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Residue Formulae for

Secondary Characteristic Classes

By Syn-ya METOKI*

Abstract. For a codimension ¢ foliation 7 and a vector field X
which preserves 7, we can define the residues of residual secondary
characteristic classes as the cohomology classes of the singular set of X.
We calculate the residues for the examples which are generalizations
of those given by Heitsch([He2]).

§1. Introduction

IN THIS paper we construct examples of residues of secondary character-
istic classes, which are generalization of the results of Heitsch([He2]).

Let 7 be a codimension ¢ foliation on a manifold M, and X a vector field
on M. We assume that X preserves 7 and that its singular set (the set of
points where X is tangent to 7) is a single leaf N of 7. For a residual element
¢ € I,(WO,), we can define a certain cohomology class in HI¥~4(N),
called the residue of 7, X and ¢ at N(see §2).

In [He2], Heitsch constructed examples of many non-trivial residues and
showed that they are parametrized by non-zero real numbers A1, A2, ..., Ag,
hence they vary continuously. In this paper we generalize the examples of
Heitsch. Moreover we can observe that locally they realize the geometrical
limits of the examples of Heitsch when some of \;’s go to 0 (see below).

Let G = SLoR x -+ x SLeR (g -times), K = SOy X -+ x SOy (q -
times) and I' be a discrete subgroup of G such that I'\G/K is a com-
pact manifold. We define a certain action of G x R"™ on R?I*" and ob-
tain a codimension 2¢ + n foliation 7 of the foliated R?¢*"-bundle T"M =
(I x Z"\ G x R") xxR?1*" — N xT" = (I'\ G/K) x T™. Choose non-
zero numbers Ay, Ao, ..., Ag, fi1, 2, ..., in € R and let
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be a vector field on R29*" where ¥q(z1),..., ¥, (2,) are certain functions
defined in §3. X , has an isolated singularity at the origin and commutes
with the action of G x R". It induces a vector field X , on 7™M which
preserves 7. The singular set of X , is now just the zero section N x T" =
(T'\G/K) xT". Let ¢ € Iogyn (WO2q4n) with degy = 4¢g + 2n. We can
regard ¢ as an element in 12977 (glagip).

The main theorem of this paper is the following.

THEOREM 3.1. Let T"M,N xT",1, X, , and ¢ be as above. Then

Res, (1, X s N x T™)
n—times
——
_ 2”71"190()\1,)\1, )\2, )\2, . .,)\q, )\q,O, ces ,O )
()\1"'>\q)2m"'un

where Wy and Wpn = dty Adto A -+ - Ndty, are volume forms on N and T,
respectively.

The case of n = 0,1 are already given by Heitsch. However we can
consider that the example of residues given by this theorem gives the locally
geometrical limit of that of Heitsch.

For example, if n = 0, we have the following residue in the cohomology
class of a product of p surfaces of higher genus N =¥ x ¥y x ... x ¥, :

ﬂp(p()\l, )\1, )\2, )\2, ey )\p, )\p)
()\1-'->\p)2

(W] € H**(N).

Note that the coefficient is determined only by the ratio of A;’s since the
numerator and the denominator are both homogeneous of degree 2p in \;’s.
We can assume that the area of the i-th surface ¥; is 1/ \;2. Although when
Ap — 0 this coefficient diverges, if we restrict it to some domain D C 3,
whose area is constantly equal to 1, the above residue does converge to

7Tp(,0()\1, )\1, )\2, )\2, ceey )\p—17 >\p—17 0, 0)

()\1"')\])—1)2
€ H*®(N' x D),

(1.1) (W' A W]

where N/ = 31 X Y9 X ... X Yp—1 and Why is its volume form. From the
geometrical point of view, A\, — 0 means the curvature of the domain D
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goes to 0. In the formula of our theorem, by putting ¢ = p — 1 and n = 2,
we have the following residue in the cohomology group of N’ x T2,
47Tpg0()\1, )\17 )\2, )\2, “ ey )\p—lv >\p—17 0, 0)

(A1 Ap_1)papun
e H*®(N' x T?).

(1.2) (Wt A W]

After taking a suitable domain D’ C T2 whose curvature is also 0, the
restriction of (1.2) to N’ x D’ gives the same formula as (1.1). In this sense,
we can interpret our formula as a local geometrical limit of that of Heitsch.

In §2, we review the construction of secondary characteristic classes and
of residues.

In §3, we construct examples of variation of residues for a certain class
of residual secondary characteristic classes.

In §4, we extend the result of §3 for more general residual secondary
characteristic classes.

§2. Preliminaries

We briefly recall the construction of the secondary characteristic classes
for foliations and the residue formulae for the residual classes. In this paper
we will consider only C*- objects.

Let GL; = GL4R be the real general linear group and gl, = gl R its
Lie algebra. We define the Chern polynomials c1,ca,...,cq on gl, by

1 N
det (tIq - %A> =) t17¢;(A),
=1

where I, € gl, is identity matrix and A € gl,. Denote by I*(GL,) the
graded algebra of adjoint invariant polynomials on gl,. It is well-known
that I*(GL,) is a polynomial algebra generated by the Chern polynomials
C1,C2,...,Cq :

I"(GLg) = Rei, ¢, ..., ¢4

For any manifold M, we denote by A*(M) the algebra of differential
forms on M. For any vector bundle E — M, we denote by I'(E) the space
of smooth sections of
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Let 7 be a codimension ¢ foliation on an n-dimensional manifold M and
v its normal bundle. We call a connection @ on v is basic for 7 if its covariant

derivative V satisfies
VylI(Z) = 1([Y, Z])

forall Y € I'(7) and Z € I'(TM). Here Il : TM — v = TM/7 is the
natural projection.

Choose a basic connection 6° on v for 7 and a metric connection " on
v associated with a fiber metric on v. For ¢ € I*(GL,), set

(k—1)—times

1 —_—N
A (60,07) = k/ o0 — 67, Q7. 0Nt
0

where Q ¢ is the curvature of the connection ¢6° 4 (1 — )0" on v. Here ¢
is considered as a homogeneous symmetric tensors of degree k. It is well-
known that

dA‘P(eba HT) = (p(Qb) - QO(QT)v
where QF and Q" is the curvature of #° and 6", respectively. In particular,
if i is odd, we have dA., (6°,0") = ¢;(2°) because ¢;(2") = 0.
Let A(hi,hs,..., hQ[M]H) be the exterior algebra generated by h;’s
2
with degh; = 2i — 1, and R [c1, 2, . . ., ¢4] the polynomial algebra generated

by c¢;’s with degc; = 2j. Then we define the differential graded algebra
(WO% d) by

WO, = A(h1,hs, ..., h ) @Ry c1,ca,...,¢4.

2[(‘1g1)]+1
where Ry [c1,¢2,...,¢q] is the quotient algebra of Rei,ca,...,¢q4] by the
ideal generated by elements of degree greater than 2q. The differential
d: WO, — WO, is given by

Let
ar : WO, — A* (M),

be an algebra homomorphism defined by o« (h Z) = A, (0°,0") and by
a-(c;) = ¢;j(QY). It is well-defined since c;, (2°)---¢;, () = 0 for j; +
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-+ + jy > 2q by the Bott vanishing theorem. Since do,(h;) = a.(dh;) and
dar(cj) = ar(de;) = 0, ar is a cochain map of degree zero and so it induces
a homomorphism

o H*(WO,) — H*(M).

By the convexity of the set of basic connections and also of metric connec-
tions, o is independent of the choices of ° and ".

A vector field X € I'(T'M) is called a I'-vector field for 7 if it satisfies
[X,Y] € T'(7) for any Y € I'(7). For a I'-vector field X, the singular set of
X is defined to be the set of points of M where X is tangent to 7. Since the
normal components of a I'-vector field are constant along the leaves of T,
the singular set is a union of leaves of 7. To carry out a theory of residues,
the singular set of X has only to be a union of closed and seperated leaves
of 7. For simplicity, however, we assume that the singular set of X is a
single leaf N. Choose an embedded open normal disc bundle D over N in
M so that its closure D is an embedded normal disc bundle.

For a TI'-vector field X and a neighborhood U of M — D inM — N, a
basic connection 6 for 7 is called a basic X-connection supported off U if
on U its covariant derivative V satisfies

VxII(Y) =TI ([X,Y]),

for any Y € I'(TM). Here Il : TM — v = T'M/7 is a natural projection.
Such a connection always exists since 7 and X span codimension ¢ — 1
foliation on U.

Let I,(WOy) be the ideal in WO, generated by the elements of the form
¢y =c¢j - ¢j, with |J| =¢. On M — N, 7 and X span codimension (g —1)
foliation. Thus, by the Bott vanishing theorem, for ¢ € I,(WWO,) the restric-
tion a-(p)|p is a differential form with fiber compact support provided we
use a basic X-connection fx in the construction of a, : WO, — A*(M).
Since dp = 0, a;(¢)|p is a closed form on D and then [a, ()| p] € HI8% (D).
Here H means an cohomology algebra of closed differential forms with fiber
compact support. Let yp : HI8?(D) — HI€?=4(N) be the map induced
by the integration along the fibers of the ¢ disc bundle D — N.

DEFINITION 2.1. Let M,7,N,X,D and 6x be as above. For ¢ €
I,(WO,), the residue of ¢, 7 and X at N is a cohomology class given by

Res, (7, X, N) = 7p ([ar(0)[p]) € H¥*I(N),
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where the basic connection used in the construction of o, : WO, — A*(M)
is the basic X-connection 0x.

In fact Res, (1, X, N) is independent of the choices of embedded open
normal disc bundles and basic X-connections. ([He2] Theorem 3.11)
The following lemma will be useful for us later.

LEMMA 2.2 ([He2] Lemma 4.15). Let M,7,N, X and D be as above.
Let 0 be a connection on v over M with curvature Q. If 0 restricted to v over
the boundary S of D agrees with the restriction to v over S of some basic
X -connection supported off a neighborhood of S. Then for cy € I,(WO,)
with |J| = ¢,

Rese, (1,X, N) = vp [cs (Q) D]

§3. Examples

In this section, we construct our main example. Let G =
g—times g—times

SILbR x --- x SLoR and K = SOy X --- X SO3. We define the action of
G x R™ on R?1t" | as follows. The action of G C G x R™ is given by the

A 0

. To define th
0 1, ) o define the
action of R" C G x R™ on R*™™  we choose even functions ¥;(z;) for

j=1,2,...,n such that

natural inclusion G — GLgg4,R with A — (

i) 0 < W¥j(z;) <1 forall z; #0,

ii) W;(z;) are strictly increasing on the interval (0,1/2),
i) W,(z) =1if 2 > 1/2,
iv) U,(z;) and all its derivatives are zero at z; = 0.

Let (21,Y1,%2,Y2,--+,Tq,Yqs #1,---,2n) be coordinates on R*F" and
(t1,t2,...,ty) coordinates on R™ C G x R™. On the Lie algebra level,
the action of R” C G x R™ on R2?%%™ is given by

0 0

=12 V() 5

6tj 8Zj
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forall j =1,2,...,n
Choose non-zero numbers A1, A2, ..., Ag, pi1, p2, .. ., i, € R and set

8
Xy, = Z)\ <acl ~+yi ')+Zujzj &zj'

X\ has an isolated singularity at the origin and commutes with the action
of G x R™. Thus we obtain a codimension 2¢ + n foliation 7 of the bundle

T"M = (D' x Z"\ G x R") x xR¥*™" — N x T" = (I'\ G/K) x T"

transverse to the fibers and a I'-vector field X , for 7 ([He2] p.437-438).
Here T is a uniform discrete subgroup of G such that I'\ G/K is a compact
manifold. Note that the singular set of X , is just the zero section N xT" =
(T\G/K) xT™.

Suppose ¢ € Iogin (WO2q4y) with degy = 4¢+2n. Then ¢ is a polyno-
mial in the ¢;’s and thus we can regard ¢ as an element of I 2g+n (GLa2g+n)-
We write ¢ (A1, A1, A2, A2, ..., Mgy Ag, 0,...,0) for ¢ applied to the diagonal
matrix diag ()\1, AL, Ao, Ao, )\q, /\q, 0,... ,0) € glgq+n.

THEOREM 3.1. Let T"M,N xT", 1, X, , and ¢ be as above. Then

Res, (7, Xy N x T™)
n—times
——
2”7#%0()\17)\1,)\2,)\2,.. )\q,Aq,O,...,O )

At A1

where Wy and Wpn = dty Adto A -+ - N dty, are volume forms on N and T,
respectively.

PRrROOF.
Let wy , be the 1-form on R?7™ given by

Wap = Z)\ (widx; + yidy;) +Zujzj i(2)dz;.
=1 7=1

The action of K on Rt preserves Wy, S0 it induces a 1-form on T"M
also denoted by w) ;. We denote by T R24t" — T"M the tangent bundle
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along the fiber of T"M — N x T". We can identify TR?™" — T M
with the normal bundle v for 7.

Let 6 be the unique basic connection on TR2%*t" whose covariant deriva-
tive 1/ satisfies

0 0 ]
oz, =wyu(Y) [XA,;U a—xz foral Y e TR* ™ and i = 1,2,...,q,

Vy

0 0 ]
\VA%S o9, =wyu(Y) |:X)\,;m o forall Y € TR**" and i = 1,2,...,q¢,

0 0
Vy 53— =wau(Y) [X)\M, —| forallY e TR?*" and j =1,2,...,n.
aZj ’ ’ 6zj_
0 is well-defined.
We denote by S — N x T™ the sphere subbundle in T"M — N xT™
which is given by

q

S =1{p(g.2) | SN2 (a2 +7) + D 122705(2)* = 1}.

i=1 j=1

Here g € G x R, = (T1,Y1,%2,Y2, - - ,Tq, Ygs 21, - - - 2n) € R and
p:GxR"x Rt — TPM = (I' x Z"\ G x R") xxR%4*™ is the nat-
ural projection. Restricted to S, 6 is the basic X ,-connection for 7. By
LEMMA 2.2, we can use ¢ to compute the residue of 7 and X} , provided
we integrate along the fiber of the disc bundle D — N x T™ given by

q n
D ={p((g,2)) | SN (27 +97) + 31223 W(z) < 1},
i=1 j=1
Locally 7 is spanned by vector fields of the forms

0
Yi—l—yiT fori=1,2,...,q,

(2

1 0 0 .
Zit g (nig —uigy) Pz L2

9
ot

and

0 .
+ |Zj|q/j(2j)£ forj=1,2,...,n.
J
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Here Y; and Z; are the local vector fields corresponding to the elements

( 8 —(1) ) and ( —1/5 1/3 ), respectively, which lies in the i-th block of

the Lie algebra of G. Let w;, v; and dt; be the dual 1-forms of Y;, Z; and
0/0t;, respectively for ¢ = 1,2,...,g and j = 1,2,...,n. These 1-forms
satisfy
dw; = —w; Ay, fori =1,2,...,¢q,
dvi=0fori=1,2,...,q,
and

d(dt;) =0forj=1,2,...,n.

For the convenience, we use the following notations,

| aj |=| 2z | ¥j(z) for j =1,2,...,n,

and
aj = z;V;(z;) for j =1,2,...,n.
Set )
b; = Tiyw; + 3 (%’2 - yz'2) vi fori=1,2,...,q,
gi=a;|a;|dtfori=1,2,...,n,
A0 = AN161 + Xobg + -+ + )\q5q,
and

pe = pi1€1 + pog2 + -+ -+ Unén.

With these notations, the local connection form 6 = (9;) ‘ ,
1,j=1,2,...,2q+n

computed with respect to the local basis

6 8 9 6 9 0
Oxy Oy’ Oxg Oyy 021 Oy,

of TR?t™ _is given by

' 1
0571 = i (—wau + A8 + pe) — i fori=1,2,...,q,

- 1
031 = A (—wry + A+ pe) + 3y for i = 1,2,...q,
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9%2_1 =—w; fori=1,2,...,q,
2q+j .
Ogat] = 115 (—wx u + A8+ pe) — |ajl'dt; for i = 1,2,...,n,

and all other entries are zero. Then the local curvature form 2 =

i ..
A is given b
1) i,j=1,2,...2q+n & Y

Q31 =3 = \; (AN + due) fori=1,2,...,q,

-
(2231; = i (XS + dpe) + pjalidz; A (—wx + A6 + pe) — |az|"dz; A di;

for j=1,2,...,n,

and all other entries are zero.

We may eliminate the terms p;a7dz; A (—wy , + A0) from Qggig
these terms can never yield a non-zero element when they are wedged with
{dtj}jzl,Q’m’n since all {dt]’}jzl’gpu,n occur as {de VAN dtj}jzljg,m’n. (p(Q) is

a volume form on 7™M and it must contain all dt;’s.

because

Note that all functions of z;’s in 2 are even functions, we may replace
laj| by a, |a;|" by @’ and |a;|” by ¢” provided we integrate ¢ (€2) only over
the portion of the fiber of the disc bundle where z; > 0, 20 >0, ..., 2z, > 0.

Now ¢ (€2) is hard to compute. So we construct useful polynomial func-
tions on glag4+y as follows. Define

Try, (A) = trace(A¥) for A € glagry and k= 1,2,...,2q + n.
By the Newton formula, remark that
R[Cl, Cco, ... 702q+n] = R[Tl“l, Tl“g, ce ,Tr2q+n].

Since Res,, (7, X, N x T™) is linear in ¢, we can assume that ¢ is of the
form

P = Cpy Chy *+* Ck, With kg + ko + -+ kp = 2q +n.

Moreover, using the above remark, we can assume that ¢ is of the form

@ = Trp, Try, - Try,,, with my +mo + -+ - +mp = 2¢ +n.
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Since Q = (QZ)
1/4,j=1,2,....2q+n

m)\t 3
((Q )J) 1o 2gen computed as follows.

is a diagonal matrix, Q™ =

Q™21 = ()3 = N (dAS + dpe)™ fori=1,2,...,q,
@35 = ()" (@26 + due)™
/ m—1 m—1
+m (ujaj) (dX6 + dpe)
A uja;’dzj A (ua — u;ldtj) forj=1,2,....n

If we denote by Py, the diagonal matrix diag(A1, A1, A2, A2,...,Ag, Ag,
u1al, ..., pal), we can write

Trm (Q) = Trp (Py) (dX6 + due)™
n aTl"m (P/\,M)

+ Z aZj

Jj=1

(A6 + dpe)™ ' A dz; A (ue — uj_ldtj> .

Let m = (my,ma,...,m,). By the above assumption of ¢,we have

= Trm (Q)
= Trm, (@) Trp, () - - Try, ()
= Trm (Py,) (AN + dpe)®™™

+ Z Trm —{mg, } PA:H) Z

ki1=1 Ji=1
Ndzj, N (ue — u;lldth)

+ Z T‘I.m_{mkl 7mk2} (PAHU’)
1<k1 <k22 <r

aTI‘m,c1 (P)\,u)

d\S + dug)?atn—1
92, (X6 + due)

OTrm,, (Pay) 0Tty (Pa)

X Z Z o o (dXS + dpe)?1T 2
j1=1j2=1 J1 J2
Ndzj, N (ue — ,u,j_lldtjl> Ndzj, N (,ua — uj-;ldtjg)
+ Z Trm—{mkl,mkz,...,kail} (PA’“)

1<ki<ko<-<kyr_1<r
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zn: Zn: Z”: Ty, (Pay) 0Trm, (Pay)
j1=1j2:1 j,r,1=1
8Trmk 1 (P)\vﬂ)

azjl azjz

(dNS + dpe)®a!

Ndzj, N (ue — u;lldtjl) Ndzj, N (,us — uéldth) A
Ndzj,_, N (,us — uj_l dt;, 1)
0Tty (P) e, (Pry)
+ Z Z Z oo o

ji=1j2=1  jr=1 g J2
8Trmkr (P)\”u)

9z,
Adzj, N (ue - ,uj_lldtjl) Ndzj, N (,us - uj_;dth) A

Ndzj, N (us — ,ujzldtjr) .

(dNS + dpe)*

Since (dA6)! = 0 for [ > 2¢, if we write pia? by Aj for j = 1,2,...

then we can write ¢ () as follows.

¢ ()

= (muz---u)_l{wﬂ (P 0A  Odn

2] O P .
i 2q+n— 1)! 0Trm (P )

o} 0zj,
0A; 04, A,
e . 1—A;
% 01 0zj, Oz, ( i)
— N H?
+(_1)2 Z (2q —i—2n| 2). 0 ;‘I‘ma(P)\,u)
1<j1<ja<n T “31 9%
04, 0A; 945, 04,
1—-A;, —A;
% 0z1 8Zj1 82j2 O0zn, % ( I jg)
T 3 (2¢+1)! 9" ' Try, (P )

! . . .
<< 1<n 2q!  025,0zj,...0zj,_,
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0A,  0A; 04, 04,
s 1—A:, —A. —.-.-— A
8 021 azjl azjn_l 0zp, x ( J1 J2 ]n—l)
0" Try, (Py N) } )
—) R (1A —Ay— - — A, q
+(=1) 0210722 ...0zy, ( 1 2 ) ¢ (dA6)

Adzy Ndty A - ANdzy N dty,.

Note that this expression of ¢ (2) is valid only on the part of z; > 0 for all
1=1,2,...,n.

Since the connection 6 restricted to S = 9D is basic X} ,-connection,
by LEMMA 2.2 Res,, (7, X 4, N x T™) is the cohomology class of [}, ¢ (£2).
To integrate ¢ (2) over the disc D C R4 we define

q

D/: {(x17y17"'7w(pyq) GRQQIZ)\’LQ (x12+y12) < 1_A1_A2__A7l}7
i=1

and

DOZ{(Zl,...,Zn)ERn‘Al—i-AQ—F-'-—l-AnSl,ZlZO,...,ZnZO}.

By a result of Heitsch,

I(1— Ay — Ay — - — A,)M
/ (g = (L= A — A ) gy,

A3 .. N2
where Wy is a volume form [, w; A+; of N. Thus, using the fact that

04; 01 —Aj—Ay—- — Ay)

8,2]‘ 8,2]' ’

we have

/Dcp(Q)
AR

2"
A%A%...Agulug...un

O (1 — Ay — Ay — - — Ap)%0™
Tre (P
8 l/DO { ( A,u) 82’1 PN 8zn
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" OTry (P, YOIl —A —Ay—---— A 2¢+n—1
+Z Oz : ( ~ n) (1_Aj1)
j1=1 1 82 v 82]'1 ce 8,2‘”
2q+n—2
+ Z P Trm (Pyy) 0" 2 (1— Ay — Az—;—An) o
j1<j2 82]1875]2 0z Z1 .- .aZjl cee 82’j2 cee azn
X (1—Aj — Aj)
N
n—1 2g+1
+Z 0" Trm (Pry) 0(1—A1—Ay—---— Ay)
1< <1 8ZjlaZjQ s 8zjn—l 0z1 ... 82]‘1 - 8zjn71 ...0zp
X (1_Aj1 _"'_Ajn—1)
0" Trm (Pau) 2041
B (1 — Ay — Ay — - — A, )1
0210z ...0z, ( ! 2 n) } dz dz”} W

Adty A= Adty,

where the summations .Zj1<j2’ e Dy AN Dy i
D o1<ji<<jn_1<ns TESPECtively.
Now we need only to compute the integration over Dy in the above large
bracket. Let be F =1— A; — Ay —--- — A,,. For the convenience, we write
k
8Zj1 e aij by 8 Zjh---,jk'

LEMMA 3.2.  For any function f = f(z1,...,2n), the following integra-

tion
8nFm+n n af 8n—1Fm+n—1
3.3 1—A.
> /D{ O Z oz ot T
82f on— 2Fm+n—2
D e (LA Ap) e
Jl<32 J1J2 1..J1...J2..n
o"f
—— L Y da - dzy,.
+3n2’12._.n } 21 2,

is equal to (—1)"f(0,...,0).

PROOF.
We define the (n — r)—dimensional faces Dy, . of Dy for 1 < k; <
<k, <nby

Dkl---kr :{(21,...,Zn) EDO| 2k, :0,...,2’]% :0}.
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If ¢ > p, using integration by parts repeatedly, for any function g =
9(z1,...,2n), we have

OPF"
——dz...dz
/Do gapzkl...kp ! "

— (<1 { / gF
Dy ..kp
- 9y

* Z / A Ozk,,

—_1JD
81=1" Tk sy kp

+Z/

—

le...d/Z-;l...de e

P

.dzp,

Diy .. kp

t dzi...dzp, ... .dzg, ... dzg, ... dzy,

D —~
ky..ksy..kp

51<52 Dkl Koy gy
52 _ _
X 27917% dzl...dzkl ...de51 '“dszZ dzkpdzn
02k, ke D -
k.. - -ksg-.kp
oP
+ 4 7gFZdzld22 odzy .
Do P2k, .k,

Applying this equation, we can move all the differentials 9/0z,’s of F* to
those of f in (3.3). There integrations over (n —r)-dimensional faces appear
on terms which range from 1-st to (n — r + 1)-th, and their sum S,,_, is
given by

8’1’1,—7‘]0
Snfr = (_1)71 Z / WFWL+” dnirzl?
by <-e<hiy Dok iin—r Dy oty
an—r
+ (_1)n—1 / f Fernfl
J1= 1/€1< <k Dkl ke ZJ”I"'Z”*Tfl Dkl"'kr

X (1= Aj)d" "z

+ (=D Y / on— I prtn-2
Dgy ke

Ty
J1<]2 k1 <--<ky J1J2t1--tn—r—2

Dk1'“kr

X (1= Aj, — Aj,)d" "z

+ (—1)7"+1 Z Z /D anranrf Frtrtl

1< Tt by ey Dy O 2 i

Diey oty
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X (1 —Aj = - Ajnfrfl) dn_rzf?
! [ e
yl< <yn oI Dyt " Zj Dyt
X(L=Aj == Ay, ) d" T2,

where the [-th term contains the indices {j} (I—1)-times, {i} (n—7r—1+1)-
times and {k} r-times. The indices {k} are chosen out of the complement

of {j} in {1,2,...,n}, and the indices {i} are chosen out of the complement
of {j}1I{k} in {1 2,...,n}, and d"7"z5 means dz .. dz;€1 dzk cdzp,.
Slnce F|Dk1kr = (1 - A]l -t Ajlfl - Ail - AznfrflJfl)’
we can write
877, T
Sn—r = / n T f
ji<o- <Jn ! Dk ke Zj1edn—r
x {(—1)" (L= Ay == Ay, )"
+ (=)= Ay = Ay, )
n—r n—r—1 n—r—1
()= Ay = = Ay, )T
n—r n—r—1 n—r—1
+ ()= Ay = Ay, )T

n—r n—r—1
X((n—r—1>_<n—r—2>Ajl_
n—r—1
_<nr2 )Aj"r>

b (1) (1= Aj = — Ay, )™

In—r

x (1 - A]l - Ajnf'r‘) } dn_rzf?'
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A simple calculation shows that the polynomial in the above bracket with
variables A; ,...,A;,_ is zero if r < n. Thus the integration given in (3.3)

is equal to (—1)™Sp. However Sy is equal to f(0,...,0). This ends the proof
of LEMMA 3.2. [J

Now we can conclude that

Res, (7, Xy 4, N x TT™)

[ o)

. Qnﬂ'q(p (/\1,/\1,)\2,)\2, .o .,/\q,)\q,o, e ,0)
NAZ ... AZpapg - - - pn

Wy A Wra]. O

REMARK 3.4. Consider the following elements of degree 8 in I,(WOy),
ct, cleg, cies € I (WOy).

Heitsch constructed an example such that the residues of ¢f, c?co and cjc3
vary as functions cf(A1, A1, A2, A2) /(A1 A2)?, c2ea(A1, A1, A2, A2) /(A1 A2)? and
c1e3(A 1, A1, A2, A2)/(A1A2)?, respectively([He2] Theorem 5.4). However,
since

ct(A1, A1, A2, A2) /(A1 ho)?

= 4(A1+ X2)? - 4(A1 + A)?/{(2m) (A h2)?}
Aea(A, A, Aoy A2) /(A he)?

= (AT + 40 + A3) - 4(A1 + A2)?/{(2m) (M A2)?)
crc3( M, A1, Az, A2) /(A1 ha)?

= Ao -4\ + X)2/{(2n) (M h2)?),

they vary keeping the linear relation
(3.5) Res.a — 4Res 2., + 8Resc,c; = 0.

On the other hand, putting ¢ = 1 and n = 2 in THEOREM 3.1, we gain
another example such that the residues of c‘ll, C%CQ and cjc3 vary as functions
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(A1, A1,0,0)/(Afpapa), ciea(Ar, A1,0,0)/(AMpape) and cres(Ar, A1, 0,0)/
(A2111u2), respectively. However, since

1A, A1,0,0)/(Mppe) = 4ANF ANT/{(2m) (Mpipa)}
cfea(Ai, A1,0,0) /(M pnpe) = A7 AN /{(2m) (A pn) }
c1c3(A1, A1, 0,0)/(ANfpnp2) = 0 -ANF/{(2m) (N ppe) ),

they vary keeping the linear relation
(3.6) Res.a — 4Res 2., = 0.

The relation (3.6) cannot be derived directly from the relation (3.5). Pre-
cisely, even if we put Resc,, = 0 in the relation(3.5), we cannot obtain the
relation(3.6). Because Resc,¢, in (3.5) is zero if and only if A\; + A2 = 0,
since A1 and Ay are non-zero number. However if \; + \o = 0, Resczlx and
Resz,, in (3.5) must be also zero. Thus the relation (3.5) vanishes.
Similarly, consider the following elements of degree 10 in I5(WO3),

5 3 2 2
c1, cice, c1c3, C1¢5, c1ca, cacy € I5(WOs).

Again Heitsch constructed an example such that the residues of ¢}, cjea,
cles, c163, cicq and cocs vary keeping the linear relation([He2] Theorem 5.9)

(3.7) Resci — 4Resc§C2 + 8Resc§c3 =0
. ReSC§ — 16Resqc§ + 64Resc, ¢, — 64Rescye; =0

On the other hand, putting ¢ = 1 and n = 3 in THEOREM 3.1, we gain
another example such that the residues of theirs vary keeping the linear
relation
(3.8)

cica

Resc? —4Res 3., =0
Ress — 16Res, 2 =0

Again, the relation (3.8) cannot be derived directly from the relation (3.7).
Of course, similar argument is valid not only for I,(WO,) and I5(WOs)
but also for more general I,(WO,) with ¢ > 4.

84. Extended Examples

Let G = SLinR X SL2n2R X oo X SL2nTR and K = SOin X SOgn2 X
- X SOgy, where n; < ny < --- < n, are positive integers such that



Residue Formulae 593

2n1 +2n9 + - - -+ 2n, = 2¢q. Since each component of G is semi-simple, there
is a discrete subgroup I' = I'; x I'9 x - -+ x I, such that each I';\SLa, R/
SOgy, is a compact manifold.

Let (x4, 9}, a5, y5, ..., @k, yh ) be coordinates on the i-th factor of R* =
R2" x ... xR?* C R?*" and (21, 29, . . ., z,) coordinates on the last factor
R"” C R?*". Choose non-zero numbers Ai, g, . .., Ap, fi1, (42, - - - , fn, and set

'
-0 -0 .0 .0
X = Nilti—+Yi—+ -+, — +vy, —
A ; ) ( 1 8.1'11 1 3% n; 8$7I% Yn, 8@/%1
“ 0
+ 2 1% 5(z) 5
j=1 j

where V¥; is a function defined at the beginning of §3. X, , induces a I'-
vector field X , for the foliation 7 of the transversely foliated bundle

T'"M = (T x Z"\ G x R") x gR**" — N x T" = (T'\ G/K) x T".

The foliation 7 on T"M — N x 1™ is diffeomorphic to the foliation also
denoted by 7 which is obtained from the flat bundle structure

(G x R") /K) xpyznR?* ™ — N xT" = (T'\ G/K) x T™.

Recall that
H*(Slqu, SOQq) = /\(83, 855+ 829—1, X)

is an exterior graded algebra with degs; = 2i — 1 and degy = 2q. We write
sp(M) = si,8iy -+ si, (M) € H*(N) C H*(N x T") for the characteristic
class of the flat SLy,R-bundle M = (G/K)xrR** — N = (I'\ G/K)
corresponding to the element s; € H*(slygR,SO9).

PROPOSITION 4.1. Let hjcy = hz'1 hi2 e hz‘TCJ € I2q+n(W02q+n) where
i1 > 1 and i < 2q. Then

Resp, e, (T, Xa s N x T™) = s7(M) - Resc, (7, Xn 0, N x TT).

To relate Res,, (7, X ,, N x T™) with the previous example, we consider
the following scheme. Let

i* @1 H" (slan, R, S09,,) — @1H*(slaR, SO2)
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be the induced map by the natural inclusion i : x9SLsR — G =
xi_1SLay, R and

p Ri_1 H*(slan,R,S09y,) — H*(N) = H*(I'\G/K)
be the characteristic map corresponding to the flat G-bundle M — N.
PROPOSITION 4.2.  For ¢y € Izg1n(WO2q4n), modulo p(keri*)

Resc, (7, X, N x T")
g Oa A0, 0)

2n1y2n 2n
)\1 1)\22... T"”ulluaun

X(M) - [dty A -+ ANdty],

where (3 is a non-zero constant , x(M) is the Euler class of M — N, and
CJ()\l,)\Q,...,)\r70,...70)
is the Chern polynomial ¢y applied to the diagonal matrix

diag( M, s A A2 s A2y oo Ao s A, 0, 0).
——

2n1—times 2no—times 2n,—times n—times

The proof of PROPOSITION 4.2 is analogous to the proof of Theo-
rem 5.12 and Theorem 5.17 of [He2] and is omitted. Finally ,combining
PROPOSITION 4.1 and PROPOSITION 4.2, we have

THEOREM 4.3. Let hycy = hj hiy ... hi.cg € Iogin(WO2q4y) where
i1 > 1 and i, < 2q. Then modulo p(keri*)

ReShICJ (T, XA,IMN X Tn)
CJ()\l,)\Q,...,)\T,O,...,O)

:ﬂ 2n1 \ 2no 2N,
)\1 )\2 "’)\r W12 - - o

st(M)x(M) - [dt; A - Adty].

PRrROOF OF PROPOSITION 4.1.

Let 9:]; and 07 be the flat connection and a metric connection respectively
on TR24+" — T M. Here TR?4+t" — T™M is the tangent bundle along
the fiber of T"M — N x T™. As in the proof of THEOREM 3.1 we can
identify TR?¢t" — T™M with the normal bundle v of 7. Let 9% be a basic
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X u-connection on supported off the complement of Il : D — N x T" a
disc subbundle of 7" M — N x T™. Denote the curvature of 65 by Q5.

Then Respc, (7, Xy 4, N x T™) is determined by the differential form
Ay (05, 05)c7(Q8). Aey (0, 05)cr(Q4) and A, (0., 05)c(Q24) determine
the same class in H}(D) (see [He2] p.447, [Hel], [L]). Now we need to show
the following.

LEMMA 4.4.

I (s1(M)) [es(@)] = |Ac, (6], 7)es ()] € H (D).

PROOF.
Let

I :T"M = ((G/K)xrR*)x (RxzR)x---x (RxzR)— M
= ((G/K) xrR*)

and
n—times

I, : T"M = ((G/K) xr R*) x (R xzR) x --- x (R xzR) — (R xz R)

be the natural projections onto the j-th factor of T"M for j =2,...,n+1.
Then the bundle TR?4t" — T™M can be written of the form

I} (TR*) @ I(TR) @ - - ® 1T (TR) — T"M,

where TR?? — M = ((G/K) xp R?9) is the normal bundle of the foliation
of the transversely foliated bundle M = ((G/K) xr R*) — N =T\G/K
and TR — R Xz R are trivial bundles. Let o; be global non-zero cross-
section of the j-th factor TR for j = 2,...,n+ 1. We give the j-th factor
TR the metric r; so that o; is length 1 for j = 2,...,n+ 1. Let the metric
r on TR?4*™ be induced by the metrics 7o, . . . ,Tn+1 and some metric 1 on
TR?4. If 9! is a metric connection on TR with respect to r1, then IT{6"*
is also a metric connection on II{7TR??. Let #7 be the metric connection on
IIFTR so that o is flat for j = 2,...,n+ 1. Finally we define the metric
connection 6% on TR to be IEO™ @ 6? @ - @ g7+,
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Let &1,...,&, be a local framing of TR??. With respect to the local
framing

C= {1, .., Mg, 0, .. Ty 01}

of TR*" = II}(TR*!) @ II3(TR) @ - -- ® I}, (TR) — T™M , the local
connection form of 07 is given by

i (em') 0
0 0)

where (6™1) is the local connection form of #"! with respect to the framing
&1,...,&q.

On the other hand, let 9:]; be the flat connection on TR?¥t" induced
by the flat connection ! on TR2? and the flat structure on IT5(TR) @
- @I} {(TR). Then the local connection form of 67 with respect to the
framing ( is given by

I (671) 0 0 0
0 I5(g2(z1)dz1) O 0
0 0 0
0 0 0 I 1 (gn+1(2n)d2n)

Here (671) is the local connection form of ! with respect to the framing
&1,...,&q and gj(zj—1) are some functions on R for j =2,...,n+ 1.
Thus, with respect to the framing (, the local curvature form ng) of the

connection 959 = tﬁr{;’l +(1—- t)@%l is given by

5 (Q®) 0
0 0/’

where (2®) is the local curvature form of the connection () = ¢! 4 (1 —
t)0™ with respect to the framing &, ..., &y

From the definition of the Chern polynomials, if we denote by © the
diagonal matrix diag(Il5(g2(z1)dz1), ..., 11} 1 (gnt1(2n)d2,)), then we have

1
A, (051, 001) = TEEA,, (671,071 + BT { /0 Ci—l(Q(t))dt} A c1(O)
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where [ is some non-zero constant. Since ¢, () = 0, (Q®) =
dA,, (00,01 for0<t<landk=i-mn,...,i—1,

1
B (01,6) = IGA 04, 07) + a [ 11 { [ Ao, 00,001t A ca(©)]

As ¢j(9%) is closed and has compact support in D,
(4.5) Ag, (051,071 es(90) = T A, (071,01 ) e (Q4) + (exact form).

The exact form in (4.5) has also compact support. Now both
A, ((9:],1’1, Ggl)cJ(Q%) and I{A., (071, 0™1)c;(0Q%) are closed and have com-
pact support in D. Thus they determine the same class in H} (D). However
A, (051,071 c 7 (95.) represents IT* (s (M) [CJ(Q%)} . This ends the proof
of LEMMA 4.4. [J

By LEMMA 4.4, we can complete the proof of PROPOSITION 4.1, and
thus of THEOREM 4.3 as follows.

Respye, (7, Xau, N xT") = p ([ er (07, 07)cs (2 ‘D:|)
= VD([ er 9T’9T s @) ,])
= D {CJ (@) ‘D )

= (M)Rest(T X N xT™). 0O
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