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Some Weighted Inequalities for the Kakeya Maximal

Operator on Functions of Product Type

By Hitoshi Tanaka∗

Abstract. We shall prove some weighted inequalities for the
Kakeya maximal operator restricting it to functions of product type.
We shall also describe a detailed proof of a comparison theorem for
two maximal operators of Kakeya type which is used in the proof.

1. Introduction and Theorems

In this paper we shall prove some weighted inequalities for the Kakeya

maximal operator, restricting it to functions of product type. In the proof

we shall use a comparison theorem for two maximal operators of Kakeya

type a detailed proof of which will also be presented.

Fix N >> 1. For a real number a > 0 let Ba,N be the family of all

rectangles in the d-dimensional Euclidean space Rd, d ≥ 2, which are con-

gruent to the rectangle (0, a)d−1 × (0, Na) but with arbitrary direction and

center. The so-called small Kakeya maximal operator Ma,N is defined on

locally integrable functions f on Rd by

(Ma,Nf)(x) = sup
x∈R∈Ba,N

1

|R|

∫
R
|f(y)|dy,

where |A| represents the Lebesgue measure of a set A.

Let BN be the family of rectangles defined by BN =
⋃

a>0 Ba,N . The

Kakeya maximal operator KN is defined by

(KNf)(x) = sup
x∈R∈BN

1

|R|

∫
R
|f(y)|dy.
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316 Hitoshi Tanaka

A weight w is defined as a nonnegative locally integrable function on Rd

and we will represent the norm of the function space Lp(Rd, w) as

‖f‖Lp(Rd,w) = (

∫
Rd

|f(x)|pw(x)dx)1/p.

If d = 2, then for f in Ld(Rd) the inequalities

‖Ma,Nf‖d ≤ C(logN)αd‖f‖d, ∀a > 0,(1)

and

‖KNf‖d ≤ C ′(logN)α
′
d‖f‖d(2)

hold with αd = 1/d and α′d = 1 + 1/d. (Córdoba [Co]). For d ≥ 3 (1) is

known to be true for functions of the form f(x) =
∏d

l=1 fl(xl) (cf. Igari [Ig1]

and also Tanaka [Ta1]) and for functions of square radial type (cf. Tanaka

[Ta2]). For d ≥ 3 (2) is known to be true for functions of radial type (cf.

Carbery, Hernández and Soria [CHS] and Igari [Ig2]).

If d = 2, then the weighted inequality

‖KNf‖Lp(Rd,w) ≤ CN,p‖f‖Lp(Rd,KNw)(3)

holds with

CN,p =

{
O(Nd/p−1(logN)βp,d), 1 < p ≤ d,
O((logN)βp,d), d < p <∞,

for some constant βp,d > 0. (Müller and Soria [MS]). For d ≥ 3 (3) is known

to be true for the range 1 < p ≤ (d+1)/2 (cf. Vargas [Va]) and for functions

of radial type (cf. Tanaka [Ta3]).

In this parer we shall prove that a strong-type d estimate for Ma,N :

‖Ma,Nf‖Ld(Rd,w) ≤ C(logN)‖f‖Ld(Rd,KNw), ∀a > 0,

and a weak-type d estimate for KN :

w({x ∈ Rd | (KNf)(x) > λ})1/d ≤ C ′ logN

λ
‖f‖Ld(Rd,KNw), ∀λ > 0,

hold for f in Ld(Rd,KNw) of the form f(x) =
∏d

l=1 fl(xl), where w(A)

denotes w(x)dx measure of a set A. As yet we have not been able to prove
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weighted strong type d estimate for KN . We also note that when w ≡ 1, the

factor logN in strong type d estimate is weaker than the factor (logN)1−1/d,

which was already obtained in [Ta1].

We shall restate our results in the form of thorems.

Theorem 1. Let d ≥ 2. There exists a constant C depending only

on the dimension d such that for every a > 0 and N >> 1 and for every

nonnegative locally integrable weight w

‖Ma,Nf‖Ld(Rd,w) ≤ C logN‖f‖Ld(Rd,KNw)

holds for all f in Ld(Rd,KNw) of the form

f(x1, . . . , xd) =
d∏

l=1

fl(xl).

Theorem 2. Let d ≥ 2. There exists a constant C depending only

on the dimension d such that for every N >> 1 and λ > 0 and for every

nonnegative locally integrable weight w

(w({x ∈ Rd | (KNf)(x) > λ}))1/d ≤ C logN

λ
‖f‖Ld(Rd,KNw)

holds for all f in Ld(Rd,KNw) of the form

f(x1, . . . , xd) =
d∏

l=1

fl(xl).

To prove these theorems we will need a comparison theorem for two

maximal operators of Kakeya type.

Let B≤N be the class of all rectangles in Rd which satisfy

1 ≤ (the length of longest sides)/(the length of shortest sides) ≤ N.

The corresponding maximal operator associated to this base B≤N will be

denoted by K≤N .
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Theorem 3. Let d ≥ 2. There exists a constant C depending only on

the dimension d such that

(KNf)(x) ≤ (K≤Nf)(x) ≤ C(KNf)(x)(4)

holds for every locally integrable function f on Rd and for every point x in

Rd.

The maximal operator K≤N was considered in [Mu]. But the above

theorem seems not to have been noticed in the literature. This theorem will

be proved in Section 4.

In the following C’s will denote constants which may be different in each

occasion but depend only on the dimension d.

2. Proof of Theorem 1

In this section we shall prove Theorem 1.

We may assume that fl ≥ 0 and N is a positive integer. By dilation

invariance it suffices to consider only the case a = 1. We writeM1,N asMN .

We will linearize the problem first. We divide Rd into open unit cubes Qi

(and their boundaries) which have center at lattice points i ∈ Zd and whose

sides are parallel to the axes. By the local integrablity of f we can find for

every cube Qi a rectangle Ri from B1,N such that

Qi ∩Ri �= ∅,

and

(MNf)(x) ≤
C

|Ri|

∫
Ri

f(y)dy, ∀x ∈ Qi.(5)

This shows that for proving the theorem it is sufficient to estimate

∑
i∈Zd

1

N

∫
Ri

f(y)dy · χQi(x).(6)

In the proof we use the following notations.

γi = {j ∈ Zd |Qj ∩Ri �= ∅},

Pl(Qj) = (the projection of Qj on the l-th axis)

= (jl −
1

2
, jl +

1

2
), j = (j1, . . . , jd).
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We shall prove a weighted estimate of (6) by the method we used in

[Ta1], but with some necessary modifications due to the presence of the

weight. By the same manipulation as in [Ta1], which we shall repeat for the

convenience of the reader, we see that

Nd
∫
Rd

(
∑
i∈Zd

1

N

∫
Ri

f(y)dy · χQi(x))
dw(x)dx(7)

=
∑
i∈Zd

(

∫
Ri

f(y)dy)dw(Qi)

≤
∑
i∈Zd

(
∑
j∈γi

∫
Qj

f(y)dy)dw(Qi)

=
∑
i∈Zd

(
∑
j∈γi

d∏
l=1

∫
Pl(Qj)

fl(yl)dyl)
dw(Qi)

≤
∑
i∈Zd

(
∑
j∈γi

d∏
l=1

(

∫
Pl(Qj)

fl(yl)
ddyl)

1/d)dw(Qi)

≤
∑
i∈Zd

d∏
l=1

(
∑
j∈γi

∫
Pl(Qj)

fl(yl)
ddyl)w(Qi).

On the right hand side of (7) we compute as follows.

d∏
l=1

∑
j∈γi

∫
Pl(Qj)

fl(yl)
ddyl

=
∑

j1,...,jd∈γi

d∏
l=1

∫
Pl(Qjl

)
fl(yl)

ddyl

=
∑

j1,...,jd∈γi

∫
Q((j1)1,...,(jd)d)

f(y)ddy,

where (jl)l is the l-th component of jl ∈ Zd and ((j1)1, . . . , (jd)d) ∈ Zd.

Now, fix ι = (ι1, . . . , ιd) ∈ Zd and put

Ωι
l = Rl−1 × (ιl −

1

2
, ιl +

1

2
) × Rd−l.

Then by a simple counting we see easily that the number of d-tuples
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(j1, . . . , jd) ∈ γi × . . .× γi such that ((j1)1, . . . , (jd)d) = ι is

d∏
l=1

card({j ∈ Zd |Qj ∩ Ωι
l ∩Ri �= ∅}).

Thus, we see that

RHS of (7) =
∑
ι∈Zd

Xι

∫
Qι

f(y)ddy,

where

Xι =
∑
i∈Zd

(
d∏

l=1

card({j ∈ Zd |Qj ∩ Ωι
l ∩Ri �= ∅})

)
w(Qi).(8)

Now we shall show that

X0 ≤ CNd(logN)d inf
y∈Q0

(K≤Nw)(y).(9)

Let I1 be

I1 = {i = (i1, . . . , id) ∈ Zd | 0 ≤ il ≤ N + 1, l = 1, . . . , d}.

Then we may restrict the sum of (8) (with ι = 0) to I1 by the symmetry

and the fact that Ω0
l ∩Ri �= ∅. Indeed, Ω0

l ∩Ri �= ∅ implies 0 ≤ il ≤ N +
√

2.

By a simple geometric consideration we have

card({j ∈ Zd |Qj ∩ Ω0
l ∩Ri �= ∅}) ≤ C N

il + 1
(10)

for every i = (i1, . . . , id) in I1. From this inequality and (8) we have

X0 ≤ CNd
∑
i∈I1

(
d∏

l=1

1

il + 1
)w(Qi).(11)

Thus, (9) follows from (11) and the following proposition.

Proposition 4. Let w be a nonnegative locally integrable weight on

Rd. Then we have

∑
i∈I1

(
d∏

l=1

1

il + 1
)w(Qi) ≤ C(logN)d inf

y∈Q0

(K≤Nw)(y).
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Proof. Let the sequence {a(j)} be

a(j) =




1
j+1 , j = 0, 1, . . . , N + 1,

1, j = N + 2,

0, j > N + 2.

Then we see that
1

l + 1
=
∑
k≥l

a(k)a(k + 1), for 0 ≤ l ≤ N + 1. It follows by

this equality and by reversing the order of summation that

∑
i∈I1

(
d∏

l=1

1

il + 1
)w(Qi)

=
∑
i∈I1

w(Qi)
∑

i1≤j1,...,id≤jd

d∏
l=1

a(jl)a(jl + 1)

=
∑
j∈I1

(
d∏

l=1

a(jl + 1)){(
d∏

l=1

a(jl))(
∑

0≤i1≤j1,...,0≤id≤jd

w(Qi))}

≤ C inf
y∈Q0

(K≤Nw)(y) ×
∑
j∈I1

d∏
l=1

a(jl + 1) ≤ C(logN)d inf
y∈Q0

(K≤Nw)(y). �

By the translation invariance we see that the same inequality as (9)

holds for every Xι, ι ∈ Zd. Thus, from (5)–(9) and Theorem 3 we obtain

∫
Rd

((MNf)(x))
dw(x)dx

≤ C(logN)d
∑
i∈Zd

inf
y∈Qi

(K≤Nw)(y)

∫
Qi

f(y)ddy

≤ C(logN)d
∫
Rd
f(y)d(K≤Nw)(y)dy

≤ C(logN)d
∫
Rd
f(x)d(KNw)(x)dx.

Therefore, we have proved the theorem.
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3. Proof of Theorem 2

In this section we shall prove Theorem 2.

Let B̃≤N be the class of all rectangles in Rd whose sides are parallel to

the axes and which satisfy

1 ≤ (the length of longest sides)/(the length of shortest sides) ≤ N.

The corresponding maximal operator associated to this base B̃≤N will be

denoted by M≤N . Obviously, we have that

(M≤Nf)(x) ≤ (K≤Nf)(x), ∀x ∈ Rd.

The proof is based on a couple of lemmas.

Lemma 5. Let d ≥ 2. The inequality

(KNf)(x) ≤ C((M≤Nf
d)(x))1/d, ∀x ∈ Rd,

holds for every locally integrable function f on Rd of the form
∏d

l=1 fl(xl).

Proof. We may assume that fl ≥ 0. Fix x in Rd. For all ε > 0 we

can select some R from BN such that x ∈ R and

(KNf)(x) − ε ≤
1

|R|

∫
R
f(y)dy.(12)

Let ω = (ω1, . . . , ωd) be a unit vector which is parallel to the axis of R.

If we allow an extra factor C on the right hand side of (12), then we can

further assume that

|ωl| ≥
1

N
, l = 1, . . . , d.(13)

By the definition of BN there exists a (d− 1)-dimensional cube Q with the

side length a such that

R = {q + tω | q ∈ Q, 0 ≤ t ≤ Na}.

By Fubini’s theorem we can select a point q = (q1, . . . , qd) from Q such that

∫
R
f(y)dy ≤ |Q|

∫ Na

0
f(q + tω)dt.
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It follows by Hölder’s inequality that

∫ Na

0
f(q + tω)dt =

∫ Na

0

d∏
l=1

fl(ql + tωl)dt

≤ (
d∏

l=1

∫ Na

0
fl(ql + tωl)

ddt)1/d = (
d∏

l=1

signωl
|ωl|

∫ ql+Naωl

ql

fl(t)
ddt)1/d.

From (13) the triple of

R′ =
d∏

l=1

(min(ql, ql +Naωl),max(ql, ql +Naωl))

contains x. Since R′ ∈ B≤N by (13) we therefore obtain

(KNf)(x) − ε ≤ C
1

|R|

∫
R
f(y)dy

≤ C 1

Na

1

(
∏d

l=1 |ωl|)1/d
(

∫
R′
f(y)ddy)1/d

≤ C(
1

|R′|

∫
R′
f(y)ddy)1/d ≤ C((M≤Nf

d)(x))1/d.

Thus we have proved the lemma. �

Lemma 6. For every nonnegative locally integrable weight w on Rd

and for every function f in L1(Rd,M≤Nw)) we have

w({x ∈ Rd | (M≤Nf)(x) > λ}) ≤ C
(logN)d

λ
‖f‖L1(Rd,M≤Nw), ∀λ > 0.

To prove this lemma we use the following proposition.

Let ν be ν = [logN/ log 2] + 1. Here, [a] denotes the largest integer not

greater than a. Let I2 be

I2 = [1, ν]d ∩ Zd.

We define Bi, i = (i1, . . . , id) ∈ I2, as the class of all rectangles in Rd which

are translations of some dilations of the rectangle

d∏
l=1

(0, 2il).
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The corresponding maximal operators associated to these bases will be de-

noted by Mi.

Proposition 7. For every nonnegative locally integrable weight w on

Rd and for every function f in L1(Rd,Miw) we have

w({x ∈ Rd | (Mif)(x) > λ}) ≤ C
1

λ
‖f‖L1(Rd,Miw), ∀λ > 0.

Proof. This proposition can be proved in the same way as in the

proof of well-known result for the Hardy-Littlewood maximal operator M .

Namely,

w({x ∈ Rd | (Mf)(x) > λ}) ≤ C 1

λ
‖f‖L1(Rd,Mw), ∀λ > 0

(see [GR]). �

Proof of Lemma 6. We see that for every rectangle R in B̃≤N we

can select some i from I2 and R̃ from Bi as

R ⊂ R̃, |R̃| ≤ 2d|R|.

From these facts we obtain

{x | (M≤Nf)(x) > λ} ⊂
⋃
i∈I2

{x | (Mif)(x) >
λ

2d
}.

On the other hand we see that for every x ∈ Rd and i ∈ I2, we have

(Miw)(x) ≤ (M≤Nw)(x).

From this inequality and Proposition 7 we obtain

w({x | (M≤Nf)(x) > λ})

≤
∑
i∈I2

w({x | (Mif)(x) >
λ

2d
})

≤ C
∑
i∈I2

1

λ
‖f‖L1(Rd,Miw) ≤ C

(logN)d

λ
‖f‖L1(Rd,M≤Nw).
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Thus we have proved the lemma. �

Proof of Theorem 2.

Using Lemmas 5, 6, and Theorem 3 we have

w({x | (KNf)(x) > λ})

≤ w({x | (M≤Nf
d)(x) >

λd

C
}) ≤ C(

logN

λ
)d
∫
Rd
fd(x) · (KNw)(x)dx.

Thus we have proved Theorem 2. �

4. Proof of Theorem 3

We see that the first inequality of (4) follows by the definitions of KN

and K≤N . We shall prove the second inequality of (4) by proving a covering

lemma.

Let Sd−1 be the unit sphere in Rd, i.e. Sd−1 = {x ∈ Rd | |x| = 1}. Let

B(x, r) be the closed ball of radius r centered at x. For ρ > 1, H > 0 and

ω ∈ Sd−1 let the icecream-cone like domain C(d, ρ,H, ω) be defined by

C(d, ρ,H, ω) =
⋃

0≤t≤H

B(tω,
t

2ρ
).

In what follows we call this domain a cone. For 0 < H1 < H2 < ∞ and

ρ > 1 we define the family of cones C(d, ρ, [H1, H2]) by

C(d, ρ, [H1, H2]) = {C(d, ρ,H, ω) |H ∈ [H1, H2], ω ∈ Sd−1}.
The following covering lemma is a major part of the proof.

Lemma 8. Given k ≥ 1 and the rectangle R(d):

R(d) =
d∏

l=1

[0,ml], 1 ≤ m1 ≤ . . . ≤ md ≤ kN,(14)

we can select a finite number of cones Cj = C(d, kN,Hj , ωj) such that

Cj ∈ C(d, kN, [m1, (
d∑
1

m2
l )

1/2]),(15)

R(d) ⊂
⋃
j

Cj ,(16)

∑
j

|Cj | ≤ C|R(d)|.(17)
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We shall divide the proof of this lemma into two cases.

Case 1. d = 2.

We write as O(0, 0), A(m1, 0), B(m1,m2), C(0,m2) to denote the origin,

the point with the coordinate (m1, 0) etc. Put � AOB = Θ1 and � BOC =

Θ2. We start from the relation

1 ≤ θ

sin θ
≤ 2, θ ∈ [0,

π

2
].

Putting θ = Θi, i = 1, 2, in this inequality and dividing each term by

2
√

(2kN)2 + 1, we have

1

2
√

(2kN)2 + 1
≤ Θi

2
√

(2kN)2 + 1 sin Θi
≤ 1√

(2kN)2 + 1
.

By 1 ≤ m1 ≤ m2 ≤ kN we see that

sin Θi

√
(2kN)2 + 1 > 1.

From these inequalities we obtain

2√
319(kN)2 + 1

≤ 1

4
√

(2kN)2 + 1

≤ Θi

4
√

(2kN)2 + 1 sin Θi
≤ Θi

2
√

(2kN)2 + 1 sin Θi + 1

≤ Θi

[2
√

(2kN)2 + 1 sin Θi] + 1
≤ Θi

2
√

(2kN)2 + 1 sin Θi

≤ 1√
(2kN)2 + 1

.

Let ni, i = 1, 2, be

ni = [2
√

(2kN)2 + 1 sin Θi] + 1,

and let θi be

θi =
Θi

ni
.
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Let 0 < ψ < ψ′ < π
2 be sinψ = 1/

√
319(kN)2 + 1 and sinψ′ =

1/
√

(2kN)2 + 1. Then, from above inequalities we have

ψ ≤ 2 sinψ ≤ θi ≤ sinψ′ ≤ ψ′,

tanψ ≤ tan θi ≤ tanψ′

and computing tanψ, tanψ′ we obtain

2√
319

· 1

2kN
≤ tan θi ≤

1

2kN
.(18)

We divide R(2) into two triangles �AOB and �BOC. It suffices to

prove Lemma 8 with R(2) replaced by �AOB and �BOC, respectively.

We shall consider �AOB first. On AB we define points Pj , j =

0, 1, . . . , n1 as P0 = A, � Pj−1OPj = θ1. We extend OPj to OQj in such

a way that
� Pj+1QjO =

π

2
.

Let the cones Cj be

Cj = C(d, kN,OQj ,

−→
OQj

OQj
).

Then, we see that m1 ≤ OQj ≤ (m2
1 +m2

2)
1/2 and �QjOPj+1 ⊂ Cj . Thus,

we obtain

�AOB ⊂
⋃
j

�QjOPj+1 ⊂
⋃
j

Cj .

We next note that

|�QjOPj+1|
|�PjOPj+1|

=
OQj

OPj
=

cos θ1OPj+1

OPj
=

1

1 − tan θ1 tan jθ1
≤ 2,

where in the last step we used tan θ1 ≤ 1/(2kN) and tan jθ1 ≤ m2/m1 ≤
kN . From (18) and this inequality we finally obtain

∑
j

|Cj | ≤ C
∑
j

1

2kN
(OQj)

2

= C(
√

319/2)
∑
j

(2/
√

319) · 1

2kN
(OQj)

2 ≤ C
∑
j

tan θ1(OQj)
2

≤ C
∑
j

|�QjOPj+1| ≤ C
∑
j

|�PjOPj+1| = C|�AOB|.
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The other triangle �BOC can be dealt with by the same argument.

Case 2. d ≥ 3.

The proof is by induction on the dimension d.

We assume that the lemma is valid for the dimension d − 1. To prove

the lemma for the dimension d we fix k ≥ 1 and fix R(d) as in (14). For the

purpose of the induction we write k1 = 3
√
d− 1k and R(d−1) =

∏d
l=2[0,ml].

We apply the induction assumption to k1 and R(d − 1). Since k1 > k the

condition 1 ≤ m2 ≤ . . . ≤ md ≤ kN ≤ k1N in (14) is satisfied. Therefore,

we can select a finite number of cones Cj from C(d−1, k1N, [m2, (
∑d

2m
2
l )

1/2])

such that

R(d− 1) ⊂
⋃
j

Cj ,
∑
j

|Cj | ≤ C|R(d− 1)|.(19)

Now we shall show that for every [0,m1] × Cj we can select a finite

number of cones Cj,k such that

Cj,k ∈ C(d, kN, [m1, (
d∑
1

m2
l )

1/2])(20)

[0,m1] × Cj ⊂
⋃
k

Cj,k,(21)

∑
k

|Cj,k| ≤ C|[0,m1] × Cj |.(22)

If this can be done, the proof of the lemma will be finished by (19).

Let ωj be the axis of Cj and let Hj be the height of Cj . By the action of

orthogonal transformation in Rd−1 we may assume that ωj = (0, 1, 0, . . . , 0).

We apply the case 1 to the two-dimensional rectangle Sj = [0,m1]× [0, Hj ]

in the (x1, x2)-plain with k1. (This is justified by the fact that m1 ≤ m2 ≤
Hj ≤

√
d− 1kN < k1N). Then we have C ′

j,k ∈ C(2, k1N, [m1, (m
2
1+H

2
j )1/2])

satisfying

C ′
j,k =

⋃
0≤t≤Hj,k

B(tωj,k, t/(2k1N)),

Sj ⊂
⋃
k

C ′
j,k,(23)

∑
k

|C ′
j,k| ≤ C|Sj |.(24)
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We introduce d-dimensional cones Cj,k which have the same axis and

the same height as C ′
j,k but their projections are a little fatter than C ′

j,k:

Cj,k =
⋃

0≤t≤Hj,k

B(tωj,k, t/(2kN)).

Then these cones Cj,k will satisfy our assertion.

Proof of (22). It follows from

Hj,k ≤ (m2
1 +H2

j )1/2 ≤ (
d∑
1

m2
l )

1/2

that

Cj,k ∈ C(d, kN, [m1, (
d∑
1

m2
l )

1/2]).

And it follows from Hj,k ≤
√

2Hj that

∑
k

|Cj,k| ≤ C
∑
k

Hj,k(
1

2kN
Hj,k)

d−1 ≤ C
∑
k

Hj,k(
1

2k1N
Hj,k)

d−1

≤ C(
1

2k1N
Hj)

d−2
∑
k

Hj,k(
1

2k1N
Hj,k) ≤ C(

1

2k1N
Hj)

d−2
∑
k

|C ′
j,k|

≤ C(
1

2k1N
Hj)

d−2|Sj | ≤ C|[0,m1] × Cj |.

Therefore, we obtain (22).

Proof of (21). Fix x in [0,m1] × Cj . Then x can be written as

x = (s, t+ b2, b3, . . . , bd), (
d∑
2

b2l )
1/2 ≤ t/(2k1N), 0 ≤ t ≤ Hj .

Let ξ in Sj be ξ = (s, t, 0, . . . , 0). Then by (23) we can find a cone C ′
j,k0

such that ξ ∈ C ′
j,k0

. Let ξ′ be ξ′ = t′ωj,k0 such that � ξξ′O = π
2 . Then, we

shall show that

x ∈ B(t′ωj,k0 , t
′/(2kN)).(25)

Let θ ∈ [0, π2 ] be θ = tan−1(
1

2k1N
) and let θ′ be the angle between ωj,k0

and
−→
Oξ . Then, by ξ ∈ C ′

j,k0
we have 0 ≤ θ′ ≤ θ and hence

t′ =
√
s2 + t2 cos θ′ ≥

√
s2 + t2 cos θ ≥ 1√

2

√
s2 + t2.
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We then see that

|ξ′ − x| ≤ |ξ′ − ξ| + |ξ − x| ≤
√
s2 + t2 sin θ′ + (

∑
l

b2l )
1/2

≤
√
s2 + t2 sin θ +

t

2k1N
≤

√
s2 + t2

2k1N
+

t

2k1N
≤

√
s2 + t2

k1N

≤ 2

3
· t′

2kN
<

t′

2kN
.

This proves (25).

Now, if t′ ≤ Hj,k0 , then (25) shows that x ∈ Cj,k0 and (21) is proved.

If t′ > Hj,k0 , we use Hj,k0ωj,k0 instead of ξ′. By the fact that t′ > Hj,k0

we see that ξ ∈ B(Hj,k0ωj,k0 , Hj,k0/(2k1N)). Hence we have

|Hj,k0ωj,k0 − ξ| ≤
Hj,k0

2k1N
,

and

t ≤ (s2 + t2)1/2 = Oξ ≤ Hj,k0 +
Hj,k0

2k1N
≤ 2Hj,k0 .

It follows from these inequalies that

|Hj,k0ωj,k0 − x| ≤ |Hj,k0ωj,k0 − ξ| + |ξ − x|

≤ Hj,k0

2k1N
+

t

2k1N
≤ Hj,k0

2k1N
+

2Hj,k0

2k1N
≤ Hj,k0√

d− 12kN
≤ Hj,k0

2kN
.

Hence we have x ∈ Cj,k0 also in this case. Thus, we have proved the lemma.

Corollary 9. For every rectangle R in B≤N and for every point x in

R we can select a finite number of rectangles Rj from BN such that

x ∈ Rj , R ⊂
⋃
j

Rj ,
∑
j

|Rj | ≤ C|R|.

Proof. By translation, rotation, inversion and dilation (and their in-

verses) we may assume that x = 0 and

R =
d∏

l=1

(−al, bl), al, bl ≥ 0, 1 ≤ a1 + b1 ≤ a2 + b2 ≤ . . . ≤ ad + bd ≤ N.
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Let R̃ be

R̃ =
d∏

l=1

(−(al + bl), (al + bl)).

Then if we can prove the corollary for the rectangle R̃ with x = 0, the

corollary will follow by R ⊂ R̃ and |R̃| = 2d|R|.
By symmetry it suffices to show that the corollary holds for

R′ =
d∏

l=1

[0, (al + bl))

with x = 0. By the above lemma this R′ is covered by a finite number of

cones Cj as described in that lemma. Now for each Cj we can find Rj from

BN such that

Cj ⊂ Rj , |Rj | ≤ C|Cj |.

The proof of the corollary is now complete. �

By this corollary we shall prove Theorem 3.

Let x be fixed. We may assume that (K≤Nf)(x) <∞. By the definition

of K≤N we can select for any ε > 0 some R from B≤N such that x ∈ R and

(K≤Nf)(x) − ε ≤
1

|R|

∫
R
|f(y)|dy.(26)

Applying Corollary 9 to R, we can find a finite number of rectangles Rj

from BN such that x ∈ Rj and

R ⊂
⋃
j

Rj ,
∑
j

|Rj | ≤ C|R|.

From these inequalities and (26) we have

(K≤Nf)(x) − ε ≤
1

|R|

∫
R
|f(y)|dy ≤ 1

|R|
∑
j

∫
Rj

|f(y)|dy

≤ 1

|R|
∑
j

|Rj |(KNf)(x) ≤ C(KNf)(x).

Thus, we have proved the theorem. �
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By Lemma 8, Corollary 9 and the above arguments we see easily the

following remark.

Remark 10. Fix a > 0. Let Ba,≤N denote the class of all rectangles

in Rd which satisfy

a ≤ (the length of shortest sides) ≤ (the length of longest sides) ≤ Na.

The corresponding maximal operator associated to this base is denoted by

Ma,≤N . Then for every locally integrable function f on Rd there exists a

constant C independent of a and N such that

(Ma,Nf)(x) ≤ (Ma,≤Nf)(x) ≤ C sup
α∈[a/N,

√
da]

(Mα,Nf)(x)

holds for every x in Rd.
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