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Zeta Functions of Finite Graphs

By Motoko Kotani and Toshikazu Sunada

Abstract. Poles of the Ihara zeta function associated with a fi-
nite graph are described by graph-theoretic quantities. Elementary
proofs based on the notions of oriented line graphs, Perron-Frobenius
operators, and discrete Laplacians are provided for Bass’s theorem on
the determinant expression of the zeta function and Hashimoto’s the-
orems on the pole at u = 1.

1. Introduction

We shall start with fixing the terminology required to state our results.

Let X = (V,E) be a finite connected graph with a set V of vertices and a

set E of oriented edges. We allow X to have loop edges and multiple edges.

We denote by o(e) (resp. t(e)) the origin (resp. terminus) of an edge e ∈ E,

and by e the inverse edge. The adjacency operator A is an operator acting

on the space C(V ) of functions on V defined by

(Af)(x) =
∑
e∈Ex

f(t(e)),

where Ex = {e ∈ E| o(e) = x}. We write deg x = #Ex, the degree of x.

Throughout we assume that deg x ≥ 2 for every x ∈ V .

A closed path in X is a sequence c = (e1, . . . , ek) of edges with t(ei) =

o(ei+1) (i ∈ Z/kZ). If ei �= ei+1 for all i ∈ Z/kZ, c is called a closed geodesic.

We may form the m-multiple cm of a closed geodesic c by repeating c m-

times. If c is not a m-multiple of a closed geodesic with m ≥ 2, c is said

to be prime. Two prime closed geodesics are said to be equivalent if one

is obtained from another by a cyclic permutation of edges. An equivalence

class of a prime closed geodesic is called a prime cycle. The length of a

prime cycle p is defined as the number of edges in a representative of p, and

is denoted by |p|.
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The (Ihara) zeta function Z(u) = Z(u,X) of X, the main object in this

note, is defined by

Z(u) =
∏
p∈P

(1 − u|p|)−1,

where P denotes the set of all prime cycles in X. We denote by α−1 the

radius of convergence of Z(u).

The primary purpose of this note is to give a short and conceptually

simple proof for the following beautiful theorem.

Theorem 1.1. (H. Bass [3])

Z(u) = (1 − u2)χ(X) det
(
I − uA + u2(D − I)

)−1
,

where χ(X) denotes the Euler number of X and D is the operator on C(V )

defined by (Df)(x) = (deg x)f(x).

It should be noted that χ(X) ≤ 0, and the equality holds if and only

if X is a circuit graph, i.e. a graph with deg x = 2 for every vertex x, or

equivalently a graph homeomorphic to the circle. From the theorem above,

we conclude that Z(u)−1 is a polynomial of degree #E(= −2χ(X) + 2#V )

whose leading coefficient is

(−1)χ(X)
∏
x∈V

(deg x− 1).

Corollary 1.2. If X is a finite regular connected graph of degree q+1

with N = #V , then α = q and

Z(u) = (1 − u2)(1−q)N/2 det
(
I − uA + qu2I

)−1
.(1)

The above corollary was originally established by Y. Ihara [12] in his

study of a p-adic analogue of the Selberg zeta functions. His result is inter-

preted as above in terms of the regular graphs (of degree p+ 1) associated

with a co-compact discrete subgroup in the p-adic linear group SL2(Qp). In

his proof, Ihara employed a combinatorial nature of the underlying Hecke
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algebra on X which we can not apply to the general case (see also [20], [21]

and J. P. Serre [19]).

Our idea of the proof of Theorem 1.1 is to relate Z(u) to the zeta function

associated with an oriented graph (the oriented line graph) to which we

easily give a determinant form by using the Perron-Frobenius operator (this

is actually a well-known fact; see R. Bowen and O. Lanford [7]), and to use

only elementary linear algebra to transform it to the desired form. Thus

the proof given here is much simpler than that in H. Bass [3] where the

notion of “non-commutative” determinant was used (it should be pointed

out that his method applies also to “ramified” cases). In the course of our

discussion, we observe that α coincides with the maximal positive eigenvalue

of the Perron-Frobenius operator (the Perron-Frobenius root).

In the case of regular graphs, the determinant expression (1) for the

zeta function allows us to locate the poles in terms of the eigenvalues of the

adjacency operator A; especially it is concluded that the real poles u satisfy

q−1 ≤ |u| ≤ 1, and the imaginary poles are on the circle {u ∈ C; |u| =

q−1/2}. We also observe that u = q−1 is a (simple) pole, and that u = −q−1

is a pole if and only if X is bipartite. Incidentally, a regular graph is called

a Ramanujan graph if the zeta function satisfies an analogue of “Riemann

Hypothesis”; that is, its real poles are only those u with |u| = 1 or q−1. The

notion of Ramanujan graphs is related to a model of efficient communication

networks (see F. Bien [5], P. Sarnak [18] and A. Lubotzky [16]).

In the general case, the eigenvalues of the adjacency operator are not

enough to describe the poles of Z(u) in an exact way because of the presence

of the non-scalar operator D. However we can establish the following weak

result.

Theorem 1.3. Let X be a non-circuit graph and write

dm = min
x∈V

deg x, dM = max
x∈V

deg x.

(1) dm − 1 ≤ α ≤ dM − 1 and α−1 is a simple pole of Z(u). Every pole

u satisfies α−1 ≤ |u| ≤ 1.

(2) Every imaginary pole u satisfies (dM − 1)−1/2 ≤ |u| ≤ (dm − 1)−1/2.

For a regular graph of degree q + 1, the poles u with |u| = q−1 are

u = q−1 or u = −q−1 (in bipartite case). The following theorem, which is
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proved by means of the Perron-Frobenius theorem, concerns the poles on

the circle {u ∈ C; |u| = α−1} in the general case.

Theorem 1.4. Let ν ≥ 1 be the greatest common divisor of {|p| ; p ∈
P}. Then the poles on the circle {u ∈ C; |u| = α−1} are just α−1e2π

√
−1k/ν ,

0 ≤ k < ν.

A graph X with ν ≥ 3 has a very special feature as is seen in the

following theorem.

Theorem 1.5. If ν ≥ 3 and is odd, then X is the (ν − 1)-subdivision

of a non-bipartite graph. If ν ≥ 3 and is even, then X is the (ν/2 − 1)-

subdivision of a bipartite graph. In particular, if dm ≥ 3, then ν = 1 (X

being non-bipartite) or ν = 2 (X being bipartite).

In the above, the k-subdivision Y (k) of a graph Y is the graph obtained

by adding k vertices on each edge of Y . It is easy to see that Z(u, Y (k)) =

Z(uk, Y ) since there is a one-to-one correspondence p ↔ p′ between prime

cycles p in Y and p′ in Y (k) with |p′| = k|p|. The proof of Theorem 1.5 relies

heavily on the notion of oriented line graphs.

In the case of regular graphs of degree q+1, the value α = q corresponds

to the maximal eigenvalue q+1 of the adjacency operator A. The following

theorem characterizes α in the general case.

Theorem 1.6. Let 0 < u < 1. There exists a positive-valued function

f ∈ C(V ) such that (I − uA + u2(D − I))f = 0 and f(t(e)) − uf(o(e)) > 0

for every e ∈ E if and only if u = α−1.

We shall also give an elementary proof for the following theorem due to

K. Hashimoto [11] (compare our proof with the one by H. Bass [3]).

Theorem 1.7. If X is a non-circuit graph, then u = 1 is a pole of

Z(u) of order n = rank H1(X)(= the first betti number). Furthermore

lim
u→1

(1 − u)−nZ(u)−1 = 2nχ(X)K(X),

where K(X) is the complexity of X, the number of spannning trees in X.

This paper is a byproduct of our reserach project on discrete spectral ge-

ometry which is concerned with the spectra of discrete Laplacians on locally

finite graphs.
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2. Zeta Functions of Oriented Graphs

We first treat the zeta functions of finite oriented graphs which are much

easier to handle than the zeta functions of unoriented graphs. As a matter

of fact, what we shall explain here is more or less a reproduction of the

result on symbolic dynamics by R. Bowen and O. Lanford [7] in terms of

oriented graphs.

Let Xo = (V,Eo) be an oriented finite graph which are supposed to

be strongly connected in the sense that, for any x, y ∈ V , there exists an

admissible path c with o(c) = x and t(c) = y. Here a path c = (e1, . . . , ek)

is said to be admissible if ei ∈ Eo for every i. We further put o(c) = o(e1)

and t(c) = t(ek).

For x ∈ V , we let Λ(x) be the set of admissible loops with the base point

x. We denote by ν(x) the greatest common divisor of the set of integers

{|c|; c ∈ Λ(x)}. The number ν(x) does not depend on the choice of x. We

call the number ν(x) the period of Xo, which we denote by ν = ν(Xo).

When ν = 1, the oriented graph Xo is called primitive.

In case ν > 1, we may decompose V into disjoint subsets {Vi} parame-

trized by i ∈ Z/νZ such that, if o(e) ∈ Vi, then t(e) ∈ Vi+1. Moreover, if

o(c) ∈ Vi and t(c) ∈ Vj for an admissible path c, then |c| ≡ i− j (mod. ν).

For m ≥ 1, we let Nm be the number of admissible closed paths in Xo

with length m, and put

Zo(u) = Zo(u,Xo) = exp

( ∞∑
m=1

1

m
Nmu

m

)
.

We call Zo(u) the zeta function of Xo (the motivation of this definition

comes obviously from the shape of the Weil zeta functions of projective

algebraic varieties defined over finite fields; see [13] and [14]).

Rationality of the zeta function Zo(u) is easily deduced by using the

Perron-Frobenius operator L : C(V ) −→ C(V ) defined by

(Lf)(x) =
∑
e∈Eo

x

f(t(e)),

where Eo
x = {e ∈ Eo; o(e) = x}. We readily check that

(Lnf)(x) =
∑

c;|c|=n,o(c)=x

f(t(c)).
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By the Perron-Frobenius theorem (see [8]), we have

Lemma 2.1. Let ν be the period of Xo.

(1) L has at least one positive eigenvalue. The maximal positive eigen-

value is simple (as a characteristic root) and has a positive-valued eigen-

function.

(2) |λ| ≤ α for any eigenvalue λ of L.

(3) minx∈V (L1)(x) ≤ α ≤ maxx∈V (L1)(x).

(4) The eigenvalues λ with |λ| = α are just αe2π
√
−1k/ν , 0 ≤ k < ν.

(5) If Lf = λf, f ≥ 0, f �≡ 0, then λ = α and f > 0.

It is easily checked that if Xo is a non-circuit graph, then α > 1. The

following lemma is essentially due to R. Bowen and O. Lanford [7].

Lemma 2.2. (1) The power series
∞∑

m=1

1

m
Nmu

m converges absolutely

in |u| < α−1.

(2) Zo(u) = det(I − uL)−1. In particular, Zo(u) is a rational function

of u and has a simple pole at u = α−1.

Proof. (1) Note that

(Lmδy)(x) = #{c| admissible paths with o(c) = x, t(c) = y, |c| = m}.
Here δx denotes the defining function of the set {x}. Hence

trLm =
∑
x∈V

(Lmδx)(x) = Nm,

from which it follows that the series
∞∑

m=1

1

m
Nmu

m converges absolutely in

|u| < α−1.

(2) Let λ1, . . . , λN be the characteristic roots of L (N = #V ). Using

the equality − log(1 − x) =
∞∑
k=1

1

k
xk, we have

Zo(u) = exp

( ∞∑
m=1

N∑
i=1

1

m
λmi u

m

)
=

N∏
i=1

exp(− log(1 − λiu))

=
N∏
i=1

1

1 − λiu
= det(I − uL)−1.
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This completes the proof. �

We define the notion of admissible prime cycles in Xo just in the same

manner as the definition of prime cycles, and denote by P o the set of ad-

missible prime cycles. If we denote by Mk the number of admissible prime

cycles of length k, then we have

∑
k|m
kMk = Nm,

where k runs over all divisiors of m. The following theorem tells that Zo(u)

has an Euler product expression.

Tjheorem 2.3. Zo(u) =
∏

p∈P o

(1 − u|p|)−1.

Proof. The claim is shown by the following computation.

logZo(u) =
∑

p∈P o

∞∑
k=1

1

k
uk|p| =

∞∑
k=1

1

k

∞∑
l=1

∑
|p|=l

ukl =
∞∑
k=1

1

k

∞∑
l=1

Mlu
kl

=
∞∑

l,k=1

1

k
Mlu

kl =
∞∑

m=1

1

m

∑
l|m
kMlu

m =
∞∑

m=1

1

m
Nmu

m. �

3. Oriented Line Graphs

Let X = (V,E) be a non-circuit graph. To relate the zeta function Z(u)

of X = (V,E) to the zeta function Zo(u) of an oriented graph defined in

the previous section, we introduce the oriented line graph Xo
L = (VL, E

o
L)

associated with X by setting

VL = E,

Eo
L = {(e1, e2) ∈ E × E; e1 �= e2, t(e1) = o(e2)},

(namely, Eo
L is the set of geodesics of length 2). The incidence map (o, e) :

Eo
L −→ VL × VL is induced from the identity map of E × E.

It might be worthwhile to recall the definition of the line graph XL, a

standard notion in graph theory. Vertices of XL are unoriented edges of

X and edges of XL are pairs of edges in X which have exactly one vertex
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in common. As is seen below, the notion of oriented line graphs is much

convenient for counting closed geodesics.

An admissible path inXo
L is expressed as ((e1, e2), (e2, e3), . . . , (ek−1, ek))

((ei, ei+1) ∈ Eo
L) and corresponds to the geodesic (e1, . . . , ek) in X. Con-

versely a geodesic (e1, . . . , ek) in X corresponds to the admissible path

((e1, e2), (e2, e3), . . . , (ek−1, ek)). It is straightforward to check that Xo
L

is strongly connected (actually, strong connectivity for Xo
L is equivalent to

that, for given two edges e, e′, there exists a geodesic c = (e, . . . , e′)). The

period of Xo
L turns out to coincide with the greatest common divisor of

length of closed geodesics in X. We also deduce that Nm coincides with the

number of closed geodesics in X of length m. We also readily observe that

there is a one-to-one correspondence between admissible prime cycles in Xo
L

and prime cycles in X, and hence Z(u,X) = Zo(u,Xo
L). In particular, Z(u)

is a rational function in u (Lemma 2.2).

At this stage, we have the following characterization of bipartiteness of

graphs in terms of zeta functions.

Proposition 3.1. X is bipartite if and only if Z(u) is an even func-

tion, i.e. Z(−u) = Z(u).

Proof. Recall that X is bipartite if and only if every closed path has

even length, or equivalently every closed geodesic has even length. There-

fore if X is bipartite, |p| is even for every p ∈ P . In view of the Euler

product expression, we conclude that Z(u) is even. Conversely suppose

that Z(−u) = Z(u). Then

∞∑
m=1

1

m
(−1)mNmu

m =
∞∑

m=1

1

m
Nmu

m.

This implies that Nm = 0 for odd m. Thus every closed geodesic has even

length. �

The following proposition is related to Theorem 1.5.

Proposition 3.2. Let ν = ν(Xo
L) be the period of Xo

L.

(1) If ν ≥ 2 and is odd, then X is the (ν − 1)-subdivision of a non-

bipartite garph Y with ν(Y o
L) = 1.
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(2) If ν ≥ 2 and is even, then X is the (ν/2−1)-subdivision of a bipartite

garph Y with ν(Y o
L) = 2.

In particular, if dm ≥ 3, then ν = 1 (X being non-bipartite) or ν = 2

(X being bipartite).

Proof. We note that X is bipartite if and only if ν is even.

From the definition of oriented line graphs together with the definition

of the period, we obtain the decomposition:

E = E0

∐
E1

∐
· · ·
∐
Eν−1

such that, if (e1, e2) ∈ Eo
L and e1 ∈ Ei, then e2 ∈ Ei+1 (i ∈ Z/νZ).

Since X is a non-circuit graph, there exists an edge e with deg o(e) ≥ 3.

Without of generality, we may assume that e ∈ E0.

Let e′ be another edge with deg o(e′) ≥ 3. Take a geodesic c =

(e0, e1, . . . , ek) such that e0 = e and ek = e′. Note ei ∈ Ei. From the

assumption that deg o(c) ≥ 3, it follows that there exist e−1 and e′0 such

that (e−1, e0), (e−1, e
′
0) ∈ Eo

L and e′0 �= e0. Since e−1 ∈ E−1(= Eν−1),

we find that e′0 ∈ E0, and hence e0 ∈ E−1. We then observe by induc-

tion that ei ∈ E−i−1. Since deg o(ek) ≥ 3, there exist e′k �= ek with

(ek−1, e
′
k) ∈ Eo

L. Note that e′k ∈ E−k−1, and hence ek ∈ E−k. This im-

plies that 2k = k − (−k) ≡ 0 (mod. ν). Therefore if ν is odd, then k ≡ 0

(mod. ν), and if ν = 2µ, then k ≡ 0 (mod. µ).

We now put, in the case ν is odd,

VY = {o(e)| e ∈ E0},
EY = {c = (e0, . . . , eν−1)| geodesics with e0 ∈ E0}.

We see that, if c = (e0, . . . , eν−1) ∈ EY , then eν−1 ∈ E0. Indeed, by using

the discussion above, this turns out to be true if deg t(eν−1) ≥ 3. When deg

t(eν−1) = 2, we add edges eν , eν+1, . . . , ekν to c untill we obtain a geodesic

c′ = (e0, . . . , eν−1, eν , eν+1, . . . , ekν) with deg t(ekν−1) ≥ 3 (such k exists

since X is not a circuit graph). We then have ekν−1 ∈ E0, and hence eν−1 ∈
E0. We now consider the graph Y = (VY , EY ) where the incidence map (o, e)

is defined in a natural manner. The inversion of c = (e0, . . . , eν−1) ∈ EY is

given by c = (eν−1, . . . , e0). From the way of construction, we observe that

X is the (ν − 1)-subdivision of Y . It is easy to check that ν(Y 0
L ) = 1 (in

fact, if ν(Y o
L) = k, then ν(Xo

L) = kν).
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Next consider the case ν = 2µ. We put

AY = {o(e)| e ∈ E0},
BY = {o(e)| e ∈ Eµ},
VY = AY ∪BY ,

EY = {c = (e0, . . . , eµ−1)| geodesics with e0 ∈ E0 or e0 ∈ Eµ}.

In the same way as above, we find that Y = (VY , EY ) is a bipartite graph

with the bipartition VY = AY ∪BY , and X is the (µ− 1)-subdivision of Y .

It is clear that ν(Y 0
L ) = 2. �

Theorem 1.4 is a consequence of Lemma 2.1 and Proposition 3.2

4. Perron-Frobenius Operators on Oriented Line Graphs

To obtain more information on Z(u), we shall take a closer look at the

Perron-Frobenius operator L on Xo
L.

Define inner products on C(V ) and C(E) by

〈f1, f2〉 =
∑
x∈V

f1(x)f2(x),

〈ω1, ω2〉 =
1

2

∑
e∈E

ω1(e)ω2(e).

We put

C−(E) = {ω ∈ C(E)| ω(e) = −ω(e)},
C+(E) = {ω ∈ C(E)| ω(e) = ω(e)}.

We easily observe that C(VL) = C(E) = C−(E)⊕C+(E) (an orthogonal

direct sum), and

Lω(e) =
∑

e′;(e,e′)∈Eo
L

ω(e′) =
∑

e′;o(e′)=t(e)

ω(e′) − ω(e)

We also observe, from (3) in Lemma 2.1, that the maximal positive eigen-

value α of L satisfies

dm − 1 ≤ α ≤ dM − 1
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In particular, α = q for a regular graph of degree q + 1.

We denote by P± : C(E) −→ C±(E) the orthogonal projection; say

P−ω(e) =
1

2
(ω(e) − ω(e)),

P+ω(e) =
1

2
(ω(e) + ω(e)).

According to the direct sum decomposition of C(VL), we express the Perron-

Frobenius operator L as the following matrix form

L =


 L−− L−+

L+− L++


 ,

where

L−− = P−LP− : C−(E) −→ C−(E),

L−+ = P−LP+ : C+(E) −→ C−(E),

L+− = P+LP− : C−(E) −→ C+(E),

L++ = P+LP+ : C+(E) −→ C+(E).

Define the operators d− : C(V ) −→ C−(E) and d+ : C(V ) −→ C+(E)

by

(d−f)(e) = f(t(e)) − f(o(e)),
(d+f)(e) = f(t(e)) + f(o(e)),

and let δ− : C−(E) −→ C(V ) and δ+ : C+(E) −→ C(V ) be the adjoint

operator of d− and d+ respectively. More explicitly,

(δ±ω)(x) = ±
∑
e∈Ex

ω(e) (ω ∈ C±(E))

It should be noted that d− is nothing but the coboundary operator of the

chain complex associated with X (we regard X as a 1-dimensional cell com-

plex). Thus χ(X) = dim Ker d− − dim Ker δ−. We also observe that

dim Ker d+ ≤ 1, and dim Ker d+ = 1 if and only if X is bipartite.
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Lemma 4.1.

L =


 L−− L−+

L+− L++


 =


 −1

2d−δ− + I 1
2d−δ+

−1
2d+δ−

1
2d+δ+ − I


 .

Proof. We shall only show that L−− = −1
2d−δ− + I since the proof

for the others is similarly done. Let ω ∈ C−(E). Then

L−−ω(e) = P−Lω(e) =
1

2
(Lω(e) − Lω(e))

=
1

2


 ∑

e′;o(e′)=t(e)

ω(e′) − ω(e) −
∑

e′;o(e′)=t(e)

ω(e′) + ω(e)




=
1

2
(−δ−ω(t(e)) + δ−ω(o(e)) + 2ω(e))

= −1

2
d−δ−ω(e) + ω(e),

so that L−− = −1
2d−δ− + I. �

The operator ∆− = δ−d− = D−A is what we call the discrete Laplacian

on X (actually, this is a special case of Laplacians defined on weighted

graphs).

5. Proof of Theorem 1.1

To study the operator L more closely, we shall introduce several auxiliary

operators. Define

τ : C(E) −→ C(E),

S : C(V ) −→ C(E),

T : C(E) −→ C(V )

by setting, for ω = (ω−, ω+) ∈ C(E) = C−(E) ⊕ C+(E) and f ∈ C(V ),

τ(ω−, ω+) = (−ω−, ω+),

Sf = (d−f, d+f),

T (ω−, ω+) = δ−ω− − δ+ω+.
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It should be noted that S is injective. By easy calculations, we obtain

L = −τ − 1

2
ST ,

I − uL = I + uτ +
1

2
uST ,

T S = −2A,
T τS = −2D,

(I − uL)(I − uτ) = (1 − u2)I +
1

2
uST (1 − uτ),(2)

(I − uτ)(I − uL) = (1 − u2)I +
1

2
u(1 − uτ)ST ,

and hence

(I − uL)(I − uτ)S = S(I − uA + u2(D − I)),(3)

T (I − uτ)(I − uL) = (I − uA + u2(D − I))T .(4)

From the last two formulae (3), (4), we conclude that the operator (I −
uL)(I − uτ) preserves the subspaces Image S and Ker T (I − uτ).

We now write N = #V andM = #Eu, the number of unotiented edges,

so that χ(X) = N −M .

Lemma 5.1. Let u �= ±1. The linear space C(E) is the direct sum

of Image S and Ker T (I − uτ) if and only if det(−A + uD) �= 0. In

particular Image S and Ker T (I−uτ) are invariant subspaces of the operator

(I − uL)(I − uτ) which are complementary to each other in C(E) for a

generic u.

Proof. Note det(I − uτ) = (1 − u2)M so that I − uτ is bijective for

u �= ±1. Since S∗ = −T τ and (Image S)⊥ = Ker S∗, we have

dim Image S + dim Ker T (I − τ) = dim Image S + dim Ker T
= dim Image S + dim Ker T τ
= dim Image S + dim Ker S∗

= dim C(E).

What remains to check is that Image S ∩ Ker T (I − uτ) = {0} if and only

if Ker (−A + uD) = {0}. For this, let ω = Sf ∈ Image S ∩ Ker T (I − uτ).
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Then 0 = T Sf −uT τSf = −2Af +2uDf so that, if Ker (−A+uD) = {0},
then f = 0 and ω = Sf = 0. The converse is obvious. �

From (2), it follows that (I−uL)(I−uτ) = (1−u2)I on Ker T (I−uτ).
Therefore in view of (3), we have the following expression of (I − uL)(I −
uτ) for a generic u, according to the direct sum decomposition C(E) =

Image S ⊕ Ker T (I − uτ):

(I − uL)(I − uτ) =

(
S(I − uA + u2(D − I))S−1 O

O (1 − u2)I

)
,

from which we find

(1 − u2)M det(I − uL) = det(I − uL)(I − uτ)
= (1 − u2)2M−N det(I − uA + u2(D − I)),

and

det(I − uL) = (1 − u2)M−N det(I − uA + u2(D − I))
= (1 − u2)−χ(X) det(I − uA + u2(D − I)),

where we should note that

dim Ker T (I − uτ) = dim C(E) − dim Image S = 2M −N.

Since the above equality holds for generic u, so does for all u. This completes

the proof of Theorem 1.1.

6. Poles of the Zeta Functions

In view of Lemma 2.1 (2), we first see that |u| ≥ α−1 for every pole u of

Z(u).

We next observe that |〈Af, f〉| ≤ 〈Df, f〉. Indeed,

〈Df, f〉 − 〈Af, f〉 = 〈(D −A)f, f〉 = 〈δ−d−f, f〉 = 〈d−f, d−f〉 ≥ 0,

〈Af, f〉 + 〈Df, f〉 = 〈(D + A)f, f〉 = 〈δ+d+f, f〉 = 〈d+f, d+f〉 ≥ 0.

Let u �= ±1 be a pole of Z(u). Then there exists a non-zero f ∈ C(V )

such that (I − uA + u2(D − I))f = 0. We then have

‖f‖2 − u〈Af, f〉 + u2〈(D − I)f, f〉 = 0
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Put

λ =
〈Af, f〉
‖f‖2

, µ =
〈Df, f〉
‖f‖2

,

so that 1 − λu+ (µ− 1)u2 = 0, and

u =
λ±

√
λ2 − 4(µ− 1)

2(µ− 1)

From what we have said above, we obtain |λ| ≤ µ. It is also straightforward

to check that dm ≤ µ ≤ dM .

(1) If u is real, then

λ+
√
λ2 − 4(µ− 1)

2(µ− 1)
≤ µ+

√
µ2 − 4(µ− 1)

2(µ− 1)
= 1,

and
λ−

√
λ2 − 4(µ− 1)

2(µ− 1)
≥ −µ−

√
µ2 − 4(µ− 1)

2(µ− 1)
= −1,

and hence |u| ≤ 1.

(2) If u is imaginary, then

|u|2 =
λ2 + (4(µ− 1) − λ2)

4(µ− 1)2
= (µ− 1)−1,

from which we obtain

(dM − 1)−1/2 ≤ |u| ≤ (dm − 1)−1/2.

This completes the proof of Theorem 1.3.

We now proceed to the proof of Theorem 1.6. Let u = α−1. By Lemma

2.1 (1), there exists a positive-valued ω ∈ C(E) with (I − uL)ω = 0. Put

f =
−u

2(1 − u2)
T ω.

Since

(T ω)(x) = −
∑
e∈Ex

ω(e),
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and 0 < u = α−1 < 1, we find that f > 0. By (4), (I−uA+u2(D−I))f = 0.

Furhtermore

(I − uτ)Sf =
−u

2(1 − u2)
(I − uτ)ST ω

=
−u

2(1 − u2)
(I − uτ)(−τ − L)ω

=
u

2(1 − u2)
(I − uτ)(τ + u−1)ω

= ω

Since ((I−uτ)Sf)(e) = ((1+u)d−f+(1−u)d+f)(e) = 2f(t(e))−2uf(o(e)),

we conclude that f(t(e)) > uf(o(e)). Conversely, suppose that there exists

f such that (I −uA−u2(D− I))f = 0 and f(t(e))−uf(o(e)) > 0 for every

e ∈ E. Then ω = (I − uτ)Sf is positive-valued, and (I − uL)ω = 0 in view

of (3). By Lemma 2.1 (5), we have u = α−1.

7. Proof of Theorem 1.7

The proof which we are going to give relies on the following classical

result:

Lemma 7.1.

det(∆−|(Ker d)⊥) = NK(X).

See N. Biggs [4] and B. Bollobás [6] for the proof. The argument in these

references is actually based on homological nature of the complexity. It is

easy to translate it to a cohomological context.

What we have to prove is the following lemma.

Lemma 7.2. det(I − uA + u2(D − I)) = (1− u)F (u), where F (u) is a

polynomial with F (0) = 1, F (1) = 2χ(X)K(X).

Proof. Let H be the orthogonal projection of C(V ) onto the space of

constant functions;

Hf =
1

N

∑
x∈V

f(x).
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The orthogonal projection P onto (Ker d)⊥ is given by I −H. Note

I − uA + u2(D − I) = 1 − u2 + u∆− + u(u− 1)D

and

H∆− = ∆−H = O, HDH =
2M

N
H.

We thus have

H(I − uA + u2(D − I))H = (1 − u2 + u(u− 1)
2M

N
)H,

H(I − uA + u2(D − I))P = u(u− 1)HDP,
P (I − uA + u2(D − I))H = u(u− 1)PDH,
P (I − uA + u2(D − I))P = (1 − u2)P + uP∆−P + u(u− 1)PDP,

and hence I − uA + u2(D − I) is expressed as


 (1 − u)(1 + u− u2M

N )H u(u− 1)HDP

u(u− 1)PDH (1 − u2)P + u∆−P + u(u− 1)PDP


 .

Therefore det(I − uA + u2(D − I)) is equal to

(1 − u)

∣∣∣∣∣∣∣
1 + u− u2M

N −uHDP

u(u− 1)PDH (1 − u2)P + uP∆−P + u(u− 1)PDP

∣∣∣∣∣∣∣ ,

and

{(1 − u)−1 det(I − uA + u2(D − I))}|u=1

=

∣∣∣∣∣∣∣
2
N (N −M) −HDP

0 P∆−P

∣∣∣∣∣∣∣
=

2

N
χ(X) detP∆−P.

By the lemma above, we have detP∆−P = NK(X) from which the claim

follows immediately. �
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8. Concluding Remarks

(1) What we have had in mind during the discussion is an analogy with

the geodesic flows over a negatively curve manifold. Namely if a finite

graph X is regarded as a discrete analogue of a closed Riemannian manifold

Y , the associated oriented line graph Xo
L is regarded as a counterpart of

the tangent unit sphere bundle UY . Remember that the geodesic flow

on UY is identified with the one parameter transformation group {ϕt}t∈R

acting as (ϕtc)(s) = c(s + t) on the set of geodesic curves c : R −→ Y of

constant speed 1. Thus it is natural to consider the shift on the set of infinite

admissible paths in Xo
L as a discrete analogue of the geodesic flow. Actually

this discrete geodesic flow is nothing but the symbolic dynamical system

associated with the oriented line graph, and periodic orbits in this dynamical

system are identified with prime cycles in X. Therefore the dynamical zeta

function defined by E. Artin and B. Mazur [2] coincides with Z(u). It is

worthwhile to point out that primitiveness of Xo
L is equivalent to that the

discrete geodesic flow is topologically mixing as a symbolic dynamical system

(see W. Parry and M. Pollicott [17]).

(2) Our idea in this paper works also for the L-function, a generalization

of zeta functions, defined by

L(u, ρ) =
∏
p∈P

det(1 − ρ([p])u|p|)−1,

where ρ is a finite dimensional unitary representation of the fundmental

group π1(X), and [p] denotes the (free) homotopy class of p. What we

need are “twisted” objects for the operators which we introduced in our

arguments. These twisted operators are defined, in a natural manner, by

considering the “flat vector bundles” over X and Xo
L associated with the

representation ρ (see [1]).
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