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On the Isomorphism Classes of Iwasawa Modules

Associated to Imaginary Quadratic Fields with A = 2

By Masanobu KOIKE

Abstract. Let p be an odd prime number. Let A = Z,[[T]]. We
determine the A-isomorphism classes of finitely generated A-torsion A-
modules with A = 2 and g = 0 which have no non-trivial finite A-
submodule. We apply this classification to Iwasawa modules X =
lim A,, associated to the cyclotomic Zp-extensions of imaginary qua-
dratic fields and give some numerical examples.

1. Introduction

Let p be an odd prime number. Let K be an imaginary abelian field
and K, the cyclotomic Zy,-extension of K, namely K, is the maximal p-
extension of K in K((y~). For each n > 0, let K, be the intermediate field
of K /K such that K, is a cyclic extension of degree p™ over K. Let A,, be
the p-Sylow subgroup of the ideal class group of K,,. Set X = lim A,,, where
the inverse limit is with respect to the relative norms. Then X becomes
a A = Z,[[T)]-module by fixing a topological generator of Gal(Ku/K).
Furthermore X is a finitely generated A-torsion A-module. It is known
that the odd part X~ has no non-trivial finite A-submodule.

For a distinguished polynomial f(T') € Z,[T], let M) be the set of
A-isomorphism classes of finitely generated A-torsion A-modules N such

that
{ N has no non-trivial finite A-submodule,

charN = f(T),

where charN is the characteristic polynomial of N. Then [X ] € Mgarx--
Here [X ] represents the A-isomorphism class of X .

Sumida [Su] showed that Mgy is a finite set if and only if f(7T') is
separable. He determined the set M) when f(T) = (T — a)(T - B),
where «, 5 € pZ, (Proposition 2.1). In this paper, we extend this fact and
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determine the set My completely when deg(f(7)) = 2 (Theorem 2.1).
In particular we can find that M) is a finite set if and only if f(T) is
separable when deg(f(7T)) = 2.

Next we deal with the adjoint module a(M) of a finitely generated A-
torsion A-module M ([Fe], [Wa, §15]). It is known that [a(M)] € M),
where f(T') = charM. We consider a relation between [o(M)] and [M]
when M has no non-trivial finite A-submodule. By using Theorem 2.1,
we shall show that [a(M)] = [M], i.e., a(M) = M when deg(f(T)) < 2
(Theorem 3.1).

We apply Theorem 2.1 to the above X~. We let K be an imaginary
quadratic field. Then X = X~ and charX can be approximately calculated
by the Iwasawa main conjecture. We shall determine the A-isomorphism
classes of X when deg (charX) = 2.

As numerical examples, we deal with the case of p = 3, K = Q(v/—m),
where 1 < m < 10° and m # 2 mod 3. The total number of such fields
with deg (charX) = 2 is 3286. We give two methods to determine the
A-isomorphism classes of X. One uses the ideal class groups A, and the
other the unit group of the real quadratic field Q(v/3m). By using the
former method, we determine the A-isomorphism classes of X for 3260
fields among the 3286. By using the latter method, we determine 7 fields
among the remaining 26 fields.

An outline of this paper is as follows. In §2 we give the proof of Theorem
2.1. In §3 we show Theorem 3.1. In §6 we give two methods to determine
the A-isomorphism classes of X associated to imaginary quadratic fields K
and give numerical examples. Both §4 and §5 are preparation for §6.

Acknowledgments. 1 would like to express my sincere gratitude to Pro-
fessor Shoichi Nakajima for inviting me to Iwasawa theory and for valuable
suggestions. I am also grateful to Professor Humio Ichimura, Dr. Hiroki
Sumida and Yoshitaka Hachimori for valuable suggestions, especially for §2
and §3.

2. Isomorphism Classes of Finitely Generated A-Torsion
A-Modules

Let p be an odd prime number. Let E be a finite extension of the p-adic
number field Q,. Let Op, mg and ordg denote the integer ring, a prime
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element and a normalized additive valuation of F, respectively. We denote
the formal power series ring Og|[T]] by Ag.
Let both M and M’ be Ag-modules. A Ag-homomorphism

o: M — M

is called a pseudo-isomorphism if the kernel and the cokernel of ¢ are both
finite Ag-modules. When there exists a pseudo-isomorphism, we write

M ~ M.

For a finitely generated Ag-torsion Ag-module M, there is a pseudo-
isomorphism

— (D Ae/(xg) & (@D As/ (F5(T)")),

where m; and n; are non-negative integers and f;(7") is an irreducible distin-
guished polynomial in Og[T]. ([Wa, Theorem 13.12]). We call a Ag-module
of the right hand side an elementary Ag-module associated to M and denote
it by £(M). We put

Zn]deg fi(T Zmz,

and call the A-invariant and the p-invariant of M, respectively. Furthermore
we put

t
charM = Wg(M) H (1)

It is called the characteristic polynomial of M.
For a distinguished polynomial f(T) € Og[T], let M?(T) be the set
of Ag-isomorphism classes of finitely generated Apg-torsion Ag-modules N

such that o )
N has no non-trivial finite Ag-submodule,

charN = f(T).
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We denote the Ag-isomorphism class of N by [N]g. The set M?(T) has
been introduced by Sumida [Su].
It is easy to see

MEqy = {45/ (F(T))]s}

when deg (f(T)) = 1.
Now we assume that f(7) is a distinguished polynomial of degree 2. Let
F be the splitting field of f(7T') over E. Then we can write

f(T) = (T = a)(T = p),

where «, 8 € (7F).

For every [N]g € M}E(T), we may assume that N is a Ag-submodule of
E(N) of finite index. Here E(N) = Ag /(T —a)® Ag/(T —3) or Ag/(f(T)).
Since £(N) =2 O & Op, N is a free Og-module of rank 2. Therefore N is
written in the form

N = ((a,b),(¢,d))p C Ap/(T — ) & Ap/(T = )

N={(aT"+0b, cT'+d)r C Ag/(f(T)),

where a,b,¢,d € Og, (a,b) € Op ® Op = Ag/(T — a) ® Ag/(T — 3) and
N = (e, f)r means that N is generated by e and f over Op.

LEMMA 2.1.  Assume that ordg(a) < ordg(c). Then
(i) An Og-module ((a,b),(c,d))E is a Ag-module if and only if ordg(d —
a~'bc) — ordg(b) < ordg(B — a).
(i) An Og-module (aT + b, T + d)g is a Ag-module if and only if
ordg(a) < ordg(b) and ordg(a) < ordg(d — a='bc) < ordg(a) +
ordE(f(—g)). In particular (T' + b, d)g is a Ag-module if and only if
0 <ordg(d) <ordg(f(-b)).

PrROOF. We show only (i) since we can show (ii) in similar way.
First ((a,b), (¢,d))r = {(a,b), (0,d — a~tbc)) . Because T acts on (a,b)
by

T(a, b) = (aa, Bb)
= a(aa b) + (ﬂ - O‘)(()? b),
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it follows that ((a,b), (¢, d)) g is a Ag-module if and only if ord g(d—a~tbc) <
ordg(f — a) + ordg(b). O

TuEOREM 2.1. Let f(T) =T? 4 1T +co. Then

c 1
M]]?(T) ={[Nlg | N=(T+ 51» e, 0 <o < 201"dE( —4co) }-

DEerFINITION 2.1. We put

for 0 <z < fordg(c} — 4cp).
If f(T)= (T — «)?, then we put

Noo =Ap/(T —a)® Ag/(T — )
for convenience.

PROOF OF THEOREM 2.1. We shall divide the proof of this theorem
into the following three cases:

1. f(T) is separable and reducible over E.
2. f(T) is irreducible over E.
3. f(T) is inseparable.

Here we call f(T') separable when f(7') has no multiple root.

1. When f(T) is separable and reducible over FE.
In this case Sumida proved the following.

PROPOSITION 2.1 ([Su] Proposition 10). Let N = ((a,b),(c,d))r be
a Ag-module such that [N]g € M?(T). Assume that ordg(a) < ordg(c).
Then

N =((1,1), (O77TJI?E>>E?
where k = max{0, ordg(d — a~'bc) — ordg(b)}. Moreover if 0 < k # k' <
ordg (8 — a), then ((1,1), (0, 7)) g 2 ((1,1), (0,7%)) . In other words,

MGy = { {(1,1),(0,75)ElE | 0 <k <ordg(8—a) }.
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We shall show

((1,1), (0, 7%)) 5 = N, € Ag/(T — a)(T - B),

where 2 = ordg(8 — ) — k. We have an Apg-isomorphism N, 2 ((252

2
BfTa), (r%, %)) E under the canonical injective Ap-homomorphism with fi-
nite cokernel Ag/(T—a)(T—8) — Ag/(T—a)®Ar/(T—3). By Proposition
2.1 and ordg(8 — @) = Sordp(c} — 4cp) > =, (%52, 252), (7%, 78\ g =

((1,1), (0, ﬂng(ﬁ_Q)_w))E as required.

2. When f(T) is irreducible over E.

For every [N]g € M?(T), we might choose N ¢ (7, f(T))/(f(T)) be-
cause the multiplication by g : N — wgN is a Ag-isomorphism. Then N
is written in the form

N=(T—-a, 75)E,

where a € Og and > 0. Since N is a Ag-module, we find 0 < z <
ordg(f(a)) by Lemma 2.1.

We need several lemmas which are proved easily. The first lemma is as
follows.

LEMMA 2.2. There is a Ag-isomorphism Ap — Ag & Ag induced by
an Og-isomorphism O — O ® Og. Therefore Ar is a faithfully flat
Ag-module.

Next lemma is an immediate consequence of this.

LEMMA 2.3. Let N and N’ be arbitrary Ag-modules. Then N = N’ as
Ag-modules if and only if N @, Ap = N' ®4, Ap as Ap-modules.

The following lemma follows from Lemma 2.2 and the fact that an ele-
mentary Ap-module has no non-trivial finite Ag-submodule.

LEMMA 2.4. Let N be a Ag-module such that [N]|g € M]]?(T). Then
[N ®a, AF]F € MJI’;(T).

By these lemmas we may consider the Ap-isomorphism class of N® 4, Ar
instead of the Ag-isomorphism class of N. If N = (T' — a, 7},)g, then
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N ®a, Ar = (T — a, 7f)r. Moreover by Proposition 2.1, as in the case
when f(T) is reducible, (T — a, 7%)p = ((1,1), (0, 7%)) p, where

ordp (8 — a) + ordp(n};) — 20rdp(a — a)
k= if ordp(a — a) < ordp(n%)
ordp(f — a) — ordp (%) if ordp (o — a) > ordp (7).

From this and Lemma 2.1, k can take any value in 0 < k < ordp (8 — «) if
F/E is an unramified extension, while in 0 < k < ordp(f8 — «) and in the
form k = ordp(8 — a) —2m, m € N if F/FE is a ramified extension.

Now we shall show that Ag-modules IV, make a system of representatives
of Ag-isomorphism classes. Since ordp(a+%) = ordp(8—a) = sordp(cf —
4eg) > ordp(nh), Ny ®@a, Ar = ((1,1),(0,7%))F, where k = ordp(8 —
a) — ordp(7}) which takes any value in 0 < k < ordp(f — «) if F/E
is an unramified extension, while in 0 < k < ordp(f — «) and in the form
k =ordp(8—a)—2m, m € Nif F/E is a ramified extension. Hence k takes
all possible values when x runs the range 0 < z < %ord £(c2 — 4cp). Finally
if  # 2/, then k # K = ordp(f — a) — OI‘dF(ﬂ'g), therefore N, ®4, Ap 2
Ny @4, Ar by Proposition 2.1. Hence N, 22 N, by Lemma 2.3.

3. When f(T) is inseparable.

In this case E(N) = Ag/(T — o) ® Ag/(T — a) or Ag/(T — «)? for
[N]g € M?(T) and a = —4. f E(N) = Ag /(T —a) ® Ag /(T — a), then we
easily see N =2 Ap/(T —a) ® Ag/(T — a) = Nyo. If E(N) = Ag/(T — )?,
then N = (T' — a, 7%)p with 0 < 2z < 2ordg(a — a) in the same way as the
irreducible case.

We shall classify (I' — a, 7%)g by Ag-isomorphisms.

(I) When a # a. If 0 < z < ordg(a — a), then (T —a, 75)g = (T —
a, g e = (I'+ %, m%)e. Suppose ordp(a —a) < x < 2ordg(a — a). Set
A =ordg(a —a) and a — a = wry, where w € OF. Then

piA —w
( Ba 1 >€GL(2,(9E)

gives a Ag-isomorphism (T' —a, 75)r — (T’ — «, W%A_zm with respect to
these Op-bases, i.e., (I'—a, 5)p = (T — «a, W%A7x>E.
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(IT) When a = a. Suppose (T'— o, 75)p = (T — o, 7%) g, where z,y > 0.

Then there exists (Z z) € GL(2,0g) such that

s t a 0\ a 0 s t
u v ™ o)\ 7L « u v)’
By comparing (1,1)-entries, we get ¢t = 0. Then s,v € O since
det (Z f)) = sv € OF. On the other hand we get vrf, = sw% by compar-
ing (2,1)-entries. Therefore x = ordg(vry,) = ordg(smy) = y.
Finally since (T' — @)Noo = 0 and (T' — a)N, = (75(T — a))p # 0,
Noo 2 N, for all x > 0.
The proof of Theorem 2.1 is completed. [

REMARK 2.1. When f(T) = T? + 1T + co, the set M}E(T) is a finite

set if and only if f(T') is separable. When M}E(T) is a finite set, #M}E(T) =
[fordp(c?—4cp)]+1, where [z] denotes the maximal integer less than or equal
to the real number z. Sumida proved that for a distinguished polynomial
f(T) of any degree, the set M?(T) is a finite set if and only if f(7T) is

separable ([Su, Theorem 2]).

From now on we assume that the base field is £ = Q, and omit the
subscript E of Ag, [ |g, etc.

Let wy, = wy(T) = (14+T)" =1 and W, = wn(T), T = (14p)(1+T) "1 —1.
Here we take 1 + p as a topological generator of 1 + pZ,,.

We show the following two propositions. We will use these propositions
in §6 to determine the A-isomorphism classes of some A-modules associated
to imaginary quadratic fields. We shall give two methods to determine
them. Proposition 2.2 is used for first method, Proposition 2.3 for second
method.

PROPOSITION 2.2. Put charN, = T? + ¢;T + co. Assume that charN,
and wy, are relatively prime.

(a) When p>5, or p=3 and ords(co) > 2.

Forn >0,
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(i) f0<z< %ordp(co), then
Ny JwnNy & 7,/podo(co)tn=ag g 7 ppnteg,
(i) if $ordy(co) < z < Fordy(cd — 4co), then
N, Jwn N, = Z/péordp(co)JrnZ @ Z/p%ordp(co)mz

Moreover

=0 if x> tordy(co) +n

#0 if © < iordy(co) +n.

(T + g)(Nw/wan){

(b) When p =3, ords(co) =1 and (c1, co) # (3, 3).
Forn =0,
No/T Ny = Z,/3Z.

Forn >1,
(iii) ¢f ords(co — 3) > ords(c; — 3), then

NO/wnNO ~ Z/3ord3(0173)+nZ @ Z/301rd3(0173)+nz‘
(iv) if ords(co — 3) < ords(ci — 3), then
NO/wnNO ~ Z/3ord3(co—3)+nZ o Z/30rd3(60_3)+n_1z.
PROPOSITION 2.3. Put charN, = T2 + ¢,T + ¢y. Assume that charN,
and wy, are relatively prime. Moreover we assume that p*> + c1p + c¢o # 0
and that ord,(co) > 2. Then
(i) Ifordy(p+ %) <z, then
N, [N, = Z/p7 Pt 3407, @ 7,/pords 0t 3) 407,

(ii) Ifordy(p+ %) >z, then

Nm/wan o~ Z/pordp(p2+01p+co)+n—xZ ® Z/px—’—nZ.
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PROOF. We omit the proof of Proposition 2.3 since we can show it in
the same way of that of Proposition 2.2.
To show Proposition 2.2 we need the following lemma.

LEMMA 2.5. Let F be the splitting field of T? + 1T + co over Q. Let
a, B be the roots of T?> + c1T 4 co = 0 in F. Then

(a) Whenp>5, or p=3 and ords(cp) > 2.
Forn >0,

ordp(wn+1(8) — wnt1(a)) = ordp(wn(B) — wp(a)) + ordp(p).

In particular,
ordp(wn(B8) — wn(a)) = ordp(8 — a) + nordg(p).

(b) When p =3 and ords(cp) = 1.
Forn >1,

OrdF(wn-i-l(/B) — Wn+1 (a)) = OrdF(wn(ﬁ) - Wn(a)) + OrdF(p)'

In particular,

ordp(wn(B) —wp(a)) = ordp(w1(B) — wi(a)) + (n — 1)ordr(p).

Forn =0,

ordp(w1(8) —wi(a))
{ = ordp(wi(a)) = 20rds(co —3) +1 if ordg(co —3) < ordsz(e; — 3)
(wi(a)

> ordp(wi(a)) = 2ords(c; —3) +2 if ords(co — 3) > ords(c; — 3).

We postpone the proof of Lemma 2.5.
Because

wa(B) —wala) 1, | Pwn(@) = awn(P)
e

Wn, mod T2 + 01T + Co
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and ¢; = —(a + (3), we have

wan _ <wn(a) —;—wn(ﬂ) (T C1 p_m(/@ - O‘)(wn(ﬁ) - wn(a)) T
P (wn(B) —wn(a)) a wn (@) +wn(B) ,
foa Rt

We change the generators of w, N, suitably.
(a) When p > 5, or p =3 and ords(cy) > 2.
(i) If 0 <z < $ordy(cp), then

B
nN:z:_ <p$(wn( )_Wn( )) P
P (wa(B) — wa(a))
08—«
y e, wa(a) +wn(B) f-a
(T4 )+ = =5 o))

p*))-
These coefficients are contained in Z, by Lemma 2.5. Hence

Ny /wn Ny = Z/pPdtn=27, 6 7,/p"+o7.
(i) If $ordy(co) < = < Jordy(c? — 4cp), then

wn (@) + wn(6) (6 — &) (wn(f) = wn(a))

"),

R (Ul YR o s S )
o) £ onl), ol ol .

(Tt ren@y LT D
nl@) + wal8)

= I\ TP o Ty,
5 <+2,p>

WnNz - <

Since ordp(a) = ordp(B) = ord,(co) < 2ord,(cf —4cy) = ordp(B—a) and
Wn(a) + wn(ﬁ) = (wn(ﬁ) - wn( ) + 2wn( ) we get

onl@) £enlBly Lo (o) +n

d
ord,( 5 5
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by Lemma 2.5. Hence
Nx/wan & Z/p%ordp(co)-l-nz D Z/p%ordp(c0)+nz'

Here ord,(cp) is an even number because ord,(co) < ord,(c} — 4c).

Moreover
et —dey

C1 >
4p® P

(T +5)Ne = 0" (T + ).

Therefore
C1
(T + 3)]\71 C wnN,

wp (@) +wn(6))
2

2 —4dep wn(a) + wn(B)

1 g ) > ordp(f)

< ordp(p®) > ordp( = ordp(a) + nordp(p)

and ordp(

1
x> Eordp(co) +n,
ie.,
=0 if x> tord,(co) +n
#0 if © < gordy(co) +n
We can show the case (b) similarly. O

(T + )W)

PrROOF OF LEMMA 2.5. We have
wnt1(B) — wnt1(@) = (Wa(B) — wn(a))®(a; ),
where
(o, B)=(1+ ByP" (=1 4 (1+ B P (1 4 )P 4o+ (14 )PP,

Short calculations show ordp(®(a, 5)) = ordp(p) for n > 0 if p > 5 or if
p = 3 and ords(cp) > 2, and for n > 1 if p = 3 and ords(cp) = 1. If p =3
and ords(cp) = 1, then F/Q, is a ramified extension,

wila)=a((83—=c)a+ (3 —cp))

and
w1(B) —wi(a) = (B8 — a)(ci(er — 3) — (co — 3)).

By comparing an order of each term, we get Lemma 2.5. [J
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3. Adjoint Modules

Let M be a finitely generated A-torsion A-module. Let a(M) be the
adjoint module of M. For the definition and some properties of a(M), see
[Fe], [Wa, §15.5], etc.

Now we consider the following question.

QUESTION. If M is a finitely generated A-torsion A-module which has
no non-trivial finite A-submodule, then o(M) = M?

This answer is not known in general. But we shall show this is true when
AM) <2and u(M)=0.

THEOREM 3.1. Let M be a finitely generated A-torsion A-module which
has no non-trivial finite A-submodule. If N(M) < 2 and u(M) = 0, then
a(M) =M.

Proor. If A(M) = 1 and pu(M) = 0, then M is isomorphic to an
elementary A-module. Hence o(M) = M.
Next we consider the case when A\(M) = 2 and p(M) = 0. First

a(M) = liLnHom(M/p”HM, Qp/Zyp),
where the inverse limit is with respect to the maps induced by the maps

M/pn+1M N M/pm+1M

z = p"T"z m>n>0

([Fe, Theorem 2.7]). Since A(M) = 2 and p(M) = 0, M is a free Z,-
module of rank 2. Hence M = (b1, by), M/p" ™' M = (by mod p""1 M, by
mod p"t1M). Let gin, g2n be the dual bases of M/p"*1M. Then g =
(G1n)n, 92 = (92n)n € limHom(M/p" "1 M,Q,/Z,) with respect to the
above maps. Clearly g1, g2 are linearly independent over Z,. Therefore
a(M) = (g1, g2). Let A be the transformation matrix associated to the
multiplication by 7" map

M = (b, bo) =5 M = (by, by).
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Then that of a(M) = (g1, go) is ‘A by the observation on each M /p"*1 M
and the definition of the action of T' on «(M). Therefore a(M) = M if
and only if there exists some S € GL(2,Z,) such that SA = *AS. Since
A(M) =2 and pu(M) = 0, we can write

charM = T? + 1T + ¢y, o, C1 € plp.

By Theorem 2.1, M = N, with some 0 < z < fordy(c} — 4¢p) < oo or
M = Ny. When M =2 N, with x < oo,

_ca 0%7400
A= 2 4p”®
-9 )
2

Therefore if we put

1 1 1
< 2 e ) if z # Lord,(cf — 4co)

S 1 4p21
1 0 _ ) )
0 G-t if x = jord,(cf — 4co),
4p21

then SA ="'AS, that is, a(M) = M.
If M = Ny, then a(M) = M since the adjoint preserves direct sums. [

4. A-Module X

4.1. Let K be an imaginary abelian field. We assume that K does not
contain p-th roots of unity. Let K be the cyclotomic Z,-extension of K.
Let o be a topological generator of Gal(K/K). In this paper we define

~o such that
(0 = €1+P

for any p-th power root of unity (. Let K,, be the n-th layer of K,/K and
A, the p-Sylow subgroup of the ideal class group of K,,.

Iwasawa proved that there exist three integers A = A\,(K) > 0,pu =
pp(K) >0 and v = v,(K), all independent of n, such that

A, = P
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for all sufficiently large n. We call \,(K), up(K) and v,(K) the Iwasawa
invariants of K.
Set
X = lﬂlAna

where the inverse limit is with respect to the relative norms. Then X
becomes a A-module since there is an isomorphism
lim Z,[Gal(K,,/K)] = A
induced by 79 — 1+ T. It is known that
u(X) =0
(Ferrero-Washington [FW]) and
[(X7] € Maparx-»

where X* ={a € X | Ja= 4a } and J is the complex conjugation ([Wa,
Proposition 13.28]).

Our goal is to determine the A-isomorphism classes of X~ when A(X ™) =
2. It is important to determine the A-isomorphism classes of X~ because of
the following fact. We assume that exactly one prime is ramified in Ko, /K
and it is totally ramified. Then there are A-isomorphisms

X Jun X~ = A, foralln>0.

([Wa, Proposition 13.22]). Therefore we get the structures of A, for all
n > 0.

4.2. The following Proposition 4.1, which asserts the Iwasawa v-
invariants, follows from Proposition 2.2. We, however, do not need this
proposition later.

PRroOPOSITION 4.1. Let K be an imaginary abelian field. Assume that
exactly one prime is ramified in K,/ K and that it is totally ramified. More-
over we assume that A =0 and that \,(K) = 2. Then
(a) Whenp>5, orp=3 and #A¢ > 3%, forn >0, we have

# Ay, = P4 Ao,
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1.e.,

vp(K) = ord,(#Ao).
(b) When p =3 and #Ay =3, forn > 1, we have

44 { p2rt2ords(ci=3) if ordsg(co —3) > ordsz(c; — 3)
" pPrt2ords(co=8)=1 i f ords(co — 3) < ords(ci — 3),

1.e.,

(K { 201‘(13(61 — 3) if Ol‘dg(Co — 3) > ord3(01 — 3)
r | 20rds(cp—3) =1 if ords(co — 3) < ords(e; — 3),

where charX = T? + ;T + ¢p.

PROOF. Because Ag = 0, we have X = X, hence [X] € Marx-
When M\, (K) = 2, i.e., A(X) = 2, we can write charX = T? 4+ 1T + co.
Then, by Theorem 2.1, X = N, for some x.

It is sufficient to show that #Ay = pordP(CO) since #A,, = #N,/w, N,
and Proposition 2.2. There is the following commutative diagram

0 X A)(T? + 1T + co) B 0
le le le
0 X A)(T? 4+ 1T + o) B 0,

where B is a finite A-module. By snake lemma we have an exact sequence
0— B - X/TX — A/(T, T> + 1T +¢y) — B/TB — 0,

where B! is the kernel of the multiplication by T : B — B. Therefore
#X/TX = pOrdP(CO)’ ie., #4¢ = pordp(co)' 0

REMARK 4.1. When A < p—1, 0or A = p— 1 and #Ay > p?, Sands
proved
#An = p"# A forn >0

([Sa, Theorem 3.1]). Case (a) of Proposition 4.1 also follows from this fact
when \ = 2.
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5. X_ and X,

5.1. In this section, let p = 3 and K = Q(v/—m, v/—3), where m > 0
and m # 3. Let Ky, Ky, Ay, X be the same meaning as in 4.1. Let My
be the maximal abelian p-extension of K., unramified outside p, Lo, the
maximal unramified abelian p-extension of K,. By class field theory, X =
Gal(Loo/Koo). Put X = Gal(Mw/Ks). Then X is a finitely generated
A-module with no non-trivial finite A-submodule ([Iw, Theorem 18]).

There are three intermediate fields of K/Q. For two of them, we put
K_ = Q(v/—m) and K; = Q(v/3m). We will modify the notation suit-
ably. Thus, K_ o, K_ ., etc. (resp. Ky o, Ky, etc.) will denote the
corresponding objects of K_ (resp. Ky).

Let

A =Gal(K/Q) = {id,o, 1,07}
A_=Gal(K_/Q) = Gal(K/Ky) ={id,o}
Ay = Gal(K4/Q) 2 Gal(K/K_) = {id, 7}
and their character groups
AN = {17 X W, Xw}
(A" ={1,x}
(A" = {1, xw},
where w is the Teichmiiller character. Furthermore let
1 -1 A
=% Y ()5 €Z,[A],  forip € A,
6eA
and

M) =eyM, for a Zy[A]-module M.

5.2. Let Ly be the maximal unramified abelian p-extension of K, and let
Y = Gal(Loo/KooLp). Then Y is a A-submodule of X of finite index. It is
known that

X(xw)* = a(Y(x))

~Y(x)
~ X(x)s
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where X(xw)® is equal to X(xw) as a Z,-module with new A-structure
defined by
T-xz="Tx, forxeX(xw).

(See [Iw, Theorem 11], [Ts, pp. 200].)
Since the order of Gal(Ks/K_ o) = < 7 > is prime to p,
X_=2X/(r-1)X.
Therefore we have
X_=X(X)
because X = X (1) ® X (x) ® X(w) ® X(xw), (T —1)X = X(w) ® X (xw)
and X (1) = 0. Similarly we have
Yo =Y (x),

X, =X (xw).
Hence

(X)) 2 alY)~Y. ~ X_.

THEOREM 5.1. Assume that p = 3 does not split in K_ and that
AMX_) <2, Then (X4)* = X_.

Proor. By Theorem 3.1, we have
a(Y_)=2Y_.

Because p does not split in K_, we get Y_ = T X_. Since charX_ and T
are relatively prime, the kernel of the multiplication by T : X_ — T X_ is
finite, hence 0. Therefore

Y. > X_.

We get (X4)® = X_ by the above arguments. O

5.3. Let M, be the maximal abelian extension of K, in My and L,
the maximal unramified abelian p-extension of K,. Then Gal(M,,/K) =
X/wpX and Gal(L,/K,) = A,. Moreover, the structure of Gal(M,,/Ly,) is

known.
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For each prime divisor v of K, lying above p, let U, , be the group
of local units in the v-completion K, , which are congruent to 1 modulo
the maximal ideal, and let U, = Hv‘p Unn. Let E, be the group of all
units in K,. We identify FE, with the image of the diagonal embedding
K, — Hv|p K. Let E,, be the closure of E, NU, in U,. By class field
theory, Gal(M,,/L,) = U,/E, ([Co, Theorem 1.1], [Wa, Corollary 13.6]).
Hence we get the structures of a subgroup and a quotient of Gal(M,,/K,)
by the unit group and the ideal class group of K.

6. Numerical Examples

Let p=3andlet K_, K, etc. be same as in §5. Let x be the non-trivial
primitive Dirichlet character which is associated to K_. Let fy be the least
common multiple of p and the conductor of x. There exists a power series
9y-1,(T) € Asuch that Ly(s, x 'w) = g,~1,((1+p)*—1) for all s € Z, ([Wa,
§7.2]). By p-adic Weierstrass preparation theorem ([Wa, Theorem 7.3]),
we can uniquely express g,-1,(T) = P, -1,(T)U,-1,(T), where P, -1,(T)
is a distinguished polynomial and U, -1,(T) € A*. The Iwasawa main
conjecture proved by Mazur-Wiles [MW] asserts charX_ = P, 1,,(7T).

Though we cannot get g,-1,,(1) exactly, we can approximate g, -1,,(T)

with arbitrary accuracy. An approximation of g,-1,,(7T') is as follows.

Jop™
1
Iy-1u(T) = — — g ax(a)(1 +T)""@  mod w,
2foP" ) Gt

for n > 0, where I,,(a) is the unique integer such that a = w(a)(1 + p)'(®)
mod p"*! and 0 < [,(a) < p". Therefore we can obtain charX_ approx-
imately ([IS, Lemma 5]) and determine A(X_) and w = Jord,(c? — 4cp).
For details about computation of g, -1,(T), see, for example, [EM].

Let K = Q(yv/—m), where 1 < m < 10°, m # 2 mod 3 and m is a
square-free integer. We computed charX_ by the above method with Pari
[Pa] and see the total number of such fields with A\(X_) = 2 is 3286. We
also referred [Fu] for the A-invariants of imaginary quadratic fields. Table 1
is the distribution of X_. Here # represents the number of fields.

The purpose of this section is to determine the A-isomorphism classes
of such X_. First, by “Nakayama’s Lemma” ([Wa, Lemma 13.16]), X_ is a
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Table 1. The distribution of X_

121 1 [ 32 2 [5/2] 3 | 7/2] 4 |=>9/2]total
2204 | 720 | 244 | 79 | 24 | 10 | 4 1 0 | 3286

F| €

cyclic A-module if and only if A_ ¢ is a cyclic group. There are 3081 fields
whose A_  are cyclic groups, hence X_ = Nj.

Example 1. Let K_ = Q(+/—1306). By computation, charX_ = T2 +
18T + 18 mod 3% and w = 1. On the other hand, we have A_ o = Z/9Z.
Therefore X_ = Nj.

From now on we assume that A_ ( is not a cyclic group. There are 205
such fields. In the last of this paper, we find tables of these 205 fields. We
give two methods to determine the A-isomorphism classes of X _.

The first method uses A_, which are isomorphic to N,/w,N, as
Zp|Gal(K_ ,/K_)]-modules. Because charX_ and w, are relatively prime
by finiteness of class number, Proposition 2.2 tells us that we can determine
the A-isomorphism class of X_ by the structures of A_,, for some n > 0.
We use Proposition 2.2 as in the following example. It is the easiest case
because we can determine the A-isomorphism class of X_ based on the data
for n = 0. We referred [SW] for the structures of A_ .

Example 2. Let K_ = Q(v/—89269). By computation, charX_ = T2+
15217 + 81 mod 37 and w = 3. By Theorem 2.1,

X_ = Ny or Ny or Ns.
By Proposition 2.2,

(347, 37) (z=1,2)

N, /wyN, &
{0 o,

On the other hand, we have A_ o = Z/27Z&7Z/3Z. Therefore we get x = 1,
ie., X_ =Ny

We can determine the A-isomorphism classes of X_ for 179 fields by the
structures of A_  as above example. The remaining 26 fields are in Case (ii)
of Proposition 2.2. Therefore we must get the structures of A_ ,, for n > 1.
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But it is difficult to compute A_ ,, for n > 1 because the discriminants of
K_, for n > 1 are too large.

We give the second method for these 26 fields. By Theorem 5.1, we have
(X4)® =2 X_. Hence if X_ = N, for some z, then Gal(My /K4 o) =
X;/TX+ =2 N, /TN,. In this case, the assumptions of Proposition 2.3 on
charX_ = T? 4 1T + co are valid; we have p? + cip + ¢g # 0 because
of the Iwasawa main conjecture and Leopoldt’s conjecture, and we have
ordy(cp) > 2 because A_ is not a cyclic group. Therefore we get the
structure of Gal(My o/K 4 o) by Proposition 2.3, hence that of X_.

On the other hand, Gal(Ly /K4 ) =2 A4 o and

Gal(Myo/Lypo) =Uso/FErp
> (Us0/E+0)(1) ® Us 0/ B+ 0) (xw)
= Zp ® (U o(xw)/E10(xw))-

Since p does not split in K _,
u+,O(XW) = Ly

([Gi, Proposition 1,2]). Therefore we can get the structure of
Gal(My /L) by investigating E; o(xw). Hence we can determine the
A-isomorphism classes of X_ by the structures of Ay and Uy o/E+ . We
computed A o and Uy o/E+ o with KANT [KA].

Example 3. Let K_ = Q(y/—10173). By computation, charX_ = T2+
1027 + 9 mod 3° and w = 2. Hence it follows from Theorem 2.1 that

X_= N1 or NQ.
By Proposition 2.2,
Nx/WON = (37 3) (.CU = 172)

and A_g = Z/37Z @ 7Z/3Z. Therefore we cannot determine the A-iso-
morphism class of X_ by first method.

Next we consider K, = Q(v/3391). By another computation,
Gal(My o/Lyo) = Zz © Z/27Z and A, = Z/37Z. On the other hand,
by Proposition 2.3 (ii),

N, /inN, = (3477, 3%) (z=1,2).
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Table 2.

m c1 co |[N| w |A_o | = m c1 co |[N| w |A_o | =
2437 9 9 3 1 (1,31 27649 | 3 0 3 119,31
3886 18 18 | 3 1 /(3,3 |1 28279 | 48 | 171 | 5 2 |(3,3)|1*
4027 0 18 | 3 11,31 28734 | O 18 | 3 1 3,3)] 1
5703 63 54 | 4 13/21(9,3)] 1 28759 | 3 18 | 3 1 13,3 |1
5857 3 36 | 413/21@3,3) |1 28902 | 15 0 3 1 109,31
6085 21 63 | 413/2((3,3) |1 28945 | 168 | 171 | 5 2 |(3,3)
6226 | 1212 | 549 | 7 31,3 30466 | 21 0 3 1 109,31
6690 12 18 | 3 1 (3,3 |1 31081 | 204 | 36 | 5 2 1(3,3)
6789 6 18 | 3 1 /(3,3 |1 31246 | 9 18 | 3 1 (3,31
6910 | 132 | 63 | 5 2 1(3,3) 31413 | 66 9 413/21(3,3) |1
7977 9 18 | 3 11,31 31462 | 6 0 3 119,31
8242 18 18 | 3 1 /(3,3 |1 31983 | 6 0 3 1 109,31
9385 33 36 | 413/21@3,3) |1 32137 | 75 | 171 | 5 2 [(3,3)|2*
10015 | 21 0 3 1 1(9,3) |1 32826 | 15 0 3 119,31
10173 | 102 9 5 2 (33 |1*||33082]| 15 | 18 | 3 1 /(3,3 |1
10798 9 18 | 3 1 1,3 |1 33585 | 12 | 18 | 3 1 (3,31
11001 3 18 | 3 1 /(3,3 |1 33879 | 15 0 3 1 109,31
12067 0 18 | 3 1 /(3,3 |1 34603 | 0 54 | 4 13/21(9,3)] 1
12394 | 63 27 | 4 13/21(9,3)] 1 34617 | 18 | 18 | 3 1 (3,31
12837 | 39 63 | 41(3/2((3,3) |1 34989 | 66 | 117 | 6 | 5/2 | (3, 3) | 2*
14334 6 0 3 1 1(9,3 |1 35331 | 6 0 3 1 1(9,3) |1
14730 | 33 63 | 41(3/2((3,3) |1 35353 | 9 18 | 3 1 /(3,3 |1
15049 | 18 18 | 3 1 /(3,3 |1 35367 | 24 | 18 | 3 1 1331
16870 | 24 18 | 3 1 /(3,3 |1 36021 | O 18 | 3 1 (3,31
17146 | 18 18 | 3 1 /(3,3 |1 36678 | 24 0 3 1 109,31
18555 0 9 3 1 (3,3 |1 36807 | 3 18 | 3 1 (3,31
19545 | 21 18 | 3 1 1(3,3) |1 37219 | 6 18 | 3 1 13,3 |1
19677 | 18 18 | 3 1 /(3,3 |1 38278 | 12 0 3 1 109,31
21418 | 12 0 3 119,31 39802 | 30 9 4 13/21@3,3) |1
22443 | 66 | 198 | 5 2 [ (3,3 [1*]]39819| 24 | 18 | 3 1 /(3,3 |1
22711 6 18 | 3 1 (1,31 40314 | 15 | 18 | 3 1 (3,3 |1
22965 | 33 36 | 413/21@3,3) |1 41365 | 24 0 3 1 109,31
23605 | 21 63 | 4 13/2]1@3,3)| 1 41698 | 3 0 3 1 109,31
23862 3 9 4 13/21@3,3) |1 41766 | 9 9 3 1 (3,31
25009 | 18 9 3 1 /(3,3 |1 42423 | 21 | 18 | 3 1 /(3,3 |1
25447 | 18 9 3 11,31 42567 | 15 0 3 1 1(9,3) |1
26139 | 57 9 413/21(3,3) |1 42577 | 6 0 3 1 109,31
26305 | 69 9 413/21(3,3) |1 42619 | 573 | 981 | 7 3 1(3,3)
26962 | 75 36 | 4(3/2](3,3)]1 42901 | 18 | 18 | 3 1 (3,31
27186 | 24 18 | 3 1 /(3,3 |1 43198 | 51 9 413/21(3,3) |1
27355 0 18 | 3 1 1,31 43827 | 24 | 18 | 3 1 (3,31
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Table 2. (continued)

m c1 co N | w A_o |z m c1 co N | w A_po T
45397 0 9 3 1 3,3) |1 65686 | 21 36 4 13/2| (3,3) 1
46290 3 0 3 1 9,3) |1 65977 0 18 3 1 (3, 3) 1
46587 | 18 18 3 1 3,3) |1 66981 18 18 3 1 (3, 3) 1
46753 | 33 9 5 2 (3, 3) 67255 | 12 0 3 1 (9, 3) 1
46929 | 18 18 3 1 3,3) |1 68406 | 15 0 3 1 9, 3) 1
47017 6 0 3 1 9,3) |1 68626 | 15 0 3 1 (9, 3) 1
47482 | 177 | 198 | 5 2 3, 3) 69070 | 12 0 3 1 9, 3) 1
47878 | 27 54 413/2 (9,3 |1 69366 | 12 0 3 1 9, 3) 1
48039 | 63 27 4 13/2|(9,3) |1 69402 | 24 18 3 1 (3, 3) 1
48153 | 15 18 3 1 3,3) |1 69721 6 63 4 13/2| (3,3) 1
48634 | 24 0 3 1 |(27,3) |1 70330 3 18 3 1 (3, 3) 1
48918 9 9 3 1 3,3 |1 70606 | 21 18 3 1 3, 3) 1
49837 | 18 9 3 1 3,3) |1 70930 | 150 | 198 | 5 2 (3, 3)
50169 | 51 36 4 13/2| (3,3 |1 70977 | 192 63 5 2 (3,3) | 1*
50281 | 18 18 3 1 3,3) |1 72034 | 231 | 198 | 5 2 (3, 3)
50293 | 54 27 4 13/2| (9,3 |1 72426 | 24 0 3 1 (9, 3) 1
50983 | 12 18 3 1 3,3 |1 72435 0 18 3 1 3, 3) 1
52021 | 144 | 162 | 5 2 9,9) |2 72805 0 18 3 1 (3, 3) 1
53229 0 18 3 1 3,3) |1 72946 | 12 9 4 13/2| (3,3) 1
53502 | 42 63 413/2| (3,3 |1 73869 | 15 0 3 1 9, 3) 1
54195 | 24 18 3 1 3,3) |1 74086 | 18 9 3 1 (3, 3) 1
54931 | 54 54 413/2 (9,3 |1 75774 9 18 3 1 3, 3) 1
55486 | 402 | 549 | 6 | 5/2| (3,3) 75913 | 69 63 4 13/2| (3,3) 1
55546 3 18 3 1 3,3) |1 77281 | 54 27 4 13/2| (9,3) 1
56145 | 60 36 413/2| (3,3 |1 77649 3 18 3 1 (3, 3) 1
56478 | 15 0 3 1 9,3) |1 77829 | 12 0 3 1 (9, 3) 1
56733 | 24 0 3 1 9,3) |1 78223 | 21 0 3 1 9, 3) 1
57079 9 18 3 1 3,3) |1 79066 | 21 36 4 13/2| (3,3) 1
57810 9 9 3 1 3,3) |1 79482 | 213 63 5 2 (3, 3)
58105 | 87 171 | 5 2 3, 3) 81309 | 18 18 3 1 (3, 3) 1
58213 | 24 18 3 1 3,3) |1 81867 | 15 18 3 1 (3, 3) 1
59182 | 2112 | 1224 | 7 3 3, 3) 82077 9 18 3 1 3, 3) 1
59221 | 21 18 3 1 3,3) |1 82183 3 0 3 1 9, 3) 1
59203 | 24 0 3 1 9,3) |1 82702 6 0 3 1 (9, 3) 1
62121 6 18 3 1 3,3) |1 82834 | 4839 | 2115 | 8 | 7/2 | (3, 3)
63010 | 1689 | 1494 | 7 3 3, 3) 83341 12 0 3 1 (27,3)| 1
63079 0 9 3 1 3,3 |1 83395 3 18 3 1 3, 3) 1
63303 3 36 413/2| (3,3 |1 83578 | 69 9 4 13/2| (3,3) 1
64063 | 24 0 3 1 9,3) |1 84145 6 0 3 1 (9, 3) 1
65014 | 12 0 3 1 (27,3 |1 84454 | 186 63 5 2 3, 3)
65203 | 15 18 3 1 3,3) |1 85489 9 18 3 1 (3, 3) 1
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Table 2. (continued)

m c1 co | N| w A_p T m c1 co | N| w |A_o |z
85741 | 18 18 | 3 1 3,3) | 1 93445 | 60 | 36 | 4 [3/2|(3,3) |1
85845 6 18 3 1 (3, 3) 1 93714 | 18 54 | 4 13/2](9,3) 1
85858 21 0 3 1 9, 3) 1 93823 0 18 3 1 3,3 |1
86542 6 0 3 1 (9, 3) 1 94498 | 18 18 3 1 (3,3) |1
86551 69 9 4 13/2| (3,3) 1 95155 | 51 36 4 13/21@3,3) |1
86694 | 18 9 3 1 3,3) | 1 95869 | 0 18 | 3 1 13,3 |1
88447 15 18 3 1 (3, 3) 1 95977 | 15 18 3 1 (3,3) |1
88558 | 3 | 0 | 3| L | (9,3) | 1 |[96603] 87 [171] 5| 2 | (3,3)
88762 0 18 3 1 (3, 3) 1 96762 | 21 0 3 1 (9,3) |1
89269 | 1521 | 81 7 3 (27,3)| 1 96766 | 105 | 63 5 2 (3, 3)
89641 | 12 0 3 1 9,3) | 1 97063 | 42 9 413/21(3,3) |1
89686 | 570 | 549 | 6 | 5/2 | (3,3) | 2* 97687 | 12 18 3 1 (3,3) |1
89818 30 36 4 13/2| (3,3) 1 97801 | 72 54 | 4 13/21(9,3) |1
89923 | 21 | 0 | 3| 1 | (9,38) | 1 |[98281| 63 | 27 | 4 |3/2](9,3) |1
90163 9 9 3 1 (3, 3) 1 98347 | 21 18 3 1 (3,3) |1
90313 | 15 18 | 3 1 3,3) | 1 98443 | 54 | 27 | 4 [3/2((9,3) |1
91402 0 9 3 1 (3, 3) 1 98605 | 57 36 | 413/2](3,3) 1
91471 30 36 4 13/2| (3,3) 1 98746 | 24 0 3 1 9,3) |1
92685 | 6 | 36 | 4 [3/2] (3,8) | 1 |[98773 [321 792 | 7 | 3 | (3,3)
92827 18 18 3 1 (3, 3) 1 98817 0 9 3 1 (3,3) |1
93154 6 | 0 |3 | 1 | (9,3) |1

Therefore we get x =1, i.e., X_ = Nj.

We can determine the A-isomorphism classes of X_ for 7 fields among
these 26 fields by the second method. We can not determine the A-iso-
morphism classes of X_ for the remaining 19 fields because N,/woN, are
isomorphic to (3, 3) independent of z.

We explain about Table 2. The characters ci, ¢y, N and w represent
charX_ =T?+¢T+¢p mod pN and w = %ordp(c% —4cg). The character x
represents X_ = N,. When we determine x not by the first method but by
the second method, then z is written as “1*”. When we cannot determine
x by these two methods, then we write no character.

REMARK 6.1. Kurihara [Ku] developed another method to determine
the A-isomorphism classes of X_. Yamazaki [Ya] calculated with this
method and determined X_ = N; when m = 6226 and 6910.
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