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On the Groupoid of Transformations of

Rigid Structures on Surfaces∗

By Louis Funar and Răzvan Gelca

Abstract. We prove that the 2-groupoid of transformations of
rigid structures on surfaces has a finite presentation, establishing a
result first conjectured by Moore and Seiberg. We also show that
a finite dimensional, unitary, cyclic topological quantum field theory
gives rise to a representation of this 2-groupoid.
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1. Introduction

Three dimensional topological quantum field theories (TQFT’s) give rise

to representations of the mapping class groups of closed surfaces. TQFT’s

with corners give rise to representations of a related object, the 2-groupoid

of transformations of rigid structures. Rigid structures (also called DAP-

decompositions in [9, 12, 28]) are decompositions of surfaces into disks,

annuli and pairs of pants, together with additional information for keeping

track of twistings.

The 2-groupoid of transformations of rigid structures appeared for the

first time in the works of physicists studying 2-dimensional conformal field

theories. Specifically G. Moore and N. Seiberg (see [23]) worked with this

groupoid and conjectured a presentation of it. In an unpublished preprint

[28], K. Walker sketched some ideas for the proof that the presentation given

by Moore and Seiberg is complete. As Walker pointed out, the Moore-

Seiberg equations represent compatibility conditions that the basic data

of a TQFT with corners must satisfy. Based on Walker’s point of view,

several TQFT’s with corners have been constructed so far [9, 12, 13]. In

a TQFT with corners the quantum invariants of 3-manifolds are computed

from an initial amount of information, by making use of the axioms. Of

course this initial amount of information, called basic data, must satisfy

the above mentioned compatibility conditions. Hence the necessity for a

rigorous proof of the fact that the Moore-Seiberg equations are complete.

This is the purpose of the present paper. In addition to this we also show

how a cyclic TQFT (i.e. one that has an underlying theory with corners),

gives rise in a canonical way to a representation of the 2-groupoid.

The idea of the proof is to apply the Cerf theoretic techniques used by A.

Hatcher and W. Thurston [17] for obtaining a presentation of the mapping

class group of a surface. Let us mention that an explicit presentation for

the mapping class group was derived afterwards by B. Wajnryb (see [29, 5])

and a more symmetric (but infinite) presentation was given by S. Gervais

([14]).
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The proof given below is done in three steps. First we exhibit a presen-

tation for the groupoid of transformations of markings (maximal collections

of non-isotopic simple closed curves in the interior of a surface). Then we

explain how this presentation produces a presentation of the groupoid of

overmarkings (collection of curves cutting a surface in disks, annuli and

pairs of pants). Finally, we use Walker’s approach to solve the case of

rigid structures. The last part of the paper describes the construction of

the canonical representations of the 2-groupoid that arise from TQFT’s for

which the mapping class group acts in a homogeneous manner. We mention

that our initial result for the case of the complex associated to cut systems

was obtained independently in [16], using the same methods. After this

paper appeared in preprint form we learned about the work of Bakalov and

Kirillov Jr. [2] in which a different proof for the main result is given. Al-

though their proof is still based on the Hatcher-Thurston ideas, the authors

avoided the direct use of Cerf’s theory and use instead results from [15]

about cut systems.

Before proceeding with the details of the paper, we want to make some

remarks. The 2-groupoid of transformations of rigid structures is a universal

object containing the mapping class groups of all surfaces. One can think

of it as playing the role of the tower of the mapping class groups of surfaces,

a notion suggested by A.Grothendieck in his “Esquisse d’un programme”.

A more precise connection with Grothendieck’s program is the relationship

between the Teichmuller tower of (orbifold) fundamental groupoids of the

moduli spaces of punctured curves and our 2-groupoid (which should be a

quotient of the former). The basepoints in the moduli spaces are chosen

in simply connected neigborhoods of infinity, corresponding to the maximal

semistable degeneracy curves. In the context of topological quantum field

theory, instead of considering a series of representations of mapping class

groups, we consider the representation of this single but more complicated

algebraic object. Notice that this groupoid as a natural central extension

related to those of the mapping class groups (see [22]). The representations

arising from the most interesting TQFTs are rather representations of the

latter extension.

Acknowledgements. Part of this work when the first author visited
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edged. We are thankful to Ch. Frohman, S.Gervais, T. Kitano, P. Lochak,
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2. 2-Groupoids

2.1. Algebraic definitions

A 1-groupoid is by definition a category whose morphisms are isomor-

phisms. We extend this to an object having both the features of a 2-category

and of a groupoid, and which we will call a 2-groupoid.

Definition 2.1. A 2-groupoid C is a category with the following prop-

erties:

1. The collection of objects O(C) is a category itself, which is a 1-

groupoid with an associative composition law denoted by ⊗, which

gives O(C) the structure of a (strict) tensor category. This means

that the objects in O(C) are the homomorphism sets Hom0(u, v) of

some other category C0 having an associative multiplication. The

composition Hom0(u, v) × Hom0(v, w) → Hom0(u,w) is our tensor

structure ⊗ at the level of O(C).

2. On the collection of morphisms one has a composition ◦ which makes

it into a groupoid, and a tensor multiplication

⊗ : Hom(X,X ′) ⊗Hom(Y, Y ′) −→ Hom(X ⊗ Y,X ′ ⊗ Y ′),

induced by ⊗ on O(C) and compatible with the composition. Notice

that the Hom on C is like a 2-Hom of C0.

The example we had in mind when considering this definition was that

of the 2-groupoid of transformations of rigid structures on surfaces. Recall

that a DAP-decomposition of a surface Σ is a decomposition of the surface

into a finite number of elementary surfaces: disks, annuli, and pairs of pants,

determined by a collection of disjoint simple closed curves in the interior of

Σ. A rigid structure consists of a DAP-decomposition together with the

following additional structure:

1. an ordering of the elementary surfaces;
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2. for each elementary surface Σ0 a numbering of its boundary compo-

nents, by 1 if Σ0 is a disk, 1 and 2 if Σ0 is an annulus, and 1, 2 and 3

if Σ0 is a pair of pants;

3. a parametrization of each boundary component C of Σ0 by S1 =

{z; |z| = 1} (the parameterization being compatible with the orienta-

tion of Σ0 under the convention “first out”) such that the parameter-

izations coming from two neighboring elementary surfaces are one the

complex conjugate of the other;

4. fixed disjoint embedded arcs in Σ0 joining eiε (where ε > 0 is small)

on the j-th boundary component to e−iε on the j + 1-st (modulo the

number of boundary components of Σ0) (these arcs are called seams).

5. an ordering of elementary surfaces in the DAP-decomposition accord-

ing to topological type.

Rigid structures are considered up to isotopy. In this setting the category C0

is given by circles (with some additional structure), and rigid structures on

surfaces are homomorphisms (in C0) between their boundary. The exterior

composition on C0 is given by the disjoint union. These are related both to

the PROPs formalism and to that of the modular operads.

Definition 2.2. The (full) duality groupoid D – also called the

groupoid of transformations of rigid structures on surfaces – consists of:

1. A collection of objects (Σ, r), which are the rigid two dimensional

cobordisms. Here Σ is a surface, with boundary ∂Σ endowed with a

fixed splitting ∂Σ = ∂+Σ∪∂−Σ of the boundary components and two

labelings of each connected component in ∂+Σ and ∂−Σ, and r is the

rigid structure on Σ.

2. The collection of morphisms between two given objects (Σ, r) and

(Σ′, r′) is the set of all pairs λ = (ϕ, c), where ϕ : Σ −→ Σ′ is a

homeomorphism preserving the boundary splitting (and thus Σ = Σ′)
and c : ϕ(r) −→ r′ is a change of the rigid structure. We factor out

by the following equivalence relation:

(a) (ϕ, c) ∼ (ϕ′, c) if ϕ and ϕ′ are isotopic;
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(b) (ϕ, c) ∼ (ϕ′, c′) if c′ = cϕ∗(ϕ′
∗)

−1, where ϕ∗ is the map induced

by the homeomorphism ϕ at the level of rigid structures.

3. The natural composition of morphisms, and a tensor product opera-

tion such that

(a) At the level of the objects the (incomplete) tensor product is

given by: (Σ, r) ⊗ (Σ′, r′) = (Σ ⊗ Σ′, r ⊗ r′), where Σ ⊗ Σ′ is the

boundary connected sum of Σ and Σ′, identifying the last k con-

nected components of ∂−Σ with the first k connected components

of ∂+Σ′ (here one should think that the boundary components

are ordered lexicographically according to the ordering of basic

surfaces and to that of boundary components within one ele-

mentary surface). One labels in a canonical way the connected

components of ∂+(Σ ⊗ Σ′) (which is the union of of the unglued

components of ∂+Σ and ∂+Σ′), and likewise the components of

∂−(Σ⊗Σ′). The number k is a parameter of the tensor product.

Further r⊗r′ is the natural rigid structure induced by the gluing.

(b) On the level of morphisms, the tensor product induces maps:

Hom((Σ, r), (Σ′, r′)) ⊗Hom((Σ̃, r̃), (Σ̃′, r̃′))

−→ Hom((Σ, r) ⊗ Σ̃, r̃), (Σ′, r′) ⊗ (Σ̃′, r̃′))

Returning to the general definition of a 2-groupoid, we emphasize that

the first tensor product stands for the operation of gluing surfaces (which

should be thought of as cobordisms between one dimensional manifolds),

while the second is induced by the first at the level of morphisms. In fact

all operations one can imagine at the topological level have natural coun-

terparts in the groupoid setting. For instance capping off boundary circles

with disks, or identifying two boundary circles induce maps at the homo-

morphism level. These maps correspond to the connected sum either with

a disk or with a cylinder, and thus come from the tensor structure.

Another versions for the duality groupoid can be constructed by using

only some of the possible gluings along boundaries, for instance by asking

the common boundary contain only one circle, or ∂−Σ = ∂+Σ′. In all

these cases the presentation theorem below has immediate reformulations,

without introducing other generators or relations.
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Remark that one has an embedding of the tower of mapping class groups

M∗,∗, of surfaces with boundary, in the groupoid D. This map associates to

an element ϕ of the M(Σ) the element (1, ϕ∗) ∈ Hom((Σ, r), (Σ, r′)), where

ϕ∗ transforms the rigid structure r into ϕ(r).

Observe also that all morphisms of the groupoid have representatives

of the form (1, c), and also that not all of these representatives come from

elements of the mapping class group. In fact a necessary and sufficient

condition for (1, c) to be in the image of the mapping class group is that the

transformation c preserves the combinatorial configuration (i.e. the dual

graph of the pants decomposition) of the rigid structure. In that case the

rigid structures r and r′ define uniquely (up to isotopy) a homeomorphism

ϕ such that c = ϕ∗.
Let us explain what the presentation of a 2-groupoid should be. Assume

for simplicity that O(C) is an Abelian category having direct sums.

Definition 2.3. A system of generators for the 2-groupoid C consists

of a collection of elements xi ∈ Hom(Ui, Vi), Ui, Vi ∈ O(C), i ∈ I, such

that:

1. Each U ∈ O(C) can be written as

U =
n⊕

j=1

mj⊗
k=1

Uijk ,where ijk ∈ I, n,mj ∈ Z.

2. Each x ∈ Hom(U, V ) can be written as

x = ⊕j ⊗k ◦ml=0xijkl

where ◦ is the usual composition of morphism (subject to the source=

target condition) U =
⊕

j

⊗
k Uijk0

, V =
⊕

j

⊗
k Vijkm , and each of

the xijkl is either equal to the identity morphism, or is one of the

generators.

Definition 2.4. A presentation of a 2-groupoid C is given by the

system of generators xi ∈ Hom(Ui, Vi), and a system of relations rj ∈
Hom(Zj ,Wj) that can be written in terms of the xi’s.
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The 2-groupoid with presentation < xi, i | rj , j > can be constructed

abstractly in the following way. Fix the set of objects O(C). For U, V ∈
O(C) define

Hom0(U, V ) =
⊕
j

⊗
k

◦lHom00(Uijkl , Vijkl),

where Hom00(Ui, Vi) is the set of those maps constructed from the xj with

the same source and target.

Set RHom(U, V ) ⊂ Hom0(U, V ) for the subset of those ϕ which can be

written as α ◦ ψ ◦ β with ψ of the form

ψ =
⊕
j

⊗
k

ψijk ,

where, for each j, some of the elements ψijk are relations rl and the others

are identity morphisms. The set Hom(U, V ) = Hom0(U, V )/RHom(U, V )

is by definition the set of morphisms between U and V .

The main purpose of this paper is to prove that the Moore-Seiberg equa-

tions give a presentation of the 2-groupoid D.

2.2. The geometric point of view

Let us discuss an analogous situation. One can define a group presenta-

tion G =< xi, i | rj , j > geometrically as follows. Fix a basepoint, and for

each generator xi a loop, then attach a 2-cell on each loop made up from a

word rj . The space XG =
∨

xi
S1 ⋃

rj D
2 has the fundamental group equal

to G.

Let us go one step further, to the presentation of a 1-groupoid C. Con-

sider a presentation of a 1-groupoid C given by < xi, i | rj , j >, where

xi ∈ Hom(s(xi), t(xi)), s, t being the source and target maps. Construct

a 2-complex XC in the same vein, by identifying the set F of final objects

with a set of 0-cells and by choosing a 1-cell connecting a and b in F , for

each xi such that s(xi) = a, t(xi) = b. Attach a 2-cell on a loop representing

rj , for each j. The fundamental groupoid π1(XC , F ) with base points in F

is the 1-groupoid of the given presentation. Notice that relation rj with

s(rj) �= t(rj) add further identifications in F , to enable us to attach 2-cells.

Consider now a 2-groupoid C, with generators and relations xi and ri.

Like before, identify the final objects of O(C) with the set of 0-cells, and add

a 1-cell between s(xi) and t(xi) for each generator xi. Next let K1 be the
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1-complex obtained as closure of this structure under the tensor product,

meaning that each edge xi induces the attachment of other edges, denoted

by xi ⊗ 1a (respectively 1a ⊗ xi), between s(xi) ⊗ a and t(xi) ⊗ a. These

correspond to elements xi ⊗ 1a ∈ Hom(s(xi) ⊗ a, t(xi) ⊗ a). Recall that 1a
is the identity element in the group Hom(a, a).

Attach to K1 2-cells along the loops associated to the relations rj , and

take the ⊗-closure K2, meaning that once a 2-cell is attached on the vertices

ui and edges ei then all its translated copies on the vertices ui⊗a and edges

ei⊗1a (respectively a⊗ui and 1a×ei) are also 2-cells. Finally, add the DC-

cells that come from the tensor structure. These cells are defined as follows.

Assume that we have a ∈ Hom(x, x′) and y ∈ Hom(y, y′). Consider the

four vertices x⊗y, x′⊗y, x⊗y′ and the edges a⊗1y, 1x′⊗b, 1x⊗b and a⊗1y′

relating these vertices. Attach a 2-cell on the square made off the edges and

call it a DC-cell (disjoint commutativity). The relations expressed by these

cells are the obvious (a ⊗ 1y)(1x′ ⊗ b) = (1x ⊗ b)(a ⊗ 1y′). Call XC the

new 2-complex. The tensor multiplication gives a multiplicative structure

on the groupoid of paths in XC . When adding the 2-cells one obtain a

tensor multiplication on the fundamental groupoid π1(XC ,O(C)), and the

2-groupoid obtained this way is isomorphic to C.

3. The Moore-Seiberg Equations

3.1. Main results

This section contains the main results of the paper.

Theorem 3.1. The duality 2-groupoid D has the 2-groupoid presenta-

tion with:

Generators T1, R,B23, F, S,A,D, P and their inverses.

Relations (Moore-Seiberg equations)

1. at the level of a pair of pants:

a) T1B23 = B23T1, T2B23 = B23T3, T3B23 = B23T2, where T2 =

RT1R
−1 and T3 = R−1T1R,

b) B2
23 = T1T

−1
2 T−1

3 ,

c) R3 = 1,

d) RB23R
2B23RB23R

2 = B23RB23R
2B23,

2. relations defining inverses:
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a) P (12)F 2 = 1,

b) T−1
3 B−1

23 S
2 = 1,

3. relations coming from “triangle singularities”:

a) P (13)R(2)F (12)R(2)F (23)R(2)F (12)R(2)F (23)R(2)F (12) = 1,

b) T
(1)
3 FB

(1)
23 FB

(1)
23 FB

(1)
23 = 1,

c) B−1
23 T

−2
3 ST−1

3 ST−1
3 S = 1,

d) R(1)(R(2))−1FS(1)FB
(2)
23 B

(1)
23 = FS(2)T

(2)
3 (T

(2)
1 )−1B

(2)
23 F ,

4. relations coming from the symmetric groups:

a) P 2 = 1,

b) P (23)P (12)P (23) = P (12)P (23)P (12).

5. relations involving annuli and disks:

a) A(12)D(23) = A(23)D(12),

b) A(12)D
(13)
3 = A(13)D

(13)
3 F ,

c) A(12)A(23) = A(23)A(12)

d) SD = DS.

We used the convention that superscripts tell us on which factors of the

tensor product the move acts. Here the tensor structure is implicit.

It was proved in [10] that any topological invariant of 3-manifolds de-

termines a unique maximal associated TQFT. In the terminology of [28]

and [13] this is a TQFT with corners. Notice that a TQFT gives rise to a

representation ρ∗ : M∗ −→ End(W∗).
When considered on a torus, that is when capping the 1-holed torus with

a disk, relations 2.b) and 3.c) give rise to the well known morphism from

SL(2,C) into the groupoid of moves acting on the torus, which groupoid

contains the mapping class group of the torus, as a maximal group. If on

a sphere with four holes we factor out by the twists around the holes, i.e.

if we consider the groupoid of moves on a fourth punctured sphere, then

relations 2.a) and 3.b) give rise to another morphism from SL(2,C) into

the groupoid of the 4-holed sphere. This latter morphism is used in the

classification of 2-bridge knots.

Theorem 3.2. Assume that the TQFT is finite dimensional, unitary,

cyclic and has a unique vacuum (see section 5 for complete definitions).

Then ρ∗ extends canonically to a representation of the the full duality
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groupoid D. In particular all maximal TQFT representations verify the

Moore-Seiberg equations.

On the other direction Kohno (see [19, 20]) used the data coming from

conformal field theory to construct representations of the tower of mapping

class groups (and in fact of the duality groupoid). He proves then that these

determine topological invariants for 3-manifolds (which actually extend to

a TQFT).

3.2. Topological interpretation of the generators and relations

The generators written above can be explicitly viewed in the topological

picture of the groupoid, so that the relations become tautological. We have:

1. Moves on rigid structures on a pair of pants, which are the three twists

Tj around the boundary circles, the knob twisting B23 and the cyclic

permutation R of the numbering of the boundary components.

2. The move F on a sphere with 4 holes decomposed into two pairs of

pants. The decomposition curve is transformed as such that the new

curve does not intersect the seams that the old one did, and intersects

each of the other two seams exactly once. The numberings of the pairs

of pants transform such that the decomposition curve remains labeled

by 1 and the boundary curve labeled by 2 of the first pair of pants

becomes the the curve labeled by 3 of the first pair of pants.

3. The move S on the 1-holed torus. S changes the rigid structure as the

element

[
0 −1

1 0

]
of the mapping class group.

4. The move P which transposes the numberings of two pairs of pants,

two annuli or two disks. Using the groupoid structure, P generates

the whole permutation group of numberings.

5. Moves D and A which correspond to contracting annuli and disks.

Their inverses consist of expansions of disks or annuli.

These elementary moves are described in Fig. 1-5. In these figures the

convention is that the circles of the DAP-decomposition are drawn as plain

curves, every curve being labeled by a number in each elementary surface
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Figure 1: T1

Figure 2: B23

Figure 3: R

that it bounds, the seams are pictured as dashed curves, and each pair of

pants carries an encircled number, these numbers defining the ordering of

elementary surfaces. If one element of this data is absent this means that

it can be chosen arbitrarily in the given situation. Note that the relations

given in Theorem 3.1 can be easily verified pictorially.
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Figure 4: F

Figure 5: S

Let us stress out that moves represent changes of rigid structures and

not homeomorphisms. The first group of relations are identical with the

ones giving the presentation of M0,[3], (the extended mapping class group

of the 3-holed sphere, in which is allowed to interchange the boundary com-

ponents). However, the moves F , A and D do not have analogues at the

level of homeomorphisms.

3.3. The 2-complex Γ

For the proof of Theorem 3.1 we will adapt the Harer-Hatcher-Thurston

technique to the present situation. To this end we construct a family of

2-complexes, related by the tensor product.

Definition 3.3. The complex Γ(Σ) is obtained as follows:

1. Its vertices are the various rigid structures on Σ.

2. Two vertices are related by an edge if there is one transformation of

type B23, T1, R, F, S, P,D,A which relates the respective rigid struc-
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tures.

3. The first set of 2-cells is given by the Moore-Seiberg equations: each

equation gives a circuit on the 1-skeleton and we attach a 2-disk on it.

4. The second set of 2-cells are the DC-cells which represent the com-

mutation relation between two moves whose supports are sub-surfaces

with disjoint interiors.

5. The third set of relations correspond to relations among the per-

mutations in the ordering of the elementary surfaces in the DAP-

decomposition.

We observe that when talking about the moves F, S, ... we already make

use of the tensor structure on the duality groupoid, because these moves are

defined on sub-surfaces and are extended by identity outside the support.

Hence it makes sense to consider the union Γ =
⋃

Σ Γ(Σ). The set of vertices

has a multiplicative structure, the tensor product of the groupoid, and the

fundamental groupoid π1(Γ) is nothing but the 2-groupoid with presentation

given by the Moore-Seiberg equations. Thus Theorem 3.1 follows from

Theorem 3.4. The complex Γ(Σ) is connected and simply connected.

The mapping class group M(Σ) acts freely on it.

The proof is reminiscent of [17]. We consider first simpler structures

which mimic the construction of Γ(Σ). Thus we start with the groupoid of

markings, then add overmarkings and eventually come to the last object.

The cases of markings and overmarkings are solved with techniques of Cerf

theory, and simple algebraic topology arguments yield the result for rigid

structures. The proof of this result will be done in detail in Chapter 4.

4. Proof that Moore-Seiberg Equations are Sufficient

4.1. Elements of Cerf theory

Following [17], given a surface we call marking a finite collection of dis-

joint simple closed curves lying in the interior of the surface, that decompose

the surface into pairs of pants. Thus markings are obtained from rigid struc-

tures by forgetting the annuli, disks, seams and numberings. Of course for
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a surface to admit a marking it must be different from a sphere, torus, disk

or annulus.

Let Σ be a given surface. We want to find a presentation of the groupoid

of transformations of markings on Σ. For this we will use Cerf theory [8],

in an analogous way it was used in [17] for the study of the mapping class

group.

For each marking there exists a Morse height function f : Σ → R, such

that the decomposition curves are connected components of level sets of f .

The space F of height functions has a stratification

F = F0 ∪ F1 ∪ F2 ∪ F3 ∪ · · ·

where Fk are strata of codimension k.

In particular F0 is the set of Morse functions (i.e. functions with finitely

many critical points, all Morse and at different heights), and is a dense open

subset of F , and F1 = F1
α∪F1

β , with F1
α having finitely many critical points,

all Morse and at different heights, except for one which is a birth-death (i.e.

the height function looks locally like f(x, y) = ±x3 ± y2), and F1
β having

finitely many critical points, all Morse and at different heights, except for a

pair of Morse points which are at the same height.

We will make use of the two results results in Cerf theory given in the

sequel.

Theorem 4.1. Any two Morse functions f0 and f1 can be joined by a

path of height functions (ft)t∈[0,1], with the property that all ft are Morse

except for finitely many, and for these exceptional functions the path crosses

F1 transversely.

A path having the property described in the theorem is called a good

path. For a better understanding it is customary to sketch the graph of a

path, namely to trace the critical values of the functions ft, t ∈ [0, 1]. An

example of a graph for a good path is given in Fig. 6.

The second theorem tells us how a homotopy of paths crosses the codi-

mension two stratum.

Theorem 4.2. If (ft)t is a closed good path in F , then there exists

a homotopy (ft,u)u from it to the constant path such that ft,u0 is good for

every u0, except for the following isolated singularities:
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Figure 6: Example of a graph

Figure 7: Singularities

a). crossing (two crossings are cancelled or introduced),

b). birth-death (two birth-death points are canceled or introduced),

c). triangle (three non-degenerate critical points lie at the same level),

d). beak singularity (a birth-death point crosses a non-degenerate critical

point),
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Figure 8: Crossings

e). swallow tail,

f). two birth-death or crossing points occur simultaneously.

These singularities are shown graphically in Fig. 7.

Given two markings, associate to them Morse functions that determine

them. One can pass from one function to the other along a good path. The

only case when the marking can change is when one crosses the codimension

one stratum. The marking does not change at a beak point, nor at a crossing

point if any of the critical points that cross has index different from 1. Hence

the only interesting points are the crossings of saddle points. To understand

what happens in this case, let us restrict our attention to the semi-local
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Figure 9: Triangle singularities

picture containing these points, namely to the pairs of pants determined by

the marking that contain the two points. If the pairs of paints are disjoint,

then the marking remains unchanged after the crossing.

If the pairs where the crossing occurs share some boundary components,

we have the situations described in Fig. 8. Here and below to encode the

crossings, rather than using the associated trivalent graph, as it was done

in [17], we will use the ascending-descending manifold model, which is more

suggestive in this situation. Let us recall that the ascending (unstable)

manifold is the submanifold on which the quadratic function that gives

the local model of the singularity is positive definite, and the descending

(stable) manifold is the submanifold on which the quadratic function is

negative definite. In the case of index one singularities on a surface both

these submanifolds are one-dimensional. On the left hand column of Fig. 8

we represented the descending manifold model viewed from above, and one

should imagine the two descending manifolds exchanging heights when the

crossing occurs.
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Figure 10: Relation 1

These four types of crossings give rise to the four moves of Hatcher and

Thurston [17]. Recall that IV is obtained by capping off one boundary

component of the torus by using a disk, in the move III. Consequently any

two markings can be transformed one into the other by applying finitely

many moves like these.

To find the relations that these moves satisfy, we will rely on the second

theorem. Since beak points do not interfere with markings, the only sin-

gularities that produce relations between moves are a), which expresses the

fact that each move is its own inverse, f), which gives the disjoint commuta-

tivity between moves that occur far away from each other, and the triangle

singularity. The latter produces the most interesting relations, which we

will describe below.
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Figure 11: Relation 2

4.2. The groupoid of markings

Looking at the combinatorics of the circles below the singularity, and of

the arcs connecting them, determined by the descending manifolds, there

are 20 possible configurations. These configurations are described in Fig. 9.

In this figure the second column consists of descending manifold models

which by changing f to −f are the ascending manifold models correspond-

ing to the descending manifold models from the first column. Because of

this symmetry, there are only 10 relations between Hatcher-Thurston moves

arising from these singularities. In these pictures the descending manifolds

are at different heights and the exchanges in heights correspond to cross-

ings. A particular choice of heights specifies the vertex at which one begins

tracing the boundary of the cell, thus it suffices to make one choice for each

diagram.

It is not hard to see that the configurations 1), 6), 7) and 8) give rise to
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Figure 12: Relation 3

the same relation. So there are seven distinct relations coming from triangle

singularities. They are described in Fig. 10–16. For clarity let us stress out

that relations 1,5,9 and 10 hold on a sphere with five holes, while relations

2,3 and 4 hold on a torus with three holes.

In the CW-complex setting, let us consider the 2-complex Γ̃0(Σ) defined

as follows. The vertices of Γ̃0(Σ) are all possible markings on the surface Σ,

and there is an edge between two vertices if there exists a transformation

of type I, II, III or IV relating the respective markings. The first set of

2-cells are the seven types of cells described in Fig.10–16. To these we add

the cells that express disjoint commutativity, called DC-cells, which come

from crossing singularities.
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Figure 13: Relation 4

Proposition 4.1. The 2-complex Γ̃0(Σ) is connected and simply con-

nected.

Proof. This is a consequence of the two theorems from Cerf theory

we cited previously, and the geometric interpretation given to markings. �

4.3. Reduction to fundamental moves and relations

As it is customary in topological quantum field theory, we will denote

the move I by F and the move IV by S. The other two moves can be

reduced to these two as seen in Fig. 17.

Regarding the relations between the moves, recall that Moore and

Seiberg [23] predicted a much smaller number of equations. The reduction
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Figure 14: Relation 5

to these is the content of the following proposition.

Proposition 4.2. Each of the cells arising from triangle singulari-

ties can be decomposed into some of the four fundamental cells described in

Fig. 18 and the commutativity DC-cells.

Some remarks before we proceed with the proof. We have to show that

each of the seven cells from above decomposes as a union of fundamental

cells. As stated, this is not quite true, since we must add some other cells,

the DC-cells, which express the disjoint commutativity between F and S.

Roughly speaking two operations (like F and S) with disjoint supports

commute with each other. The squares expressing the commutation are the
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Figure 15: Relation 9

DC-cells. The reason we need to consider these DC-cells is the fact that

we didn’t take into account the tensorial structure for the moment and are

thereby working with a fixed surface.

Proof. The decompositions are presented in Fig. 20 through Fig. 28.

Let us point out that, as shown in Fig. 19, the possibility of decomposing

the cells into fundamental cells does not depend on the way we expand the

moves II, III (the cells in Fig. 19 provide a homotopy between the two

ways to expand the moves).

Let us consider now a CW-complex of dimension 2, encoding all the

informations about markings and transformations. The vertices of the com-

plex Γ0(Σ) are all possible markings on the surface Σ (with or without
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Figure 16: Relation 10

boundary). There is an edge (unambiguously denoted F or S) between two

vertices if the corresponding transformation F (respectively S) relates the

respective markings. To this complex we attach the 2-cells described in

Fig. 18 and the DC-cells.

Proposition 4.3. The complex Γ0(Σ) is connected and simply-

connected.

Proof. The result is a consequence of Proposition 1.3 and Proposition

4.2. More precisely, from Proposition 3.1 we get that Γ̃0(Σ) is connected

and simply connected. The connectedness of Γ0(Σ) follows since each move

of type II or III is a composition of F and S. Notice that the decom-

positions are not unique. However, two different decompositions can be
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Figure 17: Reduction of II and III to F and S

Figure 18: Fundamental cells
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Figure 19: Decomposition of F 2

Figure 20: Decomposition of cell 2

homotoped one into the other via F -triangles and hexagonal (FSF )2-cells

respectively (see Fig. 19). Also note that the DC-cells made from arbitrary

moves I, II, III, IV decompose into DC-cells for F and S according to the

move decomposition. Furthermore the 2-cells in Γ̃0(Σ) are replaced by their
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Figure 21: Decomposition of cell 3

counterparts from Γ0(Σ), when the respective edges in Γ̃0(Σ) are decom-

posed. The latter decompose in Γ0(Σ) as unions of fundamental cells and

DC-cells. This proves the proposition. �

4.4. Overmarkings

Following Walker [28] we call a finite collection of disjoint simple closed

curves lying in the interior of a surface an overmarking. Such a family of

curves decomposes the surface into disks, annuli and pairs of pants, decom-

position which is also called a DAP-decomposition.
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Figure 22: Auxiliary cell for decomposition of cell 3

Given a fixed surface, we want to exhibit a set of generators and rela-

tions for the groupoid of transformations of overmarkings. A decomposition

containing only disks and pairs of pants is determined by the level sets of a

Morse function. The disks are semi-local models of points of index 0 and 2,

and the pairs of pants are semi-local models of points of index 1. By adding

annuli one adds circles that are isotopic to the given circles.

Like before, two decompositions can be transformed one into the other

along a good path, hence the elementary moves come from crossings of

critical points, and by introducing (expanding) or eliminating (contracting)

a finite number of annuli. In addition to the moves described in the previous

section, one has the moves described in Fig. 29, where we note that the first

comes from a birth or death point.

The new 2-cells are the ones produced by birth-death singularities

(Fig. 30. a), b)), swallow tail singularity (Fig. 30. c)), and disjoint commu-
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Figure 23: Decomposition of cell 4

tativity.

Consider now the groupoid of overmarkings and its associated 2-complex

Γ1(Σ). Remark that the groupoid is defined for any surface Σ, without

restrictions. Here the vertices are the overmarkings, the edges correspond

to the moves F, S,D,A between two interrelated overmarkings and the 2-

cells are four fundamental cells from the previous section, together with

those from figure 30 and all the DC-cells made out of the four elementary

moves. As a consequence of the above discussion and Proposition 4.3 we get
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Figure 24: Auxiliary cell for decomposition of cell 4

Figure 25: Auxiliary cell for decomposition of cell 4
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Figure 26: Decomposition of cell 5

Proposition 4.4. The 2-complex Γ1(Σ) is connected and simply con-

nected.

4.5. Rigid structures

Let us proceed with the proof of Theorem 3.5. Fix a surface Σ and con-

sider the 2-complex Γ(Σ) defined in Section 3. Recall that a rigid structure

consists of the following data:

1. An overmarking α inducing a DAP-decomposition of Σ.

2. Seams on the elementary surfaces of the DAP-decomposition.

3. Numberings of the boundary components of these elementary surfaces.

4. An ordering (segregated according to the topological type) of the sur-

faces in the DAP-decomposition.
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Figure 27: Decomposition of cell 9

The 2-cells of Γ(Σ) consist of:

1. One cell for each cycle of moves of type P when there is a correspond-

ing cell in the group of permutations (see Fig. 31).

2. A cell for each relation 1.a)-1.d). from Theorem 3.1.

3. A cell for relations 2.a) and 2.b) in Theorem 3.1, defining inverses.

4. For each fundamental cell in the complex of overmarkings one lifting

of this cell at the level of rigid structures. This means that we consider

some labeling of one vertex and one system of seams and then keep

tracking the labeling and the seams all over the boundary cell, possibly

using the operators P and R which permute the numberings, and the

twisting operators to change the seams configuration.

5. The DC-cells.
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Figure 28: Decomposition of cell 10

6. Four cells, each of which represents a lifting of one of the cells made

up from D and A. This means that we add seams and numberings to

the cells from Fig 30.

The liftings of the four fundamental cells are shown in Fig. 32 through

Fig. 35. Note that in Fig. 34 we have drawn only the closed seam. The

other seam is completely determined up to a twist around the boundary

component labeled by 1, thus can be ignored.

To conclude the proof of the theorem consider the canonical map f :

Γ(Σ) −→ Γ1(Σ) which forgets about the seams and numberings, is cellular

and has the following properties:
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Figure 29: Birth-death move

Figure 30: Birth-death cells
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Figure 31: An example of a permutation cell

1. f−1(z) is connected and simply connected for any 0-cell or 1-cell z of

Γ1(Σ),

2. for any 2-cell y of Γ1(Σ) there exists a 2-cell x in Γ(Σ) such that

f(x) = y.

Since Γ1(Σ) is connected and simply connected, standard results in alge-

braic topology (see also [2, 28]) imply that Γ(Σ) is connected and simply

connected as well.

The action of the mapping class group is given by f(Σ, r) = (Σ, f(r)),

where f(r) is the image of the rigid structure r through the homeomorphism

f . Since a homeomorphism is determined up to isotopy by the image of the

rigid structure, the action is free. This ends the proof of Theorem 3.5. �
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Figure 32: The pentagon

5. TQFT and Representations of the Duality Groupoid

5.1. Three-dimensional TQFT’s

For the sake of completeness we include some basic definitions concern-

ing topological quantum field theories, and refer to [27] for an extensive

treatment. Our presentation follows the lines developed in [10], and for

simplicity we skip the case of TQFT’s with anomaly, which are defined for

3-manifolds with an additional structure (p1-structure in [7] or a 2-framing
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Figure 33: The F -triangle

with Atiyah’s terminology). The latter are related to a Z-extension of our

duality groupoid, which corresponds to the central extensions from [22].

It is worth mentioning that, although the case of the extended groupoid is

analogous to the case of the non-extended one, all “interesting” TQFT’s are

extended, i.e. they arise for manifolds with additional structure. The situ-

ation is entirely similar to the description of highest weight representations

of Diff(S1): there are no highest weight representations of V ect(S1) but

there exist interesting representations (e. g. Verma modules) for the unique
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Figure 34: The S-triangle

central extension, namely the Virasoro algebra. This makes the presence of

a central charge necessary. We think that the same phenomenon holds for

the duality groupoid: if one asks the theory to have a unique cyclic vacuum

vector (corresponding to the cyclic vector of a Verma module), and one also

requires the theory to be unitary (i.e. to have positive energy) then we must

consider a somewhat canonical central extension, which gives rise to a p1-

structure for 3-manifolds (which is the analogue of the central charge of the

Virasoro algebra). The philosophy behind this correspondence is a principle
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Figure 35: The (FSF )2-cell
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known by the conformal field theory community, which basically says that

representations of the tower of mapping class groups (meaning unitary finite

dimensional representations of the duality groupoid giving rise to a TQFT)

correspond to representations of the Virasoro algebra. If one implication is

more or less understood, since physicists constructed CFT associated to all

highest weight (positive energy) irreducible representations of the Virasoro

algebra in both the discrete and the continuous series, and thus derived

TQFTs via the monodromy of conformal blocks, the other implication is

more difficult. We point out the references [1, 21, 3] where an action of the

Virasoro algebra is implicitly carried by the moduli space of curves with

local parameters around the punctures. Detailed proofs and constructions

of the conformal blocks coming from the highest weight representations are

given in [1, 3, 25, 26]. From this data (usually called CFT) we can construct

the TQFT in 3-dimensions (see for instance [11]).

Definition 5.1. A TQFT in dimension 3 is a representation of the

category of oriented 3-dimensional cobordisms into the category of hermitian

vector spaces V .

In other words a TQFT is a functor assigning to each oriented surface

Σ a hermitian vector space W (Σ). Then to each cobordism M between the

surfaces ∂+M and ∂M− one associates a linear map Z(M) : W (∂+M) →
W (∂−M). This data is subject to the following conditions:

1. If Σ is the surface with the orientation reversed then

W (Σ) =W (Σ)∗.

2. If ∪ denotes here disjoint union, then the following quantum rule holds:

W (Σ1 ∪ Σ2) =W (Σ1) ⊗W (Σ2).

3. If the cobordism M ◦N is the composition of the cobordisms M and

N then

Z(M ◦N) = Z(M) ◦ Z(N).

4. We assume that the ground field of the theory is C, and thus we put

W (∅) = C. The theory is called reduced if W (S2) = C holds, and we

will restrict ourselves to reduced theories in the sequel.
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5. We ask the theory to be topological, which means that Z(M) and

W (Σ) depend only on the topological type of the manifolds.

The spaces Wg = W (Σg) associated to a surface of genus g are also

called conformal blocks in genus g. The monodromy of the theory is the

series of mapping class group representations defined as follows. Assume

that Σg is a fixed standard surface of genus g. For any ϕ ∈ Mg consider

the mapping cylinder C(ϕ), and set

ρg(ϕ) = Z(C(ϕ)) ∈ End(Wg).

The theory is finite dimensional if all conformal blocks are finite dimen-

sional. Also the theory is said to be cyclic if for each g there is one orbit

(coming from the closs of a genuine manifold) of the mapping class group

Mgxg which spans linearly Wg. It is easy to show that in this case we can

take xg to be equal to the vector wg = Z(Hg, id) ⊂W (Σg) associated by the

TQFT to the standard handlebody Hg (the identification of its boundary

is by the identity map). This vector is called the vacuum vector in genus g.

It is shown in [10] that any topological invariant I for closed 3-manifolds

defines a series of representations of the mapping class group which extends

canonically to a TQFT. This is the maximal TQFT associated to the in-

variant I. Notice that the maximal TQFT is uniquely defined, but the

same invariant for closed manifolds can arise from several distinct TQFT’s.

Starting with a certain invariant of closed manifolds, which is the restriction

of a TQFT, Z0, and using the method described above, one derives another

TQFT, Z, which contains basically the same topological information.

As an example, the sl2(C)-TQFT described by Kirby and Melvin [18]

is not cyclic. The BHMV theories ([6, 7]) give rise to the same invariants

for closed manifolds, and are maximal by construction. Notice that, in

particular, all TQFT’s which are not cyclic induce representations of the

mapping class group which are not irreducible.

5.2. Representations of the mapping class group and TQFT

We know that any TQFT determines a series of representations of Mg.

The converse is also true since the latter determines the TQFT. We assume

from now on that the TQFT, Z is cyclic.

A cyclic TQFT has more structure hidden in the conformal blocks: for

instance using the connected sum of 3-manifolds along the boundary we
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derive that there is a natural (injective) homomorphism

Wg ⊗Wh ↪→Wg+h,

induced by wg+h = wg ⊗ wh. Call the sequence vg ∈ Wg a sequence of

vacuum vectors for the representations ρg if vg+h = vg⊗vh and ρg(M+
g )vg =

vg, for any g. Here M+
g denotes the mapping class group elements which

arise from homeomorphisms of Σg extending over the handlebody Hg. The

TQFT is said to have an unique vacuum if the vector v1 which is ρg(M+
1 )

is unique and therefore equal to w1 (up to a scalar).

Let us point out that the spaces Wg are naturally endowed with a her-

mitian form <,>:Wg ⊗Wg → C, given by

< X,Y >= Z(X ∪ Y ).

Here X,Y ∈ Wg are linear combinations of elements (Hg, ϕ) = ρg(ϕ)wg ∈
Wg. This follows from the fact that the theory is cyclic. It suffices then to

consider the case X = (Hg, ϕ1) and Y = (Hg, ϕ2), where ϕj ∈ Mg. The

right hand side is the invarinat of the manifold X ∪ Y , obtained by gluing

two handlebodies Hg ∪ ϕ1ϕ
−1
2 Hg, where Hg is the standard handlebody of

genus g.

The TQFT is non-degenerate if the hermitian form <,> is non-degener-

ate for all genera g. Obviously we can replace W (Σg) by Wg/ ker <,>

in order to make the theory non-degenerate, without really changing its

topological content. In particular the invariants of closed manifolds are the

same in both TQFT’s. A TQFT is called unitary if the non-degenerate form

<,> is positive definite. In this case the mapping class groups act onWg by

unitary operators since the hermitian form is Mg-invariant. The unitarity

of the main examples of TQFT’s, e.g. the SU(n)-TQFT, is the key point in

many applications, for instance in obtaining the lower bounds for the genus

of a knot.

We can now recover the invariant Z associated to closed 3-manifolds from

the representations ρ∗ and the hermitian form. The relationship between the

representation and the invariant arising in the SU(2)-TQFT was obtained

in [24]. Specifically we have the following result from [10]:

Propositon 5.1. Let M = Hg ∪ϕ Hg be a Heegaard splitting of the

manifold M , where ϕ denotes the gluing homeomorphism. Then

Z(M) = d−g < ρg(ϕ)wg, wg >,
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where d =< ρ1(ι)w1, w1 > is a normalization factor, ι being the gluing

map associated to the standard Heegaard splitting of S3 into two solid tori

(i.e. we choose the standard basis in the homology of the torus and ι =[
0 −1

1 0

]
∈ SL2(Z).)

5.3. Proof of Theorem 3.2

The proof of the theorem consists basically of the construction of the

representation of the 2-groupoid. We outline first the structure of a cyclic

unitary TQFT with an unique vacuum, along the lines of [10].

We define the primary conformal blocks W i
jk as follows. Let r be a

rigid structure on the surface Σg, made from the pants decomposition c, the

seams and the various numberings. On each trinion, the set of three seams

connecting the boundary components can be uniquely identified with the

boundary of the neighborhood of the graph Y embedded in the pants. More

precisely, Y is the graph topologically isomorphic to the letter Y and it is

properly embedded in the trinion. Let us then consider one such graph for

each trinion and then their union is a 3-valent graph Γ of genus g (possibly

with some additional leaves). The graph Γ encodes all the informations

carried by the set of seams. Notice that this is naturally embedded in the

surface Σg and thus there is a natural cyclic order on the edges around each

vertex. In the language of [10] we have a rigid structure, in fact equivalent

to those considered in this paper.

The label set A is the set of eigenvalues and their inverses for of the Dehn

twists Tcj around the curves cj in the pants decomposition. Fix a vertex v in

the graph Γ whose adjacent edges are e1, e2, e3 which are dual to the curves

c1, c2, c3 bounding a pair of pants p. Let us consider a vector wg(i1, i2, i3) ∈
Wg such that ρg(Tcα) has wg(i, j, k) an eigenvector of eigenvalue ij if α = j

and 1 otherwise. The span W (i1, i2, i3) of the orbit of the wg(i1, i2, i3) by

those elements of ρg(Mg which come from homeomorphisms of Mg which

have the support on the trinion p. It was proved in [10] that W (i, j, k) does

not depend of the choice of the vertex v, the rigid structure and the genus

of the surface Σg. Moreover, with the convention of adding orientations to

the edges of Γ such that on each vertex there are two incoming and one

outcoming edge, one obtains this way a well-defined space denoted W i1
i2i3

.

Of course one should add possible leaves to the graph, labeled all by 1,

which correspond to capping of the surface with disks. These correspond to
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the moves of type D.

We define now graphical rules of associating vector spaces to (partially

labeled) graphs. Consider an oriented trivalent graph whose edges are la-

beled. Each internal vertex has two incoming edges and one outgoing edge.

Consider the counter-clockwise cyclic order of the incident edges of a ver-

tex. If we label the edges by elements of the set A there is a non-ambiguous

way to associate to each internal vertex a vector space W ν
λµ such that ν is

the label of the outgoing edge, and the triple (λ, µ, ν) is cyclicly ordered.

We associate to the whole labeled graph Γ the tensor product of all spaces

associated to vertices. Finally if the graph has some of its edges with fixed

labels, take the sum of all the spaces obtained by the above construction,

over all possible labelings of the remaining edges and call this space W (Γ).

Remark that these conventions make sense for an arbitrary trivalent graph.

For a closed (oriented) surface Σg of genus g, endowed with the rigid

structure r we consider the subjacent pants decomposition. We associate

to the rigid structure the trivalent graph Γ ⊂ Σg, whose regular neighbor-

hood contains all seams. Notice that the rigid structure may contain an

overmarking instead of a pants decompositions. Then all the circles which

bound (equivalently all the leaves in the graph Γ) are labeled by the unit 1.

In [10] it is proved that:

Proposition 5.2. For a TQFT, Z which is unitary, cyclic and has

unique vacuum the conformal blocks decompose in terms of the primary

conformal blocks W i
jk. This means that there exists a set of labels A and

a set of vector spaces W i
jk with the property that for a rigid structure r

and a choice of a basis in each vector space W i
jk (i.e. we fix the internal

symmetries) there exists a canonical isomorphisms Φ(σ) :Wg →W (Γ).

Returning to the proof, consider two rigid structures σ and σ′ such that

σ = ϕσ′ for some ϕ ∈ Mg. It follows that the endomorphism of Wg given

by Φ(σ)Φ(σ′)−1 is equal to ρg(ϕ). For two arbitrary rigid structures σ and

σ′, there exists a unique element [σ, σ′] of the duality groupoid sending σ

into σ′. We associate to this element [σ, σ′] the isomorphisms of vector

spaces Φ([σ, σ′]) = Φ(σ′)−1Φ(σ) : W (Γ) → W (Γ′). We define in this way

a representation of the 2-groupoid. The only remark to add is that this

map is local, that is if σ, and σ′ are identical out of the rigid structures

σ0 and respectively σ′0 on some subsurface then Φ([σ, σ′]) = Φ([σ0, σ
′
0])⊗ 1,
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where 1 acts on the other factors of the tensor product, not coming from

the subsurface. This proves the theorem.

As a final remark, the representation of the duality groupoid for the

case of the BHMV topological quantum field theory [6, 7] was given in [12].

The fact that the topological quantum field theory from [18] is not cyclic

produces a sign obstruction for constructing a representation of the duality

groupoid in this case. One can construct a representation of an extension

of this groupoid obtained by adding auxiliary structure on the boundary of

3-manifolds [13].
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