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Remark on Non-Uniform Fundamental and

Non Smooth Solutions of Some Classes of

Differential Operators with Double Characteristics

By Nguyen Minh Tri

Abstract. We construct explicit formulas for fundamental solu-
tions and non-smooth solutions at degenerate points of a model of
Grushin’s type operator. The results give all the discrete values of
parameters where the operator is not hypoelliptic (nor analytic hypoel-
liptic).

The aim of this paper is to give explicit formulas of fundamental solutions

and non-smooth solutions at degenerate points of the following operator

(1) Gk,λ =
∂2

∂x2
+ x2k ∂2

∂y2
+ iλxk−1 ∂

∂y
,

where (x, y) ∈ R
2, λ ∈ C, i =

√
−1 and k is a positive integer. The above

operator is the simplest model of Grushin’s type operator [1]. According to

a theorem of Grushin the operator Gk,λ is hypoelliptic (or analytic hypoel-

liptic) if and only if the equations

L+
k,λw1(x) =

d2w1(x)

dx2
− x2kw1(x) − λxk−1w1(x) = 0

and

L−
k,λw2(x) =

d2w2(x)

dx2
− x2kw2(x) + λxk−1w2(x) = 0

do not have non-trivial solutions in S(R). In [2], [3], [4], [5], [6], [7], [8]

there are given explicit formulas of all k, λ for which Gk,λ is hypoelliptic.

We would like to mention a theorem (see, for example [8]).

1991 Mathematics Subject Classification. Primary 35H05; Secondary 35A08, 35D10,
35B65.

437



438 Nguyen Minh Tri

Theorem 1. Gk,λ is hypoelliptic (or analytic hypoelliptic) if and only

if

in the case k odd λ �= ±[2N(k+1)+k] or else λ �= ±[2N(k+1)+(k+2)]

for some non-negative integer N .

in the case k even λ �= (2N + 1)(k + 1) for some N ∈ Z.

Because of the non-symmetry of Gk,λ there is a little hope to have an

explicit formula for fundamental solutions of (1) even at one single point.

While studying the analyticity of solutions of semilinear Kohn-Laplacian �b

on the Heisenberg group, see [9], we found a lot of such solutions. We would

like to mention that such kind of fundamental solutions was used to obtain

the C∞ regularity of solutions at boundary isolated characteristic points. It

is the fact that for boundary value problems the C∞ regularity of solutions

up to boundary may fail at characteristic points [10]. The expression for

fundamental solutions is suggested by the one of [11] and [12]. We try to

find them in the following form

Fα,β,γ
k (x, y) =

(
xk+1 − i(k + 1)y

)α(
xk+1 + i(k + 1)y

)β
xγ .

Here we take zz21 = ez2lnz1 for z1, z2 ∈ C and if z1 = reiϕ,−π < ϕ ≤ π

then lnz1 = lnr + iϕ. Let us rewrite Gk,λ = X2X1 + i(λ + k)xk−1 ∂
∂y where

X1 = ∂
∂x − ixk ∂

∂y , X2 = ∂
∂x + ixk ∂

∂y . We would like to find all α, β, γ, λ ∈ C

such that Gk,λF
α,β,γ
k (x, y) = 0 except (possibly) the points where Fα,β,γ

k is

not smooth. Note that

X1

(
xk+1 + i(k + 1)y

)
= 2(k + 1)xk, X1

(
xk+1 − i(k + 1)y

)
= 0,

X2

(
xk+1 + i(k + 1)y

)
= 0, X2

(
xk+1 − i(k + 1)y

)
= 2(k + 1)xk.

Therefore we obtain

Gk,λF
α,β,γ
k (x, y) =

(
xk+1 − i(k + 1)y

)α−1(
xk+1 + i(k + 1)y

)β−1
xγ−2

×
{[

4(k+1)2αβ+2(k+1)(k+γ)β+2(k+1)αγ+γ(γ−1)+(k+1)(k+λ)α

− (k + 1)(k + λ)β
]
x2k+2 + (k + 1)2γ(γ − 1)y2 + i

[
−2(k + 1)2(k + γ)β

+ (k + 1)2(k + λ)α + (k + 1)2(k + λ)β + 2(k + 1)2αγ
]
xk+1y

}
.
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Hence formally we have Gk,λF
α,β,γ
k (x, y) = 0 if

γ = 0, λ arbitrary, α = 0, β = 0, the solution is a constant.

γ = 0, λ = k, α = 0, β arbitrary �= 0.

γ = 0, λ = −k, α arbitrary �= 0, β = 0.

γ = 0, λ arbitrary, α = λ−k
2(k+1) =: α1(k, λ), β = − λ+k

2(k+1) =: β1(k, λ).

γ = 1, λ arbitrary, α = 0, β = 0, the solution is the linear function x.

γ = 1, λ = k + 2, α = 0, β arbitrary �= 0.

γ = 1, λ = −(k + 2), α arbitrary �= 0, β = 0.

γ = 1, λ arbitrary, α = λ−k−2
2(k+1) =: α2(k, λ), β = −λ+k+2

2(k+1) =: β2(k, λ).

Theorem 2. Assume that k is odd. Then

I) Gk,λF
α1(k,λ),β1(k,λ),0
k (x, y) = −2

2+ 1
k+1 πΓ( k

k+1
)

Γ( k+λ
2k+2

)Γ( k−λ
2k+2

)
δ(x, y) =: ak,λδ(x, y).

II) Gk,kF
0,β,0
k (x, y) = 0 if Reβ > − k

k+1 .

III) Gk,−kF
α,0,0
k (x, y) = 0 if Reα > − k

k+1 .

Proof.

I) We begin by noting that if k is odd then
(
xk+1− i(k+1)y

)α
and

(
xk+1 +

i(k + 1)y
)β ∈ C∞(

R
2\(0, 0)

)
for every α and β. Let us introduce the

following “polar coordinate”

x = ρ(sin θ)
1

k+1
± , y =

ρk+1

k + 1
cos θ, dxdy =

ρk+1

k + 1
| sin θ|−

k
k+1dρdθ.

Here we use the following notation (sin θ)r± = sign(sin θ)| sin θ|r for every

r ∈ R. Note that the map (x, y) −→ (ρ, θ) is not a differmorphism along the

line x = 0. But it is good enough for us because in the future we will use it

only for integration, and if necessary we can take integrals as a limit. Now

it is easy to verify that ρ2k+2 = x2k+2 + (k + 1)2y2. Let us write F 1
k (x, y) =

F
α1(k,λ),β1(k,λ),0
k (x, y). First we prove that F 1

k (x, y) ∈ L
k+2
k

−τ

loc (R2) for any

small positive τ. Indeed, since F 1
k (x, y) ∈ C∞(

R
2\(0, 0)

)
it suffices to prove

that F 1
k (x, y) ∈ L

k+2
k

−τ (Bε), where Bε = {(x, y)|ρ(x, y) < ε}. We have

∫
Bε

∣∣F 1
k (x, y)

∣∣ k+2
k

−τ
dxdy ≤ C

∫ π

−π
| sin θ|−

k
k+1 dθ

∫ ε

0
ρk+1(ρ−k)

k+2
k

−τ dρ

≤ C

∫ ε

0
ρ−1+τk dρ < ∞.
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Note that F 1
k (x, y) /∈ L

k+2
k

loc (R2). Let R
2
ε = {(x, y) ∈ R

2|ρ(x, y) ≥ ε}. By

applying Green’s formula we have

∫
R2
ε

f(x, y)Gk,−λv(x, y) dxdy(2)

=

∫
R2
ε

v(x, y)Gk,λf(x, y) dxdy

−
∫
ρ=ε

v(x, y)
{
ν1.

∂f(x, y)

∂x
+ ν2. x

2k ∂f(x, y)

∂y

+ iλ. ν2. x
k−1 f(x, y)

}
ds

+

∫
ρ=ε

f(x, y)
{
ν1.

∂v(x, y)

∂x
+ ν2. x

2k ∂v(x, y)

∂y

}
ds

=:

∫
R2
ε

V (f, v, k, λ) dxdy

−
∫
ρ=ε

v(x, y)B1(f, k, λ) ds +

∫
ρ=ε

f(x, y)B2(v, k) ds

for every v(x, y) ∈ C∞
0 (R2), f(x, y) ∈ C∞(

R
2\(0, 0)

)
, where ν = (ν1, ν2)

is the unit outward normal to ∂R
2
ε. Replace f(x, y) in (2) by F 1

k (x, y) we

obtain

∫
R2
ε

F 1
k (x, y)Gk,−λv(x, y) dxdy =

∫
R2
ε

V (F 1
k , v, k, λ) dxdy(3)

−
∫
ρ=ε

v(x, y)B1(F
1
k , k, λ) ds

+

∫
ρ=ε

F 1
k (x, y)B2(v, k) ds.

The first integral in the right side of (3) vanishes. We now compute the

third integral in the right side of (3). It is easy to check that

ds
∣∣∣
∂Bε

=
1

k + 1

(
ε2| sin θ|−

2k
k+1 cos2 θ + ε2k+2 sin2 θ

) 1
2
dθ and
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ν
∣∣
∂Bε

= (ν1, ν2)
∣∣
∂Bε

= −


 x2k+1(

x4k+2 + (k + 1)2 y2
) 1

2

,
(k + 1)y(

x4k+2 + (k + 1)2 y2
) 1

2



∣∣∣∣∣
∂Bε

.

Hence

(
x4k+2 + (k + 1)2 y2

)− 1
2
ds
∣∣∣
∂Bε

=
1

k + 1
ε−k| sin θ|−

k
k+1dθ.

It follows that

∣∣∣∣
∫
∂Bε

F 1
k (x, y)B2(v, k) ds

∣∣∣∣(4)

≤ C

∫
ρ=ε

|F 1
k (x, y)|.

(
|ν1| + |ν2. x

2k|
)

ds

≤ C

∫
ρ=ε

ε−k |x|2k+1 + (k + 1)x2k|y|(
x4k+2 + (k + 1)2 y2

) 1
2

ds

≤ C

∫ π

−π
| sin θ|

k
k+1

(
ε| sin θ|

1
k+1 + εk+1| cos θ|

)
dθ → 0

as ε → 0.

Next we evaluate B1(F
1
k , k, λ). We have

B1(F
1
k , k, λ)

∣∣∣
ρ=ε

=
(
xk+1 − i(k + 1)y

)α1(k,λ)(
xk+1 + i(k + 1)y

)β1(k,λ)

×
(
kx2k − i(k + 1)λxk−1y

)
×
(
x4k+2 + (k + 1)2 y2

)− 1
2
∣∣∣
ρ=ε

= εk
(
| sin θ| + i cos θ

)− λ
k+1

×
(
k| sin θ|

2k
k+1 − iλ| sin θ|

k−1
k+1 cos θ

)
×
(
ε4k+2| sin θ|

4k+2
k+1 + ε2k+2 cos2 θ

)− 1
2
.
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Therefore

−
∫
ρ=ε

v(x, y)B1(F
1
k , k, λ) ds

= − 1

k + 1

∫ π

−π

(
k| sin θ|

k
k+1 − iλ| sin θ|−

1
k+1 cos θ

)
×
(
| sin θ| + i cos θ

)− λ
k+1 v(ε, θ) dθ

= − 1

k + 1

∫ π

−π

(
v(0, 0) + ō(1)

)
(k| sin θ| − iλ cos θ) | sin θ|−

1
k+1

×
(
| sin θ| + i cos θ

)− λ
k+1 dθ

→ −2v(0, 0)

k + 1

∫ π

0

(
k sin

k
k+1 θ − iλ sin− 1

k+1 θ cos θ
)(

sin θ + i cos θ
)− λ

k+1 dθ

as ε → 0. By integrating by parts we have the following identity∫ π

0

(
sin θ + i cos θ

)− λ
k+1 sin− 1

k+1 θ cos θ dθ

= −λi

k

∫ π

0

(
sin θ + i cos θ

)− λ
k+1 sin

k
k+1 θ dθ.

It follows that

−
∫
ρ=ε

v(x, y)B1(F
1
k , k, λ) ds

−→ 2(λ2 − k2)v(0, 0)

k(k + 1)

∫ π

0

(
sin θ + i cos θ

)− λ
k+1 sin

k
k+1 θ dθ as ε → 0.

Lemma. Assume that ω1, ω2 ∈ C,Reω1 > −1. Then we have

(5)

∫ π

0
sinω1 θ(sin θ + i cos θ)ω2 dθ =

2−ω1πΓ(ω1 + 1)

Γ(1 + ω1−ω2
2 )Γ(1 + ω1+ω2

2 )
.

Proof. We begin by noting that the integral in the left side of (5)

makes sense if Reω1 > −1. Since Reω1 > −1, we have∫ π

0
sinω1 θ(sin θ + i cos θ)ω2 dθ
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= −
∫ π

0
sinω1 θ

( i

cos θ + i sin θ

)ω2+1
d(cos θ + i sin θ)

= −
∫
S+

1

(z2 − 1

2iz

)ω1
( i

z

)ω2+1
dz =

∫ −ε

−1

(z2 − 1

2iz

)ω1
( i

z

)ω2+1
dz

−
∫
S+
ε

(z2 − 1

2iz

)ω1
( i

z

)ω2+1
dz +

∫ 1

ε

(z2 − 1

2iz

)ω1
( i

z

)ω2+1
dz

where S+
r is the upper circle of radius r in C. First we consider the case

Reω2 < −Reω1. We note the following inequality |zµ| ≤ C|z|Reµ where

0 < |z| ≤ 1 and µ is some complex constant. Therefore we see that∫
S+
ε

(
z2−1
2iz

)ω1
(

i
z

)ω2+1
dz tends to 0 when ε tends to 0. Next we have

∫ 0

−1

(z2 − 1

2iz

)ω1
( i

z

)ω2+1
dz =

∫ 1

0

(
−z2 − 1

2iz

)ω1
(
− i

z

)ω2+1
dz

= (−1)−1−ω1−ω2

∫ 1

0

(z2 − 1

2iz

)ω1
( i

z

)ω2+1
dz.

Hence letting ε tend to 0 we deduce that∫ π

0
sinω1 θ(sin θ + i cos θ)ω2 dθ

=
[
1 + (−1)−1−ω1−ω2

] ∫ 1

0

(z2 − 1

2iz

)ω1
( i

z

)ω2+1
dz

=
cos π

2 (ω1 + ω2 + 1)

2ω1

∫ 1

0
(1 − z)ω1z−

ω1+ω2
2

−1dz

=
2−ω1πΓ(ω1 + 1)

Γ(1 + ω1−ω2
2 )Γ(1 + ω1+ω2

2 )
.

Next we note that for every fixed ω1 ∈ C,Reω1 > −1 the integral in the left

side of (5) is an entire analytic function of ω2 and Γ(.) is a meromorphic

function in C. It follows that (5) is true for every ω1, ω2,Reω1 > −1.

Therefore the proof of Lemma is completed. �

(continuing the proof of part I) Substituting ω1 = k
k+1 , ω2 = − λ

k+1 in

(5) we obtain

−
∫
ρ=ε

v(x, y)B1(F
1
k , k, λ) ds(6)
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→
2

1
k+1π(λ2 − k2)Γ(2k+1

k+1 )

k(k + 1)Γ(3k+2+λ
2k+2 )Γ(3k+2−λ

2k+2 )
v(0, 0)

= −
22+ 1

k+1πΓ( k
k+1)

Γ( k+λ
2k+2)Γ( k−λ

2k+2)
v(0, 0) as ε → 0.

Now from (3), (4), (6) we have

(
Gk,λF

1
k (x, y), v(x, y)

)
=
(
F 1
k (x, y), Gk,−λv(x, y)

)
= lim

ε→0

∫
ρ≥ε

F 1
k (x, y)Gk,−λv(x, y)dxdy

= −
22+ 1

k+1πΓ( k
k+1)

Γ( k+λ
2k+2)Γ( k−λ

2k+2)
v(0, 0).

Hence Gk,λF
α1(k,λ),β1(k,λ),0
k (x, y) = ak,λδ(x, y).

II) Assume that Reβ > − k
k+1 . We then have F 0,β,0

k (x, y) =
(
xk+1 + i(k +

1)y
)β ∈ Lp

loc(R
2) for every 1 ≤ p < − k+2

(k+1)Reβ if Reβ < 0 and F 0,β,0
k (x, y) ∈

L∞
loc(R

2) if Reβ ≥ 0. It is easy to compute that

B1(F
0,β,0
k , k, k)

∣∣∣
ρ=ε

= −(k + 1)xk−1
{
βx2k+2 + i

(
k + (k + 1)β

)
xk+1y − k(k + 1)y2

}
×
(
xk+1 + i(k + 1)y

)β−1
(
x4k+2 + (k + 1)2 y2

)− 1
2
∣∣∣
ρ=ε

= −ε2k+(k+1)β
(
β(k + 1) sin2 θ + i(k + kβ + β) cos θ| sin θ| − k cos2 θ

)
× | sin θ|

k−1
k+1
(
| sin θ| + i cos θ

)β−1
(
ε4k+2| sin θ|

4k+2
k+1 + ε2k+2 cos2 θ

)− 1
2

and

∣∣(|ν1| + |ν2. x
2k|
)
F 0,β,0
k

∣∣ds∣∣∣
ρ=ε

≤
∣∣(| sin θ| + i cos θ

)β∣∣
×
(
ε(k+1)(1+Reβ)| sin θ| + ε2k+1+(k+1)Reβ| cos θ|| sin θ|

k
k+1

)
dθ.



Non-Uniform Fundamental and Non Smooth Solutions 445

Using the assumption that Reβ > − k
k+1 we deduce that

−
∫
ρ=ε

v(x, y)B1(F
0,β,0
k , k, k) ds +

∫
ρ=ε

F 0,β,0
k (x, y)B2(v, k) ds → 0

as ε → 0.

Hence Gk,kF
0,β,0
k (x, y) = 0.

III) The proof of this part is the same as the proof of part II) with β replaced

by α. This concludes the proof of Theorem 2. �

Corollary 1. If λ = ±[2N(k + 1) + k], where N is a non-negative

integer, then Gk,λF
α1(k,λ),β1(k,λ),0
k (x, y) = 0. Hence Gk,λ is not hypoelliptic

(nor analytic hypoelliptic) at these points.

Proof. Indeed, if λ = ±[2N(k + 1) + k] then Γ( k−λ
2k+2) = ∞ or

Γ( k+λ
2k+2) = ∞ =⇒ ak,λ = 0 =⇒ Gk,λF

α1(k,λ),β1(k,λ),0
k (x, y) = 0. �

Remark 1. The constant − 2k
k+1

√
π

Γ( k+1
2k

)

Γ( 2k+1
2k

)
in Theorem 6 of [11] is not

accurate. It should be replaced by − 2k
k+1

√
π

Γ( 2k+1
2k+2

)

Γ( 3k+2
2k+2

)
.

Theorem 3. Assume that k is odd. Then

I) Gk,λF
α2(k,λ),β2(k,λ),1
k (x, y) =

2
2− 1

k+1 πΓ( k+2
k+1

)

Γ( k+2+λ
2k+2

)Γ( k+2−λ
2k+2

)

∂δ(x,y)
∂x =: bk,λ

∂δ(x,y)
∂x .

II) Gk,k+2F
0,β,1
k (x, y) = 0 if Reβ > −k+2

k+1 .

III) Gk,−k−2F
α,0,1
k (x, y) = 0 if Reα > −k+2

k+1 .

Proof.

I) Let us write F 2
k (x, y) = F

α2(k,λ),β2(k,λ),1
k (x, y). As in the proof of Theorem

2 it is easy to check that F 2
k (x, y) ∈ L

k+2
k+1

−τ

loc (R2) for any small positive τ.

We see that∫
ρ=ε

ν2. x
2k. F 2

k (x, y).
∂v(x, y)

∂y
ds

=
εk

k + 1

∫ π

−π

∂v(x, y)

∂y
(| sin θ| + i cos θ)−

λ
k+1 sin θ cos θ dθ → 0 as ε → 0.
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Next we have

B1(F
2
k , k, λ)

∣∣∣
ρ=ε

= (k + 1)xk
(
xk+1 + i(k + 1)y

)β2(k,λ)

×
(
xk+1 − i(k + 1)y

)α2(k,λ)

× (xk+1 − iλy)
(
x4k+2 + (k + 1)2 y2

)− 1
2
∣∣∣
ρ=ε

= εk−1(sin θ)
k

k+1
±
(
| sin θ| + i cos θ

)− λ
k+1

×
(
(k + 1)| sin θ| − iλ cos θ

)
×
(
ε4k+2| sin θ|

4k+2
k+1 + ε2k+2 cos2 θ

)− 1
2
.

We note that v(ε, θ) = v(0, 0) + ε(sin θ)
1

k+1
±

∂v(0,0)
∂x + ō(ε). It follows that

−
∫
ρ=ε

v(x, y)B1(F
2
k , k, λ) ds(7)

= −1

ε

∫ π

−π
v(0, 0)sign(sin θ)

(
| sin θ| − iλ cos θ

k + 1

)

×
(
| sin θ| + i cos θ

)− λ
k+1 dθ

− 2

∫ π

0

∂v(0, 0)

∂x

(
sin

k+2
k+1 θ − iλ sin

1
k+1 θ cos θ

k + 1

)

×
(
sin θ + i cos θ

)− λ
k+1 dθ + ō(1).

Without a computation we can deduce that the first integral in the right side

of (7) vanishes by applying a theorem of Schwartz. Alternatively, we can see

this by noting that the integrand is an odd function of θ. To estimate the

second integral in the right side of (7) we have again the following identity,

which is easily obtained by integrating by parts

∫ π

0

(
sin θ + i cos θ

)− λ
k+1 sin

1
k+1 θ cos θ dθ

= − λi

k + 2

∫ π

0

(
sin θ + i cos θ

)− λ
k+1 sin

k+2
k+1 θ dθ.
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Therefore we deduce that

−
∫
ρ=ε

v(x, y)B1(F
2
k , k, λ) ds

→ 2
∂v(0, 0)

∂x

λ2 − (k + 1)(k + 2)

(k + 1)(k + 2)

∫ π

0

(
sin θ + i cos θ

)− λ
k+1 sin

k+2
k+1 θ dθ

as ε → 0.

Next we evaluate the remainder term in (3) with F 1
k (x, y) replaced by

F 2
k (x, y)

∫
ρ=ε

F 2
k (x, y). ν1.

∂v(x, y)

∂x
ds

= − 1

k + 1

∫ π

−π

∂v(ε, θ)

∂x

(
| sin θ| + i cos θ

)− λ
k+1 | sin θ|

k+2
k+1 dθ

→ −2∂v(0,0)
∂x

k + 1

∫ π

0

(
sin θ + i cos θ

)− λ
k+1 sin

k+2
k+1 θ dθ as ε → 0.

Now applying Lemma with ω1 = k+2
k+1 , ω2 = − λ

k+1 we obtain

(
Gk,λF

2
k (x, y), v(x, y)

)
=
(
F 2
k (x, y), Gk,−λv(x, y)

)
= lim

ε→0

∫
ρ≥ε

F 2
k (x, y)Gk,−λv(x, y)dxdy

= −
2−

1
k+1π

(
(k + 2)2 − λ2

)
Γ(2k+3

k+1 )

(k + 1)(k + 2)Γ(3k+4+λ
2k+2 )Γ(3k+4−λ

2k+2 )

∂v(0, 0)

∂x

= −
22− 1

k+1πΓ(k+2
k+1)

Γ(k+2+λ
2k+2 )Γ(k+2−λ

2k+2 )

∂v(0, 0)

∂x
.

It follows that Gk,λF
α2(k,λ),β2(k,λ),1
k (x, y) = bk,λ

∂δ(x,y)
∂x .

II) Assume that Reβ > −k+2
k+1 . We then have F 0,β,1

k (x, y) = x
(
xk+1 + i(k +

1)y
)β ∈ Lp

loc(R
2) for every 1 ≤ p < − k+2

1+(k+1)Reβ if Reβ < − 1
k+1 and
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F 0,β,1
k (x, y) ∈ L∞

loc(R
2) if Reβ ≥ − 1

k+1 . It is easy to compute that

B1(F
0,β,1
k , k, k + 2)

∣∣∣
ρ=ε

= −
{

(1 + kβ + β)x2k+2 + i(k + 1)(k + 3 + kβ + β)xk+1y

− (k + 1)2(k + 2)y2
}
xk

×
(
xk+1 + i(k + 1)y

)β−1
(
x4k+2 + (k + 1)2 y2

)− 1
2
∣∣∣
ρ=ε

= −ε2k+1+(k+1)β

×
(
(1 + kβ + β) sin2 θ + i(k + 3 + kβ + β) cos θ| sin θ| − (k + 2) cos2 θ

)
× (sin θ)

k
k+1
±
(
| sin θ| + i cos θ

)β−1
(
ε4k+2| sin θ|

4k+2
k+1 + ε2k+2 cos2 θ

)− 1
2

and

F 0,β,1
k B2(v, k) ds

∣∣∣
ρ=ε

=
1

k + 1

(
−εk+2+(k+1)β(| sin θ| + i cos θ)β| sin θ|

k+2
k+1

∂v(x, y)

∂x

− ε(k+1)(2+β)(| sin θ| + i cos θ)β cos θ(sin θ)±
∂v(x, y)

∂y

)
dθ.

Therefore we deduce that

−
∫
ρ=ε

v(x, y)B1(F
0,β,1
k , k, k + 2) ds +

∫
ρ=ε

F 0,β,1
k (x, y)B2(v, k) ds(8)

=
ε(k+1)(β+1)v(0, 0)

k + 1

×
∫ π

−π

(
(1 + kβ + β) sin2 θ + i(k + 3 + kβ + β) cos θ| sin θ|

− (k + 2) cos2 θ
)

× sign(sin θ)
(
| sin θ| + i cos θ

)β−1
dθ + O(εk+2+(k+1)Reβ).

The integral in the right side of (8) vanishes for every ε since its integrand

is an odd function of θ. Therefore using the assumption that Reβ > −k+2
k+1
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we see that the expression in the left side of (8) tends to 0 as ε tends to 0.

Hence Gk,k+2F
0,β,1
k (x, y) = 0.

III) The proof of this part is the same as the proof of part II) with β replaced

by α. This concludes the proof of Theorem 3. �

Corollary 2. If λ = ±[2N(k+1)+k+2], where N is a non-negative

integer, then Gk,λF
α2(k,λ),β2(k,λ),1
k (x, y) = 0. Hence Gk,λ is not hypoelliptic

(nor analytic hypoelliptic) at these points.

Proof. Indeed, if λ = ±[2N(k + 1) + k + 2] then Γ(k+2−λ
2k+2 ) = ∞ or

Γ(k+2+λ
2k+2 ) = ∞ =⇒ bk,λ = 0 =⇒ Gk,λF

α2(k,λ),β2(k,λ),1
k (x, y) = 0. �

Theorem 4. Assume that k is even, and λ = (2N + 1)(k + 1), where

N is an integer. Then

Gk,λF
α1(k,λ),β1(k,λ),0
k (x, y) = 0, Gk,λF

α2(λ),β2(k,λ),1
k (x, y) = 0.

If λ = 2N(k + 1), where N is an integer, then

Gk,λF
α1(k,λ),β1(k,λ),0
k (x, y) = ak,λδ(x, y), Gk,λF

α2(k,λ),β2(k,λ),1
k (x, y) =

bk,λ
∂δ(x,y)

∂x .

Proof. If λ = (2N + 1)(k + 1) or λ = 2N(k + 1) then k
k+1 + 2β1(k, λ)

and k+2
k+1 + 2β2(k, λ) are integers. Therefore F

α1(k,λ),β1(k,λ),0
k (x, y),

F
α2(k,λ),β2(k,λ),1
k (x, y) ∈ C∞(R2\(0, 0)). Again we have F

α1(k,λ),β1(k,λ),0
k (x, y)

∈ L
k+2
k

−τ

loc (R2) and F
α2(k,λ),β2(k,λ),1
k (x, y) ∈ L

k+2
k+1

−τ

loc (R2) for any small posi-

tive τ. First we prove the theorem for F
α1(k,λ),β1(k,λ),0
k . As in the proof of

Theorem 2 we can show that∫
ρ=ε

F
α1(k,λ),β1(k,λ),0
k (x, y)B2(v, k) ds → 0 as ε → 0.

Next we have

−
∫
ρ=ε

v(x, y)B1(F
α1(k,λ),β1(k,λ),0
k , k, λ) ds(9)

= − 1

k + 1

∫ π

−π
v(ε, θ)

(
k| sin θ|

k
k+1 − iλ(sin θ)

− 1
k+1

± cos θ
)

×
(
sin θ + i cos θ

)− λ
k+1 dθ
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→ −v(0, 0)

k + 1

∫ π

−π

(
k| sin θ|

k
k+1 − iλ(sin θ)

− 1
k+1

± cos θ
)

×
(
sin θ + i cos θ

)− λ
k+1 dθ as ε → 0.

If λ = (2N + 1)(k + 1) (i. e. − λ
k+1 = −(2N + 1) ) then the integrand in

the right side of (9) changes sign when we replace θ by θ−π. Therefore the

integral vanishes. Hence Gk,λF
α1(k,λ),β1(k,λ),0
k (x, y) = 0.

If λ = 2N(k + 1) (i. e. − λ
k+1 = −2N ) then it follows that

− v(0, 0)

k + 1

∫ π

−π

(
k| sin

k
k+1 θ| − iλ(sin θ)

− 1
k+1

± cos θ
)(

sin θ + i cos θ
)− λ

k+1 dθ

=
2(λ2 − k2)v(0, 0)

k(k + 1)

∫ π

0

(
sin θ + i cos θ

)− λ
k+1 sin

k
k+1 θ dθ = ak,λv(0, 0).

Therefore Gk,λF
α1(k,λ),β1(k,λ),0
k (x, y) = ak,λδ(x, y).

Next we prove the theorem for F
α2(k,λ),β2(k,λ),1
k (x, y). As in Theorem 3 we

have

−
∫
ρ=ε

v(x, y)B1(F
α2(k,λ),β2(k,λ),1
k , k, λ) ds(10)

+

∫
ρ=ε

F
α2(k,λ),β2(k,λ),1
k (x, y)B2(v, k) ds

→ −
∫ π

−π

∂v(0, 0)

∂x


(k + 2)| sin θ|

k+2
k+1

k + 1
− iλ(sin θ)

1
k+1

± cos θ

k + 1




×
(
sin θ + i cos θ

)− λ
k+1 dθ

as ε → 0. If λ = (2N + 1)(k + 1) (i. e. − λ
k+1 = −(2N + 1) ) then the

integrand in the right side of (10) changes sign when we replace θ by θ−π,

therefore the integral vanishes. Hence Gk,λF
α2(k,λ),β2(k,λ),1
k (x, y) = 0.

If λ = 2N(k + 1) (i. e. − λ
k+1 = −2N) then we deduce that

− ∂v(0, 0)

∂x

∫ π

−π

((k + 2)| sin θ|
k+2
k+1

k + 1
− iλ(sin θ)

− 1
k+1

± cos θ

k + 1

)
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×
(
sin θ + i cos θ

)− λ
k+1 dθ

=
2
(
λ2 − (k + 2)2

)∂v(0,0)
∂x

(k + 1)(k + 2)

∫ π

0

(
sin θ + i cos θ

)− λ
k+1 sin

k+2
k+1 θ dθ

= −bk,λ
∂v(0, 0)

∂x
.

It follows that Gk,λF
α2(k,λ),β2(k,λ),1
k (x, y) = bk,λ

∂δ(x,y)
∂x . �

Corollary 3. If k is even and λ = (2N + 1)(k + 1), where N is an

integer, then Gk,λ is not hypoelliptic (nor analytic hypoelliptic).

Remark 2. Altogether Corollary 1, Corollary 2 and Corollary 3 give

all the values k, λ as stated in Theorem 1.

Remark 3. Since Gk,λ is invariant under the translation (x, y) −→
(x, y + c) it is easy to have the fundamental solutions or singular solutions

at points (0, c) in all cases considered above.
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