On the Isomorphism Classes of Iwasawa Modules Associated to Imaginary Quadratic Fields with $\boldsymbol{\lambda}=2$

By Masanobu Koike

Abstract

Let p be an odd prime number. Let $\Lambda=\mathbb{Z}_{p}[[T]]$. We determine the Λ-isomorphism classes of finitely generated Λ-torsion Λ modules with $\lambda=2$ and $\mu=0$ which have no non-trivial finite Λ submodule. We apply this classification to Iwasawa modules $X=$ $\varliminf A_{n}$ associated to the cyclotomic \mathbb{Z}_{p}-extensions of imaginary quadratic fields and give some numerical examples.

1. Introduction

Let p be an odd prime number. Let K be an imaginary abelian field and K_{∞} the cyclotomic \mathbb{Z}_{p}-extension of K, namely K_{∞} is the maximal p extension of K in $K\left(\zeta_{p^{\infty}}\right)$. For each $n \geq 0$, let K_{n} be the intermediate field of K_{∞} / K such that K_{n} is a cyclic extension of degree p^{n} over K. Let A_{n} be the p-Sylow subgroup of the ideal class group of K_{n}. Set $X=\varliminf_{¿} A_{n}$, where the inverse limit is with respect to the relative norms. Then X becomes a $\Lambda=\mathbb{Z}_{p}[[T]]$-module by fixing a topological generator of $\operatorname{Gal}\left(K_{\infty} / K\right)$. Furthermore X is a finitely generated Λ-torsion Λ-module. It is known that the odd part X^{-}has no non-trivial finite Λ-submodule.

For a distinguished polynomial $f(T) \in \mathbb{Z}_{p}[T]$, let $\mathcal{M}_{f(T)}$ be the set of Λ-isomorphism classes of finitely generated Λ-torsion Λ-modules N such that

$$
\left\{\begin{array}{l}
N \text { has no non-trivial finite } \Lambda \text {-submodule } \\
\operatorname{char} N=f(T)
\end{array}\right.
$$

where char N is the characteristic polynomial of N. Then $\left[X^{-}\right] \in \mathcal{M}_{\text {char } X^{-}}$. Here $\left[X^{-}\right.$] represents the Λ-isomorphism class of X^{-}.

Sumida [Su] showed that $\mathcal{M}_{f(T)}$ is a finite set if and only if $f(T)$ is separable. He determined the set $\mathcal{M}_{f(T)}$ when $f(T)=(T-\alpha)(T-\beta)$, where $\alpha, \beta \in p \mathbb{Z}_{p}$ (Proposition 2.1). In this paper, we extend this fact and
determine the set $\mathcal{M}_{f(T)}$ completely when $\operatorname{deg}(f(T))=2$ (Theorem 2.1). In particular we can find that $\mathcal{M}_{f(T)}$ is a finite set if and only if $f(T)$ is separable when $\operatorname{deg}(f(T))=2$.

Next we deal with the adjoint module $\alpha(M)$ of a finitely generated Λ torsion Λ-module $M([\mathrm{Fe}],[\mathrm{Wa}, \S 15])$. It is known that $[\alpha(M)] \in \mathcal{M}_{f(T)}$, where $f(T)=\operatorname{char} M$. We consider a relation between $[\alpha(M)]$ and $[M]$ when M has no non-trivial finite Λ-submodule. By using Theorem 2.1, we shall show that $[\alpha(M)]=[M]$, i.e., $\alpha(M) \cong M$ when $\operatorname{deg}(f(T)) \leq 2$ (Theorem 3.1).

We apply Theorem 2.1 to the above X^{-}. We let K be an imaginary quadratic field. Then $X=X^{-}$and char X can be approximately calculated by the Iwasawa main conjecture. We shall determine the Λ-isomorphism classes of X when $\operatorname{deg}(\operatorname{char} X)=2$.

As numerical examples, we deal with the case of $p=3, K=\mathbb{Q}(\sqrt{-m})$, where $1<m<10^{5}$ and $m \not \equiv 2 \bmod 3$. The total number of such fields with $\operatorname{deg}(\operatorname{char} X)=2$ is 3286 . We give two methods to determine the Λ-isomorphism classes of X. One uses the ideal class groups A_{n} and the other the unit group of the real quadratic field $\mathbb{Q}(\sqrt{3 m})$. By using the former method, we determine the Λ-isomorphism classes of X for 3260 fields among the 3286 . By using the latter method, we determine 7 fields among the remaining 26 fields.

An outline of this paper is as follows. In $\S 2$ we give the proof of Theorem 2.1. In $\S 3$ we show Theorem 3.1. In $\S 6$ we give two methods to determine the Λ-isomorphism classes of X associated to imaginary quadratic fields K and give numerical examples. Both $\S 4$ and $\S 5$ are preparation for $\S 6$.

Acknowledgments. I would like to express my sincere gratitude to Professor Shoichi Nakajima for inviting me to Iwasawa theory and for valuable suggestions. I am also grateful to Professor Humio Ichimura, Dr. Hiroki Sumida and Yoshitaka Hachimori for valuable suggestions, especially for $\S 2$ and $\S 3$.

2. Isomorphism Classes of Finitely Generated Λ-Torsion Λ-Modules

Let p be an odd prime number. Let E be a finite extension of the p-adic number field \mathbb{Q}_{p}. Let \mathcal{O}_{E}, π_{E} and ord_{E} denote the integer ring, a prime
element and a normalized additive valuation of E, respectively. We denote the formal power series ring $\mathcal{O}_{E}[[T]]$ by Λ_{E}.

Let both M and M^{\prime} be Λ_{E}-modules. A Λ_{E}-homomorphism

$$
\varphi: M \rightarrow M^{\prime}
$$

is called a pseudo-isomorphism if the kernel and the cokernel of φ are both finite Λ_{E}-modules. When there exists a pseudo-isomorphism, we write

$$
M \sim M^{\prime}
$$

For a finitely generated Λ_{E}-torsion Λ_{E}-module M, there is a pseudoisomorphism

$$
M \rightarrow\left(\bigoplus_{i=1}^{s} \Lambda_{E} /\left(\pi_{E}^{m_{i}}\right)\right) \oplus\left(\bigoplus_{j=1}^{t} \Lambda_{E} /\left(f_{j}(T)^{n_{j}}\right)\right)
$$

where m_{i} and n_{j} are non-negative integers and $f_{j}(T)$ is an irreducible distinguished polynomial in $\mathcal{O}_{E}[T]$. ([Wa, Theorem 13.12]). We call a Λ_{E}-module of the right hand side an elementary Λ_{E}-module associated to M and denote it by $\mathcal{E}(M)$. We put

$$
\lambda(M)=\sum_{j=1}^{t} n_{j} \operatorname{deg}\left(f_{j}(T)\right), \mu(M)=\sum_{i=1}^{s} m_{i}
$$

and call the λ-invariant and the μ-invariant of M, respectively. Furthermore we put

$$
\operatorname{char} M=\pi_{E}^{\mu(M)} \prod_{j=1}^{t} f_{j}(T)^{n_{j}}
$$

It is called the characteristic polynomial of M.
For a distinguished polynomial $f(T) \in \mathcal{O}_{E}[T]$, let $\mathcal{M}_{f(T)}^{E}$ be the set of Λ_{E}-isomorphism classes of finitely generated Λ_{E}-torsion Λ_{E}-modules N such that

$$
\left\{\begin{array}{l}
N \text { has no non-trivial finite } \Lambda_{E} \text {-submodule } \\
\operatorname{char} N=f(T)
\end{array}\right.
$$

We denote the Λ_{E}-isomorphism class of N by $[N]_{E}$. The set $\mathcal{M}_{f(T)}^{E}$ has been introduced by Sumida [Su].

It is easy to see

$$
\mathcal{M}_{f(T)}^{E}=\left\{\left[\Lambda_{E} /(f(T))\right]_{E}\right\}
$$

when $\operatorname{deg}(f(T))=1$.
Now we assume that $f(T)$ is a distinguished polynomial of degree 2. Let F be the splitting field of $f(T)$ over E. Then we can write

$$
f(T)=(T-\alpha)(T-\beta)
$$

where $\alpha, \beta \in\left(\pi_{F}\right)$.
For every $[N]_{E} \in \mathcal{M}_{f(T)}^{E}$, we may assume that N is a Λ_{E}-submodule of $\mathcal{E}(N)$ of finite index. Here $\mathcal{E}(N)=\Lambda_{E} /(T-\alpha) \oplus \Lambda_{E} /(T-\beta)$ or $\Lambda_{E} /(f(T))$. Since $\mathcal{E}(N) \cong \mathcal{O}_{E} \oplus \mathcal{O}_{E}, N$ is a free \mathcal{O}_{E}-module of rank 2. Therefore N is written in the form

$$
N=\langle(a, b),(c, d)\rangle_{E} \subset \Lambda_{E} /(T-\alpha) \oplus \Lambda_{E} /(T-\beta)
$$

or

$$
N=\langle a T+b, c T+d\rangle_{E} \subset \Lambda_{E} /(f(T)),
$$

where $a, b, c, d \in \mathcal{O}_{E},(a, b) \in \mathcal{O}_{E} \oplus \mathcal{O}_{E} \cong \Lambda_{E} /(T-\alpha) \oplus \Lambda_{E} /(T-\beta)$ and $N=\langle e, f\rangle_{E}$ means that N is generated by e and f over \mathcal{O}_{E}.

Lemma 2.1. Assume that $\operatorname{ord}_{E}(a) \leq \operatorname{ord}_{E}(c)$. Then
(i) An \mathcal{O}_{E}-module $\langle(a, b),(c, d)\rangle_{E}$ is a Λ_{E}-module if and only if $\operatorname{ord}_{E}(d-$ $\left.a^{-1} b c\right)-\operatorname{ord}_{E}(b) \leq \operatorname{ord}_{E}(\beta-\alpha)$.
(ii) An \mathcal{O}_{E}-module $\langle a T+b, c T+d\rangle_{E}$ is a Λ_{E}-module if and only if $\operatorname{ord}_{E}(a) \leq \operatorname{ord}_{E}(b)$ and $\operatorname{ord}_{E}(a) \leq \operatorname{ord}_{E}\left(d-a^{-1} b c\right) \leq \operatorname{ord}_{E}(a)+$ $\operatorname{ord}_{E}\left(f\left(-\frac{b}{a}\right)\right)$. In particular $\langle T+b, d\rangle_{E}$ is a Λ_{E}-module if and only if $0 \leq \operatorname{ord}_{E}(d) \leq \operatorname{ord}_{E}(f(-b))$.

Proof. We show only (i) since we can show (ii) in similar way.
First $\langle(a, b),(c, d)\rangle_{E}=\left\langle(a, b),\left(0, d-a^{-1} b c\right)\right\rangle_{E}$. Because T acts on (a, b) by

$$
\begin{aligned}
T(a, b) & =(\alpha a, \beta b) \\
& =\alpha(a, b)+(\beta-\alpha)(0, b)
\end{aligned}
$$

it follows that $\langle(a, b),(c, d)\rangle_{E}$ is a Λ_{E}-module if and only if $\operatorname{ord}_{E}\left(d-a^{-1} b c\right) \leq$ $\operatorname{ord}_{E}(\beta-\alpha)+\operatorname{ord}_{E}(b)$.

Theorem 2.1. Let $f(T)=T^{2}+c_{1} T+c_{0}$. Then

$$
\mathcal{M}_{f(T)}^{E}=\left\{[N]_{E} \left\lvert\, N=\left\langle T+\frac{c_{1}}{2}, \pi_{E}^{x}\right\rangle_{E}\right., 0 \leq x \leq \frac{1}{2} \operatorname{ord}_{E}\left(c_{1}^{2}-4 c_{0}\right)\right\}
$$

Definition 2.1. We put

$$
N_{x}=\left\langle T+\frac{c_{1}}{2}, \pi_{E}^{x}\right\rangle_{E}
$$

for $0 \leq x \leq \frac{1}{2} \operatorname{ord}_{E}\left(c_{1}^{2}-4 c_{0}\right)$.
If $f(T)=(T-\alpha)^{2}$, then we put

$$
N_{\infty}=\Lambda_{E} /(T-\alpha) \oplus \Lambda_{E} /(T-\alpha)
$$

for convenience.
Proof of Theorem 2.1. We shall divide the proof of this theorem into the following three cases:

1. $f(T)$ is separable and reducible over E.
2. $f(T)$ is irreducible over E.
3. $f(T)$ is inseparable.

Here we call $f(T)$ separable when $f(T)$ has no multiple root.

1. When $f(T)$ is separable and reducible over E.

In this case Sumida proved the following.
Proposition 2.1 ([Su] Proposition 10). Let $N=\langle(a, b),(c, d)\rangle_{E}$ be $a \Lambda_{E}$-module such that $[N]_{E} \in \mathcal{M}_{f(T)}^{E}$. Assume that $\operatorname{ord}_{E}(a) \leq \operatorname{ord}_{E}(c)$. Then

$$
N \cong\left\langle(1,1),\left(0, \pi_{E}^{k}\right)\right\rangle_{E}
$$

where $k=\max \left\{0, \operatorname{ord}_{E}\left(d-a^{-1} b c\right)-\operatorname{ord}_{E}(b)\right\}$. Moreover if $0 \leq k \neq k^{\prime} \leq$ $\operatorname{ord}_{E}(\beta-\alpha)$, then $\left\langle(1,1),\left(0, \pi_{E}^{k}\right)\right\rangle_{E} \not \approx\left\langle(1,1),\left(0, \pi_{E}^{k^{\prime}}\right)\right\rangle_{E}$. In other words,

$$
\mathcal{M}_{f(T)}^{E}=\left\{\left[\left\langle(1,1),\left(0, \pi_{E}^{k}\right)\right\rangle_{E}\right]_{E} \mid 0 \leq k \leq \operatorname{ord}_{E}(\beta-\alpha)\right\}
$$

We shall show

$$
\left\langle(1,1),\left(0, \pi_{E}^{k}\right)\right\rangle_{E} \cong N_{x} \subset \Lambda_{E} /(T-\alpha)(T-\beta)
$$

where $x=\operatorname{ord}_{E}(\beta-\alpha)-k$. We have an Λ_{E}-isomorphism $N_{x} \cong\left\langle\left(\frac{\alpha-\beta}{2}\right.\right.$, $\left.\left.\frac{\beta-\alpha}{2}\right),\left(\pi_{E}^{x}, \pi_{E}^{x}\right)\right\rangle_{E}$ under the canonical injective Λ_{E}-homomorphism with finite cokernel $\Lambda_{E} /(T-\alpha)(T-\beta) \rightarrow \Lambda_{E} /(T-\alpha) \oplus \Lambda_{E} /(T-\beta)$. By Proposition 2.1 and $\operatorname{ord}_{E}(\beta-\alpha)=\frac{1}{2} \operatorname{ord}_{E}\left(c_{1}^{2}-4 c_{0}\right) \geq x,\left\langle\left(\frac{\alpha-\beta}{2}, \frac{\beta-\alpha}{2}\right),\left(\pi_{E}^{x}, \pi_{E}^{x}\right)\right\rangle_{E} \cong$ $\left\langle(1,1),\left(0, \pi_{E}^{\operatorname{ord}_{E}(\beta-\alpha)-x}\right)\right\rangle_{E}$ as required.
2. When $f(T)$ is irreducible over E.

For every $[N]_{E} \in \mathcal{M}_{f(T)}^{E}$, we might choose $N \not \subset\left(\pi_{E}, f(T)\right) /(f(T))$ because the multiplication by $\pi_{E}: N \rightarrow \pi_{E} N$ is a Λ_{E}-isomorphism. Then N is written in the form

$$
N=\left\langle T-a, \pi_{E}^{x}\right\rangle_{E}
$$

where $a \in \mathcal{O}_{E}$ and $x \geq 0$. Since N is a Λ_{E}-module, we find $0 \leq x \leq$ $\operatorname{ord}_{E}(f(a))$ by Lemma 2.1.

We need several lemmas which are proved easily. The first lemma is as follows.

Lemma 2.2. There is a Λ_{E}-isomorphism $\Lambda_{F} \rightarrow \Lambda_{E} \oplus \Lambda_{E}$ induced by an \mathcal{O}_{E}-isomorphism $\mathcal{O}_{F} \rightarrow \mathcal{O}_{E} \oplus \mathcal{O}_{E}$. Therefore Λ_{F} is a faithfully flat Λ_{E}-module.

Next lemma is an immediate consequence of this.
Lemma 2.3. Let N and N^{\prime} be arbitrary $\Lambda_{E-m o d u l e s . ~ T h e n ~} N \cong N^{\prime}$ as Λ_{E}-modules if and only if $N \otimes_{\Lambda_{E}} \Lambda_{F} \cong N^{\prime} \otimes_{\Lambda_{E}} \Lambda_{F}$ as Λ_{F}-modules.

The following lemma follows from Lemma 2.2 and the fact that an elementary Λ_{E}-module has no non-trivial finite Λ_{E}-submodule.

Lemma 2.4. Let N be a Λ_{E}-module such that $[N]_{E} \in \mathcal{M}_{f(T)}^{E}$. Then $\left[N \otimes_{\Lambda_{E}} \Lambda_{F}\right]_{F} \in \mathcal{M}_{f(T)}^{F}$.

By these lemmas we may consider the Λ_{F}-isomorphism class of $N \otimes_{\Lambda_{E}} \Lambda_{F}$ instead of the Λ_{E}-isomorphism class of N. If $N=\left\langle T-a, \pi_{E}^{x}\right\rangle_{E}$, then
$N \otimes_{\Lambda_{E}} \Lambda_{F}=\left\langle T-a, \pi_{E}^{x}\right\rangle_{F}$. Moreover by Proposition 2.1, as in the case when $f(T)$ is reducible, $\left\langle T-a, \pi_{E}^{x}\right\rangle_{F} \cong\left\langle(1,1),\left(0, \pi_{F}^{k}\right)\right\rangle_{F}$, where

$$
k= \begin{cases}\operatorname{ord}_{F}(\beta-\alpha)+\operatorname{ord}_{F}\left(\pi_{E}^{x}\right)- & 2 \operatorname{ord}_{F}(\alpha-a) \\ & \text { if ord }{ }_{F}(\alpha-a) \leq \operatorname{ord}_{F}\left(\pi_{E}^{x}\right) \\ \operatorname{ord}_{F}(\beta-\alpha)-\operatorname{ord}_{F}\left(\pi_{E}^{x}\right) & \text { if } \operatorname{ord}_{F}(\alpha-a) \geq \operatorname{ord}_{F}\left(\pi_{E}^{x}\right)\end{cases}
$$

From this and Lemma 2.1, k can take any value in $0 \leq k \leq \operatorname{ord}_{F}(\beta-\alpha)$ if F / E is an unramified extension, while in $0 \leq k \leq \operatorname{ord}_{F}(\beta-\alpha)$ and in the form $k=\operatorname{ord}_{F}(\beta-\alpha)-2 m, m \in \mathbb{N}$ if F / E is a ramified extension.

Now we shall show that Λ_{E}-modules N_{x} make a system of representatives of Λ_{E}-isomorphism classes. Since $\operatorname{ord}_{F}\left(\alpha+\frac{c_{1}}{2}\right)=\operatorname{ord}_{F}(\beta-\alpha)=\frac{1}{2} \operatorname{ord}_{F}\left(c_{1}^{2}-\right.$ $\left.4 c_{0}\right) \geq \operatorname{ord}_{F}\left(\pi_{E}^{x}\right), \quad N_{x} \otimes_{\Lambda_{E}} \Lambda_{F} \cong\left\langle(1,1),\left(0, \pi_{F}^{k}\right)\right\rangle_{F}$, where $k=\operatorname{ord}_{F}(\beta-$ $\alpha)-\operatorname{ord}_{F}\left(\pi_{E}^{x}\right)$ which takes any value in $0 \leq k \leq \operatorname{ord}_{F}(\beta-\alpha)$ if F / E is an unramified extension, while in $0 \leq k \leq \operatorname{ord}_{F}(\beta-\alpha)$ and in the form $k=\operatorname{ord}_{F}(\beta-\alpha)-2 m, m \in \mathbb{N}$ if F / E is a ramified extension. Hence k takes all possible values when x runs the range $0 \leq x \leq \frac{1}{2} \operatorname{ord}_{E}\left(c_{1}^{2}-4 c_{0}\right)$. Finally if $x \neq x^{\prime}$, then $k \neq k^{\prime}=\operatorname{ord}_{F}(\beta-\alpha)-\operatorname{ord}_{F}\left(\pi_{E}^{x^{\prime}}\right)$, therefore $N_{x} \otimes_{\Lambda_{E}} \Lambda_{F} \neq$ $N_{x^{\prime}} \otimes_{\Lambda_{E}} \Lambda_{F}$ by Proposition 2.1. Hence $N_{x} \not \approx N_{x^{\prime}}$ by Lemma 2.3.

3. When $f(T)$ is inseparable.

In this case $\mathcal{E}(N)=\Lambda_{E} /(T-\alpha) \oplus \Lambda_{E} /(T-\alpha)$ or $\Lambda_{E} /(T-\alpha)^{2}$ for $[N]_{E} \in \mathcal{M}_{f(T)}^{E}$ and $\alpha=-\frac{c_{1}}{2}$. If $\mathcal{E}(N)=\Lambda_{E} /(T-\alpha) \oplus \Lambda_{E} /(T-\alpha)$, then we easily see $N \cong \Lambda_{E} /(T-\alpha) \oplus \Lambda_{E} /(T-\alpha)=N_{\infty}$. If $\mathcal{E}(N)=\Lambda_{E} /(T-\alpha)^{2}$, then $N=\left\langle T-a, \pi_{E}^{x}\right\rangle_{E}$ with $0 \leq x \leq \operatorname{ord}_{E}(\alpha-a)$ in the same way as the irreducible case.

We shall classify $\left\langle T-a, \pi_{E}^{x}\right\rangle_{E}$ by Λ_{E}-isomorphisms.
(I) When $a \neq \alpha$. If $0 \leq x \leq \operatorname{ord}_{E}(\alpha-a)$, then $\left\langle T-a, \pi_{E}^{x}\right\rangle_{E}=\langle T-$ $\left.\alpha, \pi_{E}^{x}\right\rangle_{E}=\left\langle T+\frac{c_{1}}{2}, \pi_{E}^{x}\right\rangle_{E}$. Suppose $\operatorname{ord}_{E}(\alpha-a)<x \leq 2 \operatorname{ord}_{E}(\alpha-a)$. Set $A=\operatorname{ord}_{E}(\alpha-a)$ and $\alpha-a=w \pi_{E}^{A}$, where $w \in \mathcal{O}_{E}^{\times}$. Then

$$
\left(\begin{array}{cc}
\pi_{E}^{x-A} & -w \\
\left(1-\pi_{E}^{x-A}\right) w^{-1} & 1
\end{array}\right) \in G L\left(2, \mathcal{O}_{E}\right)
$$

gives a Λ_{E}-isomorphism $\left\langle T-a, \pi_{E}^{x}\right\rangle_{E} \rightarrow\left\langle T-\alpha, \pi_{E}^{2 A-x}\right\rangle_{E}$ with respect to these \mathcal{O}_{E}-bases, i.e., $\left\langle T-a, \pi_{E}^{x}\right\rangle_{E} \cong\left\langle T-\alpha, \pi_{E}^{2 A-x}\right\rangle_{E}$.
(II) When $a=\alpha$. Suppose $\left\langle T-\alpha, \pi_{E}^{x}\right\rangle_{E} \cong\left\langle T-\alpha, \pi_{E}^{y}\right\rangle_{E}$, where $x, y \geq 0$. Then there exists $\left(\begin{array}{cc}s & t \\ u & v\end{array}\right) \in G L\left(2, \mathcal{O}_{E}\right)$ such that

$$
\left(\begin{array}{cc}
s & t \\
u & v
\end{array}\right)\left(\begin{array}{cc}
\alpha & 0 \\
\pi_{E}^{x} & \alpha
\end{array}\right)=\left(\begin{array}{cc}
\alpha & 0 \\
\pi_{E}^{y} & \alpha
\end{array}\right)\left(\begin{array}{cc}
s & t \\
u & v
\end{array}\right)
$$

By comparing (1,1)-entries, we get $t=0$. Then $s, v \in \mathcal{O}_{E}^{\times}$since $\operatorname{det}\left(\begin{array}{cc}s & t \\ u & v\end{array}\right)=s v \in \mathcal{O}_{E}^{\times}$. On the other hand we get $v \pi_{E}^{x}=s \pi_{E}^{y}$ by comparing (2,1)-entries. Therefore $x=\operatorname{ord}_{E}\left(v \pi_{E}^{x}\right)=\operatorname{ord}_{E}\left(s \pi_{E}^{y}\right)=y$.

Finally since $(T-\alpha) N_{\infty}=0$ and $(T-\alpha) N_{x}=\left\langle\pi_{E}^{x}(T-\alpha)\right\rangle_{E} \neq 0$, $N_{\infty} \not \approx N_{x}$ for all $x \geq 0$.

The proof of Theorem 2.1 is completed.
REmark 2.1. When $f(T)=T^{2}+c_{1} T+c_{0}$, the set $\mathcal{M}_{f(T)}^{E}$ is a finite set if and only if $f(T)$ is separable. When $\mathcal{M}_{f(T)}^{E}$ is a finite set, $\# \mathcal{M}_{f(T)}^{E}=$ $\left[\frac{1}{2} \operatorname{ord}_{E}\left(c_{1}^{2}-4 c_{0}\right)\right]+1$, where $[z]$ denotes the maximal integer less than or equal to the real number z. Sumida proved that for a distinguished polynomial $f(T)$ of any degree, the set $\mathcal{M}_{f(T)}^{E}$ is a finite set if and only if $f(T)$ is separable ([Su, Theorem 2]).

From now on we assume that the base field is $E=\mathbb{Q}_{p}$ and omit the subscript E of $\Lambda_{E},[]_{E}$, etc.

Let $\omega_{n}=\omega_{n}(T)=(1+T)^{p^{n}}-1$ and $\dot{\omega}_{n}=\omega_{n}(\dot{T}), \dot{T}=(1+p)(1+T)^{-1}-1$. Here we take $1+p$ as a topological generator of $1+p \mathbb{Z}_{p}$.

We show the following two propositions. We will use these propositions in $\S 6$ to determine the Λ-isomorphism classes of some Λ-modules associated to imaginary quadratic fields. We shall give two methods to determine them. Proposition 2.2 is used for first method, Proposition 2.3 for second method.

Proposition 2.2. Put char $N_{x}=T^{2}+c_{1} T+c_{0}$. Assume that char N_{x} and ω_{n} are relatively prime.
(a) When $p \geq 5$, or $p=3$ and $\operatorname{ord}_{3}\left(c_{0}\right) \geq 2$.

For $n \geq 0$,
(i) if $0 \leq x \leq \frac{1}{2} \operatorname{ord}_{p}\left(c_{0}\right)$, then

$$
N_{x} / \omega_{n} N_{x} \cong \mathbb{Z} / p^{\operatorname{ord}_{p}\left(c_{0}\right)+n-x} \mathbb{Z} \oplus \mathbb{Z} / p^{n+x} \mathbb{Z}
$$

(ii) if $\frac{1}{2} \operatorname{ord}_{p}\left(c_{0}\right)<x \leq \frac{1}{2} \operatorname{ord}_{p}\left(c_{1}^{2}-4 c_{0}\right)$, then

$$
N_{x} / \omega_{n} N_{x} \cong \mathbb{Z} / p^{\frac{1}{2} \operatorname{ord}_{p}\left(c_{0}\right)+n} \mathbb{Z} \oplus \mathbb{Z} / p^{\frac{1}{2} \operatorname{ord}_{p}\left(c_{0}\right)+n} \mathbb{Z}
$$

Moreover

$$
\left(T+\frac{c_{1}}{2}\right)\left(N_{x} / \omega_{n} N_{x}\right) \begin{cases}=0 & \text { if } x \geq \frac{1}{2} \operatorname{ord}_{p}\left(c_{0}\right)+n \\ \neq 0 & \text { if } x<\frac{1}{2} \operatorname{ord}_{p}\left(c_{0}\right)+n\end{cases}
$$

(b) When $p=3, \operatorname{ord}_{3}\left(c_{0}\right)=1$ and $\left(c_{1}, c_{0}\right) \neq(3,3)$.

For $n=0$,

$$
N_{0} / T N_{0} \cong \mathbb{Z} / 3 \mathbb{Z}
$$

For $n \geq 1$,
(iii) if $\operatorname{ord}_{3}\left(c_{0}-3\right)>\operatorname{ord}_{3}\left(c_{1}-3\right)$, then

$$
N_{0} / \omega_{n} N_{0} \cong \mathbb{Z} / 3^{\operatorname{ord}_{3}\left(c_{1}-3\right)+n} \mathbb{Z} \oplus \mathbb{Z} / 3^{\operatorname{ord}_{3}\left(c_{1}-3\right)+n} \mathbb{Z}
$$

(iv) if $\operatorname{ord}_{3}\left(c_{0}-3\right) \leq \operatorname{ord}_{3}\left(c_{1}-3\right)$, then

$$
N_{0} / \omega_{n} N_{0} \cong \mathbb{Z} / 3^{\operatorname{ord}_{3}\left(c_{0}-3\right)+n} \mathbb{Z} \oplus \mathbb{Z} / 3^{\operatorname{ord}_{3}\left(c_{0}-3\right)+n-1} \mathbb{Z}
$$

Proposition 2.3. Put char $N_{x}=T^{2}+c_{1} T+c_{0}$. Assume that char N_{x} and ω_{n} are relatively prime. Moreover we assume that $p^{2}+c_{1} p+c_{0} \neq 0$ and that $\operatorname{ord}_{p}\left(c_{0}\right) \geq 2$. Then
(i) If $\operatorname{ord}_{p}\left(p+\frac{c_{1}}{2}\right)<x$, then

$$
N_{x} / \dot{\omega}_{n} N_{x} \cong \mathbb{Z} / p^{\operatorname{ord}_{p}\left(p+\frac{c_{1}}{2}\right)+n} \mathbb{Z} \oplus \mathbb{Z} / p^{\operatorname{ord}_{p}\left(p+\frac{c_{1}}{2}\right)+n} \mathbb{Z}
$$

(ii) If $\operatorname{ord}_{p}\left(p+\frac{c_{1}}{2}\right) \geq x$, then

$$
N_{x} / \dot{\omega}_{n} N_{x} \cong \mathbb{Z} / p^{\operatorname{ord}_{p}\left(p^{2}+c_{1} p+c_{0}\right)+n-x} \mathbb{Z} \oplus \mathbb{Z} / p^{x+n} \mathbb{Z}
$$

Proof. We omit the proof of Proposition 2.3 since we can show it in the same way of that of Proposition 2.2.

To show Proposition 2.2 we need the following lemma.
Lemma 2.5. Let F be the splitting field of $T^{2}+c_{1} T+c_{0}$ over \mathbb{Q}_{p}. Let α, β be the roots of $T^{2}+c_{1} T+c_{0}=0$ in F. Then
(a) When $p \geq 5$, or $p=3$ and $\operatorname{ord}_{3}\left(c_{0}\right) \geq 2$.

For $n \geq 0$,

$$
\operatorname{ord}_{F}\left(\omega_{n+1}(\beta)-\omega_{n+1}(\alpha)\right)=\operatorname{ord}_{F}\left(\omega_{n}(\beta)-\omega_{n}(\alpha)\right)+\operatorname{ord}_{F}(p)
$$

In particular,

$$
\operatorname{ord}_{F}\left(\omega_{n}(\beta)-\omega_{n}(\alpha)\right)=\operatorname{ord}_{F}(\beta-\alpha)+\operatorname{ord}_{F}(p)
$$

(b) When $p=3$ and $\operatorname{ord}_{3}\left(c_{0}\right)=1$.

For $n \geq 1$,

$$
\operatorname{ord}_{F}\left(\omega_{n+1}(\beta)-\omega_{n+1}(\alpha)\right)=\operatorname{ord}_{F}\left(\omega_{n}(\beta)-\omega_{n}(\alpha)\right)+\operatorname{ord}_{F}(p)
$$

In particular,

$$
\operatorname{ord}_{F}\left(\omega_{n}(\beta)-\omega_{n}(\alpha)\right)=\operatorname{ord}_{F}\left(\omega_{1}(\beta)-\omega_{1}(\alpha)\right)+(n-1) \operatorname{ord}_{F}(p)
$$

For $n=0$,
$\operatorname{ord}_{F}\left(\omega_{1}(\beta)-\omega_{1}(\alpha)\right)$
$\begin{cases}=\operatorname{ord}_{F}\left(\omega_{1}(\alpha)\right)=2 \operatorname{ord}_{3}\left(c_{0}-3\right)+1 & \text { if } \operatorname{ord}_{3}\left(c_{0}-3\right) \leq \operatorname{ord}_{3}\left(c_{1}-3\right) \\ >\operatorname{ord}_{F}\left(\omega_{1}(\alpha)\right)=2 \operatorname{ord}_{3}\left(c_{1}-3\right)+2 & \text { if } \operatorname{ord}_{3}\left(c_{0}-3\right)>\operatorname{ord}_{3}\left(c_{1}-3\right) .\end{cases}$

We postpone the proof of Lemma 2.5.
Because

$$
\omega_{n} \equiv \frac{\omega_{n}(\beta)-\omega_{n}(\alpha)}{\beta-\alpha} T+\frac{\beta \omega_{n}(\alpha)-\alpha \omega_{n}(\beta)}{\beta-\alpha} \bmod T^{2}+c_{1} T+c_{0}
$$

and $c_{1}=-(\alpha+\beta)$, we have

$$
\begin{gathered}
\omega_{n} N_{x}=\left\langle\frac{\omega_{n}(\alpha)+\omega_{n}(\beta)}{2}\left(T+\frac{c_{1}}{2}\right)+\frac{p^{-x}(\beta-\alpha)\left(\omega_{n}(\beta)-\omega_{n}(\alpha)\right)}{4} p^{x}\right. \\
\left.\frac{p^{x}\left(\omega_{n}(\beta)-\omega_{n}(\alpha)\right)}{\beta-\alpha}\left(T+\frac{c_{1}}{2}\right)+\frac{\omega_{n}(\alpha)+\omega_{n}(\beta)}{2} p^{x}\right\rangle
\end{gathered}
$$

We change the generators of $\omega_{n} N_{x}$ suitably.
(a) When $p \geq 5$, or $p=3$ and $\operatorname{ord}_{3}\left(c_{0}\right) \geq 2$.
(i) If $0 \leq x \leq \frac{1}{2} \operatorname{ord}_{p}\left(c_{0}\right)$, then

$$
\begin{aligned}
\omega_{n} N_{x}= & \left\langle\frac{(\beta-\alpha) \omega_{n}(\alpha) \omega_{n}(\beta)}{p^{x}\left(\omega_{n}(\beta)-\omega_{n}(\alpha)\right)} p^{x},\right. \\
& \frac{p^{x}\left(\omega_{n}(\beta)-\omega_{n}(\alpha)\right)}{\beta-\alpha} \\
& \left.\quad \times\left(\left(T+\frac{c_{1}}{2}\right)+\frac{\omega_{n}(\alpha)+\omega_{n}(\beta)}{2} \frac{\beta-\alpha}{p^{x}\left(\omega_{n}(\beta)-\omega_{n}(\alpha)\right)} p^{x}\right)\right\rangle .
\end{aligned}
$$

These coefficients are contained in \mathbb{Z}_{p} by Lemma 2.5. Hence

$$
N_{x} / \omega_{n} N_{x} \cong \mathbb{Z} / p^{\operatorname{ord}_{p}\left(c_{0}\right)+n-x} \mathbb{Z} \oplus \mathbb{Z} / p^{n+x} \mathbb{Z}
$$

(ii) If $\frac{1}{2} \operatorname{ord}_{p}\left(c_{0}\right)<x \leq \frac{1}{2} \operatorname{ord}_{p}\left(c_{1}^{2}-4 c_{0}\right)$, then

$$
\begin{aligned}
\omega_{n} N_{x}= & \left\langle\frac{\omega_{n}(\alpha)+\omega_{n}(\beta)}{2}\left(\left(T+\frac{c_{1}}{2}\right)+\frac{(\beta-\alpha)\left(\omega_{n}(\beta)-\omega_{n}(\alpha)\right)}{2 p^{x}\left(\omega_{n}(\alpha)+\omega_{n}(\beta)\right)} p^{x}\right),\right. \\
& \left.\frac{\omega_{n}(\alpha)+\omega_{n}(\beta)}{2}\left(\frac{2 p^{x}\left(\omega_{n}(\beta)-\omega_{n}(\alpha)\right)}{(\beta-\alpha)\left(\omega_{n}(\alpha)+\omega_{n}(\beta)\right)}\left(T+\frac{c_{1}}{2}\right)+p^{x}\right)\right\rangle \\
= & \frac{\omega_{n}(\alpha)+\omega_{n}(\beta)}{2}\left\langle T+\frac{c_{1}}{2}, p^{x}\right\rangle .
\end{aligned}
$$

Since $\operatorname{ord}_{F}(\alpha)=\operatorname{ord}_{F}(\beta)=\frac{1}{2} \operatorname{ord}_{p}\left(c_{0}\right)<\frac{1}{2} \operatorname{ord}_{p}\left(c_{1}^{2}-4 c_{0}\right)=\operatorname{ord}_{F}(\beta-\alpha)$ and $\omega_{n}(\alpha)+\omega_{n}(\beta)=\left(\omega_{n}(\beta)-\omega_{n}(\alpha)\right)+2 \omega_{n}(\alpha)$, we get

$$
\operatorname{ord}_{p}\left(\frac{\omega_{n}(\alpha)+\omega_{n}(\beta)}{2}\right)=\frac{1}{2} \operatorname{ord}_{p}\left(c_{0}\right)+n
$$

by Lemma 2.5. Hence

$$
N_{x} / \omega_{n} N_{x} \cong \mathbb{Z} / p^{\frac{1}{2} \operatorname{ord}_{p}\left(c_{0}\right)+n} \mathbb{Z} \oplus \mathbb{Z} / p^{\frac{1}{2} \operatorname{ord}_{p}\left(c_{0}\right)+n} \mathbb{Z}
$$

Here $\operatorname{ord}_{p}\left(c_{0}\right)$ is an even number because $\operatorname{ord}_{p}\left(c_{0}\right)<\operatorname{ord}_{p}\left(c_{1}^{2}-4 c_{0}\right)$.
Moreover

$$
\left(T+\frac{c_{1}}{2}\right) N_{x}=\left\langle p^{x}\left(T+\frac{c_{1}}{2}\right), \frac{c_{1}^{2}-4 c_{0}}{4 p^{x}} p^{x}\right\rangle
$$

Therefore

$$
\begin{aligned}
(T+ & \left.\frac{c_{1}}{2}\right) N_{x} \subset \omega_{n} N_{x} \\
& \Leftrightarrow \\
& \operatorname{ord}_{F}\left(p^{x}\right) \geq \operatorname{ord}_{F}\left(\frac{\omega_{n}(\alpha)+\omega_{n}(\beta)}{2}\right)=\operatorname{ord}_{F}(\alpha)+\operatorname{ord}_{F}(p) \\
& \quad \operatorname{and} \operatorname{ord}_{F}\left(\frac{c_{1}^{2}-4 c_{0}}{4 p^{x}}\right) \geq \operatorname{ord}_{F}\left(\frac{\omega_{n}(\alpha)+\omega_{n}(\beta)}{2}\right) \\
& \Leftrightarrow \\
& x \geq \frac{1}{2} \operatorname{ord}_{p}\left(c_{0}\right)+n
\end{aligned}
$$

i.e.,

$$
\left(T+\frac{c_{1}}{2}\right)\left(N_{x} / \omega_{n} N_{x}\right) \begin{cases}=0 & \text { if } x \geq \frac{1}{2} \operatorname{ord}_{p}\left(c_{0}\right)+n \\ \neq 0 & \text { if } x<\frac{1}{2} \operatorname{ord}_{p}\left(c_{0}\right)+n\end{cases}
$$

We can show the case (b) similarly.
Proof of Lemma 2.5. We have

$$
\omega_{n+1}(\beta)-\omega_{n+1}(\alpha)=\left(\omega_{n}(\beta)-\omega_{n}(\alpha)\right) \Phi(\alpha, \beta)
$$

where

$$
\Phi(\alpha, \beta)=(1+\beta)^{p^{n}(p-1)}+(1+\beta)^{p^{n}(p-2)}(1+\alpha)^{p^{n}}+\cdots+(1+\alpha)^{p^{n}(p-1)} .
$$

Short calculations show $\operatorname{ord}_{F}(\Phi(\alpha, \beta))=\operatorname{ord}_{F}(p)$ for $n \geq 0$ if $p \geq 5$ or if $p=3$ and $\operatorname{ord}_{3}\left(c_{0}\right) \geq 2$, and for $n \geq 1$ if $p=3$ and $\operatorname{ord}_{3}\left(c_{0}\right)=1$. If $p=3$ and $\operatorname{ord}_{3}\left(c_{0}\right)=1$, then F / \mathbb{Q}_{p} is a ramified extension,

$$
\omega_{1}(\alpha)=\alpha\left(\left(3-c_{1}\right) \alpha+\left(3-c_{0}\right)\right)
$$

and

$$
\omega_{1}(\beta)-\omega_{1}(\alpha)=(\beta-\alpha)\left(c_{1}\left(c_{1}-3\right)-\left(c_{0}-3\right)\right)
$$

By comparing an order of each term, we get Lemma 2.5.

3. Adjoint Modules

Let M be a finitely generated Λ-torsion Λ-module. Let $\alpha(M)$ be the adjoint module of M. For the definition and some properties of $\alpha(M)$, see [Fe], [Wa, §15.5], etc.

Now we consider the following question.
Question. If M is a finitely generated Λ-torsion Λ-module which has no non-trivial finite Λ-submodule, then $\alpha(M) \cong M$?

This answer is not known in general. But we shall show this is true when $\lambda(M) \leq 2$ and $\mu(M)=0$.

Theorem 3.1. Let M be a finitely generated Λ-torsion Λ-module which has no non-trivial finite Λ-submodule. If $\lambda(M) \leq 2$ and $\mu(M)=0$, then $\alpha(M) \cong M$.

Proof. If $\lambda(M)=1$ and $\mu(M)=0$, then M is isomorphic to an elementary Λ-module. Hence $\alpha(M) \cong M$.

Next we consider the case when $\lambda(M)=2$ and $\mu(M)=0$. First

$$
\alpha(M) \cong \varliminf_{¿} \operatorname{Hom}\left(M / p^{n+1} M, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)
$$

where the inverse limit is with respect to the maps induced by the maps

$$
\begin{aligned}
M / p^{n+1} M & \rightarrow M / p^{m+1} M \\
z & \mapsto p^{m-n} z \quad m \geq n \geq 0
\end{aligned}
$$

([Fe, Theorem 2.7]). Since $\lambda(M)=2$ and $\mu(M)=0, M$ is a free $\mathbb{Z}_{p^{-}}$ module of rank 2. Hence $M=\left\langle b_{1}, b_{2}\right\rangle, M / p^{n+1} M=\left\langle b_{1} \bmod p^{n+1} M, b_{2}\right.$ $\left.\bmod p^{n+1} M\right\rangle$. Let $g_{1 n}, g_{2 n}$ be the dual bases of $M / p^{n+1} M$. Then $g_{1}=$ $\left(g_{1 n}\right)_{n}, g_{2}=\left(g_{2 n}\right)_{n} \in \lim \operatorname{Hom}\left(M / p^{n+1} M, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$ with respect to the above maps. Clearly g_{1}, g_{2} are linearly independent over \mathbb{Z}_{p}. Therefore $\alpha(M) \cong\left\langle g_{1}, g_{2}\right\rangle$. Let A be the transformation matrix associated to the multiplication by T map

$$
M=\left\langle b_{1}, b_{2}\right\rangle \xrightarrow{\times T} M=\left\langle b_{1}, b_{2}\right\rangle .
$$

Then that of $\alpha(M)=\left\langle g_{1}, g_{2}\right\rangle$ is ${ }^{t} A$ by the observation on each $M / p^{n+1} M$ and the definition of the action of T on $\alpha(M)$. Therefore $\alpha(M) \cong M$ if and only if there exists some $S \in G L\left(2, \mathbb{Z}_{p}\right)$ such that $S A={ }^{t} A S$. Since $\lambda(M)=2$ and $\mu(M)=0$, we can write

$$
\operatorname{char} M=T^{2}+c_{1} T+c_{0}, \quad c_{0}, c_{1} \in p \mathbb{Z}_{p}
$$

By Theorem 2.1, $M \cong N_{x}$ with some $0 \leq x \leq \frac{1}{2} \operatorname{ord}_{p}\left(c_{1}^{2}-4 c_{0}\right)<\infty$ or $M \cong N_{\infty}$. When $M \cong N_{x}$ with $x<\infty$,

$$
A=\left(\begin{array}{cc}
-\frac{c_{1}}{2} & \frac{c_{1}^{2}-4 c_{0}}{4 p^{x}} \\
p^{x} & -\frac{c_{1}}{2}
\end{array}\right) .
$$

Therefore if we put

$$
S=\left\{\begin{array}{cc}
\left(\begin{array}{cc}
1 & 1 \\
1 & \frac{c_{1}^{2}-4 c_{0}}{4 p^{2 x}}
\end{array}\right) & \text { if } x \neq \frac{1}{2} \operatorname{ord}_{p}\left(c_{1}^{2}-4 c_{0}\right) \\
\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{c_{1}^{2}-4 c_{0}}{4 p^{2 x}}
\end{array}\right) & \text { if } x=\frac{1}{2} \operatorname{ord}_{p}\left(c_{1}^{2}-4 c_{0}\right)
\end{array}\right.
$$

then $S A={ }^{t} A S$, that is, $\alpha(M) \cong M$.
If $M \cong N_{\infty}$, then $\alpha(M) \cong M$ since the adjoint preserves direct sums.

4. Λ-Module X

4.1. Let K be an imaginary abelian field. We assume that K does not contain p^{2}-th roots of unity. Let K_{∞} be the cyclotomic \mathbb{Z}_{p}-extension of K. Let γ_{0} be a topological generator of $\operatorname{Gal}\left(K_{\infty} / K\right)$. In this paper we define γ_{0} such that

$$
\zeta^{\gamma_{0}}=\zeta^{1+p}
$$

for any p-th power root of unity ζ. Let K_{n} be the n-th layer of K_{∞} / K and A_{n} the p-Sylow subgroup of the ideal class group of K_{n}.

Iwasawa proved that there exist three integers $\lambda=\lambda_{p}(K) \geq 0, \mu=$ $\mu_{p}(K) \geq 0$ and $\nu=\nu_{p}(K)$, all independent of n, such that

$$
\# A_{n}=p^{\lambda n+\mu p^{n}+\nu}
$$

for all sufficiently large n. We call $\lambda_{p}(K), \mu_{p}(K)$ and $\nu_{p}(K)$ the Iwasawa invariants of K.

Set

$$
X=\varliminf_{\subsetneq} A_{n},
$$

where the inverse limit is with respect to the relative norms. Then X becomes a Λ-module since there is an isomorphism

$$
\varliminf \mathbb{Z}_{p}\left[\operatorname{Gal}\left(K_{n} / K\right)\right] \cong \Lambda
$$

induced by $\gamma_{0} \mapsto 1+T$. It is known that

$$
\mu(X)=0
$$

(Ferrero-Washington [FW]) and

$$
\left[X^{-}\right] \in \mathcal{M}_{\mathrm{char} X^{-}},
$$

where $X^{ \pm}=\{a \in X \mid J a= \pm a\}$ and J is the complex conjugation ([Wa, Proposition 13.28]).

Our goal is to determine the Λ-isomorphism classes of X^{-}when $\lambda\left(X^{-}\right)=$ 2. It is important to determine the Λ-isomorphism classes of X^{-}because of the following fact. We assume that exactly one prime is ramified in K_{∞} / K and it is totally ramified. Then there are Λ-isomorphisms

$$
X^{-} / \omega_{n} X^{-} \cong A_{n}^{-}, \quad \text { for all } n \geq 0
$$

([Wa, Proposition 13.22]). Therefore we get the structures of A_{n}^{-}for all $n \geq 0$.
4.2. The following Proposition 4.1, which asserts the Iwasawa ν invariants, follows from Proposition 2.2. We, however, do not need this proposition later.

Proposition 4.1. Let K be an imaginary abelian field. Assume that exactly one prime is ramified in K_{∞} / K and that it is totally ramified. Moreover we assume that $A_{0}^{+}=0$ and that $\lambda_{p}(K)=2$. Then
(a) When $p \geq 5$, or $p=3$ and $\# A_{0} \geq 3^{2}$, for $n \geq 0$, we have

$$
\# A_{n}=p^{2 n} \# A_{0}
$$

i.e.,

$$
\nu_{p}(K)=\operatorname{ord}_{p}\left(\# A_{0}\right)
$$

(b) When $p=3$ and $\# A_{0}=3$, for $n \geq 1$, we have

$$
\# A_{n}= \begin{cases}p^{2 n+2 \operatorname{ord}_{3}\left(c_{1}-3\right)} & \text { if } \operatorname{ord}_{3}\left(c_{0}-3\right)>\operatorname{ord}_{3}\left(c_{1}-3\right) \\ p^{2 n+2 \operatorname{ord}_{3}\left(c_{0}-3\right)-1} & \text { if } \operatorname{ord}_{3}\left(c_{0}-3\right) \leq \operatorname{ord}_{3}\left(c_{1}-3\right)\end{cases}
$$

i.e.,

$$
\nu_{p}(K)= \begin{cases}2 \operatorname{ord}_{3}\left(c_{1}-3\right) & \text { if } \operatorname{ord}_{3}\left(c_{0}-3\right)>\operatorname{ord}_{3}\left(c_{1}-3\right) \\ 2 \operatorname{ord}_{3}\left(c_{0}-3\right)-1 & \text { if } \operatorname{ord}_{3}\left(c_{0}-3\right) \leq \operatorname{ord}_{3}\left(c_{1}-3\right)\end{cases}
$$

where char $X=T^{2}+c_{1} T+c_{0}$.
Proof. Because $A_{0}^{+}=0$, we have $X=X^{-}$, hence $[X] \in \mathcal{M}_{\text {char } X}$. When $\lambda_{p}(K)=2$, i.e., $\lambda(X)=2$, we can write char $X=T^{2}+c_{1} T+c_{0}$. Then, by Theorem 2.1, $X \cong N_{x}$ for some x.

It is sufficient to show that $\# A_{0}=p^{\operatorname{ord}_{p}\left(c_{0}\right)}$ since $\# A_{n}=\# N_{x} / \omega_{n} N_{x}$ and Proposition 2.2. There is the following commutative diagram

where B is a finite Λ-module. By snake lemma we have an exact sequence

$$
0 \rightarrow B^{\Gamma} \rightarrow X / T X \rightarrow \Lambda /\left(T, T^{2}+c_{1} T+c_{0}\right) \rightarrow B / T B \rightarrow 0
$$

where B^{Γ} is the kernel of the multiplication by $T: B \rightarrow B$. Therefore $\# X / T X=p^{\operatorname{ord}_{p}\left(c_{0}\right)}$, i.e., $\# A_{0}=p^{\operatorname{ord}_{p}\left(c_{0}\right)}$.

REmark 4.1. When $\lambda<p-1$, or $\lambda=p-1$ and $\# A_{0} \geq p^{2}$, Sands proved

$$
\# A_{n}=p^{\lambda n} \# A_{0} \quad \text { for } n \geq 0
$$

([Sa, Theorem 3.1]). Case (a) of Proposition 4.1 also follows from this fact when $\lambda=2$.

5. $\quad X_{-}$and \mathfrak{X}_{+}

5.1. In this section, let $p=3$ and $K=\mathbb{Q}(\sqrt{-m}, \sqrt{-3})$, where $m>0$ and $m \neq 3$. Let $K_{\infty}, K_{n}, A_{n}, X$ be the same meaning as in 4.1. Let M_{∞} be the maximal abelian p-extension of K_{∞} unramified outside p, L_{∞} the maximal unramified abelian p-extension of K_{∞}. By class field theory, $X \cong$ $\operatorname{Gal}\left(L_{\infty} / K_{\infty}\right)$. Put $\mathfrak{X}=\operatorname{Gal}\left(M_{\infty} / K_{\infty}\right)$. Then \mathfrak{X} is a finitely generated Λ-module with no non-trivial finite Λ-submodule ([Iw, Theorem 18]).

There are three intermediate fields of K / \mathbb{Q}. For two of them, we put $K_{-}=\mathbb{Q}(\sqrt{-m})$ and $K_{+}=\mathbb{Q}(\sqrt{3 m})$. We will modify the notation suitably. Thus, $K_{-, \infty}, K_{-, n}$, etc. (resp. $K_{+, \infty}, K_{+, n}$, etc.) will denote the corresponding objects of K_{-}(resp. K_{+}).

Let

$$
\begin{aligned}
\Delta & =\operatorname{Gal}(K / \mathbb{Q})=\{i d, \sigma, \tau, \sigma \tau\} \\
\Delta_{-} & =\operatorname{Gal}\left(K_{-} / \mathbb{Q}\right) \cong \operatorname{Gal}\left(K / K_{+}\right)=\{i d, \sigma\} \\
\Delta_{+} & =\operatorname{Gal}\left(K_{+} / \mathbb{Q}\right) \cong \operatorname{Gal}\left(K / K_{-}\right)=\{i d, \tau\}
\end{aligned}
$$

and their character groups

$$
\begin{aligned}
\Delta^{\wedge} & =\{1, \chi, \omega, \chi \omega\} \\
\left(\Delta_{-}\right)^{\wedge} & =\{1, \chi\} \\
\left(\Delta_{+}\right)^{\wedge} & =\{1, \chi \omega\}
\end{aligned}
$$

where ω is the Teichmüller character. Furthermore let

$$
e_{\psi}=\frac{1}{\# \Delta} \sum_{\delta \in \Delta} \psi(\delta) \delta^{-1} \quad \in \mathbb{Z}_{p}[\Delta], \quad \text { for } \psi \in \Delta^{\wedge}
$$

and

$$
M(\psi)=e_{\psi} M, \quad \text { for a } \mathbb{Z}_{p}[\Delta] \text {-module } M
$$

5.2. Let L_{0} be the maximal unramified abelian p-extension of K, and let $Y=\operatorname{Gal}\left(L_{\infty} / K_{\infty} L_{0}\right)$. Then Y is a Λ-submodule of X of finite index. It is known that

$$
\begin{aligned}
\mathfrak{X}(\chi \omega)^{\bullet} & \cong \alpha(Y(\chi)) \\
& \sim Y(\chi) \\
& \sim X(\chi),
\end{aligned}
$$

where $\mathfrak{X}(\chi \omega)^{\bullet}$ is equal to $\mathfrak{X}(\chi \omega)$ as a \mathbb{Z}_{p}-module with new Λ-structure defined by

$$
T \cdot x=\dot{T} x, \quad \text { for } x \in \mathfrak{X}(\chi \omega)
$$

(See [Iw, Theorem 11], [Ts, pp. 200].)
Since the order of $\operatorname{Gal}\left(K_{\infty} / K_{-, \infty}\right) \cong<\tau>$ is prime to p,

$$
X_{-} \cong X /(\tau-1) X
$$

Therefore we have

$$
X_{-} \cong X(\chi)
$$

because $X \cong X(1) \oplus X(\chi) \oplus X(\omega) \oplus X(\chi \omega),(\tau-1) X \cong X(\omega) \oplus X(\chi \omega)$ and $X(1)=0$. Similarly we have

$$
\begin{gathered}
Y_{-} \cong Y(\chi), \\
\mathfrak{X}_{+} \cong \mathfrak{X}(\chi \omega)
\end{gathered}
$$

Hence

$$
\left(\mathfrak{X}_{+}\right)^{\bullet} \cong \alpha\left(Y_{-}\right) \sim Y_{-} \sim X_{-} .
$$

Theorem 5.1. Assume that $p=3$ does not split in K_{-}and that $\lambda\left(X_{-}\right) \leq 2$. Then $\left(\mathfrak{X}_{+}\right)^{\bullet} \cong X_{-}$.

Proof. By Theorem 3.1, we have

$$
\alpha\left(Y_{-}\right) \cong Y_{-}
$$

Because p does not split in K_{-}, we get $Y_{-}=T X_{-}$. Since char X_{-}and T are relatively prime, the kernel of the multiplication by $T: X_{-} \rightarrow T X_{-}$is finite, hence 0 . Therefore

$$
Y_{-} \cong X_{-}
$$

We get $\left(\mathfrak{X}_{+}\right)^{\bullet} \cong X_{-}$by the above arguments.
5.3. Let M_{n} be the maximal abelian extension of K_{n} in M_{∞} and L_{n} the maximal unramified abelian p-extension of K_{n}. Then $\operatorname{Gal}\left(M_{n} / K_{\infty}\right) \cong$ $\mathfrak{X} / \omega_{n} \mathfrak{X}$ and $\operatorname{Gal}\left(L_{n} / K_{n}\right) \cong A_{n}$. Moreover, the structure of $\operatorname{Gal}\left(M_{n} / L_{n}\right)$ is known.

For each prime divisor v of K_{n} lying above p, let $U_{n, v}$ be the group of local units in the v-completion $K_{n, v}$ which are congruent to 1 modulo the maximal ideal, and let $\mathcal{U}_{n}=\prod_{v \mid p} U_{n, v}$. Let E_{n} be the group of all units in K_{n}. We identify E_{n} with the image of the diagonal embedding $K_{n} \hookrightarrow \prod_{v \mid p} K_{n, v}$. Let $\overline{E_{n}}$ be the closure of $E_{n} \cap \mathcal{U}_{n}$ in \mathcal{U}_{n}. By class field theory, $\operatorname{Gal}\left(M_{n} / L_{n}\right) \cong \mathcal{U}_{n} / \overline{E_{n}}([C o$, Theorem 1.1], [Wa, Corollary 13.6]). Hence we get the structures of a subgroup and a quotient of $\operatorname{Gal}\left(M_{n} / K_{n}\right)$ by the unit group and the ideal class group of K_{n}.

6. Numerical Examples

Let $p=3$ and let K_{-}, K_{+}, etc. be same as in $\S 5$. Let χ be the non-trivial primitive Dirichlet character which is associated to K_{-}. Let f_{0} be the least common multiple of p and the conductor of χ. There exists a power series $g_{\chi^{-1} \omega}(T) \in \Lambda$ such that $L_{p}\left(s, \chi^{-1} \omega\right)=g_{\chi^{-1} \omega}\left((1+p)^{s}-1\right)$ for all $s \in \mathbb{Z}_{p}([\mathrm{Wa}$, $\S 7.2]$). By p-adic Weierstrass preparation theorem ([Wa, Theorem 7.3]), we can uniquely express $g_{\chi^{-1} \omega}(T)=P_{\chi^{-1} \omega}(T) U_{\chi^{-1} \omega}(T)$, where $P_{\chi^{-1} \omega}(T)$ is a distinguished polynomial and $U_{\chi^{-1} \omega}(T) \in \Lambda^{\times}$. The Iwasawa main conjecture proved by Mazur-Wiles [MW] asserts char $X_{-}=P_{\chi^{-1} \omega}(T)$.

Though we cannot get $g_{\chi^{-1} \omega}(T)$ exactly, we can approximate $g_{\chi^{-1} \omega}(T)$ with arbitrary accuracy. An approximation of $g_{\chi^{-1} \omega}(T)$ is as follows.

$$
g_{\chi^{-1} \omega}(T) \equiv-\frac{1}{2 f_{0} p^{n}} \sum_{a=1,\left(a, f_{0}\right)=1}^{f_{0} p^{n}} a \chi(a)(1+T)^{-l_{n}(a)} \bmod \omega_{n}
$$

for $n \geq 0$, where $l_{n}(a)$ is the unique integer such that $a \equiv \omega(a)(1+p)^{l_{n}(a)}$ $\bmod p^{n+1}$ and $0 \leq l_{n}(a)<p^{n}$. Therefore we can obtain char X_{-}approximately ([IS, Lemma 5]) and determine $\lambda\left(X_{-}\right)$and $w=\frac{1}{2} \operatorname{ord}_{p}\left(c_{1}^{2}-4 c_{0}\right)$. For details about computation of $g_{\chi^{-1} \omega}(T)$, see, for example, [EM].

Let $K_{-}=\mathbb{Q}(\sqrt{-m})$, where $1<m<10^{5}, m \not \equiv 2 \bmod 3$ and m is a square-free integer. We computed char X_{-}by the above method with Pari [Pa] and see the total number of such fields with $\lambda\left(X_{-}\right)=2$ is 3286 . We also referred $[\mathrm{Fu}]$ for the λ-invariants of imaginary quadratic fields. Table 1 is the distribution of X_{-}. Here $\#$ represents the number of fields.

The purpose of this section is to determine the Λ-isomorphism classes of such X_{-}. First, by "Nakayama's Lemma" ([Wa, Lemma 13.16]), X_{-}is a

Table 1. The distribution of X_{-}

w	$1 / 2$	1	$3 / 2$	2	$5 / 2$	3	$7 / 2$	4	$\geq 9 / 2$	total
$\#$	2204	720	244	79	24	10	4	1	0	3286

cyclic Λ-module if and only if $A_{-, 0}$ is a cyclic group. There are 3081 fields whose $A_{-, 0}$ are cyclic groups, hence $X_{-} \cong N_{0}$.

Example 1. Let $K_{-}=\mathbb{Q}(\sqrt{-1306})$. By computation, $\operatorname{char} X_{-} \equiv T^{2}+$ $18 T+18 \bmod 3^{3}$ and $w=1$. On the other hand, we have $A_{-, 0} \cong \mathbb{Z} / 9 \mathbb{Z}$. Therefore $X_{-} \cong N_{0}$.

From now on we assume that $A_{-, 0}$ is not a cyclic group. There are 205 such fields. In the last of this paper, we find tables of these 205 fields. We give two methods to determine the Λ-isomorphism classes of X_{-}.

The first method uses $A_{-, n}$ which are isomorphic to $N_{x} / \omega_{n} N_{x}$ as $\mathbb{Z}_{p}\left[\operatorname{Gal}\left(K_{-, n} / K_{-}\right)\right]$-modules. Because char X_{-}and ω_{n} are relatively prime by finiteness of class number, Proposition 2.2 tells us that we can determine the Λ-isomorphism class of X_{-}by the structures of $A_{-, n}$ for some $n \geq 0$. We use Proposition 2.2 as in the following example. It is the easiest case because we can determine the Λ-isomorphism class of X_{-}based on the data for $n=0$. We referred [SW] for the structures of $A_{-, 0}$.

Example 2. Let $K_{-}=\mathbb{Q}(\sqrt{-89269})$. By computation, $\operatorname{char} X_{-} \equiv T^{2}+$ $1521 T+81 \bmod 3^{7}$ and $w=3$. By Theorem 2.1,

$$
X_{-} \cong N_{1} \text { or } N_{2} \text { or } N_{3}
$$

By Proposition 2.2,

$$
N_{x} / \omega_{0} N_{x} \cong \begin{cases}\left(3^{4-x}, 3^{x}\right) & (x=1,2) \\ (9,9) & (x=3)\end{cases}
$$

On the other hand, we have $A_{-, 0} \cong \mathbb{Z} / 27 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$. Therefore we get $x=1$, i.e., $X_{-} \cong N_{1}$.

We can determine the Λ-isomorphism classes of X_{-}for 179 fields by the structures of $A_{-, 0}$ as above example. The remaining 26 fields are in Case (ii) of Proposition 2.2. Therefore we must get the structures of $A_{-, n}$ for $n \geq 1$.

But it is difficult to compute $A_{-, n}$ for $n \geq 1$ because the discriminants of $K_{-, n}$ for $n \geq 1$ are too large.

We give the second method for these 26 fields. By Theorem 5.1, we have $\left(\mathfrak{X}_{+}\right)^{\bullet} \cong X_{-}$. Hence if $X_{-} \cong N_{x}$ for some x, then $\operatorname{Gal}\left(M_{+, 0} / K_{+, \infty}\right) \cong$ $\mathfrak{X}_{+} / T \mathfrak{X}_{+} \cong N_{x} / \dot{T} N_{x}$. In this case, the assumptions of Proposition 2.3 on char $X_{-}=T^{2}+c_{1} T+c_{0}$ are valid; we have $p^{2}+c_{1} p+c_{0} \neq 0$ because of the Iwasawa main conjecture and Leopoldt's conjecture, and we have $\operatorname{ord}_{p}\left(c_{0}\right) \geq 2$ because $A_{-, 0}$ is not a cyclic group. Therefore we get the structure of $\operatorname{Gal}\left(M_{+, 0} / K_{+, \infty}\right)$ by Proposition 2.3, hence that of X_{-}.

On the other hand, $\operatorname{Gal}\left(L_{+, 0} / K_{+}\right) \cong A_{+, 0}$ and

$$
\begin{aligned}
\operatorname{Gal}\left(M_{+, 0} / L_{+, 0}\right) & \cong \mathcal{U}_{+, 0} / \overline{E_{+, 0}} \\
& \cong\left(\mathcal{U}_{+, 0} / \overline{E_{+, 0}}\right)(1) \oplus\left(\mathcal{U}_{+, 0} / \overline{E_{+, 0}}\right)(\chi \omega) \\
& \cong \mathbb{Z}_{p} \oplus\left(\mathcal{U}_{+, 0}(\chi \omega) / \overline{E_{+, 0}}(\chi \omega)\right)
\end{aligned}
$$

Since p does not split in K_{-},

$$
\mathcal{U}_{+, 0}(\chi \omega) \cong \mathbb{Z}_{p}
$$

([Gi, Proposition 1,2]). Therefore we can get the structure of $\operatorname{Gal}\left(M_{+, 0} / L_{+, 0}\right)$ by investigating $\overline{E_{+, 0}}(\chi \omega)$. Hence we can determine the Λ-isomorphism classes of X_{-}by the structures of $A_{+, 0}$ and $\mathcal{U}_{+, 0} / \overline{E_{+, 0}}$. We computed $A_{+, 0}$ and $\mathcal{U}_{+, 0} / \overline{E_{+, 0}}$ with KANT [KA].

Example 3. Let $K_{-}=\mathbb{Q}(\sqrt{-10173})$. By computation, $\operatorname{char} X_{-} \equiv T^{2}+$ $102 T+9 \bmod 3^{5}$ and $w=2$. Hence it follows from Theorem 2.1 that

$$
X_{-} \cong N_{1} \text { or } N_{2}
$$

By Proposition 2.2,

$$
N_{x} / \omega_{0} N_{x} \cong(3,3) \quad(x=1,2)
$$

and $A_{-, 0} \cong \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$. Therefore we cannot determine the Λ-isomorphism class of X_{-}by first method.

Next we consider $K_{+}=\mathbb{Q}(\sqrt{3391})$. By another computation, $\operatorname{Gal}\left(M_{+, 0} / L_{+, 0}\right) \cong \mathbb{Z}_{3} \oplus \mathbb{Z} / 27 \mathbb{Z}$ and $A_{+, 0} \cong \mathbb{Z} / 3 \mathbb{Z}$. On the other hand, by Proposition 2.3 (ii),

$$
N_{x} / \dot{\omega}_{0} N_{x} \cong\left(3^{4-x}, 3^{x}\right) \quad(x=1,2)
$$

Table 2.

m	c_{1}	c_{0}	N	w	$A_{-, 0}$	x
2437	9	9	3	1	$(3,3)$	1
3886	18	18	3	1	$(3,3)$	1
4027	0	18	3	1	$(3,3)$	1
5703	63	54	4	$3 / 2$	$(9,3)$	1
5857	3	36	4	$3 / 2$	$(3,3)$	1
6085	21	63	4	$3 / 2$	$(3,3)$	1
6226	1212	549	7	3	$(3,3)$	
6690	12	18	3	1	$(3,3)$	1
6789	6	18	3	1	$(3,3)$	1
6910	132	63	5	2	$(3,3)$	
7977	9	18	3	1	$(3,3)$	1
8242	18	18	3	1	$(3,3)$	1
9385	33	36	4	$3 / 2$	$(3,3)$	1
10015	21	0	3	1	$(9,3)$	1
10173	102	9	5	2	$(3,3)$	$1 *$
10798	9	18	3	1	$(3,3)$	1
11001	3	18	3	1	$(3,3)$	1
12067	0	18	3	1	$(3,3)$	1
12394	63	27	4	$3 / 2$	$(9,3)$	1
12837	39	63	4	$3 / 2$	$(3,3)$	1
14334	6	0	3	1	$(9,3)$	1
14730	33	63	4	$3 / 2$	$(3,3)$	1
15049	18	18	3	1	$(3,3)$	1
16870	24	18	3	1	$(3,3)$	1
17146	18	18	3	1	$(3,3)$	1
18555	0	9	3	1	$(3,3)$	1
19545	21	18	3	1	$(3,3)$	1
19677	18	18	3	1	$(3,3)$	1
21418	12	0	3	1	$(9,3)$	1
22443	66	198	5	2	$(3,3)$	$1 *$
22711	6	18	3	1	$(3,3)$	1
22965	33	36	4	$3 / 2$	$(3,3)$	1
23605	21	63	4	$3 / 2$	$(3,3)$	1
23862	3	9	4	$3 / 2$	$(3,3)$	1
25009	18	9	3	1	$(3,3)$	1
25447	18	9	3	1	$(3,3)$	1
26139	57	9	4	$3 / 2$	$(3,3)$	1
26305	69	9	4	$3 / 2$	$(3,3)$	1
26962	75	36	4	$3 / 2$	$(3,3)$	1
27186	24	18	3	1	$(3,3)$	1
27355	0	18	3	1	$(3,3)$	1

m	c_{1}	c_{0}	N	w	$A_{-, 0}$	x
27649	3	0	3	1	$(9,3)$	1
28279	48	171	5	2	$(3,3)$	1^{*}
28734	0	18	3	1	$(3,3)$	1
28759	3	18	3	1	$(3,3)$	1
28902	15	0	3	1	$(9,3)$	1
28945	168	171	5	2	$(3,3)$	
30466	21	0	3	1	$(9,3)$	1
31081	204	36	5	2	$(3,3)$	
31246	9	18	3	1	$(3,3)$	1
31413	66	9	4	$3 / 2$	$(3,3)$	1
31462	6	0	3	1	$(9,3)$	1
31983	6	0	3	1	$(9,3)$	1
32137	75	171	5	2	$(3,3)$	2^{*}
32826	15	0	3	1	$(9,3)$	1
33082	15	18	3	1	$(3,3)$	1
33585	12	18	3	1	$(3,3)$	1
33879	15	0	3	1	$(9,3)$	1
34603	0	54	4	$3 / 2$	$(9,3)$	1
34617	18	18	3	1	$(3,3)$	1
34989	66	117	6	$5 / 2$	$(3,3)$	2^{*}
35331	6	0	3	1	$(9,3)$	1
35353	9	18	3	1	$(3,3)$	1
35367	24	18	3	1	$(3,3)$	1
36021	0	18	3	1	$(3,3)$	1
36678	24	0	3	1	$(9,3)$	1
36807	3	18	3	1	$(3,3)$	1
37219	6	18	3	1	$(3,3)$	1
38278	12	0	3	1	$(9,3)$	1
39802	30	9	4	$3 / 2$	$(3,3)$	1
39819	24	18	3	1	$(3,3)$	1
40314	15	18	3	1	$(3,3)$	1
41365	24	0	3	1	$(9,3)$	1
41698	3	0	3	1	$(9,3)$	1
41766	9	9	3	1	$(3,3)$	1
42423	21	18	3	1	$(3,3)$	1
42567	15	0	3	1	$(9,3)$	1
42577	6	0	3	1	$(9,3)$	1
42619	573	981	7	3	$(3,3)$	
42901	18	18	3	1	$(3,3)$	1
43198	51	9	4	$3 / 2$	$(3,3)$	1
43827	24	18	3	1	$(3,3)$	1

Table 2. (continued)

m	c_{1}	c_{0}	N	w	$A_{-, 0}$	x	m	c_{1}	c_{0}	N	w	$A_{-, 0}$	x
45397	0	9	3	1	$(3,3)$	1	65686	21	36	4	$3 / 2$	$(3,3)$	1
46290	3	0	3	1	$(9,3)$	1	65977	0	18	3	1	$(3,3)$	1
46587	18	18	3	1	$(3,3)$	1	66981	18	18	3	1	$(3,3)$	1
46753	33	9	5	2	$(3,3)$		67255	12	0	3	1	$(9,3)$	1
46929	18	18	3	1	$(3,3)$	1	68406	15	0	3	1	$(9,3)$	1
47017	6	0	3	1	$(9,3)$	1	68626	15	0	3	1	$(9,3)$	1
47482	177	198	5	2	$(3,3)$		69070	12	0	3	1	$(9,3)$	1
47878	27	54	4	$3 / 2$	$(9,3)$	1	69366	12	0	3	1	$(9,3)$	1
48039	63	27	4	3/2	$(9,3)$	1	69402	24	18	3	1	$(3,3)$	1
48153	15	18	3	1	$(3,3)$	1	69721	6	63	4	$3 / 2$	$(3,3)$	1
48634	24	0	3	1	$(27,3)$	1	70330	3	18	3	1	$(3,3)$	1
48918	9	9	3	1	$(3,3)$	1	70606	21	18	3	1	$(3,3)$	1
49837	18	9	3	1	$(3,3)$	1	70930	150	198	5	2	$(3,3)$	
50169	51	36	4	$3 / 2$	$(3,3)$	1	70977	192	63	5	2	$(3,3)$	1*
50281	18	18	3	1	$(3,3)$	1	72034	231	198	5	2	$(3,3)$	
50293	54	27	4	$3 / 2$	$(9,3)$	1	72426	24	0	3	1	$(9,3)$	1
50983	12	18	3	1	$(3,3)$	1	72435	0	18	3	1	$(3,3)$	1
52021	144	162	5	2	$(9,9)$	2	72805	0	18	3	1	$(3,3)$	1
53229	0	18	3	1	$(3,3)$	1	72946	12	9	4	$3 / 2$	$(3,3)$	1
53502	42	63	4	$3 / 2$	$(3,3)$	1	73869	15	0	3	1	$(9,3)$	1
54195	24	18	3	1	$(3,3)$	1	74086	18	9	3	1	$(3,3)$	1
54931	54	54	4	3/2	$(9,3)$	1	75774	9	18	3	1	$(3,3)$	1
55486	402	549	6	5/2	$(3,3)$		75913	69	63	4	3/2	$(3,3)$	1
55546	3	18	3	1	$(3,3)$	1	77281	54	27	4	$3 / 2$	$(9,3)$	1
56145	60	36	4	$3 / 2$	$(3,3)$	1	77649	3	18	3	1	$(3,3)$	1
56478	15	0	3	1	$(9,3)$	1	77829	12	0	3	1	$(9,3)$	1
56733	24	0	3	1	$(9,3)$	1	78223	21	0	3	1	$(9,3)$	1
57079	9	18	3	1	$(3,3)$	1	79066	21	36	4	3/2	$(3,3)$	1
57810	9	9	3	1	$(3,3)$	1	79482	213	63	5	2	$(3,3)$	
58105	87	171	5	2	$(3,3)$		81309	18	18	3	1	$(3,3)$	1
58213	24	18	3	1	$(3,3)$	1	81867	15	18	3	1	$(3,3)$	1
59182	2112	1224	7	3	$(3,3)$		82077	9	18	3	1	$(3,3)$	1
59221	21	18	3	1	$(3,3)$	1	82183	3	0	3	1	$(9,3)$	1
59293	24	0	3	1	$(9,3)$	1	82702	6	0	3	1	$(9,3)$	1
62121	6	18	3	1	$(3,3)$	1	82834	4839	2115	8	7/2	$(3,3)$	
63010	1689	1494	7	3	$(3,3)$		83341	12	0	3	1	$(27,3)$	1
63079	0	9	3	1	$(3,3)$	1	83395	3	18	3	1	$(3,3)$	1
63303	3	36	4	$3 / 2$	$(3,3)$	1	83578	69	9	4	$3 / 2$	$(3,3)$	1
64063	24	0	3	1	$(9,3)$	1	84145	6	0	3	1	$(9,3)$	1
65014	12	0	3	1	$(27,3)$	1	84454	186	63	5	2	$(3,3)$	
65203	15	18	3	1	$(3,3)$	1	85489	9	18	3	1	$(3,3)$	1

Table 2. (continued)

m	c_{1}	c_{0}	N	w	$A_{-, 0}$	x
85741	18	18	3	1	$(3,3)$	1
85845	6	18	3	1	$(3,3)$	1
85858	21	0	3	1	$(9,3)$	1
86542	6	0	3	1	$(9,3)$	1
86551	69	9	4	$3 / 2$	$(3,3)$	1
86694	18	9	3	1	$(3,3)$	1
88447	15	18	3	1	$(3,3)$	1
88558	3	0	3	1	$(9,3)$	1
88762	0	18	3	1	$(3,3)$	1
89269	1521	81	7	3	$(27,3)$	1
89641	12	0	3	1	$(9,3)$	1
89686	570	549	6	$5 / 2$	$(3,3)$	$2 *$
89818	30	36	4	$3 / 2$	$(3,3)$	1
89923	21	0	3	1	$(9,3)$	1
90163	9	9	3	1	$(3,3)$	1
90313	15	18	3	1	$(3,3)$	1
91402	0	9	3	1	$(3,3)$	1
91471	30	36	4	$3 / 2$	$(3,3)$	1
92685	6	36	4	$3 / 2$	$(3,3)$	1
92827	18	18	3	1	$(3,3)$	1
93154	6	0	3	1	$(9,3)$	1

m	c_{1}	c_{0}	N	w	$A_{-, 0}$	x
93445	60	36	4	$3 / 2$	$(3,3)$	1
93714	18	54	4	$3 / 2$	$(9,3)$	1
93823	0	18	3	1	$(3,3)$	1
94498	18	18	3	1	$(3,3)$	1
95155	51	36	4	$3 / 2$	$(3,3)$	1
95869	0	18	3	1	$(3,3)$	1
95977	15	18	3	1	$(3,3)$	1
96693	87	171	5	2	$(3,3)$	
96762	21	0	3	1	$(9,3)$	1
96766	105	63	5	2	$(3,3)$	
97063	42	9	4	$3 / 2$	$(3,3)$	1
97687	12	18	3	1	$(3,3)$	1
97801	72	54	4	$3 / 2$	$(9,3)$	1
98281	63	27	4	$3 / 2$	$(9,3)$	1
98347	21	18	3	1	$(3,3)$	1
98443	54	27	4	$3 / 2$	$(9,3)$	1
98605	57	36	4	$3 / 2$	$(3,3)$	1
98746	24	0	3	1	$(9,3)$	1
98773	321	792	7	3	$(3,3)$	
98817	0	9	3	1	$(3,3)$	1

Therefore we get $x=1$, i.e., $X_{-} \cong N_{1}$.

We can determine the Λ-isomorphism classes of X_{-}for 7 fields among these 26 fields by the second method. We can not determine the Λ-isomorphism classes of X_{-}for the remaining 19 fields because $N_{x} / \dot{\omega}_{0} N_{x}$ are isomorphic to $(3,3)$ independent of x.

We explain about Table 2. The characters c_{1}, c_{0}, N and w represent $\operatorname{char} X_{-} \equiv T^{2}+c_{1} T+c_{0} \bmod p^{N}$ and $w=\frac{1}{2} \operatorname{ord}_{p}\left(c_{1}^{2}-4 c_{0}\right)$. The character x represents $X_{-} \cong N_{x}$. When we determine x not by the first method but by the second method, then x is written as " 1 ". When we cannot determine x by these two methods, then we write no character.

Remark 6.1. Kurihara [Ku] developed another method to determine the Λ-isomorphism classes of X_{-}. Yamazaki [Ya] calculated with this method and determined $X_{-} \cong N_{1}$ when $m=6226$ and 6910 .

References

[Co] Coates, J., p-adic L-functions and Iwasawa's theory, Algebraic Number Fields (Durham Symposium, 1975; ed. by A. Fröhlich), 269-353. Academic Press: London, 1977.
[EM] Ernvall, R. and T. Metsänkylä, Computation of the zeros of p-adic L functions, Math. Comp. 58 (1992), 815-830.
[Fe] Federer, L., Noetherian $\mathbb{Z}_{p}[[T]]$-modules, adjoints, and Iwasawa theory, Illinois. J. Math. 30 (1986), 636-652.
[FW] Ferrero, B. and L. Washington, The Iwasawa invariant μ_{p} vanishes for abelian number fields, Ann. of Math. 109 (1979), 377-395.
[Fu] Fukuda, T., Iwasawa λ-invariants of imaginary quadratic fields, J. College Industrial Technology Nihon Univ. 27 (1994), 35-88.
[Gi] Gillard, R., Unités cyclotomiques, unités semi-locales et \mathbb{Z}_{l}-extensions II, Ann. Inst. Fourier, Grenoble 29 (1979), fasc. 4, 1-15.
[IS] Ichimura, H. and H. Sumida, On the Iwasawa invariants of certain real abelian fields II, Int. J. Math. 7 (1996), 721-744.
[Iw] Iwasawa, K., On \mathbb{Z}_{l}-extensions of algebraic number fields, Ann. of Math. 98 (1973), 246-326.
[KA] Daberkow, M., Fieker, C., Klüners, J., Pohst, M., Roegner, K. and K. Wildanger, KANT V_{4}, to appear in J. Symbolic Comp.
[Ku] Kurihara, M., On the structure of the ideal class groups of cyclotomic \mathbb{Z}_{p}-extensions of abelian fields, preprint, 1998.
[MW] Mazur, B. and A. Wiles, Class fields of abelian extensions of \mathbb{Q}, Invent. Math. 76 (1984), 179-330.
[Pa] Batut, C., Bernardi, D., Cohen, H. and M. Olivier, PARI-1.39.03.
[Sa] Sands, J., On small Iwasawa invariants and imaginary quadratic fields, Proc. Amer. Math. Soc. 112 (1991), 671-684.
[Su] Sumida, H., Greenberg's conjecture and the Iwasawa polynomial, J. Math. Soc. Japan. 49 (1997), 689-711.
[SW] Saito, M. and H. Wada, A table of ideal class groups of imaginary quadratic fields, Sophia Kokyuroku in Math. No 28, 1988.
[Ts] Tsuji, T., On the pseudo-cyclicity of some Iwasawa modules associated to abelian fields, J. Math. Sci. Univ. Tokyo 4 (1997), 183-209.
[Wa] Washington, L., Introduction to cyclotomic fields, 2nd edition, Graduate Texts in Math. 83, Springer, 1997.
[Ya] Yamazaki, Y., On Stickelberger elements and ideal class groups (in Japanese), Tokyo Met. Univ. master's thesis, 1998.
(Received April 1, 1998)
(Revised November 25, 1998)

Graduate School of Mathematical Sciences
 University of Tokyo
 3-8-1 Komaba, Meguro-ku
 Tokyo 153-8914
 Japan

Present address
Toshiba Corporation
3-22 Katamachi, Fuchu-shi
Tokyo 183-8512
Japan
E-mail: masanobu2.koike@toshiba.co.jp

