

log 2
,

θ = θ(x) = 1− log ρ(x)

log(d + 1)
,

and ρ(x) is the Frobenius’ root of R(0).

Remark. JSAP satisfies the conditions for stochastically geometrically

self-similar construction, so Theorem 3.9 holds.

5. Concluding Remarks

In [4], we studied the branching models on the 2- and 3-dimensional

Sierpinski gaskets as stochastic processes. We have proved that the existence

of the continuum limit, that is, the convergence of the process in law to a

continuous process on F , under an appropriate time-scale transformation.

Also for d ≥ 4, we can prove the existence of the continuum limit. The

proof is omitted here because it goes parallelly as in [4]. What is given in

Theorem 4.3 of this paper is the exact Hausdorff dimension of the paths of

this continuum limit.

Condition (W5) in the definintion of Wn
1 is not essential in obtaining the

exact Hausdorff dimension. It simplifies the problem, while the continuum

limit of our model is large enough to accommodate important processes.

In [5] and [6], Hattori, Hattori and Kusuoka studied ‘canonical’ models of

self-avoiding paths on the 2- and 3-dimensional Sierpinski gaskets. In these

models, we assigned to each self-avoiding path w (we do not impose (W5))

from a1 to a2, a weight propotional to e−βL(w), where β > 0 is a parameter

and L(w) is as in Condition (W2). It was shown that the unique non-trivial

continuum limits for d = 2, 3 coincide up to time transformations with those

of the branching models with x satisfying

φk(x) = xk, k = 1, · · · ,K,(5.1)
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and, for d = 3, in addition,

x2
1 > x2.

It was also proved that the limit processes are self-avoiding. (We note for

emphasis that the continuum limit of self-avoiding paths is not always self-

avoiding. See [5] and [4].) We have good reason to expect that also for

d ≥ 4, the limilt processes of the e−βL(w)-model coincide with the branching

models with x satisfying (5.1) up to time transformations, and we conjecture

also that this limit processes are self-avoiding.

Appendix

A. Recursion Formula

Here we show the multi-type version of the recursion formula correspond-

ing to (2.10) in [3]. It is essential for the proofs of Theorem 3.1 through

Theorem 3.3. Let β > 0. For each k ∈ C, let

s
(k)
0 (β) = 1,

and

s(k)
n (β) = E[(X(k))n]/Γ(

n

β
+ 1) for n ≥ 1.

Let

∆N = {(y1, · · · , yN ) ∈ [0, 1]N :
N∑
i=1

yi = 1}.

Let ON denote the measure on ∆N which is the image of Lebesgue measure

on {(y1, · · · , yN−1) ∈ [0, 1]N−1 :
∑N−1
i=1 yi ≤ 1} induced by the transforma-

tion (y1, · · · , yN−1) −→ (y1, · · · , yN−1, 1−
∑N−1
i=1 yi). In a similar way to the

proof of Theorem 2.1 in [3], it is proved that

(r
(k)
β )−1 = {lim sup

n→∞
(s(k)
n (β))1/n}β.
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{s(k)
n (β)}, k ∈ C, satisfies the following recursion formula.

s(k)
n (β)

=
N−1∏
i=1

(
n

β
+ 1)

∑
j1+···+jN=n,0≤j1,···,jN<n

[
n!

j1! · · · jN !

∫
∆N

(
N∏
i=1

y
ji/β
i ) dON

(
N∏
i=1

s
(i)
ji

(β)){
N∑
�=1

(I −R(nα))−1
k� E[

N∏
i=1

Tαji�i ]}], n ≥ 2,

where I is the N × N unit matrix and R(nα) the ratio matrix defined in

Section 2.

B. Proofs of Lemma 3.5 and Theorem 3.4

Throughout the following, let diamJ = 1/e so that we can simply replace

| log | log *
(k)
σ || by log | log *

(k)
σ |. The general case follows by scaling. To prove

Lemma 3.5 we need some preparations. Let S be a set of 2N symbols,

{1A, 1B, · · · , NA, NB}. Fix δ > 0 and L ∈ {1, 2, · · · , N − 1} as in Theorem

3.4.

For each k, we will define a sequence of S-valued random variables

{Σn}n=0,1,2,··· on (D × Ω,B(D) × F , Q(k)). For σ ∈ D, denote σ|n∗ =

(σ1, · · · , σn−1, σn + L). Here n + L denotes the integer m ∈ C such that

n + L ≡ m (mod N). For each (σ, ω) = ((σ1, σ2, · · ·), ω) ∈ D × Ω, define

random variables T ∗
n , n = 1, 2, · · · by

T ∗
n(σ, ω) = T

(k)
σ|n∗(ω).(B.1)

Define {Σn} by

Σ0(σ, ω) = kA,

Σn(σ, ω) =

{
iA, if σn = i and T ∗

n(σ, ω) ≥ δ,

iB, if σn = i and T ∗
n(σ, ω) < δ,

i ∈ C, n ≥ 1.

Lemma B.1. For each k ∈ C, {Σn} defined as above on (D×Ω,B(D)×
F , Q(k)) is a Markov chain with the transition matrix P = {PIJ}I,J∈S given

by

PiA,jA = PiB ,jA = RAij ,
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PiA,jB = PiB ,jB = RBij , i, j ∈ C,

where RA and RB are defined in Section 3.

Proof. Fix k ∈ C. For Ir ∈ S, r = 1, · · · ,m, we will show

Q(k)[Σm = Im | Σr = Ir, r = 1, · · · ,m− 1]

= Q(k)[Σm = Im | Σm−1 = Im−1]

=

{
RAij , if Im−1 = iA or iB , and Im = jA,

RBij , if Im−1 = iA or iB , and Im = jB .

In the following, we will consider the case that all the Ir’s are A-states.

Generalization to the case that some of the Ir’s are B-states is straightfor-

ward.

For ir ∈ C, r = 1, · · · ,m,

Q(k)[Σm = imA | Σr = irA, r = 1, · · · ,m− 1]

=
Q(k)[(σ, ω) ∈ D × Ω : σr = ir, T

∗
r ≥ δ, r = 1, · · · ,m]

Q(k)[(σ, ω) ∈ D × Ω : σr = ir, T ∗
r ≥ δ, r = 1, · · · ,m− 1]

.

Set τ = (i1, · · · , im) ∈ Cm and i0 = k. From (2.7), (2.3), (B.1), the mutual

independence of Tη’s, η ∈ C∗, and the fact that X
(k)
η is independent of *

(k)
η

and T
(k)
η|r∗’s, r = 1, · · · ,m,

Q(k)[σr = ir, T
∗
r ≥ δ, r = 1, · · · ,m]

= eα
∫

(*(k)τ (ω))αX(k)
τ (ω) 1{T (k)

τ |r∗ ≥ δ, r = 1, · · · ,m}dP (ω)/xk

= E[
m∏
r=1

(T
(k)
τ |r )α X(k)

τ 1{T (k)
τ |r∗ ≥ δ, r = 1, · · · ,m}]/xk

=
m∏
r=1

E[(T
(k)
τ |r )α, T

(k)
(τ |r)∗ ≥ δ]E[X(k)

τ ]/xk

=
m∏
r=1

E[Tαir−1,ir , Tir−1,ir+L ≥ δ]xim/xk.

Similarly, we have

Q(k)[σr = ir, T
∗
r ≥ δ, r = 1, · · · ,m− 1]

=
m−1∏
r=1

E[Tαir−1,ir , Tir−1,ir+L ≥ δ]xim−1/xk.
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Thus
Q(k)[Σm = imA | Σr = irA, r = 1, · · · ,m− 1]

=
xim
xim−1

E[Tαim−1,im , Tim−1,im+L ≥ δ].

Similarly we can show

Q(k)[Σm = ImA | Σm−1 = im−1A] =
xim
xim−1

E[Tαim−1,im , Tim−1,im+L ≥ δ].

Thus we have

Q(k)[Σm = imA | Σr = irA, r = 1, · · · ,m− 1]

= Q(k)[Σm = ImA | Σm−1 = im−1A]

= RAim−1,im .

This completes the proof. �

We will use some basic results about general Markov chains. Let S′ be

a countable set. Let {Σ′
n}n=0,1,··· be an S′-valued Marcov chain on some

(Ω,F , Px), x ∈ S′ with Px[Σ
′
0 = x] = 1. Let

Nn(x) =
n∑

m=1

1{Σ′
m = x}

be the number of visits to x by time n. Denote the time of the i-th visit to

x by

ξ(1)
x = ξx = inf{n > 0 : Σ′

n = x},

ξ(i)
x = inf{n > ξ(i−1)

x : Σ′
n = x}, for i ≥ 2.

We say x ∈ S′ is recurrent if Px[ξx <∞] = 1.

Theorem B.2 below is found as Theorem (5.1) in Chapter 5 of [1].

Lemma B.3 is an application of Lemma (9.4) in Chapter 1 of [1].

Theorem B.2. Suppose y ∈ S′ is recurrent. For any x ∈ S′, as n →
∞,

Nn(y)

n
−→ 1

Ey[ξy]
1{ξy <∞}, Px − a.s.,
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where 1
∞ = 0.

Lemma B.3. Suppose Ex[exp(uξx)] < ∞ for some u > 0 and some

x ∈ S′. If a > Ex[ξx], there is a constant c, 0 < c < 1 such that

Px[
ξ
(1)
x + · · ·+ ξ

(n)
x

n
> a] ≤ cn.

Now we go back to our case. From our assumption on δ and L, our

Markov chain {Σn} on (D × Ω,B(D) × F , Q(k)) is irreducible, that is, the

transition matrix P is irreducible.

Lemma B.4. Let 0 < µ < 1. For each I ∈ S, rI = lim
n→∞

Nn(I)

n
exists

Q(k)-a.s. and there is a constant c, 0 < c < 1, such that

Q(k)[
Nn(I)

n
< µrI ] ≤ cn.

Proof. Since our Markov chain is finite-state and irreducible, any

I ∈ S is recurrent and it is easily seen that there is a u > 0 satisfying

E
(k)
Q [exp(uξI)] <∞.

Moreover, Q(k)[ξI < ∞] = 1. Theorem B.2 implies that rI = lim
n→∞

Nn(I)

n
exists, and combined with the strong law of large numbers further implies

lim
n→∞

ξ
(1)
I + · · ·+ ξ

(n)
I

n
=

1

rI
, Q(k)-a.s.

It follows from Lemma B.3

Q(k)[
Nn(I)

n
< µrI ]

= Q(k)[Nn(I) < nµrI ]

= Q(k)[ξ
(1)
I + · · ·+ ξ

[nµrI ]+1
I > n]

= Q(k)[
ξ
(1)
I + · · ·+ ξ

[nµrI ]+1
I

nµrI
>

1

µrI
]

≤ cn,
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for some 0 < c < 1 . �

Lemma B.5. (Lemma 3.2 of [3]).

Let g : R+ −→ [0, 1] be a non-increasing function with

∫ ∞

0
g(x)dx =∞.

Then, for every λ > 0 and for every sequence {j(k)}∞k=1 of postive integers

with lim sup
k→∞

j(k3)

k3
< 1, we have

lim sup
k→∞

{
∫ k1/3

j(k)1/3
g(x)x2dx− λ log k} =∞.

Proof of Lemma 3.5. In the following fix r ∈ C. Set

I
(r)
k =

∫
Ω

∑
σ∈B(r)

k

(*(r)σ )α(log | log *(r)σ |)
1
β dP.

Since L1- convergence implies almost sure convergence of a subsequence, it

suffices to show

lim inf
k→∞

I
(r)
k = 0.

From (2.6),

X
(r)
σ|ν(ω) ≥ (T

(r)
(σ|ν+1)∗(ω))αX

(r)
(σ|ν+1)∗(ω) P -a.s.

Notice that the family {X(r)
(σ|ν+1)∗}, ν = [log k], · · · , k, is mutually indepen-

dent and also independent of Fσ. This combined with the definition of B
(r)
k
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yields

I
(r)
k

≤
∑
σ∈Ck

∫
Ω

k−1∏
ν=[log k]

1{(T (r)
(σ|ν+1)∗(ω))αX

(r)
(σ|ν+1)∗(ω)

< (
1

t
log | log *

(r)
σ|ν(ω)|)1/β}

×(*(r)σ (ω))α(log | log *(r)σ (ω)|)1/βdP (ω)

=
∑
σ∈Ck

∫
Ω

k−1∏
ν=[log k]

P [ ω′ : (T
(r)
(σ|ν+1)∗(ω))αX

(r)
(σ|ν+1)∗(ω

′)

< (
1

t
log | log *

(r)
σ|ν(ω)|)1/β ]

×(*(r)σ (ω))α(log | log *(r)σ (ω)|)1/βdP (ω)

≤
∑
σ∈Ck

∫
Ω
(*(r)σ (ω))α exp{−

k−1∑
ν=[log k]

P [ ω′ : exp{t(T (r)
(σ|ν+1)∗(ω))αβ(X

(r)
(σ|ν+1)∗(ω

′))β}
≥ | log *

(r)
σ|ν(ω)|]}

×(log | log *(r)σ (ω)|)1/βdP (ω).

Here we conditioned on Fσ to obtain the equality part. From the fact that

X
(r)
σ is independent of the integrand and that E[X

(r)
σ ] = xt(σ),

I
(r)
k

≤
∑
σ∈Ck

∫
Ω
(*(r)σ (ω))αX(r)

σ (ω) exp{−
k−1∑

ν=[log k]

P [ ω′ : exp{t(Tα(σ|ν+1)∗(ω))αβ(X
(r)
(σ|ν+1)∗(ω

′))β}
≥ | log *

(r)
σ|ν(ω)|]}

×(log | log *(r)σ (ω)|)1/βdP (ω)/( min
1≤j≤N

xj)

≤ e−αxr( min
1≤j≤N

xj)
−1
∫
D×Ω

(log | log *k(η, ω)|)1/β exp{−
k−1∑

ν=[log k]

P [ ω′ : exp{t(T ∗
ν+1(η, ω))αβeαβ(X(ην+1+L)(ω′))β}

≥ | log *ν(η, ω)|]}dQ(r),

where we used (2.7), (2.8), the fact that X
(r)
τ is distributed as

Xt(τ)/(diamJ)α, τ ∈ C∗ and the assumption that diamJ = 1/e.
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Let i be as in Theorem 3.4. For (η, ω) ∈ D × Ω, define

∆k(η, ω) = {ν ∈ {[log k], · · · , k} : ην+1 + L = i, T ∗
ν+1 ≥ δ}.

Suppose a is a constant such that

0 < a < lim
n→∞

Nn(iA)

n
, Q(r)-a.s.,

for all r ∈ {1, · · · , N}. Fix b, 0 < b < α, arbitrarily. Let c > 0 be such that

λ(α− b)e−bc < 1.(B.2)

Define subsets E
(r)
k , F

(r)
k , G

(r)
k ⊂ D × Ω by

E
(r)
k = {| log *ν | ≤ cν, ν = [log k], · · · , k} ∩ {7∆k > a(k − [log k])},

F
(r)
k = {| log *ν | ≤ cν, ν = [log k], · · · , k} ∩ {7∆k ≤ a(k − [log k])},

G
(r)
k = { There exists ν ∈ {[log k], · · · , k} such that | log *ν | > cν},

where 7∆k denotes the cardinarity of ∆k. Then we have

I
(r)
k ≤ e−αxr( min

1≤j≤N
xj)

−1(I
(r)
k,1 + I

(r)
k,2 + I

(r)
k,3),

where

I
(r)
k,1 =

∫
E

(r)
k

Y (η, ω)dQ(r),

I
(r)
k,2 =

∫
F

(r)
k

Y (η, ω)dQ(r),

I
(r)
k,3 =

∫
G

(r)
k

Y (η, ω)dQ(r),

and

Y (η, ω)

= (log | log *k(η, ω)|)
1
β

exp{−
k−1∑

ν=[log k]

P [ ω
′

: exp{t(T ∗
ν+1(η, ω))αβeαβ(X(ην+1+L)(ω′))β}

≥ | log *ν(η, ω)|]}.
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First we will show

lim inf
k→∞

I
(r)
k,1 = 0.

From the definitions of E
(r)
k and ∆k and the choice of i, for a large enough

k with ck > 1,

I
(r)
k,1 ≤ (log ck)

1
β

∫
{5∆k>a(k−[log k])}

exp{−
∑

ν∈∆k\{k}
P [ ω′ : exp{tδαβeαβ(X(i)(ω′))β} ≥ cν]}dQ(r).

Set

j(k) = k − [a(k − [log k])].

Then using the definition of E
(r)
k again, we have

∑
ν∈∆k\{k}

P [ ω′ : exp{tδαβeαβ(X(i)(ω′))β} ≥ cν]

≥
k−1∑
ν=j(k)

P [ ω′ : exp{tδαβeαβ(X(i)(ω′))β} ≥ cν]

≥
k−1∑
ν=j(k)

∫ ν+1

ν
P [ ω′ :

1

c
exp{tδαβeαβ(X(i)(ω′))β} ≥ x]dx

=

∫ k

j(k)
P [ ω′ :

1

c
exp{tδαβeαβ(X(i)(ω′))β} ≥ x]dx.

Note that the last expression is independent of (η, ω). We have

I
(r)
k,1

≤ (log ck)
1
β exp{−

∫ k

j(k)
P [ ω′ :

1

c
exp{tδαβeαβ(X(i)(ω′))β} ≥ x]dx}

≤ exp{ 1

β
log ck −

∫ k

j(k)
P [ ω′ :

1

c
exp{tδαβeαβ(X(i)(ω′))β} ≥ x]dx}.

Set

g(x) = P [ ω′ : (
1

c
)1/3 exp{1

3
tδαβeαβ(X(i)(ω′))β} ≥ x].
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From (3.1) and the definition of j(k), we see that g(x) and {j(k)}∞k=1 satisfy

the assumptions in Lemma B.5. Thus we have

lim inf
k→∞

I
(r)
k,1 = 0.

Next we will show

lim
k→∞

I
(r)
k,2 = 0.

I
(r)
k,2

≤ (log ck)
1
β

∫
{5∆k≤a(k−[log k])}

exp{−
∑

ν∈∆k\{k}
P [ ω′ : exp{tδαβeαβ(X(i)(ω′))β} ≥ cν]}dQ(r)

≤ (log ck)
1
βQ(r)[7∆k ≤ a(k − [log k])]

≤ (log ck)
1
β c
k−[log k]
1 ,

for some c1 with 0 < c1 < 1.

Lemma B.4 was used for the last inequality. Thus we have

lim
k→∞

I
(r)
k,2 = 0.

Finally we will show

lim
k→∞

I
(r)
k,3 = 0.

From the definition of G
(r)
k and Hölder’s inequality,

I
(r)
k,3

≤
k∑

ν=[log k]

∫
1{| log *ν | > cν}(log | log *k(η, ω)|)

1
β dQ(r)

≤
k∑

ν=[log k]

(Q(r)[| log *ν | > cν])
1− 1

β (

∫
log | log *k(η, ω)|dQ(r))

1
β .
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We have

Q(r)[| log *ν | > cν}]
≤ e−bcνE(r)

Q [exp(b| log *ν |)] (Chebyshev’s inequality)

≤ e−bcνE(r)
Q [(*ν)

−b]

= e−bcν+α
∑
σ∈Cν

E[(*(r)σ )αXσ(*
(r)
σ )−b]/xr ( from (2.7))

= e−bcν+b
∑
σ∈Cν

xσνE[(Trσ1)
−b+α]

ν∏
m=2

E[(Tσm−1σm)−b+α]/xr

(from (2.3) and T
(r)
∅ =

1

e
)

≤ e−bcν+b
N∑
j=1

(R(α− b)ν)rjxj/xr (from (2.2))

≤ e−bcν+bλ(α− b)ν .

From (B.2), λ(α− b)e−bc = c2 < 1. Thus

I
(r)
k,3

≤
k∑

ν=[log k]

e
b(1− 1

β
)
c
(1− 1

β
)ν

2 (

∫
log | log *k(η, ω)|dQ(r))

1
β

≤ e
b(1− 1

β
) c

(1− 1
β

)[log k]

2

1− c
(1− 1

β
)

2

(

∫
log | log *k(η, ω)|dQ(r))

1
β .

From Jensen’s inequatlity,

∫
log | log *k|dQ(r)

= log k +

∫
log(| log *k|/k)dQ(r))

≤ log k + log(
1

k

∫
| log *k|dQ(r)).

From (2.7), (2.8) and the fact that {Tσ|ν}ν is a family of independent
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random variables, we have

∫
| log *k|dQ(r)

= 1 +
k∑

m=1

∫
| log Tm|dQ(r)

= 1 +
k∑

m=1

1

xr
E[

∑
σ∈Cm

(*(r)σ )αXσ| log Tσ|]eα

= 1 +
k∑

m=1

∑
σ∈Cm

xσm
xr

E[
m∏
ν=0

(T
(r)
σ|ν)

α| log Tσ|]

= 1 +
k∑

m=1

c3N
max1≤s≤N xs

xr

N∑
j=1

(R(α)m−1)rj

≤ 1 + c4k,

where c3 and c4 are positive constants independent of k. Here we used the

boundedness of the function xα| log x| in 0 < x ≤ 1. Thus we have

I
(r)
k,3 ≤ Ac

[log k]
5 {log k + log(

1

k
+ c4)},

where A, c4 and c5 are postitive constants and 0 < c5 < 1. Therefore,

lim
k→∞

I
(r)
k,3 = 0. This completes the proof. �

Proof of Theorem 3.4. Once Lemma 3.5 is proved, the rest of the

proof proceeds in the same way as that of Theorem 3.1 in [3], so we just

give the sketch here.

Fix r ∈ C. Note that (2.4), (2.10) and (3.2) hold for P -a.e.ω. Take

such an ω. Then for any δ0 > 0 and for any ε > 0, we can find a maximal

antichain Γ = Γ(ω) such that

(1) {Jσ}σ∈Γ forms a δ0-cover of K(r)(ω).

(2) The sum of (*
(r)
σ (ω))α(log | log *

(r)
σ (ω)|)1/β over σ ∈ Γ satisfying

X(r)
σ (ω) < (

1

t
log | log *(r)σ (ω)|)1/β

is less than ε.
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(1) is guaranteed by (2.4), and (2) by (2.10) and (3.2). It follows that

Hhδ0(K
(r)(ω))

≤
∑
σ∈Γ

h(diam(J (r)
σ (ω)))

=
∑
σ∈Γ

(*(r)σ (ω))α(log | log *(r)σ (ω)|)1/β

≤
∑
σ∈Γ

(*(r)σ (ω))αt1/βX(r)
σ (ω) + ε

= t1/βX(r)(ω) + ε,

In the last equality we used (2). Thus we have

Hh(K(r)(ω)) ≤ t1/βX(r)(ω) <∞ P -a.s.

This completes the proof. �

C. Proof of Theorem 3.8

It suffices to show that Conditions (2), (4) and (5) in Theorem 3.7 hold.

Since Tij takes only finitely many values almost surely, there is a δ > 0

such that for all i, j ∈ C,

P [Tij > 0 ] = P [Tij > δ ].

Let k ∈ C. From the definition of G(k)
ε (η, ω), all J

(k)
σ (ω)’s with σ ∈ G(k)

ε (η, ω)

are included in a ball of radius 3ε centered in J
(k)
ηε (ω) and diamJ

(k)
σ (ω) > δε.

This combined with the similarity of all J
(k)
σ (ω)’s with σ ∈ G(k)

ε (η, ω) implies

that there is an M > 0 such that for any ε > 0,

7G(k)
ε ≤M, Q(k)-a.s.

From this, Conditions (4) and (5) follow immediately.

To show that Condition (2) is satisfied, we use Theorem 3.3. Let

Gi = {ω :
N∑
j=1

T γij(ω) = 1,
N∑
j=1

T 0
ij(ω) ≥ 2 }.

From the assumptions that Tij takes finitely many values almost surely and

P [Tij < 1 ] = 1, for all i, j ∈ C, we have

P [Gi ] > 0, for all i ∈ C.
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Set

p = min
i∈C

P [Gi ].

Notice that for P -a.a. ω ∈ Gi,

T γik∑N
j=1 T

γ
ij

≤ 1− δγ a.s., for all k ∈ C.

Choose an a from (max{ 1
N , 1 − δγ}, 1) \ { 1

ν : ν = 1, · · · , N − 1}. Then for

any t > 0,

E[(
N∑
j=1

T γij)
t

N∏
k=1

1{T γik/
N∑
j=1

T γij ≤ a}]

≥ E[(
N∑
j=1

T γij)
t

N∏
k=1

1{T γik/
N∑
j=1

T γij ≤ a}1Gi ]

≥ P [Gi ]

≥ p > 0.

From this, we see that the left-hand side of the condition in Theorem 3.3 is

bounded from below by

∞∏
ν=0

pa
ν

= p1/(1−a) > 0.

Thus Condition (2) holds. This completes the proof. �
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