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Zonal Spherical Functions on

Quantum Grassmann Manifolds

By Tetsuya Sugitani

Abstract. We give an explicit description of the zonal spherical
functions on quantum Grassmann manifolds of orthogonal and symplec-
tic type. A unified parametrization of their zonal spherical functions is
given in terms of Macdonald polynomials and Koornwinder’s multivari-
able Askey-Wilson polynomials.

§0. Introduction

In this paper we study two series of quantum Grassmann manifolds,

of orthogonal and of symplectic type, and show that, for each Grassmann

manifold of these series, the zonal spherical functions are expressed by Weyl

group invariant q-orthogonal polynomials with respect to the Haar measure

on the torus T = {x = (x1, · · · , xl) ∈ (C×)l ; |x1| = · · · = |xl| = 1} with

weight functions ∆(x) := ∆+(x)∆+(x) where

∆+(x)

=
l∏

k=1

(x2
k; q

2)∞

(−qk2εkxk; q2)∞(qk2εk+ 1
2
kεkxk; q2)∞(−qxk; q2)∞(q1+ 1

2
kεkxk; q2)∞

×
∏
i<j

(xi/xj ; q
2)∞(xixj ; q

2)∞

(qkεi−εjxi/xj ; q2)∞(qkεi−εjxixj ; q2)∞
, (0 < q < 1).

Here the constants {kα} are nonnegative real numbers corresponding to

the root multiplicities of the restricted root system and (a; q)∞ =
∏∞
i=0(1−

aqi). Such polynomials coincide with so called Macdonald polynomials

([M]) or Koornwinder’s multivariable Askey-Wilson polynomials ([K]). (See

Theorem 4.1.)
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We consider the quantum Grassmann manifolds of the following series:

(BDI) ; (SO(N)/SO(l)× SO(N − l))q (l ≤ [N/2], N ≥ 3, N �= 4),

(CII) ; (Sp(2n)/Sp(2l)× Sp(2n− 2l))q (l ≤ [n/2]).

They belong to a class of q-analogues of the series of irreducible Riemannian

symmetric spaces of rank l, introduced in [N] (Al type) and [NS1, 2] (Bl,

Cl, Dl and BCl types). Especially in the above series (BDI) and (CII)

the restricted root systems of types Bl, Cl, Dl or BCl appear according to

the rank (see Subsection 4.1). And the above weight functions ∆(x) are

interpreted as q-analogues of
∏
|1−xα|kα where α runs through the positive

roots of these restricted root systems with multiplicity kα.

A class of quantized function algebras Aq(G/K) of the Riemannian sym-

metric spaces G/K of compact type were introduced in [N] and [NS2] in a

unified way. The ∗-algebra Aq(G/K) is an infinitesimal quantum subgroup

kC, q invariant subalgebra of the quantized function algebra Aq(G) of G.

The infinitesimal quantum subgroup kC, q is a coideal of the quantized uni-

versal enveloping algebra Uq(g) (g =Lie(G)) such that kC, q → kC if q tends

to 1 (kC =Lie(KC)). We call vectors of a commutative infinitesimal quan-

tum subgroup-biinvariant ∗−subring H = Aq(K\G/K) of A zonal spherical

functions on quantum symmetric space (G/K)q.

The zonal spherical functions of all the series of quantum Grassmann

manifolds, however, were not determined in [NS1,2] because of some diffi-

culties arising from the higher multiplicities of the restricted roots, although

they occupy a greater part of the series of irreducible Riemannian symmetric

spaces of classical type. Since the ∗−algebra H is identifed with a subring

H|T of a Laurent polynomial ring A(T) corresponding to the torus sub-

group of G, to determine the zonal spherical functions we devote ourselves

to compute the radial part of a central element of U , that is, a q-difference

operator on H|T which coincides with the action of the central element.

Unlike the classical theory, even the Weyl group invariance must be derived

from the Weyl group invariance of the radial part, because of the difficulties

of algebraic structure of H.

From the result of this paper, we conclude that the zonal spherical func-

tions on all the quatum symmetric spaces of type Al, Bl, Cl, Dl and BCl,

discussed in [N] and [NS2], are q-orhtogonal polynomials with respect to
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the measures of the class mentioned at the beginning of Introduction. Es-

pecially if the restricted root system Σ associated with G/K is of type Al,

Bl, Cl or Dl, the zonal spherical functions on (G/K)q coincide with Mac-

donald polynomials with specified parameters and if Σ is of type BCl, then

they are expressed in terms of Koornwinder’s multivariable Askey-Wilson

polynomials.
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§1. Results from a Theory of the Quantum Symmetric Spaces

The statements (except Theorem 1.2) in this section is a summary of

the results of [NS2] (see also [N]). For the detail descriptions, consult with

the above paper.

Throughout this paper, for a Hopf algebra we denote the coproduct, the

counit and the antipode by ∆, ε and S respectively. And q is a real number

such that 0 < q < 1.

1.1. Infinitesimal quantum subgroups

Let G/K be a compact Riemannian symmetric spaces of classical type

(see [NS2]). In [NS2] the quantum symmetric spaces (G/K)q of all of such
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types were introduced. In this paper we restrict ourselves to the cases

(G , K);

(BDI) ; (SO(N) , SO(l)× SO(N − l)) (l ≤ [N/2], N ≥ 3, N �= 4),

(CII) ; (Sp(N) , Sp(2l)× Sp(N − 2l)) (N = 2n, l ≤ [n/2]).

We fix the root data of GC (the complification of G) as follows.

Let Ln = Zε1 ⊕ · · · ⊕ Zεn be the Z-free lattice of rank n in the n-

dimensional Euclidean space En = Rε1 ⊕ · · · ⊕ Rεn with a nondegenerate

inner product 〈 , 〉 such that 〈εi, εj〉 = δij for any 1 ≤ i, j ≤ n. We realize

the integral weight lattice P in En for the root system of type Bn, Cn and

Dn corresponding to so(2n + 1; C), sp(2n; C) and so(2n; C). So we specify

the set of simple roots {αi} and the integral weight lattice P =
n∑
k=1

ZΛk

with fundamental weights {Λk}nk=1 in the following table. We also give the

condition for λ =
n∑
i=1

λiεi to the cone P+
G of dominant weights, in the integral

weight lattice PG := P ∩ Ln corresponding to GC-rational representations.

(1.1)

� SO(2n+ 1) (n ≥ 1) Sp(2n) (n ≥ 1) SO(2n) (n ≥ 3)

simple αk = εk − εk+1 αk = εk − εk+1 αk = εk − εk+1

roots 1 ≤ k ≤ n− 1 1 ≤ k ≤ n− 1 1 ≤ k ≤ n− 1

for GC αn = εn αn = 2εn αn = εn−1 + εn
funda- Λk = ε1 + · · · + εk Λk = ε1 + · · · + εk Λk = ε1 + · · · + εk
mental 1 ≤ k ≤ n− 1 1 ≤ k ≤ n 1 ≤ k ≤ n− 2

weights Λn = 1
2
(ε1 + · · · + εn) Λn−1

= 1
2
(ε1 + · · · + εn−1 − εn)

Λn

= 1
2
(ε1 + · · · + εn−1 + εn)

λ1 ≥ · · · ≥ λn ≥ 0 λ1 ≥ · · · ≥ λn ≥ 0 λ1 ≥ · · · ≥ λn−1 ≥ |λn|

To proceed to the notion of infinitesimal quantum subgroups we need

a q-analogue of root vectors that behave nicely in the quantized univer-

sal enveloping algebra UC = Uq(gC) (gC =Lie(GC)). L-operators L± =∑
1≤i,j≤N eijL

±
ij ∈ EndC(V ) ⊗C UC give such q-analogues where V is the

vector spaces of dimension N on which gC naturally acts and eij are the

matrix units with respect to a suitable basis of V . They are described

through a suitable vector representation (πV , V ) of UC by

πV (L+) = R+, πV (L−) = R−
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where R+ = PRP (P is the flip), R− = R−1 and

R =
∑

1≤i,j≤N
eii ⊗ ejjq

δij−δij′ + (q − q−1)

×
∑

1≤j<i≤N
(eij ⊗ eji − eij ⊗ ei′j′q

−ρi+ρjκiκj).

Here we use the notation j′ := N − j + 1 for 1 ≤ j ≤ N and the constants

{ρk} and {κi} are given by

(1.2)

� gC so(2n+ 1;C) sp(2n;C) so(2n;C)

ρk {n− 1
2
, · · · , 3

2
, 1
2
, 0 {n, , · · · , 2, 1, {n− 1, , · · · , 1, 0,

− 1
2
,− 3

2
, · · · ,−n+ 1

2
} − 1,−2, · · · ,−n} 0,−1, · · · ,−n+ 1}

κi κi = 1 (1 ≤ i ≤ N) κi = 1 (≤ i ≤ n), κi = 1 (1 ≤ i ≤ 2n)

= −1 (n+ 1 ≤ i ≤ 2n)

Using these L-operators and the following constant solution J to the reflec-

tion equation (see [NS2]); (BI, DI): SO(N)/SO(l)× SO(N − l);

J = J [l] :=
∑

1≤j,j′≤l
ejjq

ρj +
∑
l<j<l′

ejj′q
−ρj−ρl +

l∑
j=1

ejj′(1− q2ρl)q−ρj−ρl ,

(CII) : Sp(2n)/Sp(2l)× Sp(2n− 2l);

J = J [l] :=
l∑

k=1

(−e2k,2k−1q
ρ2k−1 + e2k−1,2kq

ρ2k

+ e(2k−1)′(2k)′q
ρ(2k)′ − e(2k)′(2k−1)′q

ρ(2k−1)′ )

+
∑

2l<j≤n
ejj′q

−ρj−ρ2l+1 −
∑

2l<j≤n
ej′jq

ρj−ρ2l+1

+
2l∑
j=1

ejj′(1− q2ρ2l−2)q−ρj−ρ2l+1,

we introduce the infinitesimal quantum subgroups as C-vector space spanned

by the matrix elements of

M := L+ − JS(L−)tJ−1.
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This C-vector space is a q-analogue of the Lie subalgebra kC =Lie(KC) and

this becomes a two-sided coideal of UC. We denote this C-vector space by

kC, q.

When we say about the ∗-operation on UC, we adopt the ∗-operation

corresponding to the compact real form g of gC. In this situation the infini-

tesimal quantum subgroup kC, q is τ := ∗◦S-invariant and the “compact real

form” kq can be defined by the (elementwise) τ -invariant subspace of kC, q,

but we do not mention about the “real structure” itself. The ∗-operation

of UC is given by

(L±)∗ = S(L∓)t = CL∓C−1 where C =


0 qρNκN

·
·

·
qρ1κ1 0

 .

We denote by U0 the commutative ∗−algebra generated by group-like el-

ements {L±
ii}1≤i≤N with ∗-structure s.t. (L±

ii )
∗=L±

ii . For the descrip-

tion of the generators of U0, it is covenient to introduce the commuta-

tive Hopf ∗-algebra generated by the symbols qµ (µ ∈ Ln) with multi-

plication and the Hopf algebra structure ; qλ · qµ = qλ+µ (λ, µ ∈ Ln),
∆(qµ) = qµ ⊗ qµ, ε(qµ) = 1 and S(qµ) = q−µ. By setting L+

ii = qεi ,

L−
ii = q−εi for 1 ≤ i ≤ N where εi′ = −εi, we have the identification

U0=C[qµ ; µ ∈ Ln]. These are compatible with the notion of the weights

in U : For any qh ∈ U0=C[qµ ; µ ∈ Ln], we have

qhL+q−h = H−1L+H, qhL−q−h = H−1L−H

where H = diag(q〈h,ε1〉, · · · , q〈h,εn〉, (1), q−〈h,εn〉, · · · , q−〈h,ε1〉). Thus the ele-

ments L+
ij and L−

ji (i < j) have weights −εi + εj and εi − εj respectively.

1.2. Quantum symmeric spaces and zonal spherical functions

The quantized function algebra M := Aq(G/K) is the kC, q-invariant

subspace of the quantized function algebra A := Aq(G).

The quantized function algebra A is a Hopf ∗-algebra spanned by the

matrix elements of the finite dimensional PG-weighted representaions of

U = Uq(g) =(UC, ∗). The U-bimodule structure gives the Peter-Weyl de-

composition with components W (λ) parametrized by the dominant integral

weight λ of the cone of dominant weights P+
G .



Zonal Spherical Functions 341

We also have the quantized function algebra of the coset space K\G/K;

H = Aq(K\G/K) := {φ ∈ A ; kC, q.φ = 0, φ.kC, q = 0}

where denotes an involutive anti-automorphism of U defined by

a = qρa∗q−ρ for a ∈ U (ρ =
1

2

∑
α>0

α =
n∑
k=1

ρkεk)

and kC, q = {a ; a ∈ kC, q}.
Remark that the quantized function algebra M and H are both ∗-

algebras by the τ -invariance of the coideal kC, q.

This ∗-algebraH becomes a commutative algebra and has the simultane-

ous eigen space decomposion of the center Z of U with components H(λ) :=

H ∩W (λ) parametized by the dominant weights λ in P+
G,k :=

⊕l
r=1 NΛ̃r

(spanned by the “fundamental spherical weights” Λ̃r (see Definition 1.1)).

Moreover the ∗-algebra H can be identified with a subring of the Laurent

polynomial ring A(T) = C[z±1
1 , · · · , z±1

n ] regarded as the quotient Hopf

algebra corresponding to the torus group of G. We denote the restriction

mapping A → A(T) by |T. Remark that there is a nondegenerate Hopf

pairing between U0 and A(T) such that (qµ, zν) = q〈µ,ν〉 for µ, ν ∈ Ln and

zν = zν11 · · · zνnn (νi = 〈ν, εi〉, 1 ≤ i ≤ n)

We say the nonzero elements of H(λ) the zonal spherical functions for

λ ∈ P+
G,k. The zonal spherical functions φ(λ) are uniquely determined up to

constant since dimCH(λ) = 1 for each λ ∈ P+
G,k. For more detail description

of the zonal spherical functions we need to explain about the restricted root

system of G/K.

Let g = k ⊕
√
−1p be the decomposition corresponding to the Cartan

decomposition of a real form g0 of gC; g0 = k ⊕ p. In that decomposition

choose a maximal abelian subspace a in p. Let Σ = Σ(g; a) be the restricted

root system of rank l for G/K associated with the pair (g, a) and let us

denote by W (Σ) the associated Weyl group. For the precise description of

Σ, see the next section.

Here we see that we can embed the restricted root system Σ into the

root lattice of G in En = Rε1 ⊕ · · · ⊕ Rεn: By putting

ε̃i =

{
2εi (1 ≤ i ≤ l) for the cases BI and DI,

ε2i−1 + ε2i (1 ≤ i ≤ l) for the case CII,
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we can realize the root system Σ in Ẽl := Rε̃1 ⊕ · · · ⊕ Rε̃l with the nonde-

generate inner product 〈 , 〉 derived from that of En = Rε1 ⊕ · · · ⊕ Rεn.

Then we can take the standard simple roots {α̃i}1≤i≤l and fundamental

weights {Λ̃i}1≤i≤l} as in the table (1.1). For example, for the case BI (l <

n), α̃i = ε̃i−ε̃i+1 = 2αi (1 ≤ i ≤ l−1), α̃l = ε̃l = 2αl, Λ̃k = ε̃1+· · ·+ε̃k = 2Λk
(1 ≤ k ≤ l − 1) and Λ̃l = 1

2(ε̃1 + · · ·+ ε̃l) = Λl.

Moreover corresponding to this embedding of root system, the integral

weight lattice P (Σ) is also embedded into P (∆) and the Weyl group W (Σ)

is obtained as the restriction of a subgroup of W (∆) onto Ẽl.

Definition 1.1. We introduce a new inner product 〈 , 〉Σ on Ẽl such

that 〈ε̃i, ε̃j〉Σ = δij for 1 ≤ i, j ≤ l. When we emphasize the inner product

on P (Σ), we will write it as P (Σ, 〈, 〉) and P (Σ, 〈, 〉Σ) respectively. We give

the identification map

π : P (Σ, 〈, 〉) −→ P (Σ, 〈, 〉Σ)

by rewriting µ = µ1ε1 + · · · + µnεn ∈ P (Σ) into the form (µ =)π(µ) =

µ̃1ε̃1+· · ·+µ̃lε̃l such that µ̃i = 〈µ, ε̃i〉Σ for 1 ≤ i ≤ l, and denote by xπ(µ) the

monomial xµ̃1
1 · · ·x

µ̃l
l for µ ∈ P (Σ) setting xj = z

ε̃j
j for 1 ≤ j ≤ l. Then all

the zonal spherical functions φ(λ)|T (λ ∈ P+
G,k) belong to the commutative

algebra

A(Σ) :=
⊕

ν∈P (Σ)

Cxπ(ν)

where in the Theorem 1.2 we understand x
1
2
j as zj for the cases BDI and

the ∗−operation is described as x∗
j = x−1

j for 1 ≤ j ≤ l. Note that the

correspondence between µ and π(µ) is given by zµ = xπ(µ).

From [NS2] we have

(1.3) φ(λ)|T = xπ(λ) +
∑

ν∈P (Σ)
ν<Σλ

aλνx
π(ν) for some aλν ∈ C

Especially, for the fundamental spherical weights Λ̃r, we have

(1.4) φ(Λ̃r)|T = m
Λ̃r

(x) +
∑

ν∈P (Σ)

ν<ΣΛ̃r

ν �∈W (Σ)·Λ̃r

aνx
π(ν)
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Here λ >Σ µ implies the dominance order in P (Σ), that is, λ − µ =∑l
i=1 miα̃i for some nonnegative integers mi.

The results in this paper (see Section 3) give the following statement.

Theorem 1.2. The image of the restriction mapping H → T is pre-

cisely the subring of W (Σ)-invariants in A(Σ);

H|T = A(Σ)W (Σ)

and the zonal spherical functions φ(λ)|T (λ ∈ P+
G,k) form a basis of this

algebra.

We can prove Theorem 1.2 by using (1.3), Lemma 2.2, 2.3 and the results

in the Section 3 that the zonal spherical functions φ(λ)|T are eigen functions

of Macdonald’s or Koornwinder’s q-difference operators Dσ with specified

parameters. However the proof has been already contained in [NS2], so we

omit it here.

§2. Macdonald Polynomials and Koornwinder’s Multivariable

Askey-Wilson Polynomials

We explain one of the most important class of q-special functions.

2.1. Macdonald polynomials

Macdonald polynomials are belonging to a class of q-orthogonal polyno-

mials associated with root systems. More precisely Macdonald polynomials

are associated with a pair of root systems.

In this paper, for simplicity, let (R,S) be one of the pairs of root systems

(Bl, B∨
l ), (Cl, C∨

l ), (Dl, D∨
l ) and (BCl, C∨

l ) where Bl (l ≥ 1), Cl (l ≥ 1),

Dl (l ≥ 3) and BCl (l ≥ 1) stand for the root systems of rank l of type B,

C, D and BC in El = Rε1⊕ · · · ⊕Rεl with standard inner product 〈 , 〉 and

R∨ denote the coroot system of R; R∨ = {α∨ = 2α
〈α , α〉 ;α ∈ R}.

Let W=W (R) be the Weyl group associated with the root system R

and P (R) be the integral weight lattice in El. For a pair of the above

root systems (R,S), there exists a unique set of W -invariant positive real

numbers {uα}α∈R (W acts as w.uα = uwα for w ∈ W ) such that α∨ =

u−1
α α ∈ S.
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We assume 0 < q < 1 and introduce the following quantities for a set of

W -invariant nonnegative real numbers {kα}α∈R; qα = quα and tα = q
kα/2
α

for each α ∈ R.

Let A=A(R) be a commutative subring of C[x
±1/2
1 , · · · , x±1/2

l ] spanned

by the monomials xµ = xµ1
1 · · ·x

µl
l indexed by the integral weights µ =

µ1ε1 + · · ·+ µlεl in P (R);

A = A(R) :=
∑

µ∈P (R)

Cxν

with ∗-operation s.t. x∗
i = x−1

i for 1 ≤ i ≤ l.

We will introduce an inner product on AW , the Weyl invariant subring

of A. For f , g ∈ AW we define a hermitian inner product on AW by

〈f |g〉 := |W |−1
∫

T
f(x)∗g(x)∆(x)dx

where
∫

T dx denotes the normarized Haar measure on the torus

T = {x = (x1, · · · , xl) ∈ (C×)l ; |x1| = · · · |xl| = 1}.

And the weight function ∆(x) on (C×)l is given by

(2.1) ∆(x) := ∆+(x)∗∆+(x) and ∆+(x) =
∏
α∈R+

(t
1
2
2αx

α; qα)∞

(tαt
1
2
2αx

α; qα)∞

where (a; q)∞ =
∏∞
i=0(1−aqi) and R+ denotes the set of positive roots ofR.

The Macdonald polynomials {Pµ(x; q)}µ∈P+(R) associated with root sys-

tems (R,S), indexed by the dominant integral weights, are characterized

by the following two conditions;

(1) Pµ(x; q) = mµ(x) +
∑
µ>ν

aµνmν(x) (aµν ∈ C)

(2) 〈Pµ(x; q)|mν(x)〉 = 0 if µ > ν

where mµ(x) is the W -orbit sum of the monomial xµ;

mµ(x) =
∑

w∈W ·µ
xν (W · µ : the orbit of µ in W )
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and ν ≤ µ denotes the dominance order of weights;

ν ≤ µ⇐⇒ µ− ν ∈ Z≥0 − span of R+.

Note that {Pµ(x; q)}µ∈P+(R) form a basis of AW . Moreover Macdonald

polynomials Pµ(x; q) (µ ∈ P+(R)) are also eigenfunctions of the following

q-difference operator Dσ:

We set σ = ε1 and define

Dσ :=|Wσ|−1
∑
w∈W

wΦσ(x)(Twσ − 1),(2.2)

Tµ(x
ν) :=q〈µ,ν〉xν for µ, ν ∈ P (R),

Φσ(x) :=
Tσ(∆

+(x))

∆+(x)
,

aµ :=q
1
2
〈σ,ρ̃〉

l∑
j=1

(q
1
2
ρ̃j (qµj − 1)) + q−

1
2
ρ̃j (q−µj − 1),

ρ̃ :=
1

2

∑
α∈R+

kαα =
l∑
j=1

ρ̃jεj ,

Eσ :=|Wσ|−1
∑
w∈W

wΦσ(x)Twσ,

bµ :=q
1
2
〈σ,ρ̃〉

l∑
j=1

(q
1
2
ρ̃jqµj + q−

1
2
ρ̃jq−µj )

where Wσ is the stabilizer of σ in W .

Theorem 2.1 (Macdonald). The q-difference operators Dσ is self

ajoint operators with respect to the inner product on AW . Moreover the

Pµ(x; q) are eigenfunctions of Dσ with eigen values aµ.

2.2. Koornwinder’s multivariable Askey-Wilson polynomials

for root system BC

We will also recall an extension of Macdonald polynomials. Let R be

the root system of type BCl. Define a hermitian inner product on AW by
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replacing the function ∆+(x) of (2.1) by

(2.3) ∆+(x) =
l∏

k=1

(x2
k; q)∞

(axk, bxk, cxk, dxk; q)∞

∏
1≤i<j≤l

(xi/xj , xixj ; q)∞
(txi/xj , txixj ; q)∞

where a, b, c, d and t are real numbers such that |a|, |b|, |c|, |d| ≤ 1, but

the pairwise product of a, b, c, d are not ≥ 1 and |t| < 1. Here we used the

notation (a1, · · · , ar; q)∞ =
∏r
i=1(ai; q)∞. So we have the following forms

of the q-difference operator Dσ;

Dσ := |Wσ|−1
∑
w∈W

w.Φσ(x)(Twσ − 1)(2.4)

=
l∑

k=1

(Φ+
k (x)Tεk + Φ−

k (x)T−εk)− Φ0(x)

where

Φ+
k (x) =

(1− axk)(1− bxk)(1− cxk)(1− dxk)

(1− x2
k)(1− qx2

k)

×
∏
a �=k

txk − xa
xk − xa

×
l∏

a=1
a �=k

1− txaxk
1− xaxk

,

Φ−
k (x) = Φ+

k (x−1) and Φ0(x) =
l∑

k=1

(Φ+
k (x) + Φ−

k (x)).

In [K] Koornwinder showed the existence of a basis {Pµ(x|a, b, c, d, t; q)}
(µ ∈ P+(R)) of AW , which the same statements of Theorem 2.1 holds for

Dσ with eigenvalues

(2.5) aµ =
l∑

k=1

(q−1abcdt2l−k−1(qµk − 1) + tk−1(q−µk − 1)).

These polynomials {Pµ(x|a, b, c, d, t; q)} are generalizations of one-variable

Askey-Wilson polynomials (see [GR]).
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For later convenience we also introduce the following quantity;

(2.6) bµ :=

l∑
k=1

(q−1abcdt2l−k−1qµk + tk−1q−µk)

such that aµ = bµ − b0 for µ ∈ P+(R).

Note that the operator Dσ defined above recovers Macdonald’s operators

in the previous subsection, as special limitting cases (see [K], [NS2]).

We will finish this section with some remarks on Macdonald’s and Koorn-

winder’s polynomials, which will be used to prove the Weyl group invariance

of zonal spherical functions (see Theorem 1.2). For the proofs, see [NS2].

Lemma 2.2. We assume 0 < abcd < 1 and 0 < t < 1 for Koorn-

winder’s Dσ and the condition of the parameters {kα} for Macdonald’s Dσ.

For dominant integral weights λ, µ ∈ P+(R) such that λ > µ, we have

aλ − aµ > 0.

Lemma 2.3. Fix a dominant weight µ ∈ P+(R). If φ ∈ A satisfies

(i) φ =
∑
ν<µ
ν �∈W ·µ

bνx
ν for certain constants bν ∈ C

(ii) Dσφ = aµφ,

then φ = 0, assuming the same conditions in Lemma 2.2.

For Lemma 2.2, see [SK], [NS2] and [M].

§3. Explicit Formulas for Zonal Spherical Functions on

Quantum Grassmann Manifolds

3.1. Zonal spherical functions as q-orthogonal polynomials

We will show the zonal spherical functions φ(λ)|T are described in terms

of Macdonald polynomials or Koornwinder’s multivariable Askey-Wilson

polynomials. They are controled only by the information of the restricted

root system Σ associated with G/K. Let us recall the data of the restricted
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root system Σ = Σ(g, a). We denote by kα̃ the multiplicity of the root

α̃ ∈ Σ.

G/K type of Σ kε̃1±ε̃2 kε̃l k2ε̃l
BI : SO(2n+ 1)/SO(l) × SO(2n+ 1 − l) Bl 1 2(n− l) + 1 0

DI : SO(2n)/SO(l) × SO(2n− l) Bl (l < n) 1 2(n− l) 0

Dl (l = n) 1 0 0

CII : Sp(2n)/Sp(2l) × Sp(2n− 2l) BCl (2l < n) 4 4(n− 2l) 3

Cl (2l = n) 4 0 3

Theorem 3.1. For each λ ∈ P+
G,k, the restriction of the zonal spheri-

cal function φ(λ) on the quantum Grassmann manifolds (G/K)q into A =

A(Σ) ⊂ A(T) associated with the representation V (λ) is written in terms of

Macdonald polynomials Pπ(λ)(x; q) or Koornwinder’s Askey-Wilson polyno-

mials Pπ(λ)(x|a, b, c, d, t; q).

Case BI : DI, SO(N)/SO(l)× SO(N − l); φ(λ)|T = Pπ(λ)(x; q4)

Case CII : Sp(2n)/Sp(2l)× Sp(2n− 2l);

φ(λ)|T = Pπ(λ)(x| − s, su,−q, qu, t; q2)

where the Macdonald polynomials Pπ(λ)(x; q4) of the cases BDI are based on

the data of the root system Σ with the inner product 〈 , 〉Σ , and t = qkε̃1±ε̃2 ,

s = qk2ε̃l and u = q
1
2
kε̃l .

Remark. For the cases SO(2n)/SO(n)× SO(n) and Sp(4l)/Sp(2l)×
Sp(2l), we already have the above results in [NS1, 2]. Especially the re-

stricted root system for the cases are of type Dn and Cl respectively, and

the zonal spherical functions turn out to be Macdonald polynomials.

To characterize the zonal spherical functions above, we will compute the

radial part of a central element of U . For a central element C of U , the

radial part D of C on H|T is defined as a q-difference operator such that

(C.φ)|T = D.φ|T

for any φ ∈ H|T.
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Recall that the decomposition H =
⊕

λ∈P+
G,k
H(λ) is the simultaneous

eigenspace decomposition of the center of U . Hence we have

D.φ(λ)|T = χλ(C)φ(λ)|T

for λ ∈ P+
G,k where χλ is the central character on V (λ) (the irreducible

representation of highest weight λ).

The practical method for the computation of the radial part of a central

element of U is given as follows.

By the U-bimodule structure of A, we have

(abc, φ) = (b, c.φ.a)

for any a, b, c ∈ U and φ ∈ A. Therefore by the nondegeneracy of the Hopf

pairing we have

φ ∈ H ⇔ (J , φ) = 0 and (J , φ) = 0

where J = UkC, q and J = kC, qU . Thus we have the following commutatve

diagram in which all the arrows are injective mappings:

H −−−→ A(T)� �
(U/J + J )∨ −−−→ U0

∨.

Lemma 3.2 (see [N]). We set ζk = qεk ∈ U0 (1 ≤ k ≤ n) and ζλ =

ζλ1
1 · · · ζλnn = qλ for λ = λ1ε1 · · ·λnεn ∈ P . Define q-difference opera-

tors T±1
q,ζk

(1 ≤ k ≤ n) on U0 by T±1
q,ζk

(ζλ) = q±〈εk,λ〉ζλ. Suppose for a

central element C of U there exists a nonzero Laurent polynomial a(z) ∈
C[z±1

1 , · · · , z±nn ] and a q-difference operator Q(ζ;Tq,ζ) ∈ C[ζ±1
1 , · · · , ζ±nn ,

T±1
q,ζ1

, · · · , T±1
q,ζn

] such that

(a(Tq.ζ)f)C ≡ Q(ζ;Tq,ζ)f mod J + J

for any Laurent polynomial f = f(ζ) in U0. Then the radial part D =

C|T : H|T −→ H|T is given by

D = a(z)−1 ̂Q(ζ;Tq,ζ)
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where ̂ means the multiplicative Fourier Transform (anti-algebra iso-

morphism); ̂ : C[ζ±1, T±1
q,ζ ] −→ C[z±1, T±1

q,z ]

such that ζ̂k = Tq,zk , T̂q,ζk = zk for 1 ≤ k ≤ n.

Applying this method, we will compute the radial part of a central el-

ement of U in the next subsection (Theorem 3.3) and we will see that the

zonal spherical functions φ(λ)|T are eigen functions of Macdonald’s Dσ or

Koornwinder’s Dσ. From this result we can prove Theorem 1.2 and The-

orem 3.1 at the same time. The detail of such an argument is given in

[NS2].

3.2. Explicit formula for the radial part of a central element in

U
We consider the following central elements {Cr} (1 ≤ r ≤ rankg) defined

by [RTF];

Cr = tr(D2(L+S(L−))r) =
N∑
i=1

q2ρi(L+S(L−))rii

where D = diag(q2ρ1 , · · · , q2ρn , q−2ρn , · · · , q−2ρ1). In particular we will com-

pute the radial part of

C1 =
N∑

i,j=1

q2ρiL+
ijS(L−

ji).

Note that the central character χλ(C1) is given by

χλ(C1) =
N∑
i=1

q2ρiq2λi

for the dominant integral weight λ ∈ P+ where we set λi′ = −λi for 1 ≤
i ≤ N .

Theorem 3.3. The radial part D1 of C1 on H|T is given as follows.
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Case BI, DI: SO(N)/SO(l)× SO(N − l);

D1 = q−2ρ̃1Dσ(x; q4) + q−2ρ̃1b0 +
∑
l<i<l′

q2ρi ,

Case CII: Sp(2n)/Sp(2l)× Sp(2n− 2l);

D1 = (q+q−1)q−ρ̃1Dσ(x|−s, su,−q, qu, t; q2) +(q+q−1)q−ρ̃1b0+
∑

2l<i<(2l)′

q2ρi

where each Macdonald’s operator Dσ, in cases BI and DI, is the one corre-

sponding to the restricted root system Σ with the inner product 〈 , 〉Σ and

the parameters (s, t, u) in the Koornwinder’s operator Dσ are the same as in

Theorem 3.1, moreover {ρ̃k} are given by ρ̃ = 1
2

∑
α̃∈P+(Σ) kα̃α̃ =

∑l
k=1 ρ̃k ε̃k

(see also the notation (2.6)).

For convenience we list the table of {ρ̃k}.

BI DI CII

ρ̃k n− k + 1
2

n− k 2n− 4k + 3

Remark. In the Theorem above we have

D1 − χλ(C1) = const.× (Dσ − aπ(λ)) on H(λ)|T

for each λ ∈ P+
G,k.

3.3. Computation of the radial part of the central element C1

Lemma 3.4.

C1 = tr(D2L+S(L−)) = tr(D−2S(L−)L+)

Proof. From the commutation relation R+
12L

+
1 L

−
2 = L−

2 L
+
1 R

+
12, we

have L+
1 S(L−

2 )tR+
12
t2 = R+

12
t2S(L−

2 )tL+
1 (∵ L±S(L±) = S(L±)L± = I).
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Hence we have R+
12
t2−1

L+
1 S(L−

2 )t = S(L−
2 )tL+

1 R
+
12
t2−1

. Moreover we have,

with D = diag(q2ρ1 , · · · , q2ρ1′ ),

R+
12
t2−1

= D−2
1 R−t1

12 D2
1 =

N∑
i,j=1

eii ⊗ ejjq
−δij+δij′

− (q − q−1)
∑
i<j

(
eij ⊗ eijq

−2ρi+2ρj − eij ⊗ ej′i′q
−ρi+ρjκiκj

)
.

Let 〈vi ⊗ vj , L12vk ⊗ vl〉 be the coefficient of vi ⊗ vj of L12vk ⊗ vl for L12 ∈
EndC(V ⊗CV )⊗U . By combining the relations 〈v1⊗v1,

(
L+

1 S(L−
2 )tR+

12
t2−

R+
12
t2S(L−

2 )tL+
1

)
.v1′ ⊗ v1′〉 = 0 and 〈v1 ⊗ v1,

(
R+

12
t2−1

L+
1 S(L−

2 )t−

S(L−
2 )tL+

1 R
+
12
t2−1
)
.v1′ ⊗ v1′〉 = 0, we can show the equation

∑
1≤j≤1′

L+
1jS(L−

j1)q
2ρ1 +

∑
1<j≤1′

L+
j1′S(L−

1′j)q
2ρj

=
∑

1≤j≤1′

S(L−
j1)L

+
1jq

−2ρj +
∑

1<j≤1′

S(L−
1′j)L

+
j1′q

2ρ1 .

Then by the induction on the rank of g we conclude the statement, not-

ing the triangularity of the matrices D2L+S(L−)D−2S(L−)L+ with (i, j)-

entries L+
ijS(L−

ji)q
2ρi and S(L−

ji)L
+
ijq

−2ρj respectively. �

Remark. The above Lemma is also valid for the case gC = gl(n).

Lemma 3.5. When G = SO(N) and Sp(2n), for the involutive algebra

automorphism τ = ∗ ◦ S, we have

τ(C1) = C1.

Proof. We have

τ
(
D2L+S(L−)

)
= D2τ(L+)τ

(
S(L−)

)
= D2S(L+)∗S2(L−)∗

= D2L−t (q−2ρL−q2ρ
)∗

(∵ S2(a) = q−2ρaq2ρ for a ∈ U)
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= D2L−t (D2L−D−2
)∗

= D2L−tD2S(L+)tD−2

= D2
(
C−tS(L−)CtD2CL+C−1

)
D−2

= D2
(
κC−tS(L−)L+C−1

)
D−2

using CtD2C = κI where κ = 1 if G = SO(N), −1 if G = Sp(2n). Hence

we have

τ(C1) = τ(tr
(
D2L+S(L−)

)
= tr

(
D2κC−tS(L−)L+C−1D−2

)
= tr

(
κC−tC−1S(L−)L+

)
= tr

(
D−2S(L−)L+

)
(∵ C−tC−1 = κD−2)

= C1 (∵ Lemma 3.4). �

Lemma 3.6. We set ε̃k = 2εk in cases BI and DI and ε2k−1 + ε2k in

case CII for 1 ≤ k ≤ l (l = the rank of Σ). For any qh ∈ U0 (h ∈ P ), if

we have the expression

qhC1 ≡
(

l∑
k=1

Φk(x)ξk +
l∑

k=1

Φk′(x)ξk′ + Φ0(x)

)
qh

modulo J + J where ξk = ξ−1
k′ = qε̃k , and Φk(x), Φk′(x) and Φ0(x) are

rational functions in x1 = q〈h,ε̃1〉, · · · , xl = q〈h,ε̃l〉, then we have the unique

expression of Φk(x)’s and Φk′(x) = Φk(x
−1) for any 1 ≤ k ≤ l.

Proof. We first prove the uniqueness of the expression of Φk(x)’s.

Suppose that ξk (resp. ξk′ = ξ−1
k ) belongs to J + J for some 1 ≤ k ≤ l or

l′ ≤ k ≤ 1′. So from the arguments in Subsection 3.1 we have (ξk.φ(λ))|T =

0 for any zonal spherical function φ(λ) ∈ H. On the other hand

(ξk.φ(λ))|T = q〈ε̃k,λ〉zλ +
∑
µ<λ

aλµq
〈ε̃k,µ〉zµ. (See (1.3).)

Hence comparing the leading term we have 〈̃εk, λ〉 = 0 for any 1 ≤ k ≤ l

and λ ∈ P+
G,k. This forces the contradictory conditions for spherical repre-

sentations of P+
G,k. Hence any ξk does not belong to J + J .
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Next suppose that C :=
∑l
k=1 Ckξk +

∑l
k=1 Ck′ξk′ ≡ 0 modulo J + J

for certain constants Ck’s. By applying the same arguments above, we have

0 = (C.φ(λ))|T = (
l∑

k=1

Ckq
〈ε̃k,λ〉 +

l∑
k=1

Ck′q
−〈ε̃k,λ〉)zλ +

∑
µ<λ

bλµz
µ

for certain constants bλµ. Thus we have
∑l
k=1 Ckq

〈ε̃k,λ〉+
∑l
k=1 Ck′q

−〈ε̃k,λ〉 =

0 for any λ ∈ P+
G,k. Then for the equation

∑l
k=1 Ckyk +

∑l
k=1 Ck′y

−1
k = 0

we consider a solution (y1, · · · , yl) =(q〈ε̃1,λ〉, · · · , q〈ε̃l,λ〉). Hence if we choose

an appropriate λ ∈ P+
G,k, we can conclude C1 = C1′ = 0 and

∑l
k=2 Ckyk +∑l

k=2 Ck′yk′ = 0. Thus the successive argument leads Ck = 0 for all k.

This shows the uniquness of Φk(x)’s since the above argument is true for

ξkq
h’s.

Since τ(qh) = q−h, τ(ξk) = ξk′ , we have, by the τ -invariance of J and

J , q−hC1 = τ(qhC1) ≡
∑l
k=1 (Φk(x)ξk′ + Φk′(x)ξk + Φ0(x)) q−h modulo

J + J .

On the other hand q−hC1 ≡
∑l
k=1

(
Φk(x

−1)ξk + Φk′(x
−1)ξk′+

Φ0(x)) q−h modulo J + J . Thus we conclude Φk′(x) = Φk(x
−1) for 1 ≤

k ≤ l. �

We will see that the modulo class qhC modulo J + J has the form in

Lemma 3.6, hence by Lemma 3.2 we can get the radial part of C1.

Lemma 3.7 (see [N] and [NS]). For any qh ∈ U0 (h ∈ P ) we have

qhL+
1 S(L2)

tR̃ ≡ R̃qhL+
1 S(L−

2 )t

modulo J + J where R̃ = R+
12
t2P12J2H1J

−1
1 H1, H = diag(q〈h,ε1〉, · · · ,

q〈h,ε1′ 〉) and P is the flip in EndC(V ⊗C V ).

Let us consider a vector space

W =
l⊕

k=1

Cwk ⊕ Cwl+1 ⊕
l⊕

k=1

Cwk′ (k′ = 2l + 1− k + 1)
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and the following linear maps

π
(a)
W : V ⊗C V −→W and ı

(a)
W : W −→ V ⊗C V (a = 1, 2)

such that, for 1 ≤ k ≤ l,

π
(1)
W (vj ⊗ vj) = wj (1 ≤ j ≤ l), π

(1)
W (vj′ ⊗ vj′) = wj′ (1 ≤ j ≤ l),

π
(1)
W (vs ⊗ vs) = q2ρswl+1 (l < s < l′), π

(1)
W (vi ⊗ vj) = 0 (i �= j),

ı
(1)
W (wk) = vk ⊗ vk (1 ≤ k ≤ l), ı

(1)
W (wk′) = vk′ ⊗ vk′ (1 ≤ k ≤ l),

ı
(1)
W (wl+1) =

∑
l<s<l′

vs ⊗ vs,

π
(2)
W (v2k−1 ⊗ v2k−1) = qwk, π

(2)
W (v2k ⊗ v2k) = q−1wk,

π
(2)
W (v(2k)′ ⊗ v(2k)′) = qwk′ , π

(2)
W (v(2k−1)′ ⊗ v(2k−1)′) = q−1wk′ ,

π
(2)
W (vs ⊗ vs) = q2ρswl+1 (2l < s < (2l)′), π

(2)
W (vi ⊗ vj) = 0 (i �= j),

ı
(2)
W (wk) = v2k−1 ⊗ v2k−1 + v2k ⊗ v2k, ı

(2)
W (wk′)

= v(2k)′ ⊗ v(2k)′ + v(2k−1)′ ⊗ v(2k−1)′ ,

ı
(2)
W (wl+1) =

∑
2l<s<(2l)′

vs ⊗ vs.

Note here that in the notation of the vector space V we set k′ = N − k + 1

for 1 ≤ k ≤ N , but in the vector space W we set k′ = 2l + 1 − k + 1 for

1 ≤ k ≤ 2l + 1.

We put matrices A = A(s, t, u) and B = B(s, t, u) ∈ EndC(W ) as follows

with assuming 0 < t < 1 and 0 < s, u ≤ 1 (eij denote the matrix units such

that eij .wk = δjkwi).

A = A(s, t, u) =
∑

1≤j≤l
l′≤j′≤1′

ejj + el+1,l+1st
−1 +

∑
1≤i,j≤2l+1
i,j �=l+1

eij(1− t−1)

+
∑

1≤i≤l
ei,l+1(1− t−1)u−1

+
∑

l′≤j′≤1′

el+1,j′(−1)(1− u)(1 + s2t−1u)s−1u−1
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+
∑

1≤j≤l
ejj′(1− s−2t)st−1t−ρ̌j ,

B = B(s, t, u) =
∑

1≤j≤l
l′≤j′≤1′

ejj + el+1,l+1st
−1 +

∑
1≤i,j≤2l+1
j �=l+1

eij(1− t−1)

+
∑

1≤i≤l
ei,l+1(−1)(1− u)(1 + s2t−1u)s−1u−2

+
∑

1≤j≤l
ejj′(1− s−2t)st−1t−ρ̌j

where the constants ρ̌ = (ρ̌1, · · · , ρ̌l) are nonnegative real numbers such

that

ρ̌j − ρ̌j+1 = 1 (1 ≤ j ≤ l − 1), tρ̌1 = sutl−1 and tρ̌l = su.

Direct calculation shows the following two lemmas from the equation

π
(a)
W ◦

(
qhL+

1 S(L2)
tR̃− R̃qhL+

1 S(L−
2 )t
)
◦ ı(a)W ≡ 0 (∵ Lemma 3.7)

modulo J + J for a = 1 or 2.

Lemma 3.8. We consider the cases BI and DI.

Let us put (s, t, u) = (qk2ε̃l , qkε̃1±ε̃2 , q
1
2
kε̃l ) (s must be 1), A(x|s, t, u) =

A(s, t, u)
∨
H and B(x|s, t, u) = B(s, t, u)

∨
H where

∨
H = diag(x1, · · · , xl, 1,

x−1
l , · · · , x−1

1 ) with xj = q2〈h,εj〉 for 1 ≤ j ≤ l. We have

q
(
A(x|s, t, u)qhZ − qhZB(x|s, t, u)

)
≡ π

(1)
W qhL+

1 S(L−
2 )tı(1)

− π(1)qhL+
1 S(L−

2 )tı
(1)
W

modulo J + J where Z := π
(1)
W qhL+

1 S(L−
2 )tı

(1)
W , π(1) := π

(1)
W ◦ R̃ −

qA(x|s, t, u)π
(1)
W and ı(1) := R̃ ◦ ı(1)

W − ı
(1)
W qB(x|s, t, u).

Lemma 3.9. We next consider the case CII. Let us put (s, t, u) and

the matrices A(x|s, t, u) and B(x|s, t, u) in the same way as above with

xk = q〈h,ε2k−1+ε2k〉. Then we have

q2
(
A(x|s, t, u)qhZ − qhZB(x|s, t, u)

)
≡ π

(2)
W qhL+

1 S(L−
2 )tı(2)(3.1)

− π(2)qhL+
1 S(L−

2 )tı
(2)
W
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modulo J + J where Z := π
(2)
W L+

1 S(L−
2 )tı

(2)
W , π(2) := π

(2)
W ◦ R̃ −

q2A(x|s, t, u)π
(2)
W and ı(2) := R̃ ◦ ı(2)

W − ı
(2)
W q2B(x|s, t, u).

3.4. Proof of Theorem 3.3

We will prove Theorem 3.3 only for the case CII. However we can get

similar formula in cases BDI for the corresponding parameters (s, t, u). In

what follows we simply denote by πW , ıW , π, ı and C(x) the π
(2)
W , ı

(2)
W , π(2),

ı(2) and C(x1, · · · , xl) respectively and set

Z = π ◦ L+
1 S(L−

2 )t ◦ ı = (Zij)ij .

For the case CII we have, for 1 ≤ i, j ≤ l,

Zij =qL+
2i−1,2j−1S(L−

2j−1,2i−1) + qL+
2i−1,2jS(L−

2j,2i−1)

+ q−1L+
2i,2j−1S(L−

2j−1,2i) + q−1L+
2i,2jS(L−

2j,2i),

Zi′j′ =qL+
(2i)′,(2j)′S(L−

(2j)′,(2i)′) + qL+
(2i)′,(2j−1)′S(L−

(2j−1)′,(2i)′)

+q−1L+
(2i−1)′,(2j)′S(L−

(2j)′,(2i−1)′)

+q−1L+
(2i−1)′,(2j−1)′S(L−

(2j−1)′,(2i−1)′),

Zij′ =qL+
2i−1,(2j)′S(L−

(2j)′,2i−1) + qL+
2i−1,(2j−1)′S(L−

(2j−1)′,2i−1)

+ q−1L+
2i,(2j)′S(L−

(2j)′,2i) + q−1L+
2i,(2j−1)′S(L−

(2j−1)′,2i),

Zl+1,l+1 =
∑

2l<s≤t<(2l)′

L+
stS(L−

ts)q
2ρs ,

Zi,l+1 =
∑

2l<s<(2l)′

(
qL+

2i−1,sS(L−
s,2i−1) + q−1L+

2i,sS(L−
s,2i)
)
,

Zl+1,j′ =
∑

2l<s<(2l)′

(
L+
s,(2j)′S(L−

(2j)′,s) + L+
s,(2j−1)′S(L−

(2j−1)′,s)
)
q2ρs .

Hence we have

(3.2) C1 =
∑

1≤i≤j≤1′

Zijq
ρ̃i =

∑
1≤i≤j≤1′

Zijt
ρ̌i

where we set ρ̌i′ = −ρ̌i for 1 ≤ i ≤ 1′. From this expression and (3.1) in

Lemma 3.9 we will derive the necessary reccurence relations for the modulo

class of qhZij modulo J + J .
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Let us put a (2l + 1)× (2l + 1)-matrix

E = (Eij)ij := q−2
(
πW qhL+

1 S(L−
2 )tı− πqhL+

1 S(L−
2 )tıW

)
in (3.1).

Lemma 3.10. Let us fix a number k such that 1 ≤ k ≤ l. For the

matrix E above we have

Eij′ ≡
{

qhZijβkt
−ρ̌j if 1 ≤ i ≤ k ≤ j ≤ l

0 otherwise (i, j run 1 ≤ i, j ≤ 1′)

modulo Ik + J + J where βk = − (1+s−1txk)
1−s−1txk

(1− u)2u−1 and

Ik := qhC(x) +
l∑
j=1
j �=k

qhqε̃jC(x) +
l∑
j=1

qhq−ε̃jC(x).

To conclude this lemma we need long computation, so we will give a

sketch of the proof later (see subsectin 3.5).

Let us also introduce a matrix
∨
B(x|s, t, u) by

∨
B(x|s, t, u) := B(x|s, t, u)

+ βk

 l∑
j=1

ejj′t
−ρ̌j

diag(x1, · · · , xl, 1, x−1
l , · · · , x−1

1 ).

Thus we have from Lemma 3.10

(3.3) A(x|s, t, u)qhZ − qhZ
∨
B(x|s, t, u) ≡ 0

modulo Ik + J + J . Here note that the matrices Z, A(x|s, t, u) and
∨
B(x|s, t, u) are all upper triangular. So we see from (3.2) that the mod-

ulo reduction of the matrix qhZ is recursively and uniquely determined by

its diagonal parts modulo Ik + J + J .
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The modulo class of the diagonal elements of qhZ are given by

qhZii ≡ qh(qq2ε2i−1 + q−1q2ε2i) ≡ (q + q−1)qhqε̃i (1 ≤ i ≤ l),

qhZl+1,l+1 ≡ qh
∑

2l<s<(2l)′

q2ρs ,

qhZi′i′ ≡ qh(qq−2ε2i + q−1q−2ε2i−1) ≡ (q + q−1)qhq−ε̃i (1 ≤ i ≤ l)

modulo J + J , since L+
2i−1,2i, S(L−

2i,2i−1), L
+
(2i)′(2i−1)′ , S(L−

(2i−1)′(2i)′), L
+
st,

S(L−
ts), qε2i−1 − qε2i and qεs − q−εs are all belonging to kC, q for 1 ≤ i ≤ l

and 2l < s ≤ t < (2l)′. Hence combining Lemma 3.10 and the consequent

discussion, we see that that modulo class of qhC1 has the form in Lemma

3.6. Thus we can summarize the algebraic feature of the modulo reduction

by Ik + J + J in the next lemma.

Lemma 3.11. We fix the number k such that 1 ≤ k ≤ l. For the

matrix A = A(x|s, t, u) and
∨
B(x|s, t, u) above, we consider the same size

upper triangular matrix F = F (x, ξ|s, t, u) = (Fij)ij with the entries in

C(x)[ξ1, · · · , ξl, ξl+1, ξl′ . · · · , ξ1′ ] such that Fii = ξi (1 ≤ i ≤ 1′ and

AF − F
∨
B ≡ 0

modulo
∑1′
i=1
i�=k

C(x)ξi. Then we have

C :=
∑

1≤i≤j≤1′

Fijt
ρ̌i ≡ t−ρ̌k

(1 + sxk)(1− suxk)(1− s−1tuxk)

(1− s−1txk)(1− x2
k)

×
1− t−1x[1,k−1]x

−1
k

1− x[1,k−1]x
−1
k

·
1− txkx

−1
[k+1,l]

1− xkx
−1
[k+1,l]

·
1− txkx[1,k̂,l]

1− xkx[1,k̂,l]

· ξk

modulo
∑1′
i=1
i�=k

C(x)ξi. Here we adopt the notation like

1− txkx[1,k̂,l]

1− xkx[1,k̂,l]

:=
l∏
i=1
i�=k

1− txkxi
1− xkxi

.
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Proof. There exist unique upper unitriangular matrices G =

G(x|s, t, u) = (G+
ij)ij and

∨
G =

∨
G(x|s, t, u) = (

∨
G+
ij)ij with the entries in

C(x) such that

A = Gdiag(x1, · · · , xl, st−1, x−1
l , · · · , x−1

1 )G−1,

∨
B =

∨
Gdiag(x1, · · · , xl, st−1, x−1

l , · · · , x−1
1 )

∨
G−1.

With these matrices G and
∨
G, the matrix F is uniquely determined by

F = Gdiag(ξ1, · · · , ξ1′)
∨
G−1.

Here we set
∨
G−1 = (

∨
G−
ij)ij , and we have

Fij =
∑
i≤k≤j

G+
ikξk

∨
G−
kj

for 1 ≤ i ≤ j ≤ 1′. Moreover we have

C =
∑

1≤i≤j≤1′

Fijt
ρ̌i ≡

 ∑
1≤i≤k

G+
ikt
ρ̌i

 ∑
k≤j≤1′

∨
G−
kj

 ξk

modulo
∑1′
i=1
i�=k

C(x)ξi. Thus we need to compute the quantities∑
1≤i≤kG

+
ikt
ρ̌i and

∑
k≤j≤1′

∨
G−
kj .

Claim 1. ∑
1≤i≤k

G+
ikt
ρ̌i =

tρ̌1(1− t−1x[1,k−1]x
−1
k )

1− x[1,k−1]x
−1
k

Proof. For the matrix A we have Gdiag(x1, · · · , xl, st−1, x−1
l , · · · ,

x−1
1 ) = AG. So we have

(3.4) G+
ikxk = G+

ikxi +
∑
i<s≤k

G+
sk(1− t−1)xs
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For 1 ≤ i ≤ k. Compairing (3.4) with the one obtained from (3.4) replacing

i for i + 1, we have

G+
ik(xk−xi) = G+

i+1k(xk−xi+1)+G+
i+1k(1−t−1)xi+1 = G+

i+1k(xk−t−1xi+1).

Hence we have

G+
ik =

1− t−1xi+1x
−1
k

1− kix
−1
k

G+
i+1k =

1− t−1x[i+1,k]x
−1
k

1− x[i,k−1]x
−1
k

G+
kk(3.5)

=
(1− t−1)(1− t−1x[i+1,k−1]x

−1
k )

1− x[i,k−1]x
−1
k

.

On the other hand, the entries A−
ij (1 ≤ i ≤ j ≤ l) of A−1 = (A−

ij)ij are given

by A−
ij = (1− t)tρ̌j−ρ̌ix−1

i if 1 ≤ i < j ≤ l and x−1
i if 1 ≤ i = j ≤ l. Thus we

have another equations from Gdiag(x−1
1 , · · · , x−1

l , s−1t, xl, · · · , x1) = A−1G

so that

G+
1kx

−1
k = G+

1kx
−1
1 +

∑
1<i≤k

G+
ik(1− t)tρ̌i−ρ̌1x−1

1 .

So we have

∑
1≤i≤k

G+
ikt
ρ̌i =

tρ̌1x1

1− t

(
G+

1k(x
−1
k − x−1

1 ) + G+
1k(1− t)x−1

1

)
=

tρ̌1

1− t−1
G+

1k(1− t−1x1x
−1
k ).

Hence from (3.5) we have the expressin of Claim 1. �

Claim 2.

∑
k≤j≤1′

G−
kj =

t−ρ̌1−ρ̌k(1 + sxk)(1− suxk)(1− s−1tuxk)

(1− s−1txk)(1− x2
k)

·
1− txkx[1,k̂,l]

1− xkx[1,k̂,l]

·
1− txkx

−1
[k+1,l]

1− xkx
−1
[k+1,l]

.
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Proof. Similar discusion in Claim 1 shows

(3.6)
∨
G−
ij =

t−1(1− txix
−1
j−1)

1− xix
−1
j

∨
G−
ij−1 =

tρ̌j−ρ̌i(1− txix
−1
[i,j−1])

1− xix
−1
[i+1,j]

for 1 ≤ i < j ≤ l, and

(3.7)
∨
G−
il+1 =

bs−1(1− txix
−1
l )

(1− t−1)(1− s−1txi)

∨
G−
il

for 1 ≤ i ≤ l where we set b := −(1 − u)(1 + s2t−1u)s−1u−2(= Bil+1).

Moreover we have

∨
G−
il′ =

(1− t−1st−1(1− s−1txi)

b(1− xixl)

∨
G−
il+1(3.8)

− 1− t−1

1− xixl

∨
G−
il+1 −

{−(1− s2t−1)s−1 + βk}t−ρ̌l
1− xixl

∨
G−
il

=

{
t−1(1− txix

−1
l )

1− xixl
− bs−1(1− txix

−1
l )

(1− xixl)(1− s−1txi)

−{−(1− s2t−1)s−1 + βk}t−ρ̌l
1− xixl

} ∨
G−
il

for 1 ≤ i ≤ l, and

∨
G−
ij′ =

t−1(1− txixj+1)

1− xixj

∨
G−
i (j+1)′(3.9)

+

(
(1− s2t−1)s−1 − βk

)
t−ρ̌j

1− xixj
·
txixj(1− t−1xjx

−1
j+1)

1− xix
−1
j+1

∨
G−
ij

for 1 ≤ i, j ≤ l.

From (3.7), (3.8) and (3.9), for 1 ≤ i, j ≤ l, if we put

G̃−
ij′ :=

∨
G−
ij′ +

t

1− tx2
i

{
−(1− s2t−1)s−1t−ρ̌jxix

−1
j + βkt

−ρ̌jxix
−1
j

} ∨
G−
ij ,
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then a long computation shows that

(3.10) G̃−
ij′ =

t−1(1− txixj+1)

1− xixj
G̃−
i(j+1)′

=
tρ̌l−ρ̌j (1− txix[j+1,l])

1− xix[j,l−1]
G̃−
il′

and

(3.11) G̃−
il′ =

u−2s−2(1− txix
−1
l )(1 + sxi)(1− suxi)(1− s−1tuxi)

(1− xixl)(1− s−1txi)(1− tx2
i )

∨
G−
il .

Combining (3.6), (3.10), (3.11) and u−2s−2 = t−2ρ̌l , we have

∨
G−
i1′ = G̃−

i1′ = t−ρ̌1−ρ̌i(1− t)
(1 + sxi)(1− suxi)(1− s−1tuxi)

(1− s−1txi)(1− tx2
i )(1− x2

i )
(3.12)

×
1− txix[2,l]

1− xix[1,̂i,l]

·
1− txix

−1
[i+1,l]

1− xix
−1
[i+1,l]

.

On the other hand, from (k, 1′) component of the equation diag(x1, · · · , xl,
st−1, x−1

l , · · · , x−1
1 )

∨
G−1 =

∨
G−1

∨
B, we have

∑
k≤j≤1′

∨
G−
kj =

1

1− t
(1− tx1xk)

∨
G−
k1′ .

Therefore by putting i = k in (3.12) we complete the proofs of Claim 2 and

Lemma 3.11. �

Now we return to the proof of Theorem 3.3 for the case CII.

By applying Lemma 3.11 putting ξi = (q + q−1)qhqε̃i (1 ≤ i ≤ 1′) and

ξl+1 =
∑

2l<s<(2l)′ q
hq2ρs , from (3.2) and (3.3) we have

qhC1 ≡
l∑

k=1

Ck(x)ξk +

l∑
k=1

Ck′(x)ξk′ + Cl+1(x)ξl+1

modulo J + J where

Ck(x) =t−ρ̌k
(1 + sxk)(1− suxk)(1− s−1tuxk)

(1− s−1txk)(1− x2
k)
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×
1− t−1x[1,k−1]x

−1
k

1− x[1,k−1]x
−1
k

·
1− txkx

−1
[k+1,l]

1− xkx
−1
[k+1,l]

·
1− txkx[1,k̂,l]

1− xkx[1,k̂,l]

for 1 ≤ k ≤ l and Ci(x) (l + 1 ≤ i ≤ 1′) are certain elements of C(x). But

from Lemma 3.6 we have Ck′(x) = Ck(x
−1) for 1 ≤ k ≤ l. Hence by Lemma

3.2 the radial part of C1 is given by

D1 = (q + q−1)
l∑

k=1

(
Φ+
k (x)Tq2,xk + Φ+

k′(x)T−1
q2,xk

)
+ Φ+

l+1(x)

where Φ+
i (x) are rational functions in C(x) = C(x1, · · · , xl) with xi =

z2i−1z2i such that Φ+
i (x) = Ci(x), 1 ≤ i ≤ 1′ and i �= l + 1.

The constant term Φ+
l+1(x) of D1 is uniquely determined by

Φ+
l+1(x) = −(q + q−1)

l∑
k=1

(
Φ+
k (x) + Φ+

k′(x)
)

+ χ0(C1)

where χ0 is the central character χλ with λ = 0, since D1 has the eigenvector

1. For the dominant integral weight λ ∈ P+
G,k, the central character has the

value

χλ(C1) =
2l∑
i=1

(
q2ρiq2λi + q−2ρiq−2λi

)
+

∑
2l<i<(2l)′

q2ρi

= (q + q−1)
l∑
i=1

(
tρ̌iqλ̃i + t−ρ̌iq−λ̃i

)
+

∑
2l<i<(2l)′

q2ρi

where λ̃i := λ2i−1 = λ2i (1 ≤ i ≤ l). So using the Koornwinder’s q-

difference operator Dσ, we have

D1 = (q + q−1)q−ρ̃1Dσ + (q + q−1)q−ρ̃1b0 +
∑

2l<i<(2l)′

q2ρi .

Thus we complete the proof of Theorem 3.3 for the case CII. In the

proof for the cases BDI we can proceed completely in the same way with

corresponding parameters (s, t, u, q). �
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3.5. Remaining computations

In the previous section there remains a lemma unproven, that is, Lemma

3.10. We will finish this paper with giving a sketch of computation in

Lemma 3.10.

We recall that we treat the case CII.

We put, for 1 ≤ i, k ≤ l and 1 ≤ j, j′ ≤ 2l,

Z2k
i := qL+

2i−1,2kS(L−
(2k−1)′ 2i−1) + q−1L+

2i,2kS(L−
(2k−1)′ 2i),

Z2k−1
i := qL+

2i−1,2k−1S(L−
(2k)′ 2i−1) + q−1L+

2i,2k−1S(L−
(2k)′ 2i),

Z
(2k)′

i := qL+
2i−1 (2k)′S(L−

2k−1,2i−1) + q−1L+
2i,(2k)′S(L−

2k−1,2i),

Z
(2k−1)′

i := qL+
2i−1 (2k−1)′S(L−

2k,2i−1) + q−1L+
2i (2k−1)′S(L−

2k,2i),

Y ji := qL+
2i−1,jS(L−

j (2i)′)− q−1L+
2i,jS(L−

j (2i−1)′),

Y ji′ := qL+
(2i)′ jS(L−

j,2i−1)− q−1L+
(2i−1)′ jS(L−

j,2i).

Let us denote by 〈wi, L.wj〉 the coefficient of wi in L.wj for L ∈ EndC(W )⊗
U .

We state some claims.

Claim 1. If we put, for 1 ≤ k ≤ l,

P ki := qh
{
Z2k
i x−1

k − Z2k−1
i x−1

k − Z
(2k)′

i q−2ρ2k−1 + Z
(2k−1)′

i q−2ρ2k−1
}
,

then we have, for 1 ≤ i ≤ k ≤ l,

〈wi, πW ◦ qhL+
1 S(L−

2 )t ◦ ı(wk′)〉

= q2

{
P ki (1− q2ρ2l−2)q−2ρ2l

+

qhZik +
∑
i≤s<k

qhZis(1− q−4)

 (1− q2ρ2l−2)2q−2ρ2k−2ρ2l+1

}
.

Moreover the other matrix elements of πW ◦ qhL+
1 S(L−

2 )t ◦ ı are all zero.
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Claim 2.

P kk ≡ −
2(1− q2ρ2l−2)q−2ρ2k−ρ2l+1

1− qxk
(q + q−1)qhqε̃k

modulo qhC(x) + J + J .

Claim 3. For 1 ≤ i ≤ k ≤ l, we have

P ki xi +
∑
i<j≤k

P kj xj(1− q−4)

≡ P ki q
−1 +

qhZik +
∑
i≤j<k

qhZij(1− q−4)

 2(1− q2ρ2l−2)q−2ρ2k−ρ2l

modulo qhC(x) + J + J .

Claim 4. For 1 ≤ i ≤ k ≤ l we have

P ki ≡ −2(1− q2ρ2l−2)q−2ρ2k−ρ2l+1(q + q−1)×

 ∑
i≤s≤k

qhqε̃sG+
is

∨
G−
sk

xsx
−1
k

1− qxs


modulo qhC(x) + J + J .

Claim 5.

〈wi, πW ◦ qhL+
1 S(L−

2 )t ◦ ı(wk′)〉
≡ q2(1− q2ρ2l−2)2(q + q−1)q−2ρ2k−2ρ2l+1

×
∑
i≤s≤k

G+
is

∨
G−
skq

hqε̃s · (1 + qxs)xsx
−1
k

1− qxs

modulo qhC(x) + J + J .

We get Claim 1 directly and Claim 2 by direct modulo reduction mod-

ulo J + J . We get Claim 3 by the computation of the equations 〈vi ⊗
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vj ,
(
R̃qhL+

1 S(L−
2 )t − qhL+

1 S(L−
2 )tR̃

)
vs ⊗ vt〉 ≡ 0 modulo J + J for the

pairs

(vi ⊗ vj , vs ⊗ vt)

= (v2i−1 ⊗ v2i−1, v2k ⊗ v(2k−1)′), (v2i ⊗ v2i, v2k ⊗ v(2k−1)′),

(v2i−1 ⊗ v2i−1, v2k−1 ⊗ v(2k)′), (v2i ⊗ v2i, v2k−1 ⊗ v(2k)′),

(v2i−1 ⊗ v2i−1, v(2k)′ ⊗ v2k−1), (v2i ⊗ v2i, v(2k)′ ⊗ v2k−1),

(v2i−1 ⊗ v2i−1, v(2k−1)′ ⊗ v2k), (v2i ⊗ v2i, v(2k−1)′ ⊗ v2k).

We get Claim 4 by solving the recurrence formula of Claim 3 using the

results of the modulo reduction of qhZij for 1 ≤ i ≤ j ≤ l in the previous

section (remark Claim 6 later). Note here that we can compute the coeffi-

cient of qhqε̃s in the modulo class of qhZik +
∑
i≤j<k q

hZij(1− q−4) modulo

J + J for i ≤ s ≤ k as follows;

qhZik +
∑
i≤j<k

qhZij(1− q−4)

≡ (q + q−1)

G+
is

∨
G−
sk +

∑
s≤j<k

G+
is

∨
G−
sj(1− q−4)

 qh

≡ G+
sk

{∨
G−
sk(xsx

−1
k − 1) +

∨
G−
sk

}
= G+

is

∨
G−
skxsx

−1
k

modulo
∑
j �=s q

hqε̃jC(x) + J + J . The second equality follows from
∨
G−1

∨
B = diag(x1, · · · , xl, st−1, x−1

l , · · · , x−1
1 )

∨
G−1. Using these results we

get Claim 5. Similar arguments show the next claim.

Claim 6. If we put

Qki := qh
{
Y

(2k)′

i xiq
−2ρ2i + Y

(2k−1)′

i xiq
−2ρ2i + Y

(2k)′

i′ q + Y
(2k−1)′

i′ q
}

for 1 ≤ i, k ≤ l, then we have for 1 ≤ k ≤ i ≤ l

〈wi, π ◦ L+
1 S(L−

2 )t ◦ ıW (wk′)〉
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= q2

−
Qki + (1− q−4)

∑
i<s≤l

Qks

 (1− q2ρ2l−2)q−ρ2l

+

qhZi′k′q
−2ρ2i + (1− q−4)

∑
i<s≤l

qhZs′k′q
−2ρ2s


× (1− q2ρ2l−2)2q−2ρ2l+1

 .

And the other matrix elements of π ◦L+
1 S(L−

2 )t ◦ ıW are all zero. Moreover

we have for 1 ≤ k ≤ i ≤ l

Qki ≡− 2(1− q2ρ2l−2)2q−2ρ2i−ρ2l(q + q−1)

×

 ∑
i′≤s′≤k′

xs
1− q−1xs

G+
i′s′

∨
G−
s′k′q

hq−ε̃s


modulo qhC(x) + J + J . Especially we have

〈wi, π ◦ L+
1 S(L−

2 )t ◦ ıW (wk′)〉 ≡ 0

modulo
∑l
s=1 q

hq−ε̃sC(x) + qhC(x) + J + J .

Thus from Claim 1, Claim 5 and Claim 6 we get the Lemma 3.10. �
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