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On the Rationality and Fake Degrees

of Characters of Cyclotomic Algebras

By Gunter Malle

1. Introduction

Let W be a finite complex reflection group, and H = H(W,u) the corre-

sponding generic (cyclotomic) Hecke algebra as introduced in [8] and [9]. In

this paper we study the character fields of the irreducible characters of H.

In the case that W is a Weyl group, hence a reflection group over the field

of rational numbers, it is well known that all other complex irreducible rep-

resentations of W can also be realized over Q. The corresponding situation

for the associated Iwahori-Hecke algebras was investigated by Benson and

Curtis [5] and Alvis and Lusztig [1]. They determined the character fields

of all absolutely irreducible representations of Iwahori-Hecke algebras. It

turned out that sometimes certain square roots of monomials in the param-

eters have to be adjoined to the ground field. Furthermore they showed

that all absolutely irreducible representations can actually be realized over

such an extension of the ground field [5,13].

For a complex reflection group W let k denote the character field of the

reflection representation ofW . It is a result of Benard [4] and Bessis [6] that

again all absolutely irreducible complex representations ofW can be realized

over k and in particular have their character field contained in k. Here

we determine the character fields of all generic cyclotomic Hecke algebras

associated to complex reflection groups (under a certain assumption known

to hold for all but finitely many irreducible types and conjectured to be

always true). Partial results in this direction were already obtained in [8]

for those complex reflection groups occurring as cyclotomic Weyl groups.

Our results show that again the character fields and a splitting field for H
can be obtained by adjoining roots of certain monomials in the parameters

to the ground field (Corollary 4.8 and Theorem 5.2).

Our methods are similar to those employed in [5, 6, 8]. As in all of the

above references, we use a case-by-case analysis, handling each isomorphism
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type and each irreducible character in turn. As a consequence of our clas-

sification we deduce that an irreducible complex reflection group W on Cn

can be generated by n reflections if and only if the reflection character of

the associated 1-parameter cyclotomic algebra H(W,x) has values in k(x)

(Corollary 4.9).

The fake degree of an irreducible character χ ∈ Irr(W ) is the graded

multiplicity of χ in the graded regular representation. It can be defined en-

tirely in terms ofW . In Section 6 we prove a remarkable connection between

the rationality of characters of cyclotomic algebras and semi-palindromicity

of fake degrees, which generalizes a result of Opdam [16] for the real case

(Theorem 6.5).

In the last section we take a closer look at the subclass of n-dimensional

irreducible reflection groups which can be generated by n of their reflections.

These seem to behave nicer than the general reflection groups in several

aspects. As an example we give a closed formula for the field of definition

k of such a group (Theorem 7.1), and then sharpen some of the results

obtained in the previous sections.

Acknowledgement . I would like to thank Meinolf Geck for a helpful

conversation on splitting fields and Eric Opdam for making available his

preprint [17].

2. Some Prerequisites

We recall the definition of cyclotomic Hecke algebras and some facts

about character values.

2A. Cyclotomic Hecke algebras

Let W be a finite irreducible complex reflection group and let k denote

the character field of this reflection representation. It is known (see [4, 6])

that then k is a splitting field forW (see also Section 7A for a description of

k in an important case). Let D be the diagram associated to W in [9]. This

defines a presentation of W on a set of generators S subject to the order

relations sds = 1 for s ∈ S, together with certain homogeneous relations,

the so-called braid relations. The braid group B = B(W ) associated to W

is by definition the group generated by a set {s | s ∈ S} in bijection with S,

subject to the braid relations of D. Let u = (us,j | s ∈ S, 0 ≤ j ≤ ds−1) be



Rationality and Fake Degrees 649

transcendentals over Z, such that us,j = ut,j whenever s and t are conjugate

in W . The generic cyclotomic Hecke algebra H(W,u) of W with parameter

set u is defined to be the quotient

H(W,u) := Z[u,u−1]B/I, with I = (

ds−1∏
j=0

(s − us,j) | s ∈ S),

of the group algebra of B over A := Z[u,u−1] by the ideal I generated by

certain deformed order relations. Thus H := H(W,u) is a finitely generated

algebra over A. We will write Tw for the image in H of an element w =

s1 . . . sk ∈ B. Any ring homomorphism f : Z[u,u−1] → R endows R with

an A-module structure, and we write

HR(W,u) = H(W,u) ⊗A R

for the corresponding specialization of H. Note that such a homomorphism

is uniquely determined by the images f(us,j), s ∈ S, 0 ≤ j ≤ ds − 1. Also

note that under the specialization defined by

(2.1) us,j �→ exp(2πij/ds) for s ∈ S, 0 ≤ j ≤ ds − 1,

H maps to the group algebra of the complex reflection group W . Any spe-

cialization of H through which (2.1) factors will be called admissible. One

particularly important example is the 1-parameter specialization H(W,x)

of H(W,u) induced by the map

(2.2) us,j �→
{
x j = 0,

exp(2πij/ds) j > 0,

where x is an indeterminate. This is the analogue of the 1-parameter

Iwahori-Hecke algebra for real W .

Henceforth we will make the following assumption:

Assumption 2.3. The generic cyclotomic algebra H(W,u) defined

above is free over A = Z[u,u−1] of rank |W |.
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This assumption is known to hold for all infinite families of irreducible

reflection groups by [3,8,2], and for about half of the remaining 34 excep-

tional groups (see [8]). We conjecture it to be true in all cases (see [9,

Sect. 4]).

Let L ≥ A be a splitting field of H. It follows from Assumption 2.3, the

fact that k is a splitting field for W , and Tits’ deformation theorem that

HL is isomorphic to the group algebra LW . Thus any extension to L of the

specialization (2.1) defines a bijection between Irr(HL) and Irr(W ).

2B. Character values

Let W , k, H be as above. For s ∈ S, 0 ≤ j ≤ ds − 1, let vs,j be

such that v
|W |
s,j = us,j . Let L ≥ k(v) be a splitting field for H. We will

see later on (Theorem 5.2) that we may take L = k(v). We extend the

specialization (2.1) to the integral closure O ofA in L, such that on Z[v,v−1]

we have

(2.4) vs,j �→ exp(2πij/(ds|W |)) for s ∈ S, 0 ≤ j ≤ ds − 1 .

By Tits’ deformation theorem this defines a bijection

(2.5) Irr(W )
∼−→ Irr(HL), χ �→ χv ,

which furthermore carries over to any admissible specialization of HO.

In [9] we defined a certain central element β ∈ Z(B) of the braid group

whose image β under the canonical epimorphism B →W generates Z(W ).

Since we assumed W to be irreducible, Z(W ) is cyclic by Schur’s lemma.

So π := β|Z(W )| ∈ Z(B) is the smallest power of β which maps to 1 in W .

Clearly, the images Tβ, Tπ in H are also central. Thus, they act as scalars

in any (absolutely) irreducible representation of HL.

Let S′ be a system of representatives of the generators in S up to con-

jugation in W . Write π = s1 . . . sl in B. For s ∈ S′ let Ns = |{j | sj ∼ s}|
denote the number of factors in the decomposition of π conjugate to s. By

evaluating linear characters of H it is easily seen that Ns does not depend

on the chosen expression for π. For an irreducible character χ of W let

ms,j(χ) denote the multiplicity of the eigenvalue exp(2πij/ds) of s in a rep-

resentation affording χ. Springer [5] observed that it is possible to compute

character values on central elements (of Iwahori-Hecke algebras) without
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actually constructing the representations; this was already used in [8] to

deal with some of the complex reflection groups. Let z = |Z(W )|, so that

βz = π. Then the value of the irreducible character χv ∈ Irr(HL) on Tβ is

given by

(2.6) χv(Tβ) = χ(β)
∏
s∈S′

ds−1∏
j=0

(exp(−2πij/ds|W |) vs,j)ms,jNs|W |/zχ(1).

Indeed, let detχ denote the determinant on a representation affording χv.

Then detχ(Tβ)z = detχ(Tπ) =
∏

s∈S′ detχ(Ts) =
∏

s∈S′
∏ds−1

j=0 u
ms,j

s,j . But

Tβ is central, so it acts by a scalar c. This determines c up to a root of

unity, which can be computed by specializing to W via (2.4).

2C. Rationality and Schur index

Let HL be a cyclotomic algebra as above and χ ∈ Irr(HL). The character

field of χ is the field generated over k(u) by the values of χ on an A-basis

of HL as provided by Assumption 2.3. It is clear that this does not depend

on the choice of basis.

Assume that L is Galois over K := Quot(A). Then Gal(L/K) acts on

the set Irr(HL) via its action on the character values. We will make use of

the following obvious fact. Assume that χ, ψ ∈ Irr(HL) have different mul-

tiplicity in a character of HL whose values are invariant under a subgroup

H ≤ Gal(L/K). Then χ, ψ do not lie in the same H-orbit. In particular, if

there exists a set of K-rational characters of HL such that χ is distinguished

from all other irreducible characters by its multiplicities in these characters,

then the character field of χ is equal to K.

The field of rationality of a representation of HL will be determined by

the following:

Lemma 2.7. Let H be a finite dimensional algebra over a field K0 and

let B be a basis of H. Let K/K0 be an extension field such that HK :=

H⊗K0 K is split semisimple. Let V be a simple HK-module with character

χ such that χ(b) ∈ K0 for all b ∈ B and assume that there exists an H-

module V ′ such that V has multiplicity 1 in V ′⊗K0K. Then V is realizable

over K0.

This follows from standard properties of the Schur index (see for example

[10, §74]).
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3. Irreducible Characters of Imprimitive Groups

In this section we recall the definition of the imprimitive complex re-

flection groups and the construction of their complex irreducible characters

(see for example [14, Sect. 2A and 5A] or [6, Sect. 1]). From this we deduce

some elementary results on multiplicities in induced characters. They are

well-known in the case of the real imprimitive reflection groups W (Bn) and

W (Dn).

3A. The groups Wn

Throughout this section we fix an integer m ≥ 2 and let ζm :=

exp(2πi/m). For any n ≥ 1 let Wn := G(m, 1, n) be the complex linear

group on ⊕n
j=1Cej consisting of all monomial matrices whose non-zero en-

tries lie in {ζjm | 0 ≤ j ≤ m − 1}. Then Wn is the semidirect product of

its subgroup of diagonal matrices with the subgroup of permutation ma-

trices, that is, Wn = Znm.Sn = Zm � Sn. In its above representation Wn

is generated by the complex reflection t which sends e1 to ζme1 and fixes

e2, . . . , en, and the permutation matrices sl, 1 ≤ l ≤ n−1, corresponding to

the transpositions (l, l+ 1). In particular, Wn is an irreducible imprimitive

complex reflection group. The generators {t, s1, . . . , sn−1} together with

the relations implied by the diagram

(3.1) B(m)
n : ©m © © . . . © ©

yield a presentation for Wn. The elements {t, s1, . . . , sn−2} generate a nat-

ural subgroup Wn−1, the elements {s1, . . . , sn−1} a natural subgroup Sn.

We define the following linear character of Wn:

γ :Wn → C, t �→ ζm, sl �→ 1 for 1 ≤ l ≤ n− 1,

For any m-tuple of partitions α = (α0, α1, . . . , αm−1)�mn of n we denote

by Wα the natural subgroup Wn0 × . . . × Wnm−1 of Wn, where αj � nj ,
corresponding to the Young subgroup Sn0 × . . . × Snm−1 of Sn. Via the

natural projection Wnj → Snj the characters of Snj may be regarded

as characters of Wnj . The irreducible characters of Snj are indexed by

partitions αj � nj . For any multi-partition α�mn as above we can thus

define a character χα of Wn as the induction of the exterior product

(3.2) χα := IndWn
Wα

(
χα0#(χα1 ⊗ γ)# . . .#(χαm−1 ⊗ γm−1)

)
.
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It turns out that χα is irreducible, χα �= χβ if α �= β, and that all ir-

reducible characters of Wn arise in this way, so Irr(Wn) = {χα | α =

(α0, . . . , αm−1)�mn}.

Lemma 3.3. (a) Let α = (α0, . . . , αm−1)�mn− 1. Then

IndWn
Wn−1

(χα) =
∑
χβ

where the sum is over all partitions β = (β0, . . . , βm−1)�mn which can be

obtained by adding a single 1-hook to α.

(b) For n ≥ 3 the characters of Wn are distinguished by their restrictions

to Wn−1. The characters of W2 are distinguished by their restrictions to W1

and S2.

Proof. By construction we have χα = Ind
Wn−1

Wα
(ψ) where ψ =

(ψ0#ψ1# . . .#ψm−1) with ψj = χαj ⊗ γj , thus IndWn
Wn−1

(χα) = IndWn
Wα

(ψ).

Now

IndWα×W1
Wα

(ψ) =
m−1∑
j=0

ψ#γj .

It is well-known that

Ind
Snj+1

Snj
(χαj ) =

∑
χβj

where the sum runs over the partitions βj � nj + 1 which can be obtained

from αj by adding a single 1-hook. We thus obtain that the induced of

ψ#γj = ψ0# . . .#(ψj#γ
j)# . . .#ψm−1

fromWα×W1 =Wn0×. . .×(Wnj×W1)×. . .×Wnm−1 toWn0×. . .×Wnj+1×
. . .×Wnm−1 decomposes into the sum of all ψ0# . . .#(χβj ⊗γj)# . . .#ψm−1

with βj as before. Finally, the induced of

ψ0# . . .#(χβj ⊗ γj)# . . .#ψm−1

toWn is by definition the irreducible character χβ with β = (α0, . . . , βj , . . . ,

αm−1). This completes the proof of (a).
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In (b), the assertion for n = 2 is easily verified. So now let n ≥ 3 and

χα, χβ ∈ Irr(Wn) with α �= β. If the distance d :=
∑m−1

j=0 ||αj | − |βj || of α

and β is larger than 2, then there exists a multi-partition ν �m n− 1 such

that α but not β can be obtained by adding a single 1-hook to ν, so by (a)

the two characters χα, χβ do not have equal multiplicities in the induced

of all irreducible characters of Wn−1. Now assume that |αj | and |βj | only

differ for j = j1, j2, say |αj1 | = |βj1 | − 1 and |αj2 | = |βj2 | + 1. If |αj1 | �= 0

there exists a multi-partition ν�mn− 1 such that α, but not β, is obtained

from ν by adding a 1-hook (and similarly if |βj2 | �= 0). If |αj1 | = |βj2 | = 0

then since n > 1 there exists j3 �= j1, j2 with |αj3 | = |βj3 | > 0, and by

diminishing this part we again find a partition ν�mn− 1 as above. Thus, if

the multiplicities of χα, χβ are the same in the induced of each irreducible

character of Wn−1, then |αj | = |βj | for all j. Now choose j such that

αj �= βj . Since n ≥ 3 it follows by elementary combinatorics that there

exists a partition νj � |αj | − 1 such that αj but not βj can be obtained

from νj by adding a 1-hook (or vice versa). Hence the characters of Wn are

distinguished by their multiplicities in characters induced from Wn−1, and

the claim follows by Frobenius reciprocity. �

3B. The infinite series G(m, p, n)

Note that any element of Wn can be written as the product of a diago-

nal element diag(ζa1
m , . . . , ζ

an
m ) with a permutation matrix corresponding to

some w ∈ Sn. We denote this element by (a1, . . . , an;w) for short. Now fix

a divisor p|m and let G(m, p, n) be the kernel of the linear character γm/p,

of index p in Wn:

G(m, p, n) = {(a1, . . . , an;w) |
∑
aj ≡ 0 (mod p), w ∈ Sn} .

Then G(m, p, n) is again an imprimitive complex reflection group, generated

by the reflections s1, s̃1 := t−1s1t, s2, . . . , sn−1, and tp (if p �= m). Clearly,

the reflections s1, s2, . . . , sn−1 again generate a natural reflection subgroup

Sn consisting of all permutation matrices.

We describe the irreducible characters of G(m, p, n) in terms of those of

Wn. Denote by τ the cyclic shift on m-tuples of partitions of n, i.e.,

τ(α0, . . . , αm−1) = (α1, . . . , αm−1, α0) .
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By definition we then have χτ(α) ⊗ γ = χα. Let sp(α) denote the order

of the stabilizer of α in the cyclic group 〈τm/p〉. Then upon restriction

to G(m, p, n) the irreducible character χα of Wn splits into sp(α) different

irreducible constituents, and this exhausts the set of irreducible characters

of G(m, p, n). More precisely, let α�mn with p̃ := sp(α), Wα,p := Wα ∩
G(m, p, n), and ψα the restriction of χα0#(χα1 ⊗ γ)# . . .#(χαm−1 ⊗ γm−1)

to Wα,p. Then ψα is invariant under the element σ := (s1 · · · sn−1)
n/p̃

(note that p̃ = sp(α) divides n), and it extends to the semidirect product

Wα,p.〈σ〉. The induced of the different extensions of ψα then exhaust the

irreducible constituents of the restriction of χα to G(m, p, n). Thus, we may

parametrize Irr(G(m, p, n)) by m-tuples of partitions of n up to cyclic shift

by τm/p in such a way that any α stands for sp(α) different characters.

We will need the following consequence of the Littlewood-Richardson

rule for the decomposition of characters induced from Young subgroups.

Let α �m n with αj = (αj1 ≥ αj2 ≥ . . . ), and let β = (β1 ≥ β2 ≥ . . . )

be defined by βl =
∑

j αjl. Let Sα denote the Young subgroup of Sn

corresponding to (|α0|, . . . , |αm−1|). Then we have

(3.4) 〈χβ, IndSn
Sα

(χα0# . . .#χαm−1)〉 = 1

for the character χβ ∈ Irr(Sn), and all other constituents of the induction

are parametrized by partitions strictly smaller than β in the dominance

order. This fact can be proved from [12, Cor. 2.8.14] by induction on m.

Lemma 3.5. (a) Let α �m n and χα ∈ Irr(G(m, p, n)). Then there

exists β � n such that χα has multiplicity 1 in the induced of χβ ∈ Irr(Sn)

from t−jSnt
j to G(m, p, n), for some 0 ≤ j ≤ p− 1.

(b) The irreducible constituents of the restriction of χα ∈ Irr(Wn) to

G(m, p, n) are distinguished by their restrictions to t−jSnt
j, 0 ≤ j ≤ p− 1.

Proof. By our above considerations, χα is the induced of an irre-

ducible character ψ of H :=Wα,p.〈σ〉 with σ := (s1 · · · sn−1)
n/p̃, p̃ = sp(α).

By the Mackey theorem, the multiplicity of the induced of χβ in χα is the

same as the scalar product of the restrictions of χβ and of ψ to H ∩ Sn.

By Frobenius reciprocity, this is the same as the multiplicity of χβ in
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(ψ|H∩Sn)Sn .

Wα,p H G(m, p, n)

Wα,p ∩ Sn H ∩ Sn Sn

But Wα,p ∩ Sn is a Young subgroup of Sn, and by the above conse-

quence (3.4) of the Littlewood-Richardson rule, there exists χβ which has

multiplicity 1 in the induced of ψ̃ := ψ|Wα,p∩Sn to Sn. Thus χβ occurs with

multiplicity 1 in the induced of exactly one of the extensions of ψ̃ to H∩Sn.

Hence precisely one of the characters of G(m, p, n) parametrized by α occurs

with multiplicity 1 in the induced of χβ. But all characters parametrized

by α are conjugate under t, hence both assertions of the lemma follow. �

4. Determination of the Character Fields

With the preparations in the preceding section we can now determine

the character fields of cyclotomic algebras attached to irreducible complex

reflection groups. According to the classification by Shephard and Todd

[19], the latter fall into an infinite series G(m, p, n) of imprimitive groups,

the symmetric groups Sn, and another 34 primitive groups.

4A. The imprimitive groups

We first consider the imprimitive groups. It is known that the character

field k of the reflection representation of G(m, p, n) is equal to Q(ζm), except

if n = 2,m = p, when k is the maximal totally real subfield of Q(ζm) (see

for example [6]).

Let H(Wn;u) with u = (u0, . . . , um−1, x1, x2) be the generic cyclotomic

algebra for Wn. We first determine the splitting field for H(Wn;u); this

result also follows from the explicit construction of all irreducible represen-

tations in [3].

Proposition 4.1 (Ariki and Koike). The field Q(u) is a splitting field

for H(Wn;u).

Proof. We proceed by induction on n. If n = 1 then

H(W1;u) = Z[u,u−1, T ]/((T − u0) . . . (T − um−1))
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is commutative, and the irreducible representations are given by T �→ uj ,

0 ≤ j ≤ m − 1. Hence they are all Q(u)-rational. Now assume that

n > 1. By Lemma 3.3(b) the characters of Wn are distinguished by their

restrictions toWn−1 (and to Sn if n = 2). Thus the characters of H(Wn;u)

are distinguished by their restrictions to H(Wn−1;u) (and to H(Sn) for

n = 2). Since the irreducible characters of the latter are Q(u)-rational by

induction, the character field is contained in Q(u). By Lemma 3.3(a) and

Lemma 2.7 it now follows again by induction on n that all representations

can be realized over Q(u). �

Let k := Q(ζm). The symmetric group Sm on letters {0, . . . ,m − 1}
acts on N := k(u) by permutation of the variables (u0, . . . , um−1). Let

K := k(u)Sm be the fixed field, generated over k(x1, x2) by the elemen-

tary symmetric polynomials fj(u) in u. Since H(Wn;u) is already de-

fined over K, each automorphism of N/K permutes the set of representa-

tions of H(Wn;u) over N , hence by Proposition 4.1 in particular it acts

on Irr(H(Wn;u)). The group Sm also acts in a natural way on the set

{α �m n} of m-part partitions of n by permuting the m parts. We have

the following compatibility between these two actions:

Lemma 4.2. Let σ ∈ Sm and α �m n. Then the character χα ∈
Irr(H(Wn;u)) satisfies χα = σ(χσ(α)).

Proof. For n = 1 the (linear) characters of H(W1;u) are given by

χα(T ) = ul if |αj | = δj,l (see the proof of Proposition 4.1). Let σ ∈ Sm

and assume that l = σ(l′). Then σ(α) = (ασ(j)), so |σ(α)j | = δj,l′ , and

χσ(α)(T ) = ul′ . Thus, σ(χσ(α))(T ) = σ(ul′) = ul as claimed. Now assume

by induction that the assertion is true for n − 1. Then it also holds for n

by Lemma 3.3(b). �

Note that for any admissible specialization uj �→ u′j (0 ≤ j ≤ m− 1) the

Galois group of k(u′)/k(fj(u′) | 1 ≤ j ≤ m) is in a natural way a subgroup

of Sm = Gal(k(u)/k(fj(u) | 1 ≤ j ≤ m)) and the assertion of Lemma 4.2

remains correct for all elements σ of this Galois group.

It follows from a result of Ariki [2, Prop. 1.6] that the cyclotomic algebra

for G(m, p, n) may be obtained as a subalgebra of a specialization of the one

for Wn. More precisely, let now p|m, m = pq, u := (u0, . . . , uq−1, x1, x2)
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and

(4.3) ũ := (ũ0, . . . , ũq−1, ζpũ0, . . . , ζpũq−1, . . . , ζ
p−1
p ũq−1, x1, x2) ,

where ζp := exp(2πi/p) and ũpj = uj . Then H(G(m, p, n),u) is the subal-

gebra of H(Wn, ũ) generated by T pt , T
−1
t Ts1Tt, Ts1 , . . . , Tsn−1 . Note that in

the case n = 2, p even, this is not the most general generic algebra for W .

The latter case will be treated in the next subsection.

In accordance with our previous notation, let τ = (0, 1, . . . ,m−1) ∈ Sm,

ηp = (0, q, 2q, . . . , (p−1)q), and Sp := 〈ητjp | 0 ≤ j ≤ q−1〉 ≤ Sm the Galois

group of k(ũ)/k(u). For a multi-partition α �m n we define its p-symmetry

group

Sp(α) := 〈CSp(α), τ q〉 ≤ Sp.

Note that Sp(α) acts naturally on k(ũ) as a subgroup of Sp =

Gal(k(ũ)/k(u)). We can now describe the character fields of the irreducible

characters of cyclotomic algebras of imprimitive complex reflection groups.

Note that Assumption 2.3 is satisfied in the case of imprimitive groups by

[3,8,2].

Theorem 4.4. Let n ≥ 3, W = G(m, p, n) and α�mn. Then the char-

acter field of χα ∈ Irr(H(W,u)) is the fixed field k(ũ)Sp(α) of the p-symmetry

group of α.

Proof. We split the proof into two steps.

In the first step we assume that sp(α) = p. By Proposition 4.1 the

character field of the irreducible character χα of H(Wn, ũ) is contained in

k(ũ). But Lemma 4.2 shows that χα is even k(u)-rational since Sp(α) =

Sp = Gal(k(ũ)/k(u)). Thus the irreducible constituents of the restriction

of χα to H(G(m, p, n),u) can only be algebraically conjugate among each

other. Now Lemma 3.5(b) forces them to be k(u)-rational themselves.

In the second step we let p̃ := sp(α) be arbitrary. By the first step, the

constituents of the restriction of χα to H(G(m, p̃, n), ũp̃) are k(ũp̃)-rational

since sp̃(α) = p̃. Moreover, by Lemma 3.5(b), they cannot be conjugate

among each other. Now by Lemma 4.2 an element σ ∈ Sp = Gal(k(ũ)/k(u))

fixes the character χα of H(G(m, p, n),u) precisely if σ ∈ Sp(α) (remember

that τ q fixes χα). �
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Theorem 4.4 shows that, in contrast to the case of real reflection groups,

the character field can become an arbitrarily large extension of the ground

field:

Example 4.5. Let α = (1, 2, . . . , q, 0, 0 . . . , 0) �m n where n = q(q +

1)/2 and m = pq, and χα the corresponding irreducible character of

H(G(m, p, n),u). Then Sp(α) = 〈τ q〉 and hence the character field of χα is

generated over k(u) by

{ p

√
u0/uj | 1 ≤ j ≤ q − 1} .

In particular it is not a cyclic extension if q ≥ 3.

4B. Two-dimensional imprimitive groups

The two-dimensional imprimitive groups differ from the other imprimi-

tive reflection groups in that the generic cyclotomic algebra of G(2m, 2p, 2)

has one additional exceptional parameter, thus cannot be obtained as a

subalgebra of H(W2,u), and secondly the field of rationality for G(m,m, 2)

is of index 2 in Q(ζm). Thus the above determination of the character fields

of generic cyclotomic algebras does not apply immediately to this case. On

the other hand, the irreducible representations have dimension at most 2,

so may easily be constructed explicitly. The linear characters are always

rational, and the 2-dimensional characters are indexed by multi-partitions

α�m2 with αj = 0 unless j = j1 or j = j2 �= j1, and αj1 = αj2 = 1.

Theorem 4.6. Let W = G(m, p, 2) and α�m2 with αj1 = αj2 = 1.

Then the character field of χα ∈ Irr(H, (u0, . . . , uq−1, x1, x2, y1, y2)) is

k(u,
√
x1x2y1y2

p
√
uj1/uj2), where x1 = y1, x2 = y2 if p is odd.

Proof. If p = m then G(m,m, 2) =W (I2(m)) is the dihedral Coxeter

group, with generators s1, s2 say. The 2-dimensional representations of

H(W, (x1, x2, y1, y2)) (with yj = xj if m is odd) are given by

Ts1 �→
(
x1 0

1 x2

)
, Ts2 �→

(
y1 bl
0 y2

)
, with 1 ≤ l ≤ m

2
,

where bl = −x1y1 − x2y2 + (ζ lm + ζ−lm )
√
x1x2y1y2, thus the result follows.

If p < m is odd, no additional parameter occurs and the arguments in the
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proof of Theorem 4.4 apply unchanged. So it remains to consider G(m, p, 2)

with m, p even and p < m. By [15, Prop. 3.8] the corresponding generic

cyclotomic algebras can all be realized as subalgebras of suitable special-

izations of H(G(m, 2, 2),u). The irreducible representations of this algebra

were determined in loc. cit., 3B, and the claim follows from these explicit

matrices. �

4C. The primitive groups

For the primitive Coxeter groups Sn,W (E6),W (E7),W (E8) andW (F4)

the character fields are known by [5], for W (H3) and W (H4) they can be

deduced from [1]. In the case of so-called cyclotomic Weyl groups the

following result had already been obtained in [8, Satz 6.3].

Theorem 4.7. Let W be a finite primitive complex reflection group

satisfying Assumption 2.3, and χ an irreducible character of HL(W,u).

Then the character field of χ is contained in k(u) unless (W,χ(1)) are as

in Tables 8.1 or 8.2.

Proof. We discuss the different possibilities case by case. First, it is

well known that the assertion holds with k = Q for the case W = Sn of

symmetric groups. So we may assume that W is one of the 34 exceptional

primitive reflection groups G4, . . . , G37 (in the notation of Shephard and

Todd [19]). First we consider the two-dimensional groups, so W = Gj for

some 4 ≤ j ≤ 22. The proper parabolic subgroups of W are 1-dimensional

and the irreducible characters of cyclotomic algebras for 1-dimensional re-

flection groups are all rational. Thus, by our discussion in Section 2C, only

characters with equal restriction to all proper parabolic subgroups can pos-

sibly not be k(u)-rational. On the other hand, we may compute certain

character values on a central element by (2.6) (this was already done for

G7, G11, G19 in Tables 3,5,7 of [15], and the values in the other cases can be

obtained by specialization according to Tables 4,6,8 of loc. cit.). With these

two observations, the result already follows for j �= 12, 13, 14, 15, 20, 21, 22.

For j = 12, 13, 14, 15 only the character fields of 2-dimensional irre-

ducible characters cannot be deduced by the previous arguments, but the

corresponding representations can easily be determined explicitly. In fact,

it suffices to do this forW = G15 since the other three groups are subgroups

of G15, their cyclotomic algebras are subalgebras of suitable specializations
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of H(G15,u), and their irreducible representations can be obtained by spe-

cialization and restriction of those of H(G15,u) (see Table 6 in [15]). For

H(G15,u), six 2-dimensional irreducible representations are rational (they

factor over the cyclotomic algebra of the imprimitive groupG(2, 1, 2)), while

the other twelve require the adjunction of a 4th root as in Table 8.1.

For W = G21 the 2- and 3-dimensional representations have to be con-

structed; they involve the irrationalities stated in the table. For j = 20, 22

we may again descend from the cyclotomic algebra for G21.

Finally let W be one of G23, . . . , G37. By induction and the results of

Section 4A we may further assume that the rationality properties of all ir-

reducible characters of proper parabolic subalgebras of H(W,u) are known.

By comparing multiplicities in induced rational characters of parabolic sub-

algebras we obtain the desired rationality statement for most irreducible

characters. For the remaining ones, we at least obtain that certain sums of

two or three characters of the same degree must be rational over k(u). For

these pairs or triples of characters, we can compute the values on Tβ by the

method of Springer (2.6). It turns out that in all cases the values on Tβ are

either in k(u) and different for the pair of characters in question, or they

are algebraically conjugate over k(u), involving the irrationalities stated

in the theorem. We give details of the argument in the case W = G34,

H = H(W,x), the other ones being similar and easier. Here k = Q(ζ3). By

using the character tables provided by the computer algebra system Chevie

[11] we first check that all irreducible characters of W are uniquely deter-

mined by their restrictions to the parabolic subalgebras of types G(3, 3, 5)

and W (A5) = S6, except for certain mi-tuples of characters of degree di
with

(mi, di) ∈ {(2, 896) (2 pairs), (2, 384) (4 pairs), (3, 729) (2 triples)}.
Since the characters of these subalgebras are k(x)-rational, it follows that at

most the above characters can possibly have a character field not contained

in k(x). Since the characters of degrees 896 and 384 may be distinguished

by their multiplicities in the induced irrational characters of the subalge-

bra of type G33, their character field over k is equal to k(
√
x). Next we

compute the values of the remaining characters on the central element Tβ
by (2.6). Here β = (s1 . . . s6)

7 by [9, Table 4]. The values of the charac-

ters of degree 729 turn out to involve 3
√
x. This completes the proof for

W = G34. �
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4D. Some consequences

The results in Theorems 4.4, 4.6 and 4.7 show that in all cases the

character fields can be generated by roots of suitable monomials in the

parameters. Moreover, the order of the root is always bounded by the

order of the group of roots of unity in the field of definition k of W ; it

would be nice to understand this fact by a general argument:

Corollary 4.8. Let W be a finite complex reflection group with char-

acter field k. Let µ(k) be the group of roots of unity in k. Then the character

field of H(W,u) is contained in

k(
(
ζ−jds us,j

)1/|µ(k)|
| s ∈ S, 0 ≤ j ≤ ds − 1) ,

where ζds = exp(2πi/ds).

In the recent preprint [17] Opdam has given a general proof that under

Assumption 2.3 the character field of H(W,u) over Q̄(u) can be generated

by suitable roots of monomials in the parameters.

Another consequence of our results is a characterization of those cases

where the reflection representation of the 1-parameter cyclotomic algebra

is rational:

Corollary 4.9. Let W be an n-dimensional irreducible finite complex

reflection group with character field k. Then the reflection representation

of H(W,x) is rational over k(x) if and only if W can be generated by n of

its reflections.

Proof. The group G(m, p, n) is generated by n of its reflections if and

only if p = 1 or p = m. The reflection character of the group G(m, p, n)

is parametrized by the multi-partition α = ((n − 1), (1),−, . . . ,−). Since

Sp(α) = 〈τ q〉 is strictly contained in Sp if p �= 1,m the assertion follows

from Theorems 4.4 and 4.6. For the primitive groups, the explicit results

show that the reflection character of H(W,x) is non-rational precisely for

(4.10) W ∈ {G7, G11, G12, G13, G15, G19, G22, G31}.

But these are the primitive groups not generated by n of their reflections,

where n denotes the dimension of the irreducible reflection representation

of W . �
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We will come back to the reflection groups generated by n of their re-

flections in Section 7.

Remark 4.11. Our results also show that the character field of

H(W,u) is contained in k(u) precisely for the irreducible groups

Sn, G(m, 1, n), G(m,m, n) (n ≥ 3), G(m,m, 2) (m odd),

G4, G25, G28 =W (F4), G35 =W (E6).

5. Determination of Splitting Fields

The results of the previous section also allow to find the splitting fields

of generic cyclotomic algebras.

Proposition 5.1. Let W be a finite irreducible complex reflection

group different from G12, G13, G20, G22, G31 and satisfying Assumption 2.3.

Let χ ∈ Irr(H(W,u)) with character field N ≥ k(u). Then there exists a

representation over N affording χ.

For W of type G12, G13, G20, G22, G31 there exists such a representation

over an extension of degree at most 2 of N .

Proof. The main ingredient will be Lemma 2.7. Let first G = Sn.

Then all character fields are equal to Q(u) and any non-linear irreducible

character occurs with multiplicity 1 in the permutation character of some

proper Young subgroup. Thus the result follows by induction from

Lemma 2.7. Let now G = G(m, p, n). The assumptions of Lemma 2.7

are satisfied by Lemma 3.5 since by the previous case k(u) is a splitting

field for the representations of the Hecke algebra of Sn. Thus we are left

with the primitive exceptional groups. For these it can be checked from the

explicit tables that Lemma 2.7 applies except possibly if

(W,χ(1)) ∈ {(G12, 4), (G13, 4), (G20, 6), (G22, 4), (G22, 6), (G31, 36)},

when all multiplicities in induced rational representations from proper para-

bolic subalgebras are divisible by 2,2,2,2,3,2 respectively. The characters of

degree 6 of G22 can be obtained by specializing yj �→ ζj3 in a 6-dimensional

representation of H(G21,u), hence can be written over an extension of de-

gree 2 of the character field. Thus they can be realized over the character
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field. Since each of the remaining exceptional characters χ occurs with mul-

tiplicity 2 in some representation which can be written over the character

field of χ, the last statement of the proposition follows. �

This allows to obtain the following description of splitting fields:

Theorem 5.2. Let W be a finite complex reflection group satisfying

Assumption 2.3 with character field k. Then a splitting field L of H(W,u)

is contained in

KW := k( (exp(−2πij/ds)us,j)
1/|µ(k)| | s ∈ S, 0 ≤ j ≤ ds − 1) .

Proof. By Proposition 5.1 and Corollary 4.8 we only have to consider

the exceptional characters of the irreducible groups G12, G13, G20, G22, G31

listed in the previous proof. For W = G13 the representations of H(W )

of degree 4 over KW can be constructed explicitly. The representation of

degree 36 of W = G31 has multiplicity 1 in an induced representation of

the reflection subgroup G(4, 2, 3), thus the corresponding representation of

H(W ) can be written over KW .

The representation of H(G12) of degree 4 can be obtained by specializing

yj �→ ζj3 in a rational 4-dimensional representation of H(G14) as follows. Let

H = 〈T1, T2 |(T1T2)
4 = (T2T1)

4,

(T1 + 1)(T1 − x) = (T2 − y1)(T2 − y2)(T2 − y3) = 0〉

be the cyclotomic algebra for the complex reflection group G14 and let H̃
denote its image under the specialization yj �→ ζj3 . Then H(G12, (x,−1))

is the subalgebra of H̃ generated by the elements T1, T2T1T
−1
2 , T−1

2 T1T2.

Now

T1 �→



x 0 0 0

0 x 0 0

1 0 −1 0

0 1 0 −1


 , T2 �→



y1 0 0 y21x

2 + y2y3
0 y1 −1 y2 − 2xy1 + y3
0 0 y2 (y2 − xy1)(y3 − y2)
0 0 0 y3




defines a 4-dimensional irreducible representation of H. Under the above

specialization this yields the irreducible 4-dimensional representation of
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H(G12, (x,−1)), over the field Q(x,
√
−3). This gives rise to an

8-dimensional representation over the field Q(x). The endomorphism ring

of this representation may easily be computed from the explicit matrices

given above. The constant coefficient of the characteristic polynomial of an

element of this (4-dimensional) endomorphism ring is of the form

(
z21 + 3z22 − (z23 + 3z24)x

)4
,

with zj in the ground field. Clearly, with zj =
√
xzj+2 for j = 1, 2, this

quadratic form does represent zero nontrivially. Thus Q(
√
−2,

√
x) is a

splitting field for H(G12, (x,−1)).

Similarly, the cyclotomic algebra for G22 may be obtained by specializing

yj �→ ζj3 in the one for G21. A computation as above shows that the 4-

dimensional irreducible representations of H(G22, (x,−1)) can be realized

over Q(
√
x).

Finally, the representations of H(G20) of degree 6 can be obtained by

specializing xj �→ (−1)j in representations of H(G21,u) involving the fourth

roots of unity. Calculations as above lead to the constant coefficient

(
z21 + z22 + 2z23 + 2z24

)6
of the characteristic polynomial of an element of the endomorphism ring,

which represents zero nontrivially over Q(
√
−3). Thus KW is a splitting

field in this case as well. �

6. An Observation on Fake Degrees

6A. Fake degrees

Let W be a finite complex reflection group on the complex vector space

V . The ring of invariants ofW in the symmetric algebra S(V ) of V is a poly-

nomial ring, generated by homogeneous invariants of degrees d1, . . . , dn,

with n = dim(V ). It follows from Molien’s formula for S(V )W that the

Poincaré polynomial PW of W is given by

(x− 1)nPW :=

(
1

|W |
∑
w∈W

detV (w)

detV (x− w)

)−1

=
n∏
j=1

(xdj − 1) ,
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where detV denotes the determinant on V . In particular, PW is a poly-

nomial in x of degree N∗ :=
∑n

j=1(dj − 1). For an irreducible character

χ ∈ Irr(W ) the fake degree is defined as

(6.1) Rχ := (x− 1)nPW
1

|W |
∑
w∈W

detV (w)χ(w)

detV (x− w)
∈ Z[x] .

The fake degree has the following symmetry property:

(6.2) Rχ(x) = xN
∗
Rdet⊗χ(x

−1),

where ¯ denotes complex conjugation. Indeed, PW (x−1) = x−N
∗
PW (x), so

Rχ(x
−1) =x−N

∗
(x− 1)n(−x)−nPW

1

|W |
∑
w∈W

detV (w)χ(w)

detV (x−1 − w)

=x−N
∗
(x− 1)nPW

1

|W |
∑
w∈W

detV (w)χ(w)

detV (wx− 1)
= x−N

∗
Rdet⊗χ(x).

For example we have 1 = R1(x
−1) = x−N

∗
Rdet(x), so Rdet(x) = xN

∗
.

It is possible to express the sum of exponents of the fake degree as follows.

By looking at eigenvalues of elements it is easy to see that modulo (x− 1)2

the fake degree (6.1) becomes

Rχ(x) =
PW
|W |

(
χ(1) +

∑
r∈R

det(r)χ(r)

(x− det(r))
(x− 1)

)
mod (x− 1)2 .

Differentiation yields

R′
χ(x) =

P ′
W

|W |χ(1) +
PW
|W |

∑
r∈R

det(r)χ(r)

x− det(r)
mod (x− 1).

Since PW =
∏n

j=1(x
dj−1 +xdj−2 + . . .+1) we obtain by evaluating at x = 1

and using |W | =
∏

j dj that

(6.3) R′
χ(1) = χ(1)N∗/2 +

∑
r∈R

det(r)χ(r)

1 − det(r)
.
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6B. Semi-palindromicity

In the case of real reflection groups W , Beynon and Lusztig [7] observed

from their tables that most (but not all) fake degrees have an additional

symmetry: they are palindromic. Moreover, the ones which are not palin-

dromic are precisely those for which the corresponding character of the

1-parameter Hecke algebra H(W,x) is not rational over Q(x). An a priori

explanation of this connection was later given by Opdam [16]. A similar

phenomenon can be observed for complex reflection groups. Let us say that

χ ∈ Irr(W ) has a semi-palindromic fake degree, or by abuse of notation that

Rχ is semi-palindromic, if there exists a c = cχ ∈ N such that

Rχ(x) = xcRχ(x
−1) .

Again, it turns out that many, but not all irreducible characters of complex

reflection groups have semi-palindromic fake degree. It is possible to extend

this to a statement about all irreducible characters. But, although the fake

degrees can be defined entirely in terms of the group W it seems necessary

to appeal to the cyclotomic Hecke algebra attached to W to phrase the

result.

Let us first make the following observation on the exponent c above;

here R denotes the set of all reflections in W :

Proposition 6.4. Let χ, ψ ∈ Irr(W ) be such that χ(1) = ψ(1), χ(r) =

ψ(r−1) for all reflections r ∈ R, and Rχ(x) = xcRψ(x−1). Then c =

N∗ −
∑

r∈R χ(r)/χ(1). If all reflections in W have order 2 then we also

have 2c = R′
χ(1)/χ(1).

Proof. By differentiating the equality Rχ(x) = xcRψ(x−1) with re-

spect to x and evaluating at x = 1 we get

R′
χ(1) = cψ(1) −R′

ψ(1).

On the other hand, adding (6.3) for χ and ψ and inserting the assumptions

gives

R′
χ(1) +R′

ψ(1) = χ(1)N∗ +
∑
r∈R

χ(r)

(
det(r)

1 − det(r)
+

det(r−1)

1 − det(r−1)

)
.
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The formula for c follows by using that det is a homomorphism and com-

paring with the first equation.

Now assume that all reflections in W have order 2. Then (6.3) becomes

R′
χ(1) =

1

2

(
χ(1)N∗ −

∑
r∈R

χ(r)

)
,

proving the second statement. �

Since N∗ = |R|, the value of c above can also be written
∑

r∈R(1 −
χ(r)/χ(1)).

6C. A symmetry property

Corollary 4.8 implies that the character field of any irreducible character

of the 1-parameter cyclotomic algebra H(W,x) is contained in k(y), where

y|µ(k)| = x. Let δ be the automorphism of k(y)/k(x) induced by y �→
exp(2πi/|µ(k)|)y. Then δ also acts on Irr(H(W,x)), so via specialization

induces a permutation of the set Irr(W ). The element δ together with

complex conjugation generate a dihedral group, so the product of δ with

complex conjugation is an involution on Irr(W ). We have the following

extension of the previously mentioned observation on semi-palindromicity:

Theorem 6.5. Let W be a finite complex reflection group satisfying

Assumption 2.3 with set of reflections R and let χ ∈ Irr(W ). Then

(6.6) Rχ(x) = xcRδ(χ̄)(x
−1) with c = N∗ −

∑
r∈R

χ(r)/χ(1),

where δ is the permutation of the set Irr(W ) defined above.

Proof. If W is of type An then all characters of H(W,x) are Q(x)-

rational and all fake degrees are palindromic, so the assertion holds. If W

is of exceptional type Gj , 4 ≤ j ≤ 37, the fake degrees can be computed

explicitly from (6.1) and the result follows by comparison with the charac-

ter fields obtained in Theorem 4.7. (Note that for the evaluation of (6.1)

it is only necessary to sum over representatives of the conjugacy classes,

weighted by the class lengths.)
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So we may assume thatW = G(m, p, n). In [14, Bem. 2.10] we computed

the fake degree of χα ∈ Irr(Wn) as

Rα(x) = Γ(α)
m−1∏
j=0

xj|αj |

where Γ(α) is a palindromic polynomial in x depending only on the set

{αj} of components of α. Furthermore, by [14, 5B] the fake degree of

χα ∈ Irr(G(m, p, n)) is given by

Rχα(x) =
xnq − 1

xnm − 1

1

sp(α)

p−1∑
j=0

Rτjq(α)(x)

where m = pq. To prove the assertion it hence suffices to show that

(6.7)

m−1∑
j=0

j|αj+lq| +
m−1∑
j=0

j|(δ(α))m−lq+j |

is a constant independent of l (here and later on the indices have to be

taken modulo m). By our above description of Irr(G(m, p, n)) complex

conjugation acts on characters by χα �→ χα where α = (α0, αm−1, . . . , α1).

Also, δ acts via α �→ δ(α) = (α′j) with α′j = αj−q if q|j and α′j = αj
otherwise. Thus, δ(α) = α′ with α′j = αm−j−q if q|j and α′j = αm−j
otherwise. We write nj := |αj |. Now let 0 ≤ l ≤ p− 1 be fixed. Then (6.7)

becomes

m−1∑
j=0

jnj+lq +
∑

j �≡0 (mod q)

jnm−j−(p−l)q +
∑

j≡0 (mod q)

jnm−q−j−(p−l)q

=
m−1∑
j=0

jnj+lq +
m∑
j=1

jnm−j+lq +
∑

j≡0 (mod q)

(j − (q + j))nm−q−j+lq

= m
m−1∑
j=0

nj − q
∑

j≡0 (mod q)

nj ,

so it is indeed independent of l, proving the identity for type G(m, p, n).
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The value given for c follows from Proposition 6.4. Indeed, since the

character δ(χ) of H(W,x) is algebraically conjugate to χ̄, we have χ(1) =

δ(χ)(1). Moreover, by the defining relations for H(W,x) the value of any

character on an element Ts with s a generating reflection is k(x)-rational,

hence δ(χ)(Ts) = χ(Ts). Specialization to W shows that δ(χ)(s) = χ(s)

for all generating reflections, and hence for all reflections of W . Thus the

assumptions of Proposition 6.4 are satisfied. �

Remark 6.8. It would be nice to have an a priori proof of this theorem,

not relying on the classification of the character fields. After reading a pre-

liminary version of this paper, E. Opdam informed the author that he can

define (in the spirit of [16]) a map δ∗ on the character group of an arbitrary

finite complex reflection group W such that the formula in Theorem 6.5

holds with δ replaced by δ∗, without any assumption on the cyclotomic

Hecke algebra. However, at the moment there is no a priori proof that δ∗

respects irreducibility. Under an additional assumption on the topological

braid group of W (which is stronger than our Assumption 2.3) Opdam has

a general proof of Theorem 6.5 (see [17, Prop. 7.4]).

Example 6.9. Let W = G32 be the primitive 4-dimensional complex

reflection group generated by reflections of order 3. Let χ ∈ Irr(W ) have

degree 64 and ψ := δ(χ̄). Then Rχ(x) = xcRψ(x−1) by Theorem 6.5. But

one finds {R′
χ(1), R′

ψ(1)} = {2240, 2560}, so 2c = (R′
χ(1) + R′

ψ(1))/64 =

75 �= R′
χ(1)/χ(1). Hence the assumption in the second part of Proposi-

tion 6.4 cannot be dropped.

Clearly, if an irreducible character of the cyclotomic algebra H special-

ized according to (2.2) has character field not contained in K, the same

is true for the corresponding character of the generic cyclotomic algebra.

Hence, as an immediate consequence of the preceding results we obtain:

Corollary 6.10. Let W be a finite irreducible complex reflection

group with field of definition k. Let χ be an irreducible complex charac-

ter of W such that the corresponding character of the generic cyclotomic

algebra H(W,u) has character field contained in k(u). Then Rχ is semi-

palindromic.
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Example 6.11. By Theorem 6.5 a rational character of the 1-parameter

cyclotomic algebra has semi-palindromic fake degree. However, the converse

is not always true. Let α = ((2), (1), (1)2,−) �4 5 and χα ∈ Irr(G(4, 2, 5))

a corresponding irreducible character. Then by what we remarked above

about the form of the fake degree, Rχα is semi-palindromic but the corre-

sponding character of H(G(4, 2, 5), x) is not rational by Theorem 4.4.

Nevertheless the following can be checked (see Corollary 7.2 for an ex-

tension):

Proposition 6.12. Let W be a finite irreducible complex reflection

group with field of definition k and let ρ be the reflection character of W .

Then Rρ is semi-palindromic if and only if the corresponding character of

the 1-parameter cyclotomic Hecke algebra H(W,x) has character field con-

tained in k(x).

Proof. One direction is clear by Theorem 6.5. Thus we may assume

that the character field of ρ is not contained in k(x). If W is of exceptional

type, the assertion follows by inspection. So now let W = G(m, p, n) with

p �= 1,m and α = ((n− 1), (1),−, . . . ,−) (see Corollary 4.9). Then up to a

palindromic factor Rχα is equal to x + xnq+1 + . . . + x(p−1)nq+1, while the

fake degree of the complex conjugate character equals xm−1 +xqn−1 + . . .+

x(p−1)nq−1 times the same factor. This proves the assertion. �

Remark 6.13. LetW be a complex reflection group on V with degrees

d1 ≤ . . . ≤ dn and ρ the character of the reflection representation. Write

(6.14) Rρ =
n∑
j=1

xcj , Rρ =
n∑
j=1

xdj−1,

with 1 = c1 ≤ . . . ≤ cn. The dj − 1 are the so-called exponents of W , the

cj are the coexponents. It was observed by Orlik and Solomon [18] (case

by case) that (dj − 1) + cn−j+1 = dn for j = 1, . . . , n if and only if W

can be generated by n reflections. This also follows from our Corollary 4.9

and Proposition 6.12. Indeed, W can be generated by n reflections if and

only if the reflection character ρ of H(W,x) is rational if and only if Rρ is

semi-palindromic, which by (6.14) holds precisely if (dj − 1) + cn−j+1 = dn
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for j = 1, . . . , n. Although our proof is also case by case, it seems to shed

some new light on the observation of Orlik and Solomon.

Conversely, Corollary 4.9 follows from Proposition 6.12 when we assume

the result of Orlik and Solomon, and the latter together with Corollary 4.9

gives Proposition 6.12.

7. Well-Generated Reflection Groups

Let us say that a finite n-dimensional irreducible reflection group W ≤
GLn(C) is well-generated if it can be generated by n of its reflections. Thus

in particular real reflection groups are well-generated. In the notation

of Shephard and Todd [19] the well generated groups are the symmetric

groups, the monomial groups G(m, 1, n), G(m,m, n), and those primitive

groups Gj , 4 ≤ j ≤ 37, which are not listed in (4.10). Well-generated

reflection groups seem to behave more nicely in several aspects. For ex-

ample we saw in Corollary 4.9 that the reflection representation of the

1-parameter cyclotomic algebra H(W,x) is k(x)-rational if and only if W is

well-generated.

7A. The field of definition of a well-generated reflection group

First we give a general formula for the splitting field of a well-generated

complex reflection group W which seems to have escaped notice until now.

As above write k for the character field of its reflection representation, which

by [4,6] is a (hence minimal) splitting field forW . It can be checked case by

case that in this case k is generated over Q by the coefficients of the char-

acteristic polynomial of a Coxeter element in the reflection representation.

Since the eigenvalues of Coxeter elements in well-generated reflection groups

can be expressed in a uniform fashion we obtain the following description

of k:

Theorem 7.1. Let W be a well-generated reflection group with degrees

d1 ≤ . . . ≤ dn. For a primitive dn-th root of unity ζ let G be the setwise

stabilizer of (ζdj−1 | 1 ≤ j ≤ n) in the Galois group Gal(Q(ζ)/Q). Then k

is the fixed field k = Q(ζ)G.

Proof. This can be checked case by case from the known tables for k

and the dj . �
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Let us give the connection to the properties of the Coxeter element: By a

(case-by-case) result of Shephard and Todd [19, 5.4] there exists an element

c ∈W which is the product in some suitable order over the elements of a set

of n generating reflections of W such that its eigenvalues in the reflection

representation are given by (ζdj−1 | 1 ≤ j ≤ n) in our above notation (see

also [18] or Remark 6.13 for a description of the eigenvalues in terms of

the coexponents). Such an element is usually called a Coxeter element of

W . Clearly the fixed field of G is now precisely the field generated by the

coefficients of the characteristic polynomial of c.

The theorem is no longer true for n-dimensional groups generated by

n + 1 reflections. As an example take G = G13 with degrees d1 = 8,

d2 = 12, but where k = Q(ζ8).

7B. Cyclotomic algebras for well-generated groups

The general results in the previous sections have the following stronger

versions in the case of well-generated groups:

Corollary 7.2. Let W be a well-generated (irreducible) complex re-

flection group. Then we have:

(a) The character field of H(W,u) is contained in k((ζ−jds us,j)
1/z | s ∈

S, 0 ≤ j ≤ ds − 1), where z := |Z(W )|.
(b) The field in (a) is a splitting field for H(W,u).

(c) Let χ ∈ Irr(W ). Then Rχ is semi-palindromic if and only if the

corresponding character of H(W,x) has its character field contained in k(x).

Proof. Part (a) follows by inspection from the results on character

fields and Tables 8.1 and 8.2, where the orders of centers have been included.

The second part follows from the first part together with Proposition 5.1. In

the third part, let χx denote the corresponding character of the 1-parameter

cyclotomic algebra. By Theorem 6.5 we may assume that χx is not k(x)-

rational. But then W is a primitive group by Remark 4.11. For these the

assertion follows by explicit computation of the fake degrees. �

Since |Z(W )| divides |µ(k)| for (absolutely) irreducible W by Schur’s

Lemma, the first part is indeed a strengthening of Corollary 4.8. Note that

z = gcd(d1, . . . , dn), and by Theorem 7.1 the field k can be described in

terms of the degrees of W , so the same is true for the splitting field in (b).



674 Gunter Malle

Table 8.1. Primitive cases.

W |Z| k χ(1) irrationality u
G5 6 Q(ζ3) (3×) 3 3

√
y1y2y3z1z2z3 (y1,2,3; z1,2,3)

G6 4 Q(ζ12) (6×) 2
√
x1x2z1z2 (x1,2; z1,2,3)

G7 12 Q(ζ12) (18×) 2
√
x1x2y1y2z1z2 (x1,2; y1,2,3; z1,2,3)

(6×) 3 3
√
x2

1x2y1y2y3z1z2z3
G8 4 Q(i) (2×) 4

√
z1z2z3z4 (z1,2,3,4)

G9 8 Q(ζ8) (12×) 2
√
x1x2z1z2 (x1,2; z1,2,3,4)

(4×) 4 4
√
x2

1x
2
2z1z2z3z4

G10 12 Q(ζ12) (12×) 3 3
√
y1y2y3z1z2z3 (y1,2,3; z1,2,3,4)

(6×) 4
√
y2y3z1z2z3z4

G11 24 Q(ζ24) (36×) 2
√
x1x2y1y2z1z2 (x1,2; y1,2,3; z1,2,3,4)

(24×) 3 3
√
x2

1x2y1y2y3z1z2z3
(12×) 4 4

√
x2

1x
2
2y

2
1y2y3z1z2z3z4

G12 2 Q(
√
−2) (2×) 2

√−x1x2 (x1,2)

G13 4 Q(ζ8) (4×) 2 4
√
x2

1x
2
2u1u3

2 (x1,2;u1,2)
(2×) 4

√
u1u2

G14 6 Q(ζ3,
√
−2) (6×) 2

√−x1x2y1y2 (x1,2; y1,2,3)

(6×) 3 3
√
x2

1x2y1y2y3
G15 12 Q(ζ24) (12×) 2 4

√
x2

1x
2
2y

2
1y

2
2u1u3

2 (x1,2; y1,2,3;u1,2)

(12×) 3 3
√
x2

1x2y1y2y3u2
1u2

(6×) 4
√
y2y3u1u2

G16 10 Q(ζ5) (10×) 4
√
z1z2z3z4 (z1,2,3,4,5)

(5×) 5 5
√
z1z2z3z4z5

G17 20 Q(ζ20) (20×) 2
√
x1x2z1z2 (x1,2; z1,2,3,4,5)

(20×) 4 4
√
x2

1x
2
2z1z2z3z4

(10×) 5 5
√
x3

1x
2
2z1z2z3z4z5

(10×) 6
√
x1x2z2z3z4z5

G18 30 Q(ζ15) (30×) 3 3
√
y1y2y3z1z2z3 (y1,2,3; z1,2,3,4,5)

(30×) 4
√
y2y3z1z2z3z4

(15×) 5 5
√
y21y

2
2y3z1z2z3z4z5

(15×) 6 3
√
y21y

2
2y

2
3z

2
1z2z3z4z5

G19 60 Q(ζ60) (60×) 2
√
x1x2y1y2z1z2 (x1,2; y1,2,3; z1,2,3,4,5)

(60×) 3 3
√
x2

1x2y1y2y3z1z2z3
(60×) 4 4

√
x2

1x
2
2y

2
1y2y3z1z2z3z4

(30×) 5 5
√
x3

1x
2
2y

2
1y

2
2y3z1z2z3z4z5

(30×) 6 6
√
x3

1x
3
2y

2
1y

2
2y

2
3z

2
1z2z3z4z5
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Table 8.2. Primitive cases, continued.

W |Z| k χ(1) irrationality u

G20 6 Q(ζ3,
√

5) (6×) 3 3
√
y1y2y3 (y1,2,3)

(6×) 4
√
y2y3

(3×) 6 3
√
y1y2y3

G21 12 Q(ζ12,
√

5) (12×) 2
√
x1x2y1y2 (x1,2; y1,2,3)

(12×) 3 3
√
x2

1x2y1y2y3
(12×) 4 4

√
x2

1x
2
2y

2
1y2y3

(6×) 6 6
√
x3

1x
3
2y

2
1y

2
2y

2
3

G22 4 Q(i,
√

5) (4×) 2
√
x1x2 (x1,2)

(4×) 4
√
x1x2

(2×) 6
√
x1x2

G23 =W (H3) 2 Q(
√

5) (2×) 4
√
x (x,−1)

G24 2 Q(
√
−7) (2×) 8

√
x (x,−1)

G26 6 Q(ζ3) (6×) 8
√−x1x2y1y2 (x1,2; y1,2,3)

G27 6 Q(ζ3,
√

5) (4×) 8
√
x (x,−1)

(6×) 9 3
√
x

G29 4 Q(i) (4×) 16
√
x (x,−1)

G30 =W (H4) 2 Q(
√

5) (4×) 16
√
x (x,−1)

G31 4 Q(i) (4×) 4
√
x (x,−1)

(2×) 6
√
x

(4×) 10
√
x

(8×) 20
√
x

(2×) 24
√
x

(2×) 30
√
x

(4×) 36
√
x

(6×) 40
√
x

G32 6 Q(ζ3) (6×) 64
√
y1y2 (y1,2,3)

(3×) 81 3
√
y1y2y3

G33 2 Q(ζ3) (2×) 64
√
x (x,−1)

G34 6 Q(ζ3) (8×) 384
√
x (x,−1)

(6×) 729 3
√
x

(4×) 896
√
x

G36 =W (E7) 2 Q (2×) 512
√
x (x,−1)

G37 =W (E8) 2 Q (4×) 4096
√
x (x,−1)
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8. Appendix

Here we collect the results on character fields for primitive groups in the

form of a table. In the table, we first list the Shephard-Todd name of W ,

the order of the center |Z(W )| and the splitting field k of W . The next col-

umn contains the degrees of irrational characters of the generic cyclotomic

algebra H(W,u), together with the number of such characters. The next

column gives the irrationality generating the character field over k(u) (it

turns out that for primitive groups the character field is always generated

by a single root of a monomial in the parameters). In the last column we

give the names of the indeterminates used in describing the irrationalities.

For the 2-dimensional groups G4, . . . , G22, we keep the notation used in

[15], for the higher-dimensional groups generated by involutions we have

specialized one of the parameters to −1. Note that G4, G25, G28 and G35

do not occur in the tables since their cyclotomic algebras have splitting field

k(u).
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