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Siegel Modular Forms Having the Same L-Functions

By R. Schulze-Pillot

Abstract. We show how one can use theta liftings to generate
pairs of Siegel modular forms having the same Hecke eigenvalues but
different weights. The construction uses the disconnectedness of the
orthogonal group. The concrete examples obtained here have arbitrary
square free level; although the method works in principle for level one
as well we have not yet been able to prove nonvanishing of both forms
of a pair in a case of level 1.

Introduction

It is well-known that for the Hecke eigenvalues of Siegel modular forms

a strong multiplicity one theorem does not hold. Examples for this can e.

g. be obtained via the Yoshida-liftings investigated in [3, 5] in the following

way: For a pair f1, f2 of newforms for Γ0(N) of squarefreee level N with

the same Atkin-Lehner eigenvalues consider the Yoshida liftings of the as-

sociated pairs ϕ1, ϕ2 of automorphic forms on definite quaternion algebras

with discriminant N1 | N. A related representation theoretic construction

has been given in [9].

In this note we show how one can use theta liftings to generate exam-

ples of Siegel modular forms having the same Hecke eigenvalues but differ-

ent weights. The construction uses the disconnectedness of the orthogonal

group. In a representation-theoretic context the possibility of such a con-

struction has been observed and utilized in [7]. Our concrete examples have

arbitrary square free level; although the method works in principle for level

one as well we have not yet been able to prove nonvanishing of both forms

in a case of level 1.

1. Forms on the Orthogonal Group

Let (V, q) be a positive definite quadratic space over Q of even dimension

m = 2m′ with associated symmetric bilinear form B(x, y) = q(x + y) −
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q(x)−q(y) and let L be a Z-lattice of rank m on V such that q(L) ⊆ Z. We

denote by O(V ) (resp. SO(V )) the (special) orthogonal group of (V, q), by

OA(V ), SOA(V ), O(Vp), SO(Vp) (for p = ∞ or p a prime) the respective

adelizations and orthogonal groups of completions and by O(L) (SO(L))

the (proper) group of units of L with adelization OA(L), SOA(L).

For an irreducible representation λ : SO(V∞) −→ GL(Uλ) of the com-

pact Lie group SO(V∞) we consider the space A(SOA(V ), SOA(L), λ) of

Uλ-valued functions ϕ on SOA(V ) such that

ϕ(γxu) = λ(u−1
∞ )ϕ(x)

for x ∈ SOA(V ), γ ∈ SO(V ), u = (up) ∈ SOA(L); such functions are of

course determined by their values at the elements of a set of representatives

of the (finite) double coset decomposition of SOA(V ) with respect to SO(V )

and SOA(L).

For an irreducible representation λ̃ of O(V∞) we define A(OA(V ),

OA(L), λ̃) analogously. We assume in the sequel that λ has highest weight

(n1, . . . , nm′−1, 0). It is well-known [10] that λ can be extended to two in-

equivalent irreducible representations λ+, λ− = λ+ ⊗ det of O(V∞), both

acting on the space Uλ.

We will also assume that there is an element ι of O(L) \ SO(L).

Lemma 1. Let ϕ ∈ A(SOA(V ), SOA(L), λ) be such that

ϕ(ιgι−1) = λ∗(ι)ϕ(g)(1.1)

(with ∗ = + or ∗ = −) holds for all g ∈ SOA(V ).

Then there is a unique function ϕ̃ ∈ A(OA(V ), OA(L), λ∗) with

ϕ̃|SOA(V ) = ϕ. Conversely any ϕ̃ ∈ A(OA(V ), OA(L), λ∗) can be obtained

from its restriction to SOA(V ) in this way.

Proof. For g = (gp) ∈ OA(V ) define g′ = (g′p) ∈ SOA(V ) by

g′p =

{
gp det gp = 1

gpι
−1 det gp = −1

and denote by ∗ either + or -, depending on the validity of (1.1) for the

respective sign.
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Then the function ϕ̃ on OA(V ) defined by

ϕ̃(g) := λ∗(g
−1
∞ g′∞)ϕ(g′) =

{
ϕ(g′) det g∞ = 1

λ∗(ι)−1ϕ(g′) det g∞ = −1
(1.2)

has the required properties. Conversely any function ϕ̃ ∈ A(OA(V ),

OA(L), λ∗) extending ϕ satisfies (1.2).

The last statement of the lemma is obvious. �

Lemma 2. Let ϕ ∈ A(SOA(V ), SOA(L), λ) and define for ∗ denoting

+ or −:

ϕ∗(g) = ϕ(g) + λ∗(ι)
−1ϕ(ιgι−1).(1.3)

Then ϕ∗ satisfies (1.1).

Proof. This is an easy computation. �

Remark. In general it is not clear whether only one or both of ϕ+, ϕ−
(and hence ϕ̃+, ϕ̃−) is nonzero. As an example let L be a lattice in the genus

of the Leech lattice but not isometric to the Leech lattice. It is well-known

that the genus of L (consisting of the even unimodular lattices of rank 24)

contains 24 classes and 25 proper classes of lattices, the Leech lattice repre-

senting the only class with no automorphism of determinant -1. Moreover,

for ι as above we can take the reflection in a root of L. Consequently, for

λ(0) = 1 the trivial representation the mappings ϕ �−→ ϕ̃+, ϕ �−→ ϕ̃− from

the 25-dimensional space A(SOA(V ), SOA(L), 1) to A(OA(V ), OA(L), 1)

resp. A(OA(V ), OA(L),det) are not injective, but we can not describe the

kernel and hence cannot decide whether the Hecke eigenvalues of the func-

tion spanning the 1-dimensional space A(OA(V ), OA(L),det) also occurs in

the decomposition of the 24-dimensional space A(OA(V ), OA(L), 1).

We will see below that the situation for certain 4-dimensional quadratic

spaces is easier.

In order to obtain the examples mentioned in the introduction we have

to relate the action of the Hecke algebra on ϕ and on ϕ̃∗.
We notice first that each double coset O(Lp)g O(Lp) with g in the group

GO(Vp) of orthogonal similitudes of Vp has a representative in the group

GO+(Vp) of proper similitudes.
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We assume in the sequel that ϕ ∈ A(SOA(V ), SOA(L), λ) is the restric-

tion of a function (also denoted by ϕ) in A(GO+
A(V ), GO+

A(L), λ), where λ

is extended to GO+(V∞) by trivial action on the center and functions in

A(GO+
A(V ), GO+

A(L), λ) are also assumed to be invariant under the action

of the center Q×
A of GO+

A(V ). If the group of similitude norms of transfor-

mations in GO+
A(V ) is generated by the similitude norms of GO+(V ) and

of GO+
A(L), each function in A(SOA(V ), SOA(L), λ) can be extended in a

unique way to a function in A(GO+
A(V ), GO+

A(L), λ) [18]; this condition is

satisfied if (e.g) L is even unimodular or if L is an Eichler order in a definite

quaternion algebra.

For p prime we consider the Hecke algebra Hp of GO+(Lp)-bi-invariant

compactly supported locally constant functions onGO+(Vp) (or equivalently

of formal sums of double cosets GO+(Lp)g GO
+(Lp) with g ∈ GO+(Vp)),

with the usual action of GO+(Lp)g GO
+(Lp) (or its characteristic function)

on GO+(Lp)-right invariant functions on GO+(Vp) given by

(Tgϕ)(x) =

∫
GO+(Lp)g GO+(Lp)

ϕ(xy)dy.

A decomposition of GO+(Lp)gGO
+(Lp) into left cosets giGO

+(Lp) with gi
of the same similitude norm as g gives rise to a decomposition of

SO(Lp)gSO(Lp) into left cosets with the same representatives gi. Hence,

writing out the integral as a summation over left coset representatives one

can write the action of this Hecke algebra also as the action of double cosets

SO(Lp)gSO(Lp) with g ∈ GO+(Vp) in the same way in which one classi-

cally writes the action of Hecke operators T (p) on (Siegel) modular forms.

As in [18] the subalgebra generated by double cosets of elements of SO(Vp)

can be identified with the Hecke algebra of SO(Vp), with the integral over

GO+(Lp)g GO
+(Lp) above replaced by the integral over SO(Lp)g SO(Lp).

On Hp we have an involution Tg �−→ (Tg)
ι = Tιgι−1 given by conjugation

of the double cosets (or of the argument of the associated function) by ι.

Obviously the ι-invariant elements form a subalgebra Hι
p that is gener-

ated by the Tg + Tιgι−1 . Denoting in the same way by H̃p the Hecke alge-

bra for GO(Vp) we have a natural surjective mapping Hp −→ H̃p (written

T �−→ T̃ ) whose restriction to Hι
p is an isomorphism (notice that GO+(Vp)∩

GO(Lp)g GO(Lp) = GO+(Lp)g GO
+(Lp) ∪GO+(Lp)ιgι

−1 GO+(Lp)).

Lemma 3. For ϕ : SOA(V ) −→ Uλ define ϕι(x) = ϕ(ιxι−1). Then
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a) For all ϕ on SOA(V ) that are right invariant under SO(Lp) we have

Tgϕ
ι(x) = (Tιgι−1ϕ)ι(x) and

Tιgι−1ϕι(x) = (Tgϕ)ι(x).

b) For ϕ ∈ A(SOA(V ), SOA(L), λ) we have (with ∗ denoting either + or

−)

(Tg + Tιgι−1(ϕ∗)(x) = ((Tg + Tιgι−1)ϕ)∗(x)

Proof.

a)

Tgϕ
′(x) =

∫
GO+(Lp)g GO+(Lp)

ϕ(ιxyι−1)dy

=

∫
GO+(Lp)ιgι−1 GO+(Lp)

ϕ(ιxι−1y)dy

= (Tιgι−1ϕ)(ιxι−1) = (Tιgι−1ϕ)ι(x).

Here the integrals over double cosets of GO+(Lp) can be replaced by

integrals over cosets of SO(Lp) if g is in SO(Vp). The second equality

follows because of Tι2gι−2 = Tg.

b)
(Tg + Tιgι−1)(ϕ∗)(x)
= (Tgϕ)(x) + (Tιgι−1ϕ)(x)

+λ∗(ι)−1(Tgϕ
ι(x) + λ∗(ι)−1(Tιgι−1ϕι)(x)

= (Tgϕ)(x) + λ∗(ι)−1(Tgϕ)ι(x)

+(Tιgι−1ϕ)(x) + λ∗(ι)−1(Tιgι−1ϕ)ι(x)

(using part a)), which proves the assertion. �

Lemma 4. Let ϕ ∈ A(SOA(V ), SOA(L), λ) be an eigenfunction of T ∈
Hι

p with eigenvalue κ(ϕ, T ). Then for ∗ denoting + or − one has

T̃ ϕ̃∗ = κ(ϕ, T )ϕ̃∗.

Proof. This follows from Lemma 3. �
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2. Theta Liftings

In order to apply our lemmas to theta liftings we have to fix some more

notations.

Let OA(V ) =
r⋃

i=1

O(V )hi OA(L) be a disjoint double coset decomposi-

tion with (hi)∞ = Id; the lattices hiL =: Li form then a set of representa-

tives of the isometry classes of lattices in the genus of L.

We recall from [10, 17] that for each irreducible representation (τ, Uτ )

of O(V∞) the space Hn(τ) of pluriharmonic polynomials P : Mm,n(C) −→
Uτ such that P (h−1x) = τ(ht)P (x) for all h ∈ Om(R) is zero or (under

the right action of GLn(C) on the variable) isomorphic to an irreducible

representation (ρn(τ),Wρn(τ)) of GLn(C) (here we identify O(V∞) with its

group of matrices Om(R) with respect to some fixed orthonormal basis of

V∞). In the latter case the space Hq(ρn(λ)) consisting of all q-pluriharmonic

polynomials P : Mm,n(C) −→ Wρn(τ) such that P (xg) = (ρn(τ)(gt))P (x)

for all g ∈ GLn(C) is isomorphic to (τ, Uτ ) as a representation space of

O(V∞).

We denote by Pn,∗ the (essentially unique) isomorphism from Uλ∗ to

Hq(ρn(λ∗)). Then, again for ∗ denoting + or −, the n-th theta lifting

of ϕ ∈ A(SOA(V ), SOA(L), λ) is (whenever the representation ρn(λ∗) is

defined) (with Z ∈ Hn = {X + iY ∈M sym
n (C)}, Y positive definite):

θ
(n,∗)
L (ϕ)(Z) =

=

∫
O(V )\OA(V )

∑
x∈(hL)n

Pn,∗(ϕ̃∗(h))(h
−1
∞ x1, . . . , h

−1
∞ xn)

exp(2πitr(q(x)Z))dh

=
r∑

i=1

1

|O(Li)|
∑

x∈Ln
i

Pn,∗(ϕ̃∗(hi))(x1, . . . , xn)

exp(2πitr(q(x)Z)),

where for x = (x1, . . . , xn) ∈ Ln we denote by q(x) the matrix (1
2B(xi, xj)) ∈

M sym
n (1

2Z). We have then

Theorem. Let ϕ ∈ A(SOA(V ), SOA(L), λ) (with λ as above) be such

that ϕ+ �= 0 �= ϕ− and let n be such that ρn(λ+), ρn(λ−) both exist and that

θ
(n,+)
L (ϕ) and θ

(n,−)
L (ϕ) are both nonzero. Assume that for all p � | det(L)
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the function ϕ is an eigenfunction of all Hecke operators in Hι
p. Then

the Siegel modular forms θ
(n,+)
L (ϕ) and θ

(n,−)
L (ϕ) are eigenfunctions of all

Hecke operators from the p-components
∨
Hp of the Hecke algebra of Γ

(n)
0 (N)

for p � | N (where N is the level of L) with the same eigenvalues occurring for

F+ := θ
(n,+)
L (ϕ) and F− := θ

(n,−)
L (ϕ). In particular, the Satake parameters

for p � | N of F+ and F− are the same and hence the N -free parts of the

standard L-functions as well as of the spin L-functions of F+ and of F−
agree.

Remark.

a) In the case that ϕ+ �= 0 �= ϕ− let n0 be the smallest n such that both

θ
(n,+)
L (ϕ) and θ

(n,−)
L (ϕ) are defined and nonzero. Then using results of

[13] and [12] it can be shown that at least one of F+, F− is cuspidal.

For a proof of this in the case of square free level see [3].

b) In the case that λ is the trivial representation it can be seen from [10]

and the almost trivial version for degree m of Lemma 1.1 of [5] that

n0 = m. Moreover, in that case F
(m)
+ and F

(m)
− are scalar valued

Siegel modular forms of weights m
2 , m

2 + 1, with F
(m)
− being cuspidal

and F
(m)
+ not cuspidal. The N -free part D(N)(F

(m)
∗ , s) of the standard

L-function of F
(m)
∗ can then be completed by suitable factors at the

p|N and the Γ-factor

γm,k(s) = π(−2m+1)s/2Γ(
s

2
)

m∏
i=1

Γ(
s+ k − i

2
)

m∏
i=1

Γ(
s+ k − i+ 1

2
)

(k the weight of F
(m)
∗ ) to an L-function Λ(F

(m)
∗ , s) satisfying a func-

tional equation for s �−→ 1 − s, see [2]. Since D(N)(F+, s) =

D(N)(F−, s) this implies that
γm,m/2(s)

γm,(m/2+1)(s)
is invariant under s �−→

1 − s.

Indeed a routine computation shows that
γn,k(s)

γn,k′(s)
is invariant under

s �−→ 1 − s if and only if k + k′ = n + 1. It should be noted that

this is precisely the relation between the weights that implies equality

of the infinitesimal characters of the corresponding representations of

Spn(R) (I thank the referee for pointing this out).
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Proof of Theorem 1. From [10] it can be seen that n > m
2 follows if

both ρn(λ+) and ρn(λ−) are defined. The well-known commutation relation

for Hecke operators ([1, 18]) (or the representation theoretic investigation

of the local theta correspondence in [14, 11, 15] shows then that F+, F−
are eigenfunctions of the N -free part of the symplectic Hecke algebra with

the same eigenvalues, using of course that ϕ̃+, ϕ̃− are eigenfunctions of the

orthogonal Hecke algebra with the same Hecke eigenvalues by Lemma 4. �

We still have to show that there are examples in which both ϕ+ and ϕ−
are nonzero. For this we use our investigation of Yoshida-liftings from [5, 4].

Again we have to recall some notation:

Let V = D be a definite quaternion algebra over Q and R an Eichler

order of square free level N in D, denote by x �−→ x the standard involution

of D, by tr(x) and n(x) the (reduced) trace resp. norm of x ∈ D. For ν ∈ N

let U
(0)
ν be the space of homogeneous harmonic polynomials of degree ν on

R3 and view P ∈ U
(0)
ν as a polynomial on D

(0)
∞ = {x ∈ D∞ | Tr(x) = 0}

by putting P (
3∑

i=1

xiei) = P (x1, x2, x3) for an orthonormal basis {ei} of D
(0)
∞

with respect to the norm form n of D; denote by τν the representation of

D×
∞/R

× on U
(0)
ν .

The group of proper similitudes of the quadratic form q(x) = n(x) is

isomorphic to (D× ×D×)/Z(D×) (as algebraic group) via

(x1, x2) �−→ σx1,x2 with σx1,x2(y) = x1yx
−1
2

with the special orthogonal group being the image of {(x1, x2) ∈ D× ×
D× | n(xn) = n(x2)}. The SO(V∞)-space U

(0)
ν ⊗ U

(0)
ν is isomorphic to the

SO(V∞)-space U(2ν,0) on D2
∞ transforming according to the representation

of GL2(R) of highest weight (2ν, 0); an intertwining map Ψ has been given

in [4, Section 3]. We let (Uλ, λ) be this representation space of SO(V∞).

Denoting by A(D×
A, R

×
A, τν) the space of functions ϕ : D×

A −→ U
(0)
ν satisfy-

ing

ϕ(γxu) = τν(u
−1
∞ )ϕ−1

∞ ϕ(x) for γ ∈ D×
Q,

u = u∞uf ∈ R×
A (where R×

A is the adelic group of units of R) we have for

ϕ1, ϕ2 ∈ A(D×
A, R

×
A, τν) the function

ϕ := Ψ(ϕ1 ⊗ ϕ2) ∈ A(SOA(V ), SOA(R), λ)
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and can construct ϕ̃+, ϕ̃− as above with respect to the standard involution ι

of the quaternion algebra D. If ϕ1 and ϕ2 are in the cuspidal essential part

(space of newforms) of A(D×
A, R

×
A, τ) [8], are eigenfunctions of all Hecke

operators for p � | N and have the same eigenvalues under the involutions ω̃p

on A(D×
A, R

×
A, τ) for p|N , it has been shown in [4] that both ϕ+, ϕ− (and

hence ϕ̃+, ϕ̃−) are nonzero Hecke eigenfunctions in A(SOA(V ), SOA(R), λ)

unless ϕ1 and ϕ2 are proportional. Moreover Ψ(ϕ1⊗ϕ2) and Ψ(ϕ2⊗ϕ1) have

the same Hecke eigenvalues with respect to the symmetric Hecke algebra of

SOA(V ). From [5] we have the following results:

For ν = 0, the degree 4 theta lifting of ˜Ψ(ϕ1 ⊗ ϕ2)− is cuspidal (and

nonzero), whereas for ˜Ψ(ϕ1 ⊗ ϕ2)+ already the degree 2 theta lifting de-

fines a nonzero cuspform. For ν > 0, again the degree 2 theta lifting of˜Ψ(ϕ1 ⊗ ϕ2)+ is a nonzero cuspform, whereas the degree theta lifting of˜Ψ(ϕ1 ⊗ ϕ2) is a nonzero cuspform.

We therefore have the following corollary:

Corollary. Let ϕ1, ϕ2 ∈ A(D×
A, R

×
A, τν) be eigenforms in the cuspidal

essential part (space of newforms) that are not proportional to each other.

Let n = 3 if ν > 0, n = 4 if ν = 0. Then the theta liftings of degree n

of ˜Ψ(ϕ1 ⊗ ϕ2)± are nonzero Siegel modular forms of degree n having the

same Satake parameters for all p � | N , with one of the forms being cuspidal

and the other one being in the orthogonal complement of the space of cusp

forms.

Proof. The orthogonality to the space of cusp forms of the n-th theta

lifting of the +-form on the orthogonal group follows from the results of

[3, 5]. The rest of the statement has been proved above. �

Remark. It has been proved in [3, 5] that for p|N the theta lifting

of both the plus-form and the minus-form are eigenfunctions of the Hecke

operators associated to matrices(
0 −M−1

M 0

)
with M ≡ 0 mod N.

Moreover, it can be seen from [3, Corollary 6.1] or from the integral represen-

tation [3, Theorem 4.1] together with the functional equation [6, Lemma4.4]
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that the completion of the N -free part D
(N)
F (S) of the standard L-function

of the theta lifting by the factor

ΛN (s) =
∏
p|N

n∏
i=1

(
1

1 − βi,qq−s
)

gives a smooth form of the functional equation, indicating that these factors

are “the right ones” for bad places (here the βi,q are the Satake parameters

associated to the Hecke operators for the p|N considered above, see [3, sec-

tion 2] for details). It seems not to be clear whether these parameters already

suffice to characterize the p-adic representation of Spn generated by F up

to isomorphy. However, from [7] it follows that there is a unique extension

of the irreducible representation of SO(Vp) generated by Ψ(ϕ1 ⊗ ϕ2) to an

irreducible representation of O(Vp) having an SO(Lp)-fixed vector. Hence

the O(Vp)-representations generated by ˜Ψ(ϕ1 ⊗ ϕ2)+ and ˜Ψ(ϕ1 ⊗ ϕ2)− are

isomorphic, and for p �= 2 the local theta correspondence [16] implies that

the p-adic representations of Spn are isomorphic as well. If N is odd we see

therefore that the automorphic representations generated by F+ resp. F−
have the same local factors at all finite primes.
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