Residue Formulae for Secondary Characteristic Classes

By Syn-ya Metoki*

Abstract

For a codimension q foliation τ and a vector field X which preserves τ, we can define the residues of residual secondary characteristic classes as the cohomology classes of the singular set of X. We calculate the residues for the examples which are generalizations of those given by Heitsch([He2]).

§1. Introduction

In this paper we construct examples of residues of secondary characteristic classes, which are generalization of the results of Heitsch([He2]).

Let τ be a codimension q foliation on a manifold M, and X a vector field on M. We assume that X preserves τ and that its singular set (the set of points where X is tangent to τ) is a single leaf N of τ. For a residual element $\varphi \in I_{q}\left(W O_{q}\right)$, we can define a certain cohomology class in $H^{\operatorname{deg} \varphi-q}(N)$, called the residue of τ, X and φ at N (see $\S 2$).

In [He2], Heitsch constructed examples of many non-trivial residues and showed that they are parametrized by non-zero real numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{q}$, hence they vary continuously. In this paper we generalize the examples of Heitsch. Moreover we can observe that locally they realize the geometrical limits of the examples of Heitsch when some of λ_{i} 's go to 0 (see below).

Let $G=\mathrm{SL}_{2} \mathbf{R} \times \cdots \times \mathrm{SL}_{2} \mathbf{R}\left(q\right.$-times), $K=\mathrm{SO}_{2} \times \cdots \times \mathrm{SO}_{2}(q-$ times) and Γ be a discrete subgroup of G such that $\Gamma \backslash G / K$ is a compact manifold. We define a certain action of $G \times \mathbf{R}^{n}$ on $\mathbf{R}^{2 q+n}$ and obtain a codimension $2 q+n$ foliation τ of the foliated $\mathbf{R}^{2 q+n}$-bundle $T^{n} M=$ $\left(\Gamma \times \mathbf{Z}^{n} \backslash G \times \mathbf{R}^{n}\right) \times{ }_{K} \mathbf{R}^{2 q+n} \longrightarrow N \times T^{n}=(\Gamma \backslash G / K) \times T^{n}$. Choose nonzero numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{q}, \mu_{1}, \mu_{2}, \ldots, \mu_{n} \in \mathbf{R}$ and let

$$
X_{\lambda, \mu}=\sum_{i=1}^{q} \lambda_{i}\left(x_{i} \frac{\partial}{\partial x_{i}}+y_{i} \frac{\partial}{\partial y_{i}}\right)+\sum_{j=1}^{n} \mu_{j} z_{j} \Psi_{j}\left(z_{j}\right) \frac{\partial}{\partial z_{j}},
$$

[^0]be a vector field on $\mathbf{R}^{2 q+n}$, where $\Psi_{1}\left(z_{1}\right), \ldots, \Psi_{n}\left(z_{n}\right)$ are certain functions defined in $\S 3$. $X_{\lambda, \mu}$ has an isolated singularity at the origin and commutes with the action of $G \times \mathbf{R}^{n}$. It induces a vector field $X_{\lambda, \mu}$ on $T^{n} M$ which preserves τ. The singular set of $X_{\lambda, \mu}$ is now just the zero section $N \times T^{n}=$ $(\Gamma \backslash G / K) \times T^{n}$. Let $\varphi \in I_{2 q+n}\left(W O_{2 q+n}\right)$ with $\operatorname{deg} \varphi=4 q+2 n$. We can regard φ as an element in $I^{2 q+n}\left(g l_{2 q+n}\right)$.

The main theorem of this paper is the following.
Theorem 3.1. Let $T^{n} M, N \times T^{n}, \tau, X_{\lambda, \mu}$ and φ be as above. Then

$$
\begin{aligned}
& \operatorname{Res}_{\varphi}\left(\tau, X_{\lambda, \mu}, N \times T^{n}\right) \\
& \quad=\frac{2^{n} \pi^{q} \varphi(\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}, \ldots, \lambda_{q}, \lambda_{q}, \overbrace{0, \ldots, 0}^{n-\text { times }})}{\left(\lambda_{1} \cdots \lambda_{q}\right)^{2} \mu_{1} \cdots \mu_{n}}\left[W_{N} \wedge W_{T^{n}}\right]
\end{aligned}
$$

where W_{N} and $W_{T^{n}}=d t_{1} \wedge d t_{2} \wedge \cdots \wedge d t_{n}$ are volume forms on N and T^{n}, respectively.

The case of $n=0,1$ are already given by Heitsch. However we can consider that the example of residues given by this theorem gives the locally geometrical limit of that of Heitsch.

For example, if $n=0$, we have the following residue in the cohomology class of a product of p surfaces of higher genus $N=\Sigma_{1} \times \Sigma_{2} \times \ldots \times \Sigma_{p}$:

$$
\frac{\pi^{p} \varphi\left(\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}, \ldots, \lambda_{p}, \lambda_{p}\right)}{\left(\lambda_{1} \cdots \lambda_{p}\right)^{2}}\left[W_{N}\right] \in H^{2 p}(N)
$$

Note that the coefficient is determined only by the ratio of λ_{i} 's since the numerator and the denominator are both homogeneous of degree $2 p$ in λ_{i} 's. We can assume that the area of the i-th surface Σ_{i} is $1 / \lambda_{i}{ }^{2}$. Although when $\lambda_{p} \rightarrow 0$ this coefficient diverges, if we restrict it to some domain $D \subset \Sigma_{p}$ whose area is constantly equal to 1 , the above residue does converge to

$$
\begin{align*}
& \frac{\pi^{p} \varphi\left(\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}, \ldots, \lambda_{p-1}, \lambda_{p-1}, 0,0\right)}{\left(\lambda_{1} \cdots \lambda_{p-1}\right)^{2}}\left[W_{N^{\prime}} \wedge W_{D}\right] \tag{1.1}\\
& \quad \in H^{2 p}\left(N^{\prime} \times D\right)
\end{align*}
$$

where $N^{\prime}=\Sigma_{1} \times \Sigma_{2} \times \ldots \times \Sigma_{p-1}$ and $W_{N^{\prime}}$ is its volume form. From the geometrical point of view, $\lambda_{p} \rightarrow 0$ means the curvature of the domain D
goes to 0 . In the formula of our theorem, by putting $q=p-1$ and $n=2$, we have the following residue in the cohomology group of $N^{\prime} \times T^{2}$,

$$
\begin{align*}
& \frac{4 \pi^{p} \varphi\left(\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}, \ldots, \lambda_{p-1}, \lambda_{p-1}, 0,0\right)}{\left(\lambda_{1} \cdots \lambda_{p-1}\right)^{2} \mu_{1} \mu_{2}}\left[W_{N^{\prime}} \wedge W_{T^{2}}\right] \tag{1.2}\\
& \quad \in H^{2 p}\left(N^{\prime} \times T^{2}\right)
\end{align*}
$$

After taking a suitable domain $D^{\prime} \subset T^{2}$ whose curvature is also 0 , the restriction of (1.2) to $N^{\prime} \times D^{\prime}$ gives the same formula as (1.1). In this sense, we can interpret our formula as a local geometrical limit of that of Heitsch.

In $\S 2$, we review the construction of secondary characteristic classes and of residues.

In $\S 3$, we construct examples of variation of residues for a certain class of residual secondary characteristic classes.

In $\S 4$, we extend the result of $\S 3$ for more general residual secondary characteristic classes.

§2. Preliminaries

We briefly recall the construction of the secondary characteristic classes for foliations and the residue formulae for the residual classes. In this paper we will consider only C^{∞} - objects.

Let $\mathrm{GL}_{q}=\mathrm{GL}_{q} \mathbf{R}$ be the real general linear group and $g l_{q}=g l_{q} \mathbf{R}$ its Lie algebra. We define the Chern polynomials $c_{1}, c_{2}, \ldots, c_{q}$ on $g l_{q}$ by

$$
\operatorname{det}\left(t I_{q}-\frac{1}{2 \pi} A\right)=\sum_{i=1}^{q} t^{q-i} c_{i}(A)
$$

where $I_{q} \in g l_{q}$ is identity matrix and $A \in g l_{q}$. Denote by $I^{*}\left(\mathrm{GL}_{q}\right)$ the graded algebra of adjoint invariant polynomials on $g l_{q}$. It is well-known that $I^{*}\left(\mathrm{GL}_{q}\right)$ is a polynomial algebra generated by the Chern polynomials $c_{1}, c_{2}, \ldots, c_{q}$:

$$
I^{*}\left(\mathrm{GL}_{q}\right)=\mathbf{R}\left[c_{1}, c_{2}, \ldots, c_{q}\right]
$$

For any manifold M, we denote by $A^{*}(M)$ the algebra of differential forms on M. For any vector bundle $E \longrightarrow M$, we denote by $\Gamma(E)$ the space of smooth sections of E

Let τ be a codimension q foliation on an n-dimensional manifold M and ν its normal bundle. We call a connection θ on ν is basic for τ if its covariant derivative ∇ satisfies

$$
\nabla_{Y} \Pi(Z)=\Pi([Y, Z])
$$

for all $Y \in \Gamma(\tau)$ and $Z \in \Gamma(T M)$. Here $\Pi: T M \longrightarrow \nu=T M / \tau$ is the natural projection.

Choose a basic connection θ^{b} on ν for τ and a metric connection θ^{r} on ν associated with a fiber metric on ν. For $\varphi \in I^{k}\left(\mathrm{GL}_{q}\right)$, set

$$
\Delta_{\varphi}\left(\theta^{b}, \theta^{r}\right)=k \int_{0}^{1} \varphi(\theta^{b}-\theta^{r}, \overbrace{\Omega^{t}, \ldots, \Omega^{t}}^{(k-1)-\text { times }}) d t
$$

where Ω^{t} is the curvature of the connection $t \theta^{b}+(1-t) \theta^{r}$ on ν. Here φ is considered as a homogeneous symmetric tensors of degree k. It is wellknown that

$$
d \Delta_{\varphi}\left(\theta^{b}, \theta^{r}\right)=\varphi\left(\Omega^{b}\right)-\varphi\left(\Omega^{r}\right)
$$

where Ω^{b} and Ω^{r} is the curvature of θ^{b} and θ^{r}, respectively. In particular, if i is odd, we have $d \Delta_{c_{i}}\left(\theta^{b}, \theta^{r}\right)=c_{i}\left(\Omega^{b}\right)$ because $c_{i}\left(\Omega^{r}\right)=0$.

Let $\wedge\left(h_{1}, h_{3}, \ldots, h_{2\left[\frac{(q-1)}{2}\right]+1}\right)$ be the exterior algebra generated by h_{i} 's with $\operatorname{deg} h_{i}=2 i-1$, and $\mathbf{R}\left[c_{1}, c_{2}, \ldots, c_{q}\right]$ the polynomial algebra generated by c_{j} 's with $\operatorname{deg} c_{j}=2 j$. Then we define the differential graded algebra ($W O_{q}, d$) by

$$
W O_{q}=\wedge\left(h_{1}, h_{3}, \ldots, h_{2\left[\frac{(q-1)}{2}\right]+1}\right) \otimes \mathbf{R}_{q}\left[c_{1}, c_{2}, \ldots, c_{q}\right]
$$

where $\mathbf{R}_{q}\left[c_{1}, c_{2}, \ldots, c_{q}\right]$ is the quotient algebra of $\mathbf{R}\left[c_{1}, c_{2}, \ldots, c_{q}\right]$ by the ideal generated by elements of degree greater than $2 q$. The differential $d: W O_{q} \longrightarrow W O_{q}$ is given by

$$
\left\{\begin{array}{l}
d\left(h_{i} \otimes 1\right)=c_{i} \\
d\left(1 \otimes c_{i}\right)=0
\end{array}\right.
$$

Let

$$
\alpha_{\tau}: W O_{q} \longrightarrow A^{*}(M)
$$

be an algebra homomorphism defined by $\alpha_{\tau}\left(h_{i}\right)=\Delta_{c_{i}}\left(\theta^{b}, \theta^{r}\right)$ and by $\alpha_{\tau}\left(c_{j}\right)=c_{j}\left(\Omega^{b}\right)$. It is well-defined since $c_{j_{1}}\left(\Omega^{b}\right) \cdots c_{j_{\ell}}\left(\Omega^{b}\right)=0$ for $j_{1}+$
$\cdots+j_{\ell}>2 q$ by the Bott vanishing theorem. Since $d \alpha_{\tau}\left(h_{i}\right)=\alpha_{\tau}\left(d h_{i}\right)$ and $d \alpha_{\tau}\left(c_{j}\right)=\alpha_{\tau}\left(d c_{i}\right)=0, \alpha_{\tau}$ is a cochain map of degree zero and so it induces a homomorphism

$$
\alpha_{\tau}^{*}: H^{*}\left(W O_{q}\right) \longrightarrow H^{*}(M)
$$

By the convexity of the set of basic connections and also of metric connections, α_{τ}^{*} is independent of the choices of θ^{b} and θ^{r}.

A vector field $X \in \Gamma(T M)$ is called a Γ-vector field for τ if it satisfies $[X, Y] \in \Gamma(\tau)$ for any $Y \in \Gamma(\tau)$. For a Γ-vector field X, the singular set of X is defined to be the set of points of M where X is tangent to τ. Since the normal components of a Γ-vector field are constant along the leaves of τ, the singular set is a union of leaves of τ. To carry out a theory of residues, the singular set of X has only to be a union of closed and seperated leaves of τ. For simplicity, however, we assume that the singular set of X is a single leaf N. Choose an embedded open normal disc bundle D over N in M so that its closure \bar{D} is an embedded normal disc bundle.

For a Γ-vector field X and a neighborhood U of $M-D$ in $M-N$, a basic connection θ for τ is called a basic X-connection supported off U if on U its covariant derivative ∇ satisfies

$$
\nabla_{X} \Pi(Y)=\Pi([X, Y])
$$

for any $Y \in \Gamma(T M)$. Here $\Pi: T M \longrightarrow \nu=T M / \tau$ is a natural projection. Such a connection always exists since τ and X span codimension $q-1$ foliation on U.

Let $I_{q}\left(W O_{q}\right)$ be the ideal in $W O_{q}$ generated by the elements of the form $c_{J}=c_{j_{1}} \cdots c_{j_{k}}$ with $|J|=q$. On $M-N, \tau$ and X span codimension $(q-1)$ foliation. Thus, by the Bott vanishing theorem, for $\varphi \in I_{q}\left(W O_{q}\right)$ the restriction $\left.\alpha_{\tau}(\varphi)\right|_{D}$ is a differential form with fiber compact support provided we use a basic X-connection θ_{X} in the construction of $\alpha_{\tau}: W O_{q} \longrightarrow A^{*}(M)$. Since $d \varphi=0,\left.\alpha_{\tau}(\varphi)\right|_{D}$ is a closed form on D and then $\left[\left.\alpha_{\tau}(\varphi)\right|_{D}\right] \in H_{c}^{\operatorname{deg} \varphi}(D)$. Here H_{c}^{*} means an cohomology algebra of closed differential forms with fiber compact support. Let $\gamma_{D}: H_{c}^{\operatorname{deg} \varphi}(D) \longrightarrow H^{\operatorname{deg} \varphi-q}(N)$ be the map induced by the integration along the fibers of the q disc bundle $D \longrightarrow N$.

Definition 2.1. Let M, τ, N, X, D and θ_{X} be as above. For $\varphi \in$ $I_{q}\left(W O_{q}\right)$, the residue of φ, τ and X at N is a cohomology class given by

$$
\operatorname{Res}_{\varphi}(\tau, X, N)=\gamma_{D}\left(\left[\left.\alpha_{\tau}(\varphi)\right|_{D}\right]\right) \in H^{\operatorname{deg} \varphi-q}(N)
$$

where the basic connection used in the construction of $\alpha_{\tau}: W O_{q} \longrightarrow A^{*}(M)$ is the basic X-connection θ_{X}.

In fact $\operatorname{Res}_{\varphi}(\tau, X, N)$ is independent of the choices of embedded open normal disc bundles and basic X-connections. ([He2] Theorem 3.11)

The following lemma will be useful for us later.
Lemma 2.2 ([He2] Lemma 4.15). Let M, τ, N, X and D be as above. Let θ be a connection on ν over M with curvature Ω. If θ restricted to ν over the boundary S of D agrees with the restriction to ν over S of some basic X-connection supported off a neighborhood of S. Then for $c_{J} \in I_{q}\left(W O_{q}\right)$ with $|J|=q$,

$$
\operatorname{Res}_{c_{J}}(\tau, X, N)=\gamma_{D}\left[\left.c_{J}(\Omega)\right|_{D}\right]
$$

§3. Examples

In this section, we construct our main example. Let $G=$ $\overbrace{\mathrm{SL}_{2} \mathbf{R} \times \cdots \times \mathrm{SL}_{2} \mathbf{R}}^{q-\text { times }}$ and $K=\overbrace{\mathrm{SO}_{2} \times \cdots \times \mathrm{SO}_{2}}^{q-\text { times }}$. We define the action of $G \times \mathbf{R}^{n}$ on $\mathbf{R}^{2 q+n}$, as follows. The action of $G \subset G \times \mathbf{R}^{n}$ is given by the natural inclusion $G \longrightarrow \mathrm{GL}_{2 q+n} \mathbf{R}$ with $A \mapsto\left(\begin{array}{cc}A & 0 \\ 0 & 1_{n}\end{array}\right)$. To define the action of $\mathbf{R}^{n} \subset G \times \mathbf{R}^{n}$ on $\mathbf{R}^{2 q+n}$, we choose even functions $\Psi_{j}\left(z_{j}\right)$ for $j=1,2, \ldots, n$ such that
i) $0<\Psi_{j}\left(z_{j}\right) \leq 1$ for all $z_{j} \neq 0$,
ii) $\Psi_{j}\left(z_{j}\right)$ are strictly increasing on the interval $(0,1 / 2)$,
iii) $\Psi_{j}\left(z_{j}\right)=1$ if $z_{j} \geq 1 / 2$,
iv) $\Psi_{j}\left(z_{j}\right)$ and all its derivatives are zero at $z_{j}=0$.

Let $\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{q}, y_{q}, z_{1}, \ldots, z_{n}\right)$ be coordinates on $\mathbf{R}^{2 q+n}$ and $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ coordinates on $\mathbf{R}^{n} \subset G \times \mathbf{R}^{n}$. On the Lie algebra level, the action of $\mathbf{R}^{n} \subset G \times \mathbf{R}^{n}$ on $\mathbf{R}^{2 q+n}$ is given by

$$
\frac{\partial}{\partial t_{j}} \longmapsto-\left|z_{j}\right| \Psi_{j}\left(z_{j}\right) \frac{\partial}{\partial z_{j}}
$$

for all $j=1,2, \ldots, n$.
Choose non-zero numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{q}, \mu_{1}, \mu_{2}, \ldots, \mu_{n} \in \mathbf{R}$ and set

$$
X_{\lambda, \mu}=\sum_{i=1}^{q} \lambda_{i}\left(x_{i} \frac{\partial}{\partial x_{i}}+y_{i} \frac{\partial}{\partial y_{i}}\right)+\sum_{j=1}^{n} \mu_{j} z_{j} \Psi_{j}\left(z_{j}\right) \frac{\partial}{\partial z_{j}}
$$

$X_{\lambda, \mu}$ has an isolated singularity at the origin and commutes with the action of $G \times \mathbf{R}^{n}$. Thus we obtain a codimension $2 q+n$ foliation τ of the bundle

$$
T^{n} M=\left(\Gamma \times \mathbf{Z}^{n} \backslash G \times \mathbf{R}^{n}\right) \times{ }_{K} \mathbf{R}^{2 q+n} \longrightarrow N \times T^{n}=(\Gamma \backslash G / K) \times T^{n}
$$

transverse to the fibers and a Γ-vector field $X_{\lambda, \mu}$ for τ ([He2] p.437-438). Here Γ is a uniform discrete subgroup of G such that $\Gamma \backslash G / K$ is a compact manifold. Note that the singular set of $X_{\lambda, \mu}$ is just the zero section $N \times T^{n}=$ $(\Gamma \backslash G / K) \times T^{n}$.

Suppose $\varphi \in I_{2 q+n}\left(W O_{2 q+n}\right)$ with $\operatorname{deg} \varphi=4 q+2 n$. Then φ is a polynomial in the c_{i} 's and thus we can regard φ as an element of $I^{2 q+n}\left(\mathrm{GL}_{2 q+n}\right)$. We write $\varphi\left(\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}, \ldots, \lambda_{q}, \lambda_{q}, 0, \ldots, 0\right)$ for φ applied to the diagonal matrix $\operatorname{diag}\left(\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}, \ldots, \quad \lambda_{q}, \lambda_{q}, 0, \ldots, 0\right) \in g l_{2 q+n}$.

Theorem 3.1. Let $T^{n} M, N \times T^{n}, \tau, X_{\lambda, \mu}$ and φ be as above. Then

$$
\begin{aligned}
& \operatorname{Res}_{\varphi}\left(\tau, X_{\lambda, \mu}, N \times T^{n}\right) \\
& \quad=\frac{2^{n} \pi^{q} \varphi(\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}, \ldots, \lambda_{q}, \lambda_{q}, \overbrace{0, \ldots, 0}^{n-\text { times }})}{\left(\lambda_{1} \cdots \lambda_{q}\right)^{2} \mu_{1} \cdots \mu_{n}}\left[W_{N} \wedge W_{T^{n}}\right],
\end{aligned}
$$

where W_{N} and $W_{T^{n}}=d t_{1} \wedge d t_{2} \wedge \cdots \wedge d t_{n}$ are volume forms on N and T^{n}, respectively.

Proof.

Let $\omega_{\lambda, \mu}$ be the 1-form on $\mathbf{R}^{2 q+n}$ given by

$$
\omega_{\lambda, \mu}=\sum_{i=1}^{q} \lambda_{i}\left(x_{i} d x_{i}+y_{i} d y_{i}\right)+\sum_{j=1}^{n} \mu_{j} z_{j} \Psi_{j}\left(z_{j}\right) d z_{j}
$$

The action of K on $\mathbf{R}^{2 q+n}$ preserves $\omega_{\lambda, \mu}$ so it induces a 1-form on $T^{n} M$ also denoted by $\omega_{\lambda, \mu}$. We denote by $T \mathbf{R}^{2 q+n} \longrightarrow T^{n} M$ the tangent bundle
along the fiber of $T^{n} M \longrightarrow N \times T^{n}$. We can identify $T \mathbf{R}^{2 q+n} \longrightarrow T^{n} M$ with the normal bundle ν for τ.

Let θ be the unique basic connection on $T \mathbf{R}^{2 q+n}$ whose covariant derivative ∇ satisfies

$$
\begin{aligned}
& \nabla_{Y} \frac{\partial}{\partial x_{i}}=\omega_{\lambda, \mu}(Y)\left[X_{\lambda, \mu}, \frac{\partial}{\partial x_{i}}\right] \text { for all } Y \in T \mathbf{R}^{2 q+n} \text { and } i=1,2, \ldots, q \\
& \nabla_{Y} \frac{\partial}{\partial y_{i}}=\omega_{\lambda, \mu}(Y)\left[X_{\lambda, \mu}, \frac{\partial}{\partial y_{i}}\right] \text { for all } Y \in T \mathbf{R}^{2 q+n} \text { and } i=1,2, \ldots, q \\
& \nabla_{Y} \frac{\partial}{\partial z_{j}}=\omega_{\lambda, \mu}(Y)\left[X_{\lambda, \mu}, \frac{\partial}{\partial z_{j}}\right] \text { for all } Y \in T \mathbf{R}^{2 q+n} \text { and } j=1,2, \ldots, n
\end{aligned}
$$

θ is well-defined.
We denote by $S \longrightarrow N \times T^{n}$ the sphere subbundle in $T^{n} M \longrightarrow N \times T^{n}$ which is given by

$$
S=\left\{\rho((g, x)) \mid \sum_{i=1}^{q} \lambda_{i}^{2}\left(x_{i}^{2}+y_{i}^{2}\right)+\sum_{j=1}^{n} \mu_{j}^{2} z_{j}^{2} \Psi_{j}\left(z_{j}\right)^{2}=1\right\}
$$

Here $g \in G \times \mathbf{R}^{n}, x=\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{q}, y_{q}, z_{1}, \ldots, z_{n}\right) \in \mathbf{R}^{2 q+n}$ and $\rho: G \times \mathbf{R}^{n} \times \mathbf{R}^{2 q+n} \longrightarrow T^{n} M=\left(\Gamma \times \mathbf{Z}^{n} \backslash G \times \mathbf{R}^{n}\right) \times{ }_{K} \mathbf{R}^{2 q+n}$ is the natural projection. Restricted to S, θ is the basic $X_{\lambda, \mu}$-connection for τ. By LEMMA 2.2, we can use θ to compute the residue of τ and $X_{\lambda, \mu}$ provided we integrate along the fiber of the disc bundle $D \longrightarrow N \times T^{n}$ given by

$$
D=\left\{\rho((g, x)) \mid \sum_{i=1}^{q} \lambda_{i}^{2}\left(x_{i}^{2}+y_{i}^{2}\right)+\sum_{j=1}^{n} \mu_{j}^{2} z_{j}^{2} \Psi_{j}\left(z_{j}\right)^{2} \leq 1\right\}
$$

Locally τ is spanned by vector fields of the forms

$$
\begin{gathered}
Y_{i}+y_{i} \frac{\partial}{\partial x_{i}} \text { for } i=1,2, \ldots, q \\
Z_{i}+\frac{1}{2}\left(x_{i} \frac{\partial}{\partial x_{i}}-y_{i} \frac{\partial}{\partial y_{i}}\right) \text { for } i=1,2, \ldots, q
\end{gathered}
$$

and

$$
\frac{\partial}{\partial t_{j}}+\left|z_{j}\right| \Psi_{j}\left(z_{j}\right) \frac{\partial}{\partial z_{j}} \text { for } j=1,2, \ldots, n
$$

Here Y_{i} and Z_{i} are the local vector fields corresponding to the elements $\left(\begin{array}{rr}0 & -1 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{rr}-1 / 2 & 0 \\ 0 & 1 / 2\end{array}\right)$, respectively, which lies in the i-th block of the Lie algebra of G. Let ω_{i}, γ_{i} and $d t_{j}$ be the dual 1-forms of Y_{i}, Z_{i} and $\partial / \partial t_{j}$, respectively for $i=1,2, \ldots, q$ and $j=1,2, \ldots, n$. These 1 -forms satisfy

$$
\begin{gathered}
d \omega_{i}=-\omega_{i} \wedge \gamma_{i} \text { for } i=1,2, \ldots, q \\
d \gamma_{i}=0 \text { for } i=1,2, \ldots, q
\end{gathered}
$$

and

$$
d\left(d t_{i}\right)=0 \text { for } j=1,2, \ldots, n
$$

For the convenience, we use the following notations,

$$
\left|a_{j}\right|=\left|z_{j}\right| \Psi_{j}\left(z_{j}\right) \text { for } j=1,2, \ldots, n
$$

and

$$
a_{j}=z_{j} \Psi_{j}\left(z_{j}\right) \text { for } j=1,2, \ldots, n
$$

Set

$$
\begin{gathered}
\delta_{i}=x_{i} y_{i} \omega_{i}+\frac{1}{2}\left(x_{i}^{2}-y_{i}^{2}\right) \gamma_{i} \text { for } i=1,2, \ldots, q \\
\varepsilon_{i}=a_{i}\left|a_{i}\right| d t_{i} \text { for } i=1,2, \ldots, n, \\
\lambda \delta=\lambda_{1} \delta_{1}+\lambda_{2} \delta_{2}+\cdots+\lambda_{q} \delta_{q}
\end{gathered}
$$

and

$$
\mu \varepsilon=\mu_{1} \varepsilon_{1}+\mu_{2} \varepsilon_{2}+\cdots+\mu_{n} \varepsilon_{n}
$$

With these notations, the local connection form $\theta=\left(\theta_{j}^{i}\right)_{i, j=1,2, \ldots, 2 q+n}$, computed with respect to the local basis

$$
\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial x_{q}}, \frac{\partial}{\partial y_{q}}, \frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{n}}
$$

of $T \mathbf{R}^{2 q+n}$, is given by

$$
\begin{aligned}
\theta_{2 i-1}^{2 i-1} & =\lambda_{i}\left(-\omega_{\lambda, \mu}+\lambda \delta+\mu \varepsilon\right)-\frac{1}{2} \gamma_{i} \text { for } i=1,2, \ldots, q \\
\theta_{2 i}^{2 i} & =\lambda_{i}\left(-\omega_{\lambda, \mu}+\lambda \delta+\mu \varepsilon\right)+\frac{1}{2} \gamma_{i} \text { for } i=1,2, \ldots, q
\end{aligned}
$$

$$
\begin{gathered}
\theta_{2 i}^{2 i-1}=-\omega_{i} \text { for } i=1,2, \ldots, q \\
\theta_{2 q+j}^{2 q+j}=\mu_{j} a_{j}^{\prime}\left(-\omega_{\lambda, \mu}+\lambda \delta+\mu \varepsilon\right)-\left|a_{j}\right|^{\prime} d t_{j} \text { for } i=1,2, \ldots, n,
\end{gathered}
$$

and all other entries are zero. Then the local curvature form $\Omega=$ $\left(\Omega_{j}^{i}\right)_{i, j=1,2, \ldots, 2 q+n}$ is given by

$$
\begin{gathered}
\Omega_{2 i-1}^{2 i-1}=\Omega_{2 i}^{2 i}=\lambda_{i}(d \lambda \delta+d \mu \varepsilon) \text { for } i=1,2, \ldots, q, \\
\Omega_{2 q+j}^{2 q+j}=\mu_{j} a_{j}^{\prime}(d \lambda \delta+d \mu \varepsilon)+\mu_{j} a_{j}^{\prime \prime} d z_{j} \wedge\left(-\omega_{\lambda, \mu}+\lambda \delta+\mu \varepsilon\right)-\left|a_{j}\right|^{\prime \prime} d z_{j} \wedge d t_{j} \\
\text { for } j=1,2, \ldots, n,
\end{gathered}
$$

and all other entries are zero.
We may eliminate the terms $\mu_{j} a_{j}^{\prime \prime} d z_{j} \wedge\left(-\omega_{\lambda, \mu}+\lambda \delta\right)$ from $\Omega_{2 q+j}^{2 q+j}$ because these terms can never yield a non-zero element when they are wedged with $\left\{d t_{j}\right\}_{j=1,2, \ldots, n}$ since all $\left\{d t_{j}\right\}_{j=1,2, \ldots, n}$ occur as $\left\{d z_{j} \wedge d t_{j}\right\}_{j=1,2, \ldots, n} . \varphi(\Omega)$ is a volume form on $T^{n} M$ and it must contain all $d t_{j}$'s.

Note that all functions of z_{j} 's in Ω are even functions, we may replace $\left|a_{j}\right|$ by $a,\left|a_{j}\right|^{\prime}$ by a^{\prime} and $\left|a_{j}\right|^{\prime \prime}$ by $a^{\prime \prime}$ provided we integrate $\varphi(\Omega)$ only over the portion of the fiber of the disc bundle where $z_{1} \geq 0, z_{2} \geq 0, \ldots, z_{n} \geq 0$.

Now $\varphi(\Omega)$ is hard to compute. So we construct useful polynomial functions on $g l_{2 q+n}$ as follows. Define

$$
\operatorname{Tr}_{k}(A)=\operatorname{trace}\left(A^{k}\right) \text { for } A \in g l_{2 q+n} \text { and } k=1,2, \ldots, 2 q+n
$$

By the Newton formula, remark that

$$
\mathbf{R}\left[c_{1}, c_{2}, \ldots, c_{2 q+n}\right]=\mathbf{R}\left[\operatorname{Tr}_{1}, \operatorname{Tr}_{2}, \ldots, \operatorname{Tr}_{2 q+n}\right]
$$

Since $\operatorname{Res}_{\varphi}\left(\tau, X_{\lambda, \mu}, N \times T^{n}\right)$ is linear in φ, we can assume that φ is of the form

$$
\varphi=c_{k_{1}} c_{k_{2}} \cdots c_{k_{p}} \text { with } k_{1}+k_{2}+\cdots+k_{p}=2 q+n
$$

Moreover, using the above remark, we can assume that φ is of the form

$$
\varphi=\operatorname{Tr}_{m_{1}} \operatorname{Tr}_{m_{2}} \cdots \operatorname{Tr}_{m_{r}} \text { with } m_{1}+m_{2}+\cdots+m_{r}=2 q+n
$$

Since $\Omega=\left(\Omega_{j}^{i}\right)_{i, j=1,2, \ldots, 2 q+n}$ is a diagonal matrix, $\Omega^{m}=$ $\left(\left(\Omega^{m}\right)_{j}^{i}\right)_{i, j=1,2, \ldots, 2 q+n}$ is computed as follows.

$$
\begin{aligned}
\left(\Omega^{m}\right)_{2 i-1}^{2 i-1}= & \left(\Omega^{m}\right)_{2 i}^{2 i}=\lambda_{i}^{m}(d \lambda \delta+d \mu \varepsilon)^{m} \text { for } i=1,2, \ldots, q \\
\left(\Omega^{m}\right)_{2 q+j}^{2 q+j}= & \left(\mu_{j} a_{j}^{\prime}\right)^{m}(d \lambda \delta+d \mu \varepsilon)^{m} \\
& +m\left(\mu_{j} a_{j}^{\prime}\right)^{m-1}(d \lambda \delta+d \mu \varepsilon)^{m-1} \\
& \wedge \mu_{j} a_{j}^{\prime \prime} d z_{j} \wedge\left(\mu \varepsilon-\mu_{j}^{-1} d t_{j}\right) \text { for } j=1,2, \ldots, n
\end{aligned}
$$

If we denote by $P_{\lambda, \mu}$ the diagonal matrix $\operatorname{diag}\left(\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}, \ldots, \lambda_{q}, \lambda_{q}\right.$, $\left.\mu_{1} a_{1}^{\prime}, \ldots, \mu_{n} a_{n}^{\prime}\right)$, we can write

$$
\begin{aligned}
\operatorname{Tr}_{m}(\Omega)= & \operatorname{Tr}_{m}\left(P_{\lambda, \mu}\right)(d \lambda \delta+d \mu \varepsilon)^{m} \\
& +\sum_{j=1}^{n} \frac{\partial \operatorname{Tr}_{m}\left(P_{\lambda, \mu}\right)}{\partial z_{j}}(d \lambda \delta+d \mu \varepsilon)^{m-1} \wedge d z_{j} \wedge\left(\mu \varepsilon-\mu_{j}^{-1} d t_{j}\right)
\end{aligned}
$$

Let $\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{r}\right)$. By the above assumption of φ, we have

$$
\begin{aligned}
& \varphi(\Omega) \\
&= \operatorname{Tr}_{\mathbf{m}}(\Omega) \\
&= \operatorname{Tr}_{m_{1}}(\Omega) \operatorname{Tr}_{m_{2}}(\Omega) \cdots \operatorname{Tr}_{m_{r}}(\Omega) \\
&= \operatorname{Tr}_{\mathbf{m}}\left(P_{\lambda, \mu}\right)(d \lambda \delta+d \mu \varepsilon)^{2 q+n} \\
&+\sum_{k_{1}=1}^{r} \operatorname{Tr}_{\mathbf{m}-\left\{m_{k_{1}}\right\}}\left(P_{\lambda, \mu}\right) \sum_{j_{1}=1}^{n} \frac{\partial \operatorname{Tr}_{m_{k_{1}}}\left(P_{\lambda, \mu}\right)}{\partial z_{j_{1}}}(d \lambda \delta+d \mu \varepsilon)^{2 q+n-1} \\
& \wedge d z_{j_{1}} \wedge\left(\mu \varepsilon-\mu_{j_{1}}^{-1} d t_{j_{1}}\right) \\
&+\sum_{1 \leq k_{1}<k_{2} \leq r} \operatorname{Tr}_{\mathbf{m}-\left\{m_{k_{1}}, m_{k_{2}}\right\}}\left(P_{\lambda, \mu}\right) \\
& \times \sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} \frac{\partial \operatorname{Tr}_{m_{k_{1}}}\left(P_{\lambda, \mu}\right)}{\partial z_{j_{1}}} \frac{\partial \operatorname{Tr}_{m_{k_{2}}}\left(P_{\lambda, \mu}\right)}{\partial z_{j_{2}}}(d \lambda \delta+d \mu \varepsilon)^{2 q+n-2} \\
& \wedge d z_{j_{1}} \wedge\left(\mu \varepsilon-\mu_{j_{1}}^{-1} d t_{j_{1}}\right) \wedge d z_{j_{2}} \wedge\left(\mu \varepsilon-\mu_{j_{2}}^{-1} d t_{j_{2}}\right) \\
&+\cdots \\
&+\quad \sum_{1 \leq k_{1}<k_{2}<\cdots<k_{r-1} \leq r} \\
& \operatorname{Tr}_{\mathbf{m}-\left\{m_{k_{1}}, m_{k_{2}}, \ldots, m_{k_{r-1}}\right\}}\left(P_{\lambda, \mu}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} \ldots \sum_{j_{r-1}=1}^{n} \frac{\partial \operatorname{Tr}_{m_{k_{1}}}\left(P_{\lambda, \mu}\right)}{\partial z_{j_{1}}} \frac{\partial \operatorname{Tr}_{m_{k_{2}}}\left(P_{\lambda, \mu}\right)}{\partial z_{j_{2}}} \ldots \\
& \\
& \quad \frac{\partial \operatorname{Tr}_{m_{k_{r-1}}}\left(P_{\lambda, \mu}\right)}{\partial z_{j_{r-1}}}(d \lambda \delta+d \mu \varepsilon)^{2 q+1} \\
& \\
& \wedge d z_{j_{1}} \wedge\left(\mu \varepsilon-\mu_{j_{1}}^{-1} d t_{j_{1}}\right) \wedge d z_{j_{2}} \wedge\left(\mu \varepsilon-\mu_{j_{2}}^{-1} d t_{j_{2}}\right) \wedge \cdots \\
& \\
& \wedge d z_{j_{r-1}} \wedge\left(\mu \varepsilon-\mu_{j_{r-1}}^{-1} d t_{j_{r-1}}\right) \\
& +\sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} \ldots \sum_{j_{r}=1}^{n} \frac{\partial \operatorname{Tr}_{m_{k_{1}}}\left(P_{\lambda, \mu}\right)}{\partial z_{j_{1}}} \frac{\partial \operatorname{Tr}_{m_{k_{2}}}\left(P_{\lambda, \mu}\right)}{\partial z_{j_{2}}} \ldots \\
& \\
& \frac{\partial \operatorname{Tr}_{m_{k_{r}}}\left(P_{\lambda, \mu}\right)}{\partial z_{j_{r}}}(d \lambda \delta+d \mu \varepsilon)^{2 q} \\
& \wedge d z_{j_{1}} \wedge\left(\mu \varepsilon-\mu_{j_{1}}^{-1} d t_{j_{1}}\right) \wedge d z_{j_{2}} \wedge\left(\mu \varepsilon-\mu_{j_{2}}^{-1} d t_{j_{2}}\right) \wedge \cdots \\
& \wedge d z_{j_{r}} \wedge\left(\mu \varepsilon-\mu_{j_{r}}^{-1} d t_{j_{r}}\right) .
\end{aligned}
$$

Since $(d \lambda \delta)^{l}=0$ for $l>2 q$, if we write $\mu_{j}{ }^{2} a_{j}{ }^{2}$ by A_{j} for $j=1,2, \ldots, n$, then we can write $\varphi(\Omega)$ as follows.

$$
\begin{aligned}
\varphi(\Omega) & \\
= & \left(\mu_{1} \mu_{2} \ldots \mu_{n}\right)^{-1}\left\{\frac{(2 q+n)!}{2 q!} \operatorname{Tr}_{\mathbf{m}}\left(P_{\lambda, \mu}\right) \frac{\partial A_{1}}{\partial z_{1}} \cdots \frac{\partial A_{n}}{\partial z_{n}}\right. \\
& +(-1) \sum_{j_{1}=1}^{n} \frac{(2 q+n-1)!}{2 q!} \frac{\partial \operatorname{Tr}_{\mathbf{m}}\left(P_{\lambda, \mu}\right)}{\partial z_{j_{1}}} \\
& \times \frac{\partial A_{1}}{\partial z_{1}} \ldots \frac{\partial A_{j_{1}}}{\partial z_{j_{1}}} \cdots \frac{\partial A_{n}}{\partial z_{n}}\left(1-A_{j_{1}}\right) \\
& +(-1)^{2} \sum_{1 \leq j_{1}<j_{2} \leq n} \frac{(2 q+n-2)!}{2 q!} \frac{\partial^{2} \operatorname{Tr}_{\mathbf{m}}\left(P_{\lambda, \mu}\right)}{\partial z_{j_{1}} \partial z_{j_{2}}} \\
& \times \frac{\partial A_{1}}{\partial z_{1}} \cdots \frac{\partial A_{j_{1}}}{\partial z_{j_{1}}} \cdots \frac{\partial A_{j_{2}}}{\partial z_{j_{2}}} \cdots \frac{\partial A_{n}}{\partial z_{n}} \times\left(1-A_{j_{1}}-A_{j_{2}}\right) \\
& +\cdots \\
& +(-1)^{n-1} \sum_{1 \leq j_{1}<\cdots<j_{n-1} \leq n} \frac{(2 q+1)!}{2 q!} \frac{\partial^{n-1} \operatorname{Tr}_{\mathbf{m}}\left(P_{\lambda, \mu}\right)}{\partial z_{j_{1}} \partial z_{j_{2}} \ldots \partial z_{j_{n-1}}}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \times \frac{\partial A_{1}}{\partial z_{1}} \ldots \frac{\partial \widehat{A_{j_{1}}}}{\partial z_{j_{1}}} \ldots \frac{\partial \widehat{A_{j_{n-1}}}}{\partial z_{j_{n-1}}} \ldots \frac{\partial A_{n}}{\partial z_{n}} \times\left(1-A_{j_{1}}-A_{j_{2}}-\cdots-A_{j_{n-1}}\right) \\
& \left.+(-1)^{n} \frac{\partial^{n} \operatorname{Tr}_{\mathbf{m}}\left(P_{\lambda, \mu}\right)}{\partial z_{1} \partial z_{2} \ldots \partial z_{n}}\left(1-A_{1}-A_{2}-\cdots-A_{n}\right)\right\}(d \lambda \delta)^{2 q} \\
& \wedge d z_{1} \wedge d t_{1} \wedge \cdots \wedge d z_{n} \wedge d t_{n}
\end{aligned}
$$

Note that this expression of $\varphi(\Omega)$ is valid only on the part of $z_{i} \geq 0$ for all $i=1,2, \ldots, n$.

Since the connection θ restricted to $S=\partial D$ is basic $X_{\lambda, \mu}$-connection, by LEMMA $2.2 \operatorname{Res}_{\varphi}\left(\tau, X_{\lambda, \mu}, N \times T^{n}\right)$ is the cohomology class of $\int_{D} \varphi(\Omega)$. To integrate $\varphi(\Omega)$ over the disc $D \subset \mathbf{R}^{2 q+n}$ we define
$D^{\prime}=\left\{\left(x_{1}, y_{1}, \ldots, x_{q}, y_{q}\right) \in \mathbf{R}^{2 q} \mid \sum_{i=1}^{q} \lambda_{i}^{2}\left(x_{i}^{2}+y_{i}^{2}\right) \leq 1-A_{1}-A_{2}-\cdots-A_{n}\right\}$, and

$$
D_{0}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbf{R}^{n} \mid A_{1}+A_{2}+\cdots+A_{n} \leq 1, z_{1} \geq 0, \ldots, z_{n} \geq 0\right\}
$$

By a result of Heitsch,

$$
\int_{D^{\prime}}(d \lambda \delta)^{2 q}=\frac{\pi^{q}\left(1-A_{1}-A_{2}-\cdots-A_{n}\right)^{2 q}}{\lambda_{1}^{2} \lambda_{2}^{2} \ldots \lambda_{q}^{2}} W_{N}
$$

where W_{N} is a volume form $\prod_{i=1}^{q} \omega_{i} \wedge \gamma_{i}$ of N. Thus, using the fact that

$$
\frac{\partial A_{j}}{\partial z_{j}}=-\frac{\partial\left(1-A_{1}-A_{2}-\cdots-A_{n}\right)}{\partial z_{j}}
$$

we have

$$
\begin{aligned}
\int_{D} & \varphi(\Omega) \\
= & \int_{D_{0}}\left(\int_{D^{\prime}} \varphi(\Omega)\right) \\
= & \frac{2^{n} \pi^{q}}{\lambda_{1}^{2} \lambda_{2}^{2} \ldots \lambda_{q}^{2} \mu_{1} \mu_{2} \ldots \mu_{n}} \\
& \times\left[\int _ { D _ { 0 } } \left\{\operatorname{Tr}_{\mathbf{m}}\left(P_{\lambda, \mu}\right) \frac{\partial^{n}\left(1-A_{1}-A_{2}-\cdots-A_{n}\right)^{2 q+n}}{\partial z_{1} \ldots \partial z_{n}}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{j_{1}=1}^{n} \frac{\partial \operatorname{Tr}_{\mathbf{m}}\left(P_{\lambda, \mu}\right)}{\partial z_{j_{1}}} \frac{\partial^{n-1}\left(1-A_{1}-A_{2}-\cdots-A_{n}\right)^{2 q+n-1}}{\partial z_{1} \ldots \widehat{\partial z_{j_{1}}} \cdots \partial z_{n}}\left(1-A_{j_{1}}\right) \\
& +\sum_{j_{1}<j_{2}} \frac{\partial^{2} \operatorname{Tr}_{\mathbf{m}}\left(P_{\lambda, \mu}\right)}{\partial z_{j_{1}} \partial z_{j_{2}}} \frac{\partial^{n-2}\left(1-A_{1}-A_{2}-\cdots-A_{n}\right)^{2 q+n-2}}{\partial z_{1} \ldots \widehat{\partial z_{j_{1}}} \ldots \widehat{\partial z_{j_{2}}} \ldots \partial z_{n}} \\
& \quad \times\left(1-A_{j_{1}}-A_{j_{2}}\right) \\
& +\cdots \\
& +\sum_{j_{1}<\cdots<j_{n-1}} \frac{\partial^{n-1} \operatorname{Tr}_{\mathbf{m}}\left(P_{\lambda, \mu}\right)}{\partial z_{j_{1}} \partial z_{j_{2}} \ldots \partial z_{j_{n-1}}} \frac{\partial\left(1-A_{1}-A_{2}-\cdots-A_{n}\right)^{2 q+1}}{\partial z_{1} \ldots \widehat{\partial z_{j_{1}}} \ldots \partial \widehat{z_{j_{n-1}}} \ldots \partial z_{n}} \\
& \quad \times\left(1-A_{j_{1}}-\cdots-A_{j_{n-1}}\right) \\
& \left.\left.+\frac{\partial^{n} \operatorname{Tr}_{\mathbf{m}}\left(P_{\lambda, \mu}\right)}{\partial z_{1} \partial z_{2} \ldots \partial z_{n}}\left(1-A_{1}-A_{2}-\cdots-A_{n}\right)^{2 q+1}\right\} d z_{1} \cdots d z_{n}\right] W_{N} \\
& \wedge d t_{1} \wedge \cdots \wedge d t_{n}
\end{aligned}
$$

where the summations $\sum_{j_{1}<j_{2}}, \ldots, \sum_{j_{1}<\cdots<j_{n-1}}$ mean $\sum_{1 \leq j_{1}<j_{2} \leq n}, \ldots$, $\sum_{1 \leq j_{1}<\cdots<j_{n-1} \leq n}$, respectively.

Now we need only to compute the integration over D_{0} in the above large bracket. Let be $F=1-A_{1}-A_{2}-\cdots-A_{n}$. For the convenience, we write $\partial z_{j_{1}} \ldots \partial z_{j_{k}}$ by $\partial^{k} z_{j_{1}, \ldots, j_{k}}$.

Lemma 3.2. For any function $f=f\left(z_{1}, \ldots, z_{n}\right)$, the following integration

$$
\begin{align*}
& \int_{D_{0}}\left\{f \frac{\partial^{n} F^{m+n}}{\partial^{n} z_{1 \ldots n}}+\sum_{j_{1}=1}^{n} \frac{\partial f}{\partial z_{j_{1}}} \frac{\partial^{n-1} F^{m+n-1}}{\partial^{n-1} z_{1 \ldots \widehat{j_{1} \ldots n}}}\left(1-A_{j_{1}}\right)\right. \tag{3.3}\\
& +\sum_{j_{1}<j_{2}} \frac{\partial^{2} f}{\partial^{2} z_{j_{1} j_{2}}} \frac{\partial^{n-2} F^{m+n-2}}{\partial^{n-2} z_{1 \ldots \hat{j}_{1} \ldots \widehat{j_{2}} \ldots n}}\left(1-A_{j_{1}}-A_{j_{2}}\right)+\cdots \\
& \left.+\frac{\partial^{n} f}{\partial^{n} z_{12 \ldots n}} F^{m+1}\right\} d z_{1} \cdots d z_{n} .
\end{align*}
$$

is equal to $(-1)^{n} f(0, \ldots, 0)$.
Proof.
We define the $(n-r)$-dimensional faces $D_{k_{1} \ldots k_{r}}$ of D_{0} for $1 \leq k_{1}<$ $\ldots<k_{r} \leq n$ by

$$
D_{k_{1} \ldots k_{r}}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in D_{0} \mid z_{k_{1}}=0, \ldots, z_{k_{r}}=0\right\} .
$$

If $i>p$, using integration by parts repeatedly, for any function $g=$ $g\left(z_{1}, \ldots, z_{n}\right)$, we have

$$
\begin{aligned}
& \int_{D_{0}} g \frac{\partial^{p} F^{i}}{\partial^{p} z_{k_{1} \ldots k_{p}}} d z_{1} \ldots d z_{n} \\
& =(-1)^{p}\left\{\left.\int_{D_{k_{1} \ldots k_{p}}} g F^{i}\right|_{D_{k_{1} \ldots k_{p}}} d z_{1} \ldots \widehat{d z_{k_{1}}} \ldots \widehat{d z_{k_{p}}} \ldots d z_{n}\right. \\
& +\left.\sum_{s_{1}=1}^{r} \int_{D_{k_{1} \ldots \widehat{s_{1}} \ldots k_{p}}} \frac{\partial g}{\partial z_{k_{s_{1}}}} F^{i}\right|_{D_{k_{1} \ldots \widehat{s_{1}} \ldots k_{p}}} d z_{1} \ldots \widehat{d z_{k_{1}}} \ldots d z_{k_{s_{1}}} \ldots \widehat{d z_{k_{p}}} \ldots d z_{n} \\
& +\sum_{s_{1}<s_{2}} \int_{D_{k_{1} \ldots \widehat{s_{1}} \ldots \widehat{s_{2}} \ldots k_{p}}} \\
& \times\left.\frac{\partial^{2} g}{\partial^{2} z_{k_{s_{1}} k_{s_{2}}}} F^{i}\right|_{D_{k_{1} \ldots \widehat{s_{1}} \ldots \widehat{s_{2}} \ldots k_{p}} d z_{1} \ldots \widehat{d z_{k_{1}}} \ldots d z_{k_{s_{1}}} \ldots d z_{k_{s_{2}}} \ldots \widehat{d z_{k_{p}}} \ldots d z_{n}, ~} \\
& \left.+\cdots+\int_{D_{0}} \frac{\partial^{p} g}{\partial^{p} z_{k_{1} \ldots k_{p}}} F^{i} d z_{1} d z_{2} \ldots d z_{n}\right\} .
\end{aligned}
$$

Applying this equation, we can move all the differentials $\partial / \partial z_{k}$'s of F^{i} to those of f in (3.3). There integrations over $(n-r)$-dimensional faces appear on terms which range from 1-st to $(n-r+1)$-th, and their sum S_{n-r} is given by

$$
\begin{aligned}
& S_{n-r}=\left.(-1)^{n} \sum_{k_{1}<\cdots<k_{r}} \int_{D_{k_{1} \cdots k_{r}}} \frac{\partial^{n-r} f}{\partial^{n-r} z_{i_{1} \ldots i_{n-r}}} F^{m+n}\right|_{D_{k_{1} \cdots k_{r}}} d^{n-r} z_{\widehat{K}} \\
&+\left.(-1)^{n-1} \sum_{j_{1}=1}^{n} \sum_{k_{1}<\cdots<k_{r}} \int_{D_{k_{1} \cdots k_{r}}} \frac{\partial^{n-r} f}{\partial^{n-r} z_{j_{1} i_{1} \ldots i_{n-r-1}}} F^{m+n-1}\right|_{D_{k_{1} \cdots k_{r}}} \\
&+\left.(-1)^{n-2} \sum_{j_{1}<j_{2}} \sum_{k_{1}<\cdots<k_{r}} \int_{D_{k_{1} \cdots k_{r}}} \frac{\partial^{n-r} f}{\partial^{n-r} z_{j_{1} j_{2} i_{1} \ldots i_{n-r-2}}} A^{m+n-2}\right|_{D_{\widehat{K}}} \\
& \times\left(1-A_{j_{1}}-A_{j_{2}}\right) d^{n-r} z_{\widehat{K}} \\
&+\quad \cdots \\
&+\left.(-1)^{r+1} \sum_{j_{1}<\cdots<j_{n-r-1}} \sum_{k_{1}<\cdots<k_{r}} \int_{D_{k_{1} \cdots k_{r}}} \frac{\partial^{n-r} f}{\partial^{n-r} z_{j_{1} \ldots j_{n-r-1} i_{1}}} F^{m+r+1}\right|_{D_{k_{1} \cdots k_{r}}}
\end{aligned}
$$

$$
\begin{gathered}
\times\left(1-A_{j_{1}}-\cdots-A_{j_{n-r-1}}\right) d^{n-r} z_{\widehat{K}} \\
+\left.(-1)^{r} \sum_{j_{1}<\cdots<j_{n-r}} \int_{D_{k_{1} \cdots k_{r}}} \frac{\partial^{n-r} f}{\partial^{n-r} z_{j_{1} \ldots j_{n-k}}} F^{m+r}\right|_{D_{k_{1} \cdots k_{r}}} \\
\times\left(1-A_{j_{1}}-\cdots-A_{j_{n-r}}\right) d^{n-r} z_{\widehat{K}}
\end{gathered}
$$

where the l-th term contains the indices $\{j\}(l-1)$-times, $\{i\}(n-r-l+1)$ times and $\{k\} r$-times. The indices $\{k\}$ are chosen out of the complement of $\{j\}$ in $\{1,2, \ldots, n\}$, and the indices $\{i\}$ are chosen out of the complement of $\{j\} \amalg\{k\}$ in $\{1,2, \ldots, n\}$, and $d^{n-r} z_{\widehat{K}}$ means $d z_{1} \ldots \widehat{d z_{k_{1}}} \ldots \widehat{d z_{k_{r}}} \ldots d z_{n}$.

Since $\left.F\right|_{D_{k_{1} \cdots k_{r}}}=\left(1-A_{j_{1}}-\cdots-A_{j_{l-1}}-\cdots-A_{i_{1}}-\cdots-A_{i_{n-r-l+1}}\right)$, we can write

$$
\left.\begin{array}{rl}
S_{n-r}= & \sum_{j_{1}<\cdots<j_{n-r}} \int_{D_{k_{1} \cdots k_{r}}} \frac{\partial^{n-r} f}{\partial^{n-r} z_{j_{1} \ldots j_{n-r}}} \\
& \times\left\{(-1)^{n}\left(1-A_{j_{1}}-\cdots-A_{j_{n-r}}\right)^{m+n}\right. \\
+ & (-1)^{n-1}\left(1-A_{j_{1}}-\cdots-A_{j_{n-r}}\right)^{m+n-1} \\
& \times\left(\binom{n-r}{1}-\binom{n-r-1}{0} A_{j_{1}}-\cdots-\binom{n-r-1}{0} A_{j_{n-r}}\right) \\
+ & (-1)^{n-2}\left(1-A_{j_{1}}-\cdots-A_{j_{n-r}}\right)^{m+n-2} \\
& \times\left(\binom{n-r}{2}-\binom{n-r-1}{1} A_{j_{1}}-\cdots-\binom{n-r-1}{1} A_{j_{n-r}}\right) \\
+ & \cdots \\
+ & (-1)^{r+1}\left(1-A_{j_{1}}-\cdots-A_{j_{n-r}}\right)^{m+r+1} \\
& \times\left(\binom{n-r}{n-r-1}-\binom{n-r-1}{n-r-2} A_{j_{1}}-\cdots\right. \\
& \left.\quad-\binom{n-r-1}{n-r-2} A_{j_{n-r}}\right) \\
+ & (-1)^{r}\left(1-A_{j_{1}}-\cdots-A_{j_{n-r}}\right)^{m+r} \\
& \times\left(1-A_{j_{1}}-\cdots-A_{j_{n-r}}\right)
\end{array}\right\} d^{n-r} z_{\widehat{K}} .
$$

A simple calculation shows that the polynomial in the above bracket with variables $A_{j_{1}}, \ldots, A_{j_{n-r}}$ is zero if $r<n$. Thus the integration given in (3.3) is equal to $(-1)^{n} S_{0}$. However S_{0} is equal to $f(0, \ldots, 0)$. This ends the proof of LEMMA 3.2.

Now we can conclude that

$$
\begin{aligned}
\operatorname{Res}_{\varphi} & \left(\tau, X_{\lambda, \mu}, N \times T^{n}\right) \\
& =\left[\int_{D} \varphi(\Omega)\right] \\
& =\frac{2^{n} \pi^{q} \varphi\left(\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}, \ldots, \lambda_{q}, \lambda_{q}, 0, \ldots, 0\right)}{\lambda_{1}^{2} \lambda_{2}^{2} \ldots \lambda_{q}^{2} \mu_{1} \mu_{2} \ldots \mu_{n}}\left[W_{N} \wedge W_{T^{n}}\right] .
\end{aligned}
$$

Remark 3.4. Consider the following elements of degree 8 in $I_{4}\left(W O_{4}\right)$,

$$
c_{1}^{4}, c_{1}^{2} c_{2}, c_{1} c_{3} \in I_{4}\left(W O_{4}\right)
$$

Heitsch constructed an example such that the residues of $c_{1}^{4}, c_{1}^{2} c_{2}$ and $c_{1} c_{3}$ vary as functions $c_{1}^{4}\left(\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}\right) /\left(\lambda_{1} \lambda_{2}\right)^{2}, c_{1}^{2} c_{2}\left(\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}\right) /\left(\lambda_{1} \lambda_{2}\right)^{2}$ and $c_{1} c_{3}\left(\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}\right) /\left(\lambda_{1} \lambda_{2}\right)^{2}$, respectively $([\mathrm{He} 2]$ Theorem 5.4). However, since

$$
\begin{aligned}
& c_{1}^{4}\left(\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}\right) /\left(\lambda_{1} \lambda_{2}\right)^{2} \\
& \quad=4\left(\lambda_{1}+\lambda_{2}\right)^{2} \cdot 4\left(\lambda_{1}+\lambda_{2}\right)^{2} /\left\{(2 \pi)^{4}\left(\lambda_{1} \lambda_{2}\right)^{2}\right\} \\
& c_{1}^{2} c_{2}\left(\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}\right) /\left(\lambda_{1} \lambda_{2}\right)^{2} \\
& \quad=\left(\lambda_{1}^{2}+4 \lambda_{1} \lambda_{2}+\lambda_{2}^{2}\right) \cdot 4\left(\lambda_{1}+\lambda_{2}\right)^{2} /\left\{(2 \pi)^{4}\left(\lambda_{1} \lambda_{2}\right)^{2}\right\} \\
& c_{1} c_{3}\left(\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}\right) /\left(\lambda_{1} \lambda_{2}\right)^{2} \\
& \quad=\lambda_{1} \lambda_{2} \cdot 4\left(\lambda_{1}+\lambda_{2}\right)^{2} /\left\{(2 \pi)^{4}\left(\lambda_{1} \lambda_{2}\right)^{2}\right\}
\end{aligned}
$$

they vary keeping the linear relation

$$
\begin{equation*}
\operatorname{Res}_{c_{1}^{4}}-4 \operatorname{Res}_{c_{1}^{2} c_{2}}+8 \operatorname{Res}_{c_{1} c_{3}}=0 \tag{3.5}
\end{equation*}
$$

On the other hand, putting $q=1$ and $n=2$ in THEOREM 3.1, we gain another example such that the residues of $c_{1}^{4}, c_{1}^{2} c_{2}$ and $c_{1} c_{3}$ vary as functions
$c_{1}^{4}\left(\lambda_{1}, \lambda_{1}, 0,0\right) /\left(\lambda_{1}^{2} \mu_{1} \mu_{2}\right), c_{1}^{2} c_{2}\left(\lambda_{1}, \lambda_{1}, 0,0\right) /\left(\lambda_{1}^{2} \mu_{1} \mu_{2}\right)$ and $c_{1} c_{3}\left(\lambda_{1}, \lambda_{1}, 0,0\right) /$ ($\lambda_{1}^{2} \mu_{1} \mu_{2}$), respectively. However, since

$$
\begin{array}{cccc}
c_{1}^{4}\left(\lambda_{1}, \lambda_{1}, 0,0\right) /\left(\lambda_{1}^{2} \mu_{1} \mu_{2}\right) & = & 4 \lambda_{1}^{2} & \cdot 4 \lambda_{1}^{2} /\left\{(2 \pi)^{4}\left(\lambda_{1}^{2} \mu_{1} \mu_{2}\right)\right\} \\
c_{1}^{2} c_{2}\left(\lambda_{1}, \lambda_{1}, 0,0\right) /\left(\lambda_{1}^{2} \mu_{1} \mu_{2}\right) & = & \lambda_{1}^{2} & \cdot 4 \lambda_{1}^{2} /\left\{(2 \pi)^{4}\left(\lambda_{1}^{2} \mu_{1} \mu_{2}\right)\right\} \\
c_{1} c_{3}\left(\lambda_{1}, \lambda_{1}, 0,0\right) /\left(\lambda_{1}^{2} \mu_{1} \mu_{2}\right) & = & 0 & \cdot 4 \lambda_{1}^{2} /\left\{(2 \pi)^{4}\left(\lambda_{1}^{2} \mu_{1} \mu_{2}\right)\right\},
\end{array}
$$

they vary keeping the linear relation

$$
\begin{equation*}
\operatorname{Res}_{c_{1}^{4}}-4 \operatorname{Res}_{c_{1}^{2} c_{2}}=0 \tag{3.6}
\end{equation*}
$$

The relation (3.6) cannot be derived directly from the relation (3.5). Precisely, even if we put $\operatorname{Res}_{c_{1} c_{3}}=0$ in the relation(3.5), we cannot obtain the relation(3.6). Because $\operatorname{Res}_{c_{1} c_{3}}$ in (3.5) is zero if and only if $\lambda_{1}+\lambda_{2}=0$, since λ_{1} and λ_{2} are non-zero number. However if $\lambda_{1}+\lambda_{2}=0, \operatorname{Res}_{c_{1}^{4}}$ and $\operatorname{Res}_{c_{1}^{2} c_{2}}$ in (3.5) must be also zero. Thus the relation (3.5) vanishes.

Similarly, consider the following elements of degree 10 in $I_{5}\left(W O_{5}\right)$,

$$
c_{1}^{5}, c_{1}^{3} c_{2}, c_{1}^{2} c_{3}, c_{1} c_{2}^{2}, c_{1} c_{4}, c_{2} c_{3} \in I_{5}\left(W O_{5}\right)
$$

Again Heitsch constructed an example such that the residues of $c_{1}^{5}, c_{1}^{3} c_{2}$, $c_{1}^{2} c_{3}, c_{1} c_{2}^{2}, c_{1} c_{4}$ and $c_{2} c_{3}$ vary keeping the linear relation([He2] Theorem 5.9)

$$
\left\{\begin{array}{l}
\operatorname{Res}_{c_{1}^{5}}-4 \operatorname{Res}_{c_{1}^{3} c_{2}}+8 \operatorname{Res}_{c_{1}^{2} c_{3}}=0 \tag{3.7}\\
\operatorname{Res}_{c_{1}^{5}}-16 \operatorname{Res}_{c_{1} c_{2}^{2}}+64 \operatorname{Res}_{c_{1} c_{4}}-64 \operatorname{Res}_{c_{2} c_{3}}=0
\end{array}\right.
$$

On the other hand, putting $q=1$ and $n=3$ in THEOREM 3.1, we gain another example such that the residues of theirs vary keeping the linear relation

$$
\left\{\begin{array}{l}
\operatorname{Res}_{c_{1}^{5}}-4 \operatorname{Res}_{c_{1}^{3} c_{2}}=0 \tag{3.8}\\
\operatorname{Res}_{c_{1}^{5}}-16 \operatorname{Res}_{c_{1} c_{2}^{2}}=0
\end{array}\right.
$$

Again, the relation (3.8) cannot be derived directly from the relation (3.7).
Of course, similar argument is valid not only for $I_{4}\left(W O_{4}\right)$ and $I_{5}\left(W O_{5}\right)$ but also for more general $I_{q}\left(W O_{q}\right)$ with $q \geq 4$.

§4. Extended Examples

Let $G=\mathrm{SL}_{2 n_{1}} \mathbf{R} \times \mathrm{SL}_{2 n_{2}} \mathbf{R} \times \cdots \times \mathrm{SL}_{2 n_{r}} \mathbf{R}$ and $K=\mathrm{SO}_{2 n_{1}} \times \mathrm{SO}_{2 n_{2}} \times$ $\cdots \times \mathrm{SO}_{2 n_{r}}$ where $n_{1} \leq n_{2} \leq \cdots \leq n_{r}$ are positive integers such that
$2 n_{1}+2 n_{2}+\cdots+2 n_{r}=2 q$. Since each component of G is semi-simple, there is a discrete subgroup $\Gamma=\Gamma_{1} \times \Gamma_{2} \times \cdots \times \Gamma_{r}$ such that each $\Gamma_{i} \backslash \mathrm{SL}_{2 n_{i}} \mathbf{R} /$ $\mathrm{SO}_{2 n_{i}}$ is a compact manifold.

Let $\left(x_{1}^{i}, y_{1}^{i}, x_{2}^{i}, y_{2}^{i}, \ldots, x_{n_{i}}^{i}, y_{n_{i}}^{i}\right)$ be coordinates on the i-th factor of $\mathbf{R}^{2 q}=$ $\mathbf{R}^{2 n_{1}} \times \cdots \times \mathbf{R}^{2 n_{r}} \subset \mathbf{R}^{2 q+n}$ and $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ coordinates on the last factor $\mathbf{R}^{n} \subset \mathbf{R}^{2 q+n}$. Choose non-zero numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}, \mu_{1}, \mu_{2}, \ldots, \mu_{n}$ and set

$$
\begin{aligned}
X_{\lambda, \mu}= & \sum_{i=1}^{r} \lambda_{i}\left(x_{1}^{i} \frac{\partial}{\partial x_{1}^{i}}+y_{1}^{i} \frac{\partial}{\partial y_{1}^{i}}+\cdots+x_{n_{i}}^{i} \frac{\partial}{\partial x_{n_{i}}^{i}}+y_{n_{i}}^{i} \frac{\partial}{\partial y_{n_{i}}^{i}}\right) \\
& +\sum_{j=1}^{n} \mu_{j} z_{j} \Psi_{j}\left(z_{j}\right) \frac{\partial}{\partial z_{j}},
\end{aligned}
$$

where Ψ_{j} is a function defined at the beginning of $\S 3 . X_{\lambda, \mu}$ induces a Γ vector field $X_{\lambda, \mu}$ for the foliation τ of the transversely foliated bundle

$$
T^{n} M=\left(\Gamma \times \mathbf{Z}^{n} \backslash G \times \mathbf{R}^{n}\right) \times_{K} \mathbf{R}^{2 q+n} \longrightarrow N \times T^{n}=(\Gamma \backslash G / K) \times T^{n}
$$

The foliation τ on $T^{n} M \longrightarrow N \times T^{n}$ is diffeomorphic to the foliation also denoted by τ which is obtained from the flat bundle structure

$$
\left(\left(G \times \mathbf{R}^{n}\right) / K\right) \times_{\Gamma \times \mathbf{Z}^{n}} \mathbf{R}^{2 q+n} \longrightarrow N \times T^{n}=(\Gamma \backslash G / K) \times T^{n}
$$

Recall that

$$
H^{*}\left(s l_{2 q} \mathbf{R}, \mathrm{SO}_{2 q}\right)=\wedge\left(s_{3}, s_{5}, \ldots, s_{2 q-1}, \chi\right)
$$

is an exterior graded algebra with $\operatorname{deg} s_{i}=2 i-1$ and $\operatorname{deg} \chi=2 q$. We write $s_{I}(M)=s_{i_{1}} s_{i_{2}} \cdots s_{i_{r}}(M) \in H^{*}(N) \subset H^{*}\left(N \times T^{n}\right)$ for the characteristic class of the flat $\mathrm{SL}_{2 q} \mathbf{R}$-bundle $M=(G / K) \times_{\Gamma} \mathbf{R}^{2 q} \longrightarrow N=(\Gamma \backslash G / K)$ corresponding to the element $s_{I} \in H^{*}\left(s l_{2 q} \mathbf{R}, \mathrm{SO}_{2 q}\right)$.

PROPOSITION 4.1. Let $h_{I} c_{J}=h_{i_{1}} h_{i_{2}} \ldots h_{i_{r}} c_{J} \in I_{2 q+n}\left(W O_{2 q+n}\right)$ where $i_{1}>1$ and $i_{k}<2 q$. Then

$$
\operatorname{Res}_{h_{I} c_{J}}\left(\tau, X_{\lambda, \mu}, N \times T^{n}\right)=s_{I}(M) \cdot \operatorname{Res}_{c_{J}}\left(\tau, X_{\lambda, \mu}, N \times T^{n}\right)
$$

To relate $\operatorname{Res}_{c_{J}}\left(\tau, X_{\lambda, \mu}, N \times T^{n}\right)$ with the previous example, we consider the following scheme. Let

$$
i^{*}: \otimes_{i=1}^{r} H^{*}\left(s l_{2 n_{i}} \mathbf{R}, \mathrm{SO}_{2 n_{i}}\right) \longrightarrow \otimes^{q} H^{*}\left(s l_{2} \mathbf{R}, \mathrm{SO}_{2}\right)
$$

be the induced map by the natural inclusion $i: \times^{q} \mathrm{SL}_{2} \mathbf{R} \longrightarrow G=$ $\times{ }_{i=1}^{r} \mathrm{SL}_{2 n_{i}} \mathbf{R}$ and

$$
\mu: \otimes_{i=1}^{r} H^{*}\left(s l_{2 n_{i}} \mathbf{R}, \mathrm{SO}_{2 n_{i}}\right) \longrightarrow H^{*}(N)=H^{*}(\Gamma \backslash G / K)
$$

be the characteristic map corresponding to the flat G-bundle $M \longrightarrow N$.
Proposition 4.2. For $c_{J} \in I_{2 q+n}\left(W O_{2 q+n}\right)$, modulo $\mu($ keri* $)$

$$
\begin{aligned}
& \operatorname{Res}_{c_{J}}\left(\tau, X_{\lambda, \mu}, N \times T^{n}\right) \\
& \quad=\beta \cdot \frac{c_{J}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}, 0, \ldots, 0\right)}{\lambda_{1}^{2 n_{1}} \lambda_{2}^{2 n_{2}} \cdots \lambda_{r}^{2 n_{r}} \mu_{1} \mu_{2} \cdots \mu_{n}} \chi(M) \cdot\left[d t_{1} \wedge \cdots \wedge d t_{n}\right]
\end{aligned}
$$

where β is a non-zero constant, $\chi(M)$ is the Euler class of $M \longrightarrow N$, and

$$
c_{J}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}, 0, \ldots, 0\right)
$$

is the Chern polynomial c_{J} applied to the diagonal matrix

$$
\operatorname{diag}(\underbrace{\lambda_{1}, \ldots, \lambda_{1}}_{2 n_{1} \text {-times }}, \underbrace{\lambda_{2}, \ldots, \lambda_{2}}_{2 n_{2} \text {-times }}, \ldots, \underbrace{\lambda_{r}, \ldots, \lambda_{r}}_{2 n_{r} \text {-times }}, \underbrace{0, \ldots, 0}_{n \text {-times }}) .
$$

The proof of PROPOSITION 4.2 is analogous to the proof of Theorem 5.12 and Theorem 5.17 of $[\mathrm{He} 2]$ and is omitted. Finally ,combining PROPOSITION 4.1 and PROPOSITION 4.2, we have

THEOREM 4.3. Let $h_{I} c_{J}=h_{i_{1}} h_{i_{2}} \ldots h_{i_{r}} c_{J} \in I_{2 q+n}\left(W O_{2 q+n}\right)$ where $i_{1}>1$ and $i_{k}<2 q$. Then modulo $\mu\left(\mathrm{ker} i^{*}\right)$

$$
\begin{aligned}
& \operatorname{Res}_{h_{I} c_{J}}\left(\tau, X_{\lambda, \mu}, N \times T^{n}\right) \\
& \quad=\beta \cdot \frac{c_{J}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}, 0, \ldots, 0\right)}{\lambda_{1}^{2 n_{1}} \lambda_{2}^{2 n_{2}} \cdots \lambda_{r}^{2 n_{r}} \mu_{1} \mu_{2} \cdots \mu_{n}} s_{I}(M) \chi(M) \cdot\left[d t_{1} \wedge \cdots \wedge d t_{n}\right]
\end{aligned}
$$

Proof of Proposition 4.1.

Let θ_{T}^{f} and θ_{T}^{r} be the flat connection and a metric connection respectively on $T \mathbf{R}^{2 q+n} \longrightarrow T^{n} M$. Here $T \mathbf{R}^{2 q+n} \longrightarrow T^{n} M$ is the tangent bundle along the fiber of $T^{n} M \longrightarrow N \times T^{n}$. As in the proof of THEOREM 3.1 we can identify $T \mathbf{R}^{2 q+n} \longrightarrow T^{n} M$ with the normal bundle ν of τ. Let θ_{T}^{b} be a basic
$X_{\lambda, \mu}$-connection on supported off the complement of $\Pi: D \longrightarrow N \times T^{n}$ a disc subbundle of $T^{n} M \longrightarrow N \times T^{n}$. Denote the curvature of θ_{T}^{b} by Ω_{T}^{b}.

Then $\operatorname{Res}_{h_{I} c_{J}}\left(\tau, X_{\lambda, \mu}, N \times T^{n}\right)$ is determined by the differential form $\Delta_{c_{I}}\left(\theta_{T}^{b}, \theta_{T}^{r}\right) c_{J}\left(\Omega_{T}^{b}\right) . \quad \Delta_{c_{I}}\left(\theta_{T}^{b}, \theta_{T}^{r}\right) c_{J}\left(\Omega_{T}^{b}\right)$ and $\Delta_{c_{I}}\left(\theta_{T}^{f}, \theta_{T}^{r}\right) c_{J}\left(\Omega_{T}^{b}\right)$ determine the same class in $H_{c}^{*}(D)$ (see [He2] p.447, [He1], [L]). Now we need to show the following.

Lemma 4.4.

$$
\Pi^{*}\left(s_{I}(M)\right)\left[c_{J}\left(\Omega_{T}^{b}\right)\right]=\left[\Delta_{c_{I}}\left(\theta_{T}^{f}, \theta_{T}^{r}\right) c_{J}\left(\Omega_{T}^{b}\right)\right] \in H_{c}^{*}(D)
$$

Proof.
Let

$$
\begin{aligned}
\Pi_{1}: T^{n} M & =\left((G / K) \times_{\Gamma} \mathbf{R}^{2 q}\right) \times \overbrace{\left(\mathbf{R} \times_{\mathbf{Z}} \mathbf{R}\right) \times \cdots \times\left(\mathbf{R} \times_{\mathbf{Z}} \mathbf{R}\right)}^{n-\text { times }} \longrightarrow M \\
& =\left((G / K) \times_{\Gamma} \mathbf{R}^{2 q}\right)
\end{aligned}
$$

and
$\Pi_{j}: T^{n} M=\left((G / K) \times_{\Gamma} \mathbf{R}^{2 q}\right) \times \overbrace{\left(\mathbf{R} \times_{\mathbf{Z}} \mathbf{R}\right) \times \cdots \times\left(\mathbf{R} \times_{\mathbf{Z}} \mathbf{R}\right)}^{n \text {-times }} \longrightarrow\left(\mathbf{R} \times_{\mathbf{Z}} \mathbf{R}\right)$
be the natural projections onto the j-th factor of $T^{n} M$ for $j=2, \ldots, n+1$. Then the bundle $T \mathbf{R}^{2 q+n} \longrightarrow T^{n} M$ can be written of the form

$$
\Pi_{1}^{*}\left(T \mathbf{R}^{2 q}\right) \oplus \Pi_{2}^{*}(T \mathbf{R}) \oplus \cdots \oplus \Pi_{n+1}^{*}(T \mathbf{R}) \longrightarrow T^{n} M
$$

where $T \mathbf{R}^{2 q} \longrightarrow M=\left((G / K) \times_{\Gamma} \mathbf{R}^{2 q}\right)$ is the normal bundle of the foliation of the transversely foliated bundle $M=\left((G / K) \times_{\Gamma} \mathbf{R}^{2 q}\right) \longrightarrow N=\Gamma \backslash G / K$ and $T \mathbf{R} \longrightarrow \mathbf{R} \times_{\mathbf{Z}} \mathbf{R}$ are trivial bundles. Let σ_{j} be global non-zero crosssection of the j-th factor $T \mathbf{R}$ for $j=2, \ldots, n+1$. We give the j-th factor $T \mathbf{R}$ the metric r_{j} so that σ_{j} is length 1 for $j=2, \ldots, n+1$. Let the metric r on $T \mathbf{R}^{2 q+n}$ be induced by the metrics r_{2}, \ldots, r_{n+1} and some metric r_{1} on $T \mathbf{R}^{2 q}$. If $\theta^{r, 1}$ is a metric connection on $T \mathbf{R}^{2 q}$ with respect to r_{1}, then $\Pi_{1}^{*} \theta^{r, 1}$ is also a metric connection on $\Pi_{1}^{*} T \mathbf{R}^{2 q}$. Let θ^{j} be the metric connection on $\Pi_{j}^{*} T \mathbf{R}$ so that $\Pi_{j}^{*} \sigma_{j}$ is flat for $j=2, \ldots, n+1$. Finally we define the metric connection θ_{T}^{r} on $T \mathbf{R}^{2 q+n}$ to be $\Pi_{1}^{*} \theta^{r, 1} \oplus \theta^{2} \oplus \cdots \oplus \theta^{n+1}$.

Let $\xi_{1}, \ldots, \xi_{2 q}$ be a local framing of $T \mathbf{R}^{2 q}$. With respect to the local framing

$$
\zeta=\left\{\Pi_{1}^{*} \xi_{1}, \ldots, \Pi_{1}^{*} \xi_{2 q}, \Pi_{2}^{*} \sigma_{2}, \ldots, \Pi_{n+1}^{*} \sigma_{n+1}\right\}
$$

of $T \mathbf{R}^{2 q+n}=\Pi_{1}^{*}\left(T \mathbf{R}^{2 q}\right) \oplus \Pi_{2}^{*}(T \mathbf{R}) \oplus \cdots \oplus \Pi_{n+1}^{*}(T \mathbf{R}) \longrightarrow T^{n} M$, the local connection form of θ_{T}^{r} is given by

$$
\left(\begin{array}{cc}
\Pi_{1}^{*}\left(\theta^{r, 1}\right) & 0 \\
0 & 0
\end{array}\right)
$$

where $\left(\theta^{r, 1}\right)$ is the local connection form of $\theta^{r, 1}$ with respect to the framing $\xi_{1}, \ldots, \xi_{2 q}$.

On the other hand, let θ_{T}^{f} be the flat connection on $T \mathbf{R}^{2 q+n}$ induced by the flat connection $\theta^{f, 1}$ on $T \mathbf{R}^{2 q}$ and the flat structure on $\Pi_{2}^{*}(T \mathbf{R}) \oplus$ $\cdots \oplus \Pi_{n+1}^{*}(T \mathbf{R})$. Then the local connection form of θ_{T}^{r} with respect to the framing ζ is given by

$$
\left(\begin{array}{cccc}
\Pi_{1}^{*}\left(\theta^{f, 1}\right) & 0 & 0 & 0 \\
0 & \Pi_{2}^{*}\left(g_{2}\left(z_{1}\right) d z_{1}\right) & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \Pi_{n+1}^{*}\left(g_{n+1}\left(z_{n}\right) d z_{n}\right)
\end{array}\right)
$$

Here $\left(\theta^{f, 1}\right)$ is the local connection form of $\theta^{f, 1}$ with respect to the framing $\xi_{1}, \ldots, \xi_{2 q}$ and $g_{j}\left(z_{j-1}\right)$ are some functions on \mathbf{R} for $j=2, \ldots, n+1$.

Thus, with respect to the framing ζ, the local curvature form $\Omega_{T}^{(t)}$ of the connection $\theta_{T}^{(t)}=t \theta_{T}^{f, 1}+(1-t) \theta_{T}^{r, 1}$ is given by

$$
\left(\begin{array}{cc}
\Pi_{1}^{*}\left(\Omega^{(t)}\right) & 0 \\
0 & 0
\end{array}\right)
$$

where $\left(\Omega^{(t)}\right)$ is the local curvature form of the connection $\theta^{(t)}=t \theta^{f, 1}+(1-$ $t) \theta^{r, 1}$ with respect to the framing $\xi_{1}, \ldots, \xi_{2 q}$.

From the definition of the Chern polynomials, if we denote by Θ the diagonal matrix $\operatorname{diag}\left(\Pi_{2}^{*}\left(g_{2}\left(z_{1}\right) d z_{1}\right), \ldots, \Pi_{n+1}^{*}\left(g_{n+1}\left(z_{n}\right) d z_{n}\right)\right)$, then we have

$$
\Delta_{c_{i}}\left(\theta_{T}^{f, 1}, \theta_{T}^{r, 1}\right)=\Pi_{1}^{*} \Delta_{c_{i}}\left(\theta^{f, 1}, \theta^{r, 1}\right)+\beta \Pi_{1}^{*}\left\{\int_{0}^{1} c_{i-1}\left(\Omega^{(t)}\right) d t\right\} \wedge c_{1}(\Theta)
$$

where β is some non-zero constant. Since $c_{k}\left(\Omega^{f}\right) \equiv 0, c_{k}\left(\Omega^{(t)}\right)=$ $d \Delta_{c_{k}}\left(\theta^{(t)}, \theta^{f}\right)$ for $0 \leq t \leq 1$ and $k=i-n, \ldots, i-1$,

$$
\Delta_{c_{i}}\left(\theta_{T}^{f, 1}, \theta_{T}^{r, 1}\right)=\Pi_{1}^{*} \Delta_{c_{i}}\left(\theta^{f, 1}, \theta^{r, 1}\right)+d\left[\beta \Pi_{1}^{*}\left\{\int_{0}^{1} \Delta_{c_{i-1}}\left(\theta^{(t)}, \theta^{f}\right) d t\right\} \wedge c_{1}(\Theta)\right]
$$

As $c_{J}\left(\Omega_{T}^{b}\right)$ is closed and has compact support in D,
(4.5) $\Delta_{c_{I}}\left(\theta_{T}^{f, 1}, \theta_{T}^{r, 1}\right) c_{J}\left(\Omega_{T}^{b}\right)=\Pi_{1}^{*} \Delta_{c_{I}}\left(\theta^{f, 1}, \theta^{r, 1}\right) c_{J}\left(\Omega_{T}^{b}\right)+($ exact form $)$.

The exact form in (4.5) has also compact support. Now both $\Delta_{c_{I}}\left(\theta_{T}^{f, 1}, \theta_{T}^{r, 1}\right) c_{J}\left(\Omega_{T}^{b}\right)$ and $\Pi_{1}^{*} \Delta_{c_{I}}\left(\theta^{f, 1}, \theta^{r, 1}\right) c_{J}\left(\Omega_{T}^{b}\right)$ are closed and have compact support in D. Thus they determine the same class in $H_{c}^{*}(D)$. However $\Pi_{1}^{*} \Delta_{c_{I}}\left(\theta^{f, 1}, \theta^{r, 1}\right) c_{J}\left(\Omega_{T}^{b}\right)$ represents $\Pi^{*}\left(s_{I}(M)\right)\left[c_{J}\left(\Omega_{T}^{b}\right)\right]$. This ends the proof of LEMMA 4.4.

By LEMMA 4.4, we can complete the proof of PROPOSITION 4.1, and thus of THEOREM 4.3 as follows.

$$
\begin{aligned}
\operatorname{Res}_{h_{I} c_{J}}\left(\tau, X_{\lambda, \mu}, N \times T^{n}\right) & =\gamma_{D}\left(\left[\left.\Delta_{c_{I}}\left(\theta_{T}^{b}, \theta_{T}^{r}\right) c_{J}\left(\Omega_{T}^{b}\right)\right|_{D}\right]\right) \\
& =\gamma_{D}\left(\left[\left.\Delta_{c_{I}}\left(\theta_{T}^{f}, \theta_{T}^{r}\right) c_{J}\left(\Omega_{T}^{b}\right)\right|_{D}\right]\right) \\
& =\gamma_{D}\left(\Pi^{*}\left(s_{I}(M)\right)\left[\left.c_{J}\left(\Omega_{T}^{b}\right)\right|_{D}\right]\right) \\
& =s_{I}(M) \operatorname{Res}_{c_{J}}\left(\tau, X_{\lambda, \mu}, N \times T^{n}\right)
\end{aligned}
$$

References

[B] Bott, R., Lectures on characteristic classes and foliations, Lecture Notes in Math. No. 279 (1972), 1-80, Springer Verlag.
[BH] Bott, R. and A. Haefliger, On characteristic classes of Γ-foliations, Bull. AMS. 78 (1972), 1039-1044.
[C] Cartan, H., Notions d'algèbre différentielle;application aux groupes de Lie et aux variétés où opère un groupe de Lie, Colloque de Topologie, Bruxelles (1950), 15-27 and 57-71.
[D] Dominguez, D., Residues and secondary classes for subfoliations, Diff. Geometry and its Applications 4 (1994), 25-44.
[G] Godbillon, C., Cohomologies D'algèbres de Lie de champs de vecteurs formels, Sém. Bourbaki, 1972/1973, no421.
[Ha] Haefliger, A., Sur les classes caractéristiques des feuilletages, Sém. Bourbaki, 1971/1972, no412.
[He1] Heitsch, J., Deformations of secondary characteristic classes, Topology 12 (1973), 381-388.
[He2] Heitsch, J., Independent Variation of secondary classes, Ann. of Math. 108 (1978), 421-460.
[He3] Heitsch, J., Flat bundles and residues for foliations, Invent. Math. 73 (1983), 271-285.
[L] Lazarov, C., A permanence theorem for exotic classes, J. differential geometry 14 (1979), 475-486.
[T1] Thurston, W., Non-cobordant foliations of S^{3}, Bull. AMS. 78 (1972), 511514.
[T2] Thurston, W., Foliations and groups of diffeomorphisms, Bull. AMS. 80 (1974), 304-307.
[Y] Yamato, K., Examples of foliations with non trivial exotic characteristic classes, Osaka J. Math. 12 (1975), 401-417.
(Received September 2, 1998)
(Revised April 2, 1999)
Graduate School of Mathematical Sciences The University of Tokyo Komaba, Tokyo 153-8914, Japan

[^0]: 1991 Mathematics Subject Classification. 57R30.
 *Partially supported by JSPS Research Fellowships for Young Scientists.

