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Examples of Self-Dual Hopf Algebras

By Nicolás Andruskiewitsch and Sonia Natale

Abstract. We present a construction of non-trivial self-dual Hopf
algebras over a field k obtained by a double extension process. The
construction is not symmetric: it involves a 2-cocycle which, under a
certain coboundary condition, disappears in the dual structure. We
present several explicit examples in low dimensions; we recover families
of examples introduced by S. Gelaki and R. Williams.

§0. Introduction

A finite dimensional Hopf algebra H over a field k is called self-dual

if H � H∗ as Hopf algebras. Self-dual Hopf algebras are quite common

in nature: when k is algebraically closed, the group algebra of an abelian

group is a self-dual Hopf algebra; given a finite dimensional Hopf algebra A,

the tensor product Hopf algebra A⊗A∗ is self-dual. More generally, if A, B

are finite dimensional Hopf algebras, and (⇀,σ, ρ, τ) is a Hopf data for the

pair (A,B) (see [AD, Def. 2.26]), the dual Hopf algebra of the extension

Aτ#σB is the Hopf algebra

(B∗)σ
∗
#τ∗A

∗.

Hence, if A � B∗, the action ⇀ is the dual of the coaction ρ and σ = τ∗, then

whenever (⇀,σ, ρ, τ) is a Hopf data, Aτ#σB is a self-dual Hopf algebra.

It is however not so evident how to obtain Hopf data like this; we discuss

conditions in section 5.

We present in this paper a less direct construction of self-dual Hopf

algebras. This construction was suggested by the work in [W, Ch. IV].

There, an infinite family of semisimple non-cocommutative self-dual Hopf

algebras is built. Self-duality does not arise, as we suspected naively at the
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begining of our research, from an extension as in the preceeding paragraph.

Rather, there is a non-symmetry given by the presence of a Hopf 2-cocycle

which disappears in the dual structure. It turns out that other known

examples of self-dual Hopf algebras [G] fit into our scheme.

The article is organized as follows: In §1 we present a basic construction

of a bialgebra over k which arises as a double extension from what we call

a basic data. This consists of a bialgebra R, two Hopf algebras H and K,

together with a coaction and an action R → K ⊗R, and H ⊗R → R, and

a 2-cocycle σ : H ⊗ H → K satisfying certain natural requirements (see

(1.3)). The process consists of first taking the smash coproduct of R by

K, R � K, and then the twisted smash product of the resulting bialgebra

with H by means of σ, R � K#σH. We also give in Proposition (1.5.1)

an alternative presentation of this bialgebra as a bosonization or biproduct

(see [R], [M1]). We also describe the dual bialgebra of R�K#σH, provided

that R, K and H are finite dimensional; see (1.6).

In section 2, we present non-trivial examples of Hopf algebras arising

from the construction in §1. A very simple pattern producing basic datum is

described in Proposition (2.1.5): it is enough to have two finite groups G and

Γ acting by Hopf algebra automorphisms on a Hopf algebra R whose images

in Aut(R) commute with each other; and a normalized cocycle σ : G×G →
Γ̂. This Proposition provides an ample source of examples of Hopf algebras.

For R = kN , N a finite group, it is enough to have two subgroups G and Γ

of AutN commuting with each other, plus the cocycle. We study in detail

the situation when all N , G and Γ are cyclic. We recover, in particular, the

examples in [G, §3] from the case when N � Z/p and G � Γ � Z/q, where

p and q are prime numbers such that q divides p− 1. We show in fact that

there are exactly q non-isomorphic self dual Hopf algebras of dimension pq2

arising from this construction. Taking instead N � Z/p, G � Z/q and

Γ � Z/r, where p, q and r are distinct prime numbers such that q and r

divide p − 1, we obtain two non-isomorphic examples of non-trivial, non

self-dual, semisimple Hopf algebras A of dimension pqr. In the lowest case,

for instance, this gives two Hopf algebras of dimension 42 = 2. 3. 7, which

were apparently not known (see [Mo1]).

More examples arise for instance from the theory of dual pairs. If V and

W are finite dimensional vector spaces over a finite field Fq and ρ : G →
EndV , ι : Γ → EndW are respectively, representations of G and Γ, then we
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can take N as (the underlying abelian group of) V ⊗Fq W and let G, resp.

Γ, act by ρ ⊗ id, resp. id⊗ι. A standard example is G = Γ = GL(n,Fq)

acting on N = M(n,Fq) by left and right multiplication. Another example

is G = GL(n,Fq) acting diagonally on the tensor product of m copies of

Fnq and Γ = Sm acting by permutation of the factors. Taking N = Fq and

G = Γ = (Fq)
× acting by multiplication, we recover the family of examples

in [W, Ch. IV].

In section 3 we study the dual structure of the bialgebra constructed in

§1 from a different point of view. We define in (3.2.5) a bilinear form on

R � K#σH × R′ � K ′#σ′H ′, for two given basic datum (H,K,R, σ) and

(H ′,K ′, R′, σ′), from pairings between respectively R and R′, K and H ′ and

H and K ′; but we need also a further ingredient- a map φ : H ×H ′ → k.

In our main result Theorem (3.3.1) we give sufficient conditions for this

bilinear form to be a duality (see (3.2.6)). Roughly speaking, one of the

conditions says that σ should be the coboundary of a map related to φ. In

particular, we obtain sufficient conditions for R � K#σH to be self-dual

even when the cocycle σ is allowed to be non-trivial in H2(G, Γ̂).

In section 4, we pursue the study of the examples in §2, with the results

of §3 in mind. In the setting of Proposition (2.1.5), to obtain self-dual Hopf

algebras, we need: G should equal Γ and admit a ”symmetric” cocycle

σ : G × G → Ĝ; also, N should be abelian and carry a G-”invariant”

bilinear form. See Proposition (4.1.5). If the cocycle is trivial, one does

not need Theorem 3.2.1 to treat self duality; hence we focus the case where

σ is non-trivial. For this, Ĝ should in particular be non-trivial. As a

consequence, we recover for instance, the self-duality property of the Hopf

algebras in [G, §3], [W, Ch. IV].

Conventions. We shall work over a field k. The multiplicative group

of non-zero elements in k will be denoted by k×. The notation for Hopf

algebras is standard: m, 1, ∆, ε, S, denote respectively the multiplica-

tion, the unit, the comultiplication, the counit, and the antipode; we add

a subscript to indicate the Hopf algebra when necessary. For instance, ∆R

denotes the comultiplication of the bialgebra R. We use this version of

Sweedler notation for comultiplications and coactions: If H is a bialgebra

and ρ : M → H ⊗M is a left coaction, for h ∈ H, m ∈ M , we write h1 ⊗h2

and m−1 ⊗m0, for ∆(h) and ρ(m), respectively. However, if a bialgebra R

is equipped with a coaction R → H ⊗ R of another bialgebra H, then to
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avoid confussions we denote ∆R(r) = r1 ⊗ r2, for r ∈ R.

For a finite dimensional Hopf algebra H, H∗ will denote the linear dual

of H with the Hopf algebra structure obtained by transposing that of H.

For a finite group Γ, we denote by Γ̂ := Homgroups(Γ,k
×) the group of

one-dimensional k-representations of Γ. Then Γ̂ ⊆ kΓ coincides with G(kΓ).

Also, if Γ is abelian and k is algebraically closed of characteristic zero, then

kΓ = kΓ̂ � kΓ, although the isomorphism is not canonical. We denote as

usual δγ ∈ kΓ for the primitive idempotent corresponding to γ ∈ Γ, i.e.,

δγ(h) = δγ,h, ∀h ∈ Γ.

Our reference for the theory of Hopf algebras is [Mo]. We follow [A] for

the basic theory of extensions of Hopf algebras. See also [AD], [M2], [Ma],

[Sch].

§1. Basic Construction

1.1 Smash coproduct bialgebra

Let K be a Hopf algebra, and R a bialgebra over k. Let ρ : R → K ⊗R

be a left coaction of K on R.

Assume that the following conditions hold:

(1.1.1). ∆R : R → R⊗R, εR : R → k, are left K-comodule maps.

(1.1.2). mR : R⊗R → R, 1R : k → R, are left K-comodule maps.

(1.1.3). r−1k ⊗ r0 = kr−1 ⊗ r0, for all r ∈ R, k ∈ K.

Lemma (1.1.4). The vector space R ⊗K becomes a bialgebra with the

tensor product algebra structure and the smash coproduct coalgebra struc-

ture. Explicitly,

(r#k)(s#g) = rs#kg, 1 = 1#1,

∆(r#k) = r1#(r2)−1k1 ⊗ (r2)0#k2, ε(r#k) = ε(r)ε(k),

for all r, s ∈ R, k, g ∈ K; where r#k denotes the element r ⊗ k of R ⊗K.

We denote this bialgebra structure by R � K.

If R is a Hopf algebra, then R � K also is and its antipode is given by

S(r#k) = SR(r0)#S(r−1k),

for all r ∈ R, k ∈ K.
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We have in this case a short exact sequence of Hopf algebras:

1 → K
ι→ R � K

π→ R → 1,

where ι and π are defined respectively, by ι(k) = 1#k, π(r#k) = ε(k)r, for

all r ∈ R, k ∈ K.

Proof. Follows from [A, §3] taking A = Kcop, B = Rop, τ , σ and ⇀

trivial. Indeed, condition (1.1.1) is contained in [A, 2.3], observe that as

τ is trivial [A, 2.1.6] implies that ρ must be a coaction; condition (1.1.2)

corresponds to [A, 2.1.9], condition (1.1.3) corresponds to [A, 2.1.10]. �

Remark (1.1.5). Conditions (1.1.1)–(1.1.3) say that (R,∆R,mR) is a

bialgebra (respectively Hopf algebra) in the braided category of Yetter-

Drinfeld modules over K with left coaction ρ and trivial left action. Also,

the structure in Lemma (1.1.4) is the corresponding biproduct bialgebra

structure (respectively Hopf algebra structure) on R⊗K. See [R], [M1].

1.2 Twisted smash product bialgebra

Let H be a Hopf algebra, and T a bialgebra over k. Let . : H ⊗ T → T ,

be a left weak action [BCM] of H on T , that is

(1.2.1)

h.(ts) = (h1.t)(h2.s),

h.1 = ε(h)1,

1.t = t,

for all h ∈ H, t, s ∈ T .

We say . : H ⊗ T → T is an algebra action if in adition it is associative,

i.e., if h.(g.t) = hg.t, for all h, g ∈ H, t ∈ T .

Let also σ : H ⊗H → T be a normalized 2-cocycle, that is,

(1.2.2)
σ(h, 1) =σ(1, h) = ε(h)1,

[h1.σ(l1,m1)]σ(h2, l2m2) = σ(h1, l1)σ(h2l2,m),

for all h, l,m ∈ H, such that

(1.2.3) (h1.(l1.t))σ(h2, l2) = σ(h1, l1)(h2l2.t),
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for all t ∈ T , h, l,m ∈ H.

Then the vector space T⊗H becomes an algebra with the multiplication

(1.2.4) (t#h)(u#l) = t(h1.u)σ(h2, l1)#h2l2,

for all t, u ∈ T , h, l ∈ H, with unit element 1#1 [BCM], [DT]. As above,

we denote by t#h the element t⊗ h of T ⊗H.

Let us now also assume that

(1.2.5). ε ◦ σ = ε⊗ ε.

(1.2.6). ∆T (h.t) = h1.t
1 ⊗ h2.t

2, and ε(h.t) = ε(h)ε(t), for all h ∈ H,

t ∈ T .

(1.2.7). h2 ⊗ h1.t = h1 ⊗ h2.t, for all t ∈ T , h ∈ H.

(1.2.8). h2l2 ⊗ σ(h1, l1) = h1l1 ⊗ σ(h2, l2), for all h, l ∈ H.

(1.2.9). ∆(σ(h, l)) = σ(h1, l1) ⊗ σ(h2, l2), for all h, l ∈ H.

Lemma (1.2.10). The vector space T ⊗H is a bialgebra with multipli-

cation (1.2.4), tensor product comultiplication ∆(t#h) = t1#h1 ⊗ t2#h2,

and counit ε(t#h) = ε(t)ε(h). We denote this bialgebra structure by T#σH.

If T is a Hopf algebra and σ is convolution invertible, then T#σH also

is and its antipode is given by

S(t#h) = σ−1(S(h3), h4)(S(h2).ST (t))#S(h1),

for all t ∈ T , h ∈ H.

We have in this case a short exact sequence of Hopf algebras

1 → T
ι→ T#σH

π→ H → 1,

where ι and π are defined respectively, by ι(t) = t#1, π(t#h) = ε(t)h, for

all t ∈ T , h ∈ H.

Proof. Follows from [A, §3] taking A = T , B = H, τ , ρ trivial.

Note that (1.2.5) corresponds to [A, 2.1.7], (1.2.6) corresponds to [A, 2.1.8],

(1.2.7) corresponds to [A, 2.1.10], (1.2.8) corresponds to [A, 2.1.9], and

(1.2.9) corresponds to [A, 2.1.11]. �
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1.3 Basic construction

We want to combine now the constructions in (1.1) and (1.2).

Definition. Let K,H be Hopf algebras, and let σ : H ⊗H → K be a

normalized 2-cocycle of H on K with trivial H-action, such that σ satisfies

(1.2.5), (1.2.8), (1.2.9). Let R be a bialgebra, . : H ⊗R → R a left algebra

action, ρ : R → K ⊗ R a left coaction such that (1.1.1)–(1.1.3) hold. We

say that the collection (K,H,R, ., ρ, σ) is a basic data, if in addition the

following conditions are fulfilled:

(1.3.1). σ(H ⊗H) ⊆ Z(K).

(1.3.2). h2 ⊗ h1.r = h1 ⊗ h2.r, for all r ∈ R, h ∈ H.

(1.3.3). ∆R and εR are left H-module maps.

(1.3.4). ρ(h.r) = r−1 ⊗ h.r0, for all r ∈ R, h ∈ H.

Lemma (1.3.5). Let (K,H,R, ., ρ, σ) be a basic data. Then the vector

space R⊗K⊗H becomes a bialgebra, with multiplication and comultiplica-

tion determined respectively by

(1.3.6)
(r#k#h)(s#g#l) = r(h1.s)#kgσ(h2, l1)#h3l2,

∆(r#k#h) = r1#(r2)−1k1#h1 ⊗ (r2)0#k2#h2,

for all r, s ∈ R, h, l ∈ H, k, g ∈ K. The unit and the counit are the obvious

ones. We denote this bialgebra by R � K#σH.

If σ is convolution invertible, then R�K#σH is a Hopf algebra and its

antipode is given by

(1.3.7) S(r#k#h) = S(h2).SR(r0)#σ−1(S(h3), h4)S(r−1k)#S(h1),

for all t ∈ T , h ∈ H.

In this case the Hopf algebra R�K#σH is obtained from R by a double

process of extension. In fact, we have two exact sequences of Hopf algebras

1 → K
ι→ R � K

π→ R → 1,

and

1 → R � K
ι→ R � K#σH

π→ H → 1.
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Proof. Let T := R�K be the smash coproduct bialgebra (see (1.1)).

Let . : H ⊗ T → T , h.(r#k) = h.r#k, σ : H ⊗ H → K ⊆ T . We verify

that the conditions in (1.2) hold. Conditions (1.2.1) and (1.2.2) are trivial.

Since . : H ⊗ R → R is an algebra action, (1.2.3) follows from (1.2.8) and

(1.3.1). It remains to show (1.2.6) and (1.2.7). The first is a consequence

of (1.3.3) and (1.3.4), while the second is inmediate from (1.3.2). �

As a Corollary of Lemma (1.2.10) we obtain:

Lemma (1.3.8). Let H,K be Hopf algebras. Let σ : H ⊗ H → K

be a normalized 2-cocycle with trivial action of H on K. Suppose σ is

convolution invertible and satisfies (1.2.5), (1.2.8), (1.2.9), (1.3.1). Then

the vector space K ⊗ H becomes a Hopf algebra, denoted by K#σH with

multiplication, comultiplication and antipode

(1.3.9)

(k#h)(g#l) = kgσ(h1, l1)#h2l2,

∆(k#h) = k1#h1 ⊗ k2#h2,

S(k#h) = σ−1(S(h3), h3)#S(h1),

for all k, g ∈ K, h, l ∈ H. We have an extension of Hopf algebras

1 → K
ι→ K#σH

π→ H → 1,

where the maps are canonical.

Proof. Follows directly from Lemma (1.2.10) taking T = K, with

trivial H-action. �

Let (H,K,R, ρ, ., σ) be a basic data. Let ψ1 : H → H and ψ2 : K → K

be Hopf algebra automorphisms, and define maps .′ : H ⊗R → R, ρ′ : R →
K ⊗R and σ′ : H ⊗H → K by the formulas

h.′r = ψ1(h).r,

ρ′(r) = ψ2(r−1) ⊗ r0,

σ′(h, l) = ψ2 ◦ σ ◦ (ψ1 ⊗ ψ1)(h, l),

for h, l ∈ H, r ∈ R. We state the following Lemma for future use (see §2).

Its proof is straightforward and left to the reader.
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Lemma (1.3.10). i). (H,K,R, ρ′, .′, σ′) is a basic data. If σ is convo-

lution invertible, then so is σ′.
ii). Denote by R�K ′#σ′H ′ the bialgebra associated to (H,K,R, ρ′, .′, σ′).

Then the map F = id⊗ψ2
−1⊗ψ1 : R�K ′#σ′H ′ → R�K#σH is a bialgebra

isomorphism.

1.4 Presentation of R � K#σH as a biproduct

Let (H,K,R, ρ, ., σ) be a basic data. Keep the notation in (1.3). Denote

by A := R � K#σH, and let K#σH be the Hopf algebra in (1.3.8).

Proposition (1.4.1). (R,∆R,mR) is a braided bialgebra in the cate-

gory of Yetter-Drinfeld modules over K#σH, K#σH
K#σH

YD, with left coaction

δ : R → K#σH⊗R, δ(r) = (r−1#1)⊗r0, and left action ◦ : K#σH⊗R →
R, (k#h) ◦ r = ε(k)h.r.

Moreover the correponding biproduct bialgebra A′ = R × (K#σH) is

isomorphic to A via the map F : A′ → A, F (r × (k#h)) = r#k#h.

Proof. It follows from (1.1.1), (1.1.2) that ∆R, εR, mR, 1R are

K#σH-comodule maps.

On the other hand, using that . : H ⊗ R → R is an algebra action, it

follows that mR, 1R are K#σH-module maps. Also, by (1.3.3), ∆R is an H-

module map, and thus a K#σH-module map. That εR is a K#σH-module

map follows from the definition of an action (see (1.2.1)).

To show that R is a Yetter-Drinfeld module, we must prove that

(1.4.2) δ((k#h) ◦ r) = (k#h)1(r−1#1)S((k#h)3) ⊗ (k#h)2 ◦ r0,

for all k ∈ K, h ∈ H, r ∈ R. Now, we have

δ((k#h) ◦ r) = ε(k)δ(h.r) = ε(k)(r−1#1) ⊗ h.r0,

where the last equality follows from (1.3.4). On the other hand, we have

(k#h)1(r−1#1)S((k#h)3) ⊗ (k#h)2 ◦ r0

= (k1#h1)(r−1#1)S(k3#h3) ⊗ (k2#h2) ◦ r0 by (1.3.2)

= (k1#h2)(r−1#1)S(k2#h3) ⊗ h1.r0
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= (k1r−1#h2)(S(k2)#1)(σ−1(S(h3), h4)#S(h2)) ⊗ h1.r0

by (1.1.3)

= ε(k)(r−1#1)(1#h2)(σ
−1(S(h3), h4)#S(h2)) ⊗ h1.r0

by (1.3.9)

= ε(k)(r−1#1)(1#h2)S(1#h2) ⊗ h1.r0

= ε(k)(r−1#1) ⊗ h.r0.

So (1.4.2) follows.

Finally, we have to check that R is a braided bialgebra in K#σH
K#σH

YD, i.e.,

that for all r, s ∈ R,

(1.4.3) ∆R(rs) = r1(((r2)−1#1) ◦ s1) ⊗ (r2)0s
2.

Now, as R is a bialgebra in Mk, ∆R(rs) = r1s1 ⊗ r2s2. On the other hand,

r1(((r2)−1#1) ◦ s1) ⊗ (r2)0s
2 = r1s1 ⊗ ε((r2)−1)(r

2)0s
2

= r1s1 ⊗ r2s2,

hence (1.4.3) follows.

Now, it is straightforward to verify that F is an isomorphism of bialge-

bras. �

Remark (1.4.4). In general, let B be a finite dimensional Hopf alge-

bra, and let (R,∆R,mR) be a finite dimensional Hopf algebra in B
BYD with

coaction ρ : R → B⊗R and action . : B⊗R → R. In particular, ∆R should

satisfy

∆R(ab) = a1((a2)−1.b
1) ⊗ (a2)0b

2,

for all a, b ∈ R.

Let us suppose that there exists a normal Hopf subalgebra K of B which

acts trivially on R while ρ(R) ⊆ K ⊗ R. Then R is a Hopf algebra in the

category of Yetter-Drinfeld modules over K.

Now, it is straighforward to verify that R ×K ⊆ R × B coincides with

the smash coproduct R � K corresponding to the restricted coaction ρ :

R → K ⊗ R, and is a normal Hopf subalgebra. Therefore, the biproduct
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R × B may be obtained by a double process of extension; indeed we have

two exact sequences of Hopf algebras

(1.4.5) 1 → R � K
ι→ R×B

π→ B/BK+ → 1,

and

(1.4.6) 1 → K → R � K → R → 1,

where the maps in (1.4.6) are the obvious ones, the map ι : R�K → R×B

in (1.4.5), is defined by ι(r#k) = r#k and the map π is π(r#b) = ε(r)b,

where b is the class of b in B/BK+.

Denoting H := B/BK+, we are in the previous situation, except that

the action of H on K and the dual cocycle τ : H → K ⊗ K are not

necessarily trivial. (Here we use that an extension of finite dimensional

Hopf algebras is always cleft). The analysis of this more general situation

exceeds the purposes of this paper.

It would be also interesting to know the answer to the following re-

ciproque question: given a (usual) Hopf algebra R which is also a braided

Hopf algebra in B
BYD, does there exists a normal Hopf subalgebra K of B

which acts trivially on R while ρ(R) ⊆ K ⊗R?

An affirmative answer would imply, in the case where B is a simple Hopf

algebra, that if R is a braided Hopf algebra in B
BYD, which is also a usual

Hopf algebra, then either the action or the coaction of B on R are trivial.

1.5 First properties of R � K#σH

In this subsection we give sufficient conditions for R � K#σH to be

non-trivial (i.e., not commutative and not cocommutative), and determine

G(R � K#σH). Throughout (R,K,H, ρ, ., σ) is a basic data. We keep the

notation and conventions in (1.4).

Lemma (1.5.1). i). The Hopf algebra K#σH is cocommutative iff K

and H are cocommutative.

ii). The Hopf algebra K#σH is commutative iff K and H are commu-

tative and σ(h, l) = σ(l, h), for all h, l ∈ H.

Proof. Follows directly from (1.3.9). �
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Let G denote the group G(H). Condition (1.2.9) implies that σ(g⊗h) ∈
G(K), for all g, h ∈ G. Also, by (1.3.1) σ(G×G) ⊆ Z(K). Now, conditions

(1.2.2) imply that the restriction of σ to G×G is a normalized factor set of

G with values in G(K)∩Z(K). So that σ belongs to H2(G,G(K)∩Z(K)):

the second cohomology group of G with coefficients in the trivial G-module

G(K) ∩ Z(K) [B, Ch. IV].

In particular we may form a ”twisted” product of G(K) by G, which we

will denote by G(K)×σ G, as follows: as set G(K)×σ G = G(K)×G, and

multiplication is given by (x, g)(x′, g′) = (xx′σ(g, g′), gg′), for all x, x′ ∈
G(K), g, g′ ∈ G. And we have a short exact sequence

1 → G(K) → G(K) ×σ G → G → 1,

where the maps are canonical.

Lemma (1.5.2). G(K#σH) = G(K) ×σ G(H).

Proof. Follows from (1.3.9) and the preceeding considerations. �

As an application of Proposition (1.4.1) we have the following corollaries:

Corollary (1.5.3). i). The bialgebra R � K#σH is cocommutative

iff R, K and H are cocommutative and the coaction ρ is trivial.

ii). The bialgebra R � K#σH is commutative iff R, K and H are com-

mutative, the action . : H ⊗ R → R is trivial and σ(h, l) = σ(l, h), for all

h, l ∈ H.

Proof. Combine Proposition (1.4.1) with Lemma (1.5.1) and [R, Sec-

tion 2, Prop. 1]. �

Call G(R)coK the semigroup of u ∈ G(R) such that ρ(u) = 1⊗u. If R is a

Hopf algebra, then G(R)coK is a subgroup of G(R). The action ◦ of K#σH

on R induces an action by Hopf algebra automorphisms ◦ : (G(K)×σ G)×
R → R, and it is clear that this action preserves G(R). Moreover, because

of the Yetter-Drinfeld condition (1.4.2), this in turn induces by restriction

an action by group automorphisms ◦ : (G(K)×σG)×G(R)coK → G(R)coK .

So that we may consider the semidirect product G(R)coK � G(K) ×σ G.
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Corollary (1.5.4). i). G(R � K#σH) = G(R)coK × G(K) ×σ G.

If R is a Hopf algebra, then G(R � K#σH) coincides with the semidirect

product group G(R)coK � (G(K) ×σ G).

Proof. Combine Proposition (1.4.1) with Lemma (1.5.2) and [R, 2.11].

�

Proposition (1.5.5). A = R�K#σH is semisimple if and only if R,

K and H are semisimple.

Proof. Follows from [BM]. �

1.6 Structure of the dual bialgebra

Let (K,H,R, ., ρ, σ) be a basic data. In this subsection we assume that

K, H and R are finite dimensional and describe the structure of the dual

bialgebra A∗, where A = R � K#σH is the bialgebra constructed in (1.3).

(1.6.1). The left action . : H ⊗ R → R gives rise to a left coaction

ρ∗ : R∗ → H∗ ⊗R∗ in the form

ρ∗(f) = f−1 ⊗ f0 iff 〈f, h.r〉 = 〈f−1, h〉〈f0, r〉, ∀h ∈ H, r ∈ R.

Dualizing the conditions on . : H ⊗ R → R, it is not difficult to see that

ρ∗ satisfies (1.1.1)–(1.1.3). So that we may consider the smash coproduct

bialgebra R∗ � H∗.
(1.6.2). The left coaction ρ : R → K ⊗ R gives rise to a left action

∗ : K∗ ⊗R∗ → R∗ in the form

〈α.f, r〉 = 〈α, f−1〉〈f0, r〉,

for all α ∈ K∗, f ∈ R∗, r ∈ R. Also, σ : H ⊗ H → K gives rise to

τ : K∗ → H∗ ⊗H∗, in the form

〈τ(α), h⊗ l〉 = 〈α, σ(h, l)〉,

for all α ∈ K∗, h, l ∈ H.

Letting K∗ act trivially on H∗, we now extend the action of K∗ on

R∗ to an action of K∗ on R∗ � H∗. We consider the trivial coaction of

K∗ on R∗ � H∗, the trivial cocycle K∗ ⊗ K∗ → R∗ � H∗ and the dual
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cocycle K∗ → R∗ � H∗ ⊗ R∗ � H∗ obtained from τ . Hence, we can form

(R∗ � H∗)τ#K∗ as in [A, §3].

Proposition (1.6.3). If A = R�K#σH, then A∗ � (R∗�H∗)τ#K∗.

Proof. One identifies A∗ with the vector space R∗ ⊗ H∗ ⊗ K∗, and

verifies that the multiplication and comultiplication have the prescribed

form. We leave the details to the reader. �

§2. Examples

We show in this section some examples of the basic construction in §1.

We follow a simple pattern described in (2.1).

2.1 A simple pattern

Let G, Γ be finite groups, and let K = kΓ = (kΓ)∗, H = kG. Let R be a

bialgebra. Then it is equivalent to provide the two data in each of (2.1.1-3).

(2.1.1). A left coaction ρ : R → K ⊗ R satisfying (1.1.1)–(1.1.3), or a

group morphism θ : Γ → AutBialg(R). Indeed the left coaction ρ gives rise

to a right action of Γ on R bialgebra automorphisms; composing with the

inversion of Γ, we have a left action and hence the morphism θ. Conversely,

given θ, ρ is determined by

ρ(r) =
∑
γ∈Γ

δγ ⊗ θ(γ−1)(r),

for r ∈ R.

(2.1.2). A left action . : H⊗R → R satisfying (1.3.2)–(1.3.4), or a group

morphism µ : G → AutBialg(R), such that the commutator [µ(G), θ(Γ)] = 1

in AutBialg(R). Indeed, as H is cocommutative, condition (1.3.2) is void.

(2.1.3). A normalized 2-cocicle σ : H ⊗ H → K with trivial H-action,

satisfying (1.2.3), (1.2.5), (1.2.8), (1.2.9), (1.3.1), or a normalized factor set

σ : G×G → Γ̂ [B], which a fortiori results invertible.

(2.1.4). Let σ : G × G → Γ̂, be a normalized factor set. By the results

in (1.3), if the data and conditions in (2.1.1)-(2.1.2) are fullfilled, there is

an associated bialgebra R � kΓ#σkG.

Consider the trivial action of G on Γ̂. Let σ′ be another normalized factor

set. Observe that if [σ] = [σ′] in H2(G, Γ̂), i.e., if there exists f : G → Γ̂,
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such that σ = σ′δf , then the associated Hopf algebra R � kΓ#σkG is

isomorphic to the Hopf algebra R � kΓ#σ′kG. An explicit isomorphism is

given by r#k#g �→ r#kf(g)#g. Indeed, by [AD, Lemma 3.1.6], in this

case (R�kΓ)#σkG is isomorphic to the Hopf algebra (R�kΓ)τ
f−1

#σ′kG,

where τ f
−1

: kG → R � kΓ ⊗R � kΓ, is the dual cocycle given by

τ f
−1

(g) = ∆(f(g))(f−1(g) ⊗ id)(g ⊗ 1)(1 ⊗ f−1(g))

= ∆(f(g))(f−1(g) ⊗ f−1(g)),

for all g ∈ G. Hence τ f
−1

coincides with the trivial cococycle τ(g) = 1,

∀g ∈ G, because f(G) ⊆ Γ̂. So that in order to obtain non-isomorphic Hopf

algebras R� kΓ#σkG, we may restrict ourselves to consider the class of σ,

[σ], in H2(G, Γ̂).

We formally resume the previous discussion in the following proposition.

Proposition (2.1.5). Let G, Γ be finite groups, and R a bialgebra.

Let also

θ : Γ → AutBialg(R) and µ : G → AutBialg(R),

be group morphisms, such that

[µ(G), θ(Γ)] = 1.

For any [σ] ∈ H2(G, Γ̂), there is an associated bialgebra R�kΓ#σkG, with

multiplication and comultiplication determined respectively by

(r#f#g)(s#f ′#g′) = rµ(g)(s)#ff ′σ(g, g′)#gg′,

∆(r#δγ#g) =
∑
uv=γ

r1#δu#g ⊗ θ(u−1)(r2)#δv#g,

for all r, s ∈ R, f, f ′ ∈ kΓ, γ, u, v ∈ Γ, g, g′ ∈ G. If R is a Hopf algebra,

then R � kΓ#σkG also is and its antipode is given by

S(r#δγ#g) = µ(g−1) ◦ θ(γ−1)(S(r))#σ(g−1, g)−1δγ−1#g−1,

for all r ∈ R, γ ∈ Γ, g ∈ G. We have G(A) = G(R)Γ � (Γ̂ ×σ G).
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2.2 Examples with cyclic groups

We want to apply Proposition (2.1.5) to the case where G = {1, g, . . . ,
ga−1}, Γ = {1, u, . . . , ub−1}, are cyclic groups of orders a and b respectively,

and R = kN for a finite group N . In this case AutBialg(R) coincides with

the group of group automorphisms Aut(N).

(2.2.1). Let Π be an abelian group with trivial G-action, and denote by

Πa := {ξa : ξ ∈ Π}. Recall that there is an isomorphism H2(G,Π) � Π/Πa,

which assigns to each ξ ∈ Π/Πa, the 2-cocycle [σξ] given by

σξ(g
i, gj) = ξqij ,

for all 0 ≤ i, j ≤ a− 1, where qij is the quotient of the division of i + j by

a, i.e., i + j = aqij + rij , qij , rij ∈ Z, 0 ≤ rij ≤ a− 1. See e.g. [B, pp. 100].

(2.2.2). Suppose N = {1, x, . . . , xn−1} is a cyclic group of order n. Then

Aut(N) � (Z/(n))×, is abelian of order φ(n), where φ denotes the Euler

indicator. In particular, Aut(N) is cyclic when n is a prime number.

Assume there exist non-negative integers m, t, such that (m;n) =

(t;n) = 1, and such that the orders of the classes of m and t in (Z/(n))×

divide a and b, respectively. This amounts to say that Aut(N) contains

elements µ and θ whose orders divide a and b, respectively. Explicitly,

(2.2.3) µ(x) = xm, and θ(x) = xt.

Then there are group morphisms G → Aut(N), and Γ → Aut(N), given

respectively by g �→ µ, u �→ θ. (This is a slight abuse of notation; the

former µ is determined by µ(g) which is equal to the new µ and similarly

for θ.)

So that if [σ] ∈ H2(G, Γ̂), (2.1.5) gives a Hopf algebra A := R�kΓ#σkG,

of dimension nab.

As a corollary of Proposition (2.1.5) we get the following:

Proposition (2.2.4). Let N = {1, x, . . . , xn−1}, G = {1, g, . . . , ga−1},
Γ = {1, u, . . . , ub−1} be cyclic groups of order n, a and b, respectively. Let

m, t be units modulo n, and such that the orders of the classes of m and

t in (Z/(n))× divide a and b, respectively. Let ξ ∈ Γ̂/(Γ̂)a. Then there is
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an associated Hopf algebra A := kN � kΓ#ξkG, of dimension nab, whose

multiplication and comultiplication are determined by

(xi#δuj#gl)(xk#δus#gh) = xi+km
l
#δj,sδujξ

qlh#gl+h,

∆(xi#δuj#gl) =
∑

s+w=j(mod b)

xi#δus#gl ⊗ xit
−s

#δuw#gl,

for all 0 ≤ i, k ≤ n − 1, 0 ≤ j, s, w ≤ b − 1, 0 ≤ l, h ≤ a − 1, where t−s

denotes the inverse of ts in (Z/(n))×. We also have:

i). The Hopf algebra A is semisimple iff the characteristic of k does not

divide the product na.

ii). If m and t �= 1(modn), A is non-commutative and non-cocommuta-

tive; and conversely.

iii). G(A) � Z/(n; t − 1) � Γ̂ ×σ G, in particular G(A) is abelian iff

(n; t− 1) divides m− 1.

Proof. The construction of A is a particular case of (2.1.5). Assertion

i) follows from Proposition (1.5.5), since kΓ is always semisimple. As for ii),

by (1.5.3), if m and t �= 1(modn), the action and coaction are non-trivial

and hence A is non-commutative and non-cocommutative. Finally, it is not

difficult to see that

G(kN)Γ = NΓ = 〈x
n

(n;t−1) 〉 � Z/(n; t− 1).

So that, by (1.5.4), the isomorphism in iii) follows; observe that G(A) is

abelian iff µ(g)(x
n

(n;t−1) ) = x
n

(n;t−1) , iff (n; t− 1) divides m− 1 as claimed. �

2.3 Hopf algebras of dimension pqr

In this subsection we assume, for simplicity of the statements that k is

an algebraically closed field of characteristic zero; we remark however that

most of the results remain valid (with similar arguments for the proofs),

under weaker hypotheses. Let q, r, p be prime numbers, such that q and r

divide p− 1.

(2.3.1). Let G, Γ, and N be cyclic groups of orders q, r and p, respec-

tively. Let m and t be units modulo p such that m, t �= 1(mod p), and
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mq = tr = 1(mod p). Let [σ] ∈ H2(G, Γ̂). We shall denote the associ-

ated Hopf algebra in Proposition (2.2.4), by kN �t
m kΓ#σkG. It is a non-

trivial Hopf algebra of dimension pqr, and satisfies G(kN �t
m kΓ#σkG) �

Z/(r) ×σ Z/(q).

Proposition (2.3.2). Assume that q �= r. Then:

i). The Hopf algebras kN �t
m kΓ#σkG fall into one isomorphism class.

ii). The dual Hopf algebra of kN �t
m kΓ#kG is isomorphic to kN �m

t

kG#kΓ. The Hopf algebras kN �t
m kΓ#kG and kN �m

t kG#kΓ are not

isomorphic.

iii). For both A = kN �t
m kΓ#kG or A = kN �m

t kG#kΓ, we have

G(A) � Z/(qr).

Proof. Write G = {1, g, . . . , gq−1}, Γ = {1, u, . . . , ur−1}, N =

{1, x, . . . , xp−1}, as above. Observe that, when q �= r, H2(G, Γ̂) = 0 by

(2.2.1). In particular, the last assertion follows.

We next prove that the isomorphism class of kN �t
m kΓ#kG does not

depend on the choice of m and t. For this, let m′ and t′ be units modulo p

such that m′, t′ �= 1(mod p), and m′q = t′r = 1(mod p). Then there exist a

unit modulo q, α, and a unit modulo r, β, such that m′ = mα and t′ = tβ.

Let fα : kG → kG and fβ : kΓ → kΓ, be the Hopf algebra automorphisms

given respectively by fα(gi) = giα, and 〈fβ(k), uj〉 = 〈k, ujβ〉, for all 0 ≤
i ≤ q − 1, 0 ≤ j ≤ r − 1, k ∈ kΓ, where β denotes the inverse of β modulo

r. Then, it is not difficult to show, using Lemma (1.3.10),

id⊗fβ ⊗ fα : kN �t′
m′ kΓ#kG → kN �t

m kΓ#kG,

is a Hopf algebra isomorphism.

Observe that by Proposition (1.6.3),

(kN �t
m kΓ#kG)∗ � kN �m′

t′ kG#kΓ,

for certain m′, t′ units modulo p such that m′, t′ �= 1(mod p), and m′q =

t′r = 1(mod p). So (kN �t
m kΓ#kG)∗ � kN �m

t kG#kΓ. It remains to

prove that A = kN �m
t kG#kΓ is not isomorphic to A′ = kN �t

m kΓ#kG.

We claim now that A and A′ are not isomorphic as coalgebras. To see

this, consider the semidirect product group F = N�G corresponding to the
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given action of G on N . This is, up to isomorphism, the only non-abelian

group of order pq. Now, as coalgebras, A � kN�G ⊗ kΓ. Observe that we

may assume that k is algebraically closed. In this case, it is well-known

that F has q irreducible representations of degree 1, and p−1
q irreducible

representations of degree q. Hence, as coalgebras

A � k ⊕ · · · ⊕ k
rq times

⊕Mq(k) ⊕ · · · ⊕Mq(k)
r( p−1

q
) times

,

where Mq(k) denotes the full matrix coalgebra over k of dimension q2. By

the same argument,

A′ � k ⊕ · · · ⊕ k
rq times

⊕Mr(k) ⊕ · · · ⊕Mr(k)
q( p−1

r
) times

,

as coalgebras. This shows that A and A′ are not isomorphic as coalgebras

and the claim follows. �

The smallest application of Proposition (2.3.2) gives us two apparently

new examples of non-trivial semisimple Hopf algebras of dimension 42 =

2.3.7, with G(A) = Z/(6) (see [Mo1]).

2.4 Hopf algebras of dimension pq2

We also assume here that k is an algebraically closed field of character-

istic zero. Put in (2.3.1) r = q, where we recall q < p are prime numbers

such that p = 1(mod q).

Let η ∈ k be a primitive q-th root of unity . Then Ĝ = {1, y, . . . , yq−1},
where y ∈ Ĝ, is defined by 〈y, g〉 = η.

For each 0 ≤ l ≤ q − 1, let σl : G × G → Ĝ, be the 2-cocycle given in

(2.2.1) corresponding to yl ∈ Ĝ/(Ĝ)
q

= Ĝ, i.e.,

σl(g
i, gj) = ylqij ,

for 0 ≤ i, j ≤ q − 1, where qij is the quotient of the division of i + j by q.

Then H2(G, Ĝ) = {[σl] : 0 ≤ l ≤ q − 1}, and [σl] �= [σh] if l �= h. Observe

also that the corresponding central extension, Ĝ×σlG coincides with Z/(q2)

if l �= 0, and with Z/(q) × Z/(q) if l = 0. For each pair of units modulo p,
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m and t, such that m, t �= 1(mod p), and mq = tq = 1(mod p), denote the

associated Hopf algebra as in (2.3.1).

Proposition (2.4.1). i). The Hopf algebras kN �t
mkΓ#σlkG fall into

q isomorphism classes. Moreover, for fixed units modulo p of order q, m

and t, the family

Al := kN �t
m kΓ#σlkG, 0 ≤ l ≤ q − 1,

is a complete system of representatives of the isomorphism classes.

ii). We have G(A0) � Z/(q) × Z/(q), and G(Al) � Z/(q2), for all

1 ≤ l ≤ q − 1.

We will see in §4 that these Hopf algebras are all self dual (see (4.2.4)).

Proof. Assertion ii) follows from Proposition (2.2.4) and the remarks

above.

To prove i), let m, m′, t and t′, be units modulo p of order q, and let σ =

σl be a 2-cocycle. We first claim that kN�t
mkΓ#σlkG � kN�t′

m′kΓ#σhkG,

for some 0 ≤ h ≤ q − 1.

Let, as in (2.3.2), α and β be units modulo q, such that m = m′α and

t = t′β. Let fα : kG → kG and fβ : kG → kG, be the Hopf algebra au-

tomorphisms given respectively by fα(gi) = giα, and 〈fβ(k), uj〉 = 〈k, ujβ〉,
for all 0 ≤ i, j ≤ q − 1, k ∈ kG, where β denotes the inverse of β modulo q.

Then, again using Lemma (1.3.10), we find that

id⊗fβ ⊗ fα : kN �t
m kΓ#σlkG → kN �t′

m′ kΓ#σhkG,

is a Hopf algebra isomorphism, where σh, 0 ≤ h ≤ q − 1, is the cocycle

arising from σl as in (1.3.10). This proves the first claim.

It turns out also from the above argument, that [σh] = 1 iff [σl] = 1, iff

l = 0. On the other hand, it is clear that if l �= 0, then kN �t
m kΓ#σlkG

is not isomorphic to kN �t
m kΓ#kG, because by ii), in the former case the

group-likes form a cyclic group and in the first not. Hence, it follows that

the Hopf algebras kN �t
m kΓ#kG fall into one isomorphism class.

The Proposition will be proved if we show that for 1 ≤ l �= h ≤ q − 1,

and for fixed units modulo p of order q, m and t, the Hopf algebras Al and
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Ah are not isomorphic. For this we will adapt some of the arguments in [G,

Lemma 3.7] Assume for simplicity, that l = 1.

Suppose, on the contrary, that there exists a Hopf algebra isomorphism

F : A1 → Al. As in [G, 3.5], it is not difficult to see that A1, Al both have

a unique Hopf subalgebra B of dimension pq (the same for both cases).

Namely, B = kN �t kG � kN�G, where N � G as in the proof of (2.3.2)

is the only (up to isomorphism) non-abelian group of order pq. Hence, F

induces by restriction a Hopf algebra automorphism F : B → B. Then F

satisfies

F (y) = y, F (x) = xr#kF (x),

for some 1 ≤ r ≤ p− 1, and kF (x) ∈ kG. Now, in A1, we have the relation

gq = y, while in Al, g
q = yl. So that

(*) y = F (y) = F (gq) = F (g)q.

But F induces by restriction an isomorphism between G(A1) = Ĝ ×σ1 G

and G(Al) = Ĝ×σl G, hence

(**) F (g) = yls#gv,

for some 1 ≤ v ≤ q − 1, and 0 ≤ s ≤ q − 1. Comparing (*) and (**), we

find that

F (g) = yls#gl,

for some 0 ≤ s ≤ q − 1, where 1 ≤ l ≤ q − 1 is the inverse of l modulo q.

Now we compute

(2.4.2)

F ((1#1#g)(x#1#1)) = F (g.x#1#g)

= F (xm#1#g)

= F ((xm#1#1)(1#1#g))

= F (x)mF (g)

= (xmr#(kF (x))m#1)(1#yls#gl)

= xmr#(kF (x))myls#gl,

and on the other hand,

(2.4.3)
F (1#1#g)F (x#1#1) = (1#yls#gl)(xr#kF (x)#1)

= xm
lr#kF (x)yls#gl.
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Putting together (2.4.2) and (2.4.3), we get that

mr = mlr(mod p) ⇐⇒ m = ml(mod p) ⇐⇒ l = 1(mod p)

⇐⇒ l = 1,

as claimed. �

Fix m, t in (2.4.1) such that mt = 1(mod p). Then A1 is isomorphic to

the Hopf algebra Aqp in [G, §3]. Also, A0 is isomorphic to Aqp [G, Prop.

3.12].

Remark (2.4.5). Observe that, as coalgebras (and also as algebras,

see §4)

Al � k ⊕ · · · ⊕ k
q2 times

⊕Mq(k) ⊕ · · · ⊕Mq(k)
p−1 times

,

for all 0 ≤ l ≤ q − 1.

2.5 Hopf algebras arising from dual pairs over finite fields

In this section we fix a prime number p, an integer s ≥ 1 and call q := ps.

Let F = Fq denote the field with q elements. For a finite dimensional vector

space N over F, we shall denote the underlying abelian subgroup also by

N . As a corollary of Proposition (2.1.5) we obtain the following.

Proposition (2.5.1). Let N be a finite dimensional vector space over

F. Let G and Γ be non-trivial subgroups of GL(N) commuting with each

other and let [σ] ∈ H2(G, Γ̂). Then there is an associated Hopf algebra

A = kN � kΓ#σkG of dimension qdimN |G||Γ|.

We list below some explicit examples to be further discussed in §4.

(2.5.2). As an application of Proposition (2.5.1), we present now an

alternative construction of a family of semisimple Hopf algebras built in

[W, Ch. IV].

Let N = Fq be the finite field with q elements and let G the cyclic group

of non-zero elements in Fq acting on N by left multiplication. Set a = q−1.

Take G = Γ and denote as above G = {1, g, . . . , ga−1}, for some non-zero

g ∈ Fpr .
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Let λ ∈ k× be a primitive a-th. root of unity; then Ĝ = {1, y, . . . , ya−1},
where 〈y, g〉 = λ. Pick [σ] ∈ H2(G, Ĝ) the 2-cocycle given by (2.2.1), cor-

responding to y. So that we obtain a Hopf algebra H (which is semisimple

if the characteristic of k does not divide a(a + 1)) of dimension a2(a + 1).

Also, by (1.5.3) H is non-commutative and non-cocommutative.

Let F be the semidirect product group F = N � G, with respect to

the above action. In [W, Ch. IV] a Hopf algebra structure is given on

the semisimple k-algebra k(a2) ×Ma(k)(a). It is also shown there that this

Hopf algebra, denoted by H, is self dual and contains a Hopf subalgebra

isomorphic to kF . To prove this, it is shown in [W, (4.1.7)] that H has

a basis {xi, dtjl : 0 ≤ i ≤ a2 − 1, 0 ≤ t, j, l ≤ a − 1}, where the xi’s are

group-likes and the dtjl’s are matrix counits. However, the ultimate reason

of the self-duality of H appeared not clear to the present authors.

Define F : H → H, in the form

F (yl#gi) = xal+i,

F (gh#yl#gi) =
a−1∑
j=0

λl(h−j)dihj ,

for all 0 ≤ i, h, l ≤ a− 1. Then F is an isomorphism of Hopf algebras.

(2.5.3). Let now N = M(d,F), G = Γ = GL(d,F) acting on N by

µ(g)X = gX, θ(g)X = Xg−1. Clearly, Γ̂ = ̂G/[G,G] � ̂GL(1,F) � F̂×.

Hence, for any cocycle [σ] ∈ H2(GL(d,F),F×) we obtain a Hopf algebra of

dimension qd
2
(qd − 1)2 . . . (qd − qd−1)2.

Observe that non-trivial 2-cocycles [σ] ∈ H2(GL(d,F),F×) may be ob-

tained by composing with the non-trivial characters (i.e., powers of the

determinant) of GL(d,F), from cocycles F× × F× → F̂×, cf. (2.2.1).

When d = 1, G and Γ are cyclic. If q = p is prime, then also N is

cyclic and we are in the situation of (2.2). For q not prime, the smallest

example has dimension 36. For d > 1, the smallest example is obtained

when q = 2 = d. In this case the resulting Hopf algebra has dimension

26.32 = 576.

§3. Duality

3.1 Generalities

Suppose that H and K are bialgebras over k. A bilinear form 〈 , 〉 :
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H ×K → k is called a left duality, if it satisfies:

(3.1.1). 〈1, k〉 = ε(k), for all k ∈ K.

(3.1.2). 〈hh̃, k〉 = 〈h, k(1)〉〈h̃, k(2)〉, for all h, h̃ ∈ H, k ∈ K.

The form 〈 , 〉 : H ×K → k is called a right duality, if it satisfies:

(3.1.3). 〈h, 1〉 = ε(h), for all h ∈ H.

(3.1.4). 〈h, kk̃〉 = 〈h(1), k〉〈h(2), k̃〉, for all h ∈ H, k, k̃ ∈ K.

We say that 〈 , 〉 : H×K → k is a duality, if it is both a left and a right

duality.

Remarks. Suppose K is finite dimensional over k. So that K∗ =

Hom(K,k) is a bialgebra over k. This amounts to say that the evaluation

map 〈 , 〉 : K∗ ×K → k is a non-degenerate duality.

(3.1.5). A left (respectively right) duality 〈 , 〉 : H × K → k induces

an algebra map (respectively a coalgebra map) Ψ : H → K∗, in the form

Ψ(h)(k) := 〈h, k〉, ∀h ∈ H, k ∈ K. The assignment 〈 , 〉 �→ Ψ, gives

a bijective correspondance between the left (respectively right) dualities

〈 , 〉 : H × K → k and the algebra maps (respectively coalgebra maps)

H → K∗. The form 〈 , 〉 is non-degenerate iff Ψ is an isomorphism. Under

this equivalence, dualities 〈 , 〉 : H×K → k become identified with bialgebra

maps H → K∗.
(3.1.6). If both H and K are Hopf algebras, then the map induced by

a duality 〈 , 〉 : H ×K → k is a Hopf algebra map Ψ : H → K∗, because

any bialgebra map H → K must preserve the antipode. In particular, a

Hopf algebra H is self-dual iff there exists a non-degenerate duality 〈 , 〉 :

H ×H → k.

(3.1.7). A left duality 〈 , 〉 : K×H → k, induces left and right K-module

structures on H, denoted by ⇀ and ↼, respectively, in the form

k ⇀ h = 〈k, h2〉h1, h ↼ k = 〈k, h1〉h2,

for h ∈ H, k ∈ K. If 〈 , 〉 is a duality then ⇀ and ↼ are K-module algebra

structures.

3.2 Twisted duality

Throughout (K,H,R, ., ρ, σ) and (K ′, H ′, R′, .′, ρ′, σ′) will denote two

basic datum. We introduce in this subsection (see (3.2.5)), a ”twisted”

bilinear form R � K#σH × R′ � K ′#σ′H ′ → k. We also give sufficient

conditions for it to be a duality.
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Let A be a coalgebra and B an algebra. Let > denote the convolu-

tion product in Hom(A,B). The group of convolution invertible maps

in Hom(A,B) will be denoted by Reg(A,B). Similarly, the subgroups of

Reg(A,B) consisting, respectively, of the maps f such that f(1) = 1, and

ε ◦ f = ε, will be denoted by Reg1(A,B) and Regε(A,B); also Reg1,ε(A,B)

denotes the subgroup Regε(A,B) ∩ Reg1(A,B).

For f ∈ Reg(A,B), we denote by δf ∈ Reg(A⊗A,B), the map given by

δf(a⊗ b) = f(a1)f(b1)f
−1(a2b2),

for all a, b ∈ A. See [AD, 3.1].

Let

(3.2.1). 〈 , 〉 : K ×H ′ → k,

(3.2.2). 〈 , 〉 : H ×K ′ → k,

be non-degenerate dualities. Let also

(3.2.3). φ : H ×H ′ → k,

(3.2.4). ( | ) : R×R′ → k,

be respectively a convolution invertible bilinear map, and a bilinear map.

By means of the dualities (3.2.1) and (3.2.2), the left coactions ρ : R →
K⊗R and ρ′ : R′ → K ′⊗R′ give rise respectively to right actions R⊗H ′ →
R and R′ ⊗H → R′ in the form

r.h′ := 〈r−1, h
′〉r0, r′.h := 〈h, r′−1〉r′0,

for all r ∈ R, r′ ∈ R′, h ∈ H, h′ ∈ H ′.
The map φ in (3.2.3) induces invertible linear maps φ̃ : H → (H ′)∗ and

φ : H ′ → H∗, determined respectively by

φ̃(h)(h′) = φ(h, h′) = φ(h′)(h),

∀ h ∈ H, h′ ∈ H ′.
Define a bilinear form 〈 | 〉φ : R � K#σH ×R′ � K ′#σ′H ′, by

(3.2.5) 〈r#k#h, r′#k′#h′〉φ := (r|r′) 〈k, h′
1〉 〈h1, k

′〉 φ(h2, h
′
2),

for r ∈ R, r′ ∈ R′, k ∈ K, k′ ∈ K ′, h ∈ H, h′ ∈ H ′.

Theorem (3.2.6). Assume that the following conditions hold:
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(3.2.7). φ(1, h′) = ε(h′), φ(h, 1) = ε(h), for all h ∈ H, h′ ∈ H ′.
(3.2.8). The bilinear form (3.2.4) is (H,H ′)-invariant, that is,

(r.h′|r′) = (r|h′.r′) and (h.r|r′) = (r|r′.h),

for all r ∈ R, r′ ∈ R′, h ∈ H, h′ ∈ H ′.
Then

(3.2.9). The bilinear form 〈 , 〉φ is a left duality iff (3.2.4) is and σ = δφ̃.

(3.2.10). The bilinear form 〈 , 〉φ is a right duality iff (3.2.4) is and

σ′ = δφ.

(3.2.11). The bilinear form 〈 , 〉φ is a duality iff (3.2.4) is a duality,

σ = δφ̃ and σ′ = δφ. In such case, 〈 , 〉φ is non-degenerate iff (3.2.4) is.

Proof. (3.2.9). For r ∈ R, r′ ∈ R′, k ∈ K, k′ ∈ K ′, h ∈ H, h′ ∈ H ′,
we have

〈1#1#1, r′#k′#h′〉φ = (1|r′) 〈1, h′
1〉 〈1, k′〉 φ(1, h′

2) = (1|r′)ε(k′)ε(h′),

by (3.2.7). So 〈 , 〉φ satisfies (3.1.1) iff (3.2.4) does.

Condition (3.1.2) is

〈(r#k#h)(s#g#l), r′#k′#h′〉φ(*)

= 〈r#k#h, (r′#k′#h′)1〉φ〈s#g#l, (r′#k′#h′)2〉φ,

for all r, s ∈ R, r′ ∈ R′, k, g ∈ K, k′ ∈ K ′, h, l ∈ H, h′ ∈ H ′. Hence, if

〈 , 〉φ satisfies (3.1.2) so does (3.2.4): just take k = g = 1, h = l = 1, k′ = 1,

h′ = 1.

Conversely, assume that the bilinear form (3.2.4) satisfies (3.1.2). The

left hand side of (*) equals

〈(r#k#h)(s#g#l), r′#k′#h′〉φ
= 〈r(h1.s)#kgσ(h2, l1)#h3l2, r

′#k′#h′〉φ
= (r(h1.s)|r′) 〈kgσ(h2, l1), h

′
1〉 〈h3l2, k

′〉 φ(h4l3, h
′
2).

On the other hand, the right hand side of (*) is

〈r#k#h, (r′#k′#h′)1〉φ〈s#g#l, (r′#k′#h′)2〉φ
= 〈r#k#h, r′1#r′2−1k

′
1#h′

1〉φ〈s#g#l, r′20#k′2#h′
2〉φ
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= (r|r′1)(s|r′20) 〈k, h′
1〉〈g, h′

3〉 〈h1, r
′2
−1k

′
1〉〈l1, k′2〉 φ(h2, h

′
2)φ(l2, h

′
4)

= (r|r′1)(s|r′2.h1) 〈k, h′
1〉〈g, h′

3〉 〈h2, k
′
1〉〈l1, k′2〉 φ(h3, h

′
2)φ(l2, h

′
4)

= (r|r′1)(h1.s|r′2) 〈k, h′
1〉〈g, h′

3〉 〈h2, k
′
1〉〈l1, k′2〉 φ(h3, h

′
2)φ(l2, h

′
4)

by (3.2.8)

= (r(h1.s)|r′) 〈k, h′
1〉〈g, h′

3〉 〈h2, k
′
1〉〈l1, k′2〉 φ(h3, h

′
2)φ(l2, h

′
4).

Since (3.2.4) satisfies (3.1.2), we see that (*) is equivalent to

(**) 〈kgσ(h1, l1), h
′
1〉 〈h2l2, k

′〉 φ(h3l3, h
′
2)

= 〈k, h′
1〉〈g, h′

3〉 〈h1, k
′
1〉〈l1, k′2〉 φ(h2, h

′
2)φ(l2, h

′
4).

Now, we have by (1.3.1) and (1.2.8),

〈kgσ(h1, l1), h
′
1〉 〈h2l2, k

′〉 φ(h3l3, h
′
2)

= 〈k, h′
1〉〈g, h′

3〉 〈σ(h1, l1), h
′
2〉 〈h2l2, k

′〉 φ(h3l3, h
′
4)

= 〈k, h′
1〉〈g, h′

3〉 〈σ(h2, l2), h
′
2〉 〈h1l1, k

′〉 φ(h3l3, h
′
4),

and hence (**) is equivalent to

(***) 〈σ(h1, l1), h
′
1〉 φ(h2l2, h

′
2) = φ(h, h′

1)φ(l, h′
2).

This is in turn equivalent to

σ(h, l) = φ̃(h1)φ̃(l1) φ̃−1(h2l2) = (δφ̃)(h, l),

for all h, l ∈ H, as claimed.

As to (3.2.10), it is similarly proved using (3.2.7) that 〈 , 〉φ satisfies

(3.1.3) iff (3.2.4) does. Condition (3.1.4), reads in this case

(*) 〈r#k#h, r′(h′
1.s

′)#k′g′σ′(h′
2, l

′
1)#h′

3l
′
2〉φ

= 〈r1#r2
−1k1#h1, r

′#k′#h′〉φ 〈r2
0#k2#h2, s

′#g′#l′〉φ,

for all r ∈ R, s′, r′ ∈ R′, k ∈ K, k′, g′ ∈ K ′, h ∈ H, h′, l′ ∈ H ′. So that if

〈 , 〉φ satisfies (3.1.4), so does (3.2.4).
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Using (3.2.8), this reduces to

(**) 〈k, h′
2l

′
2〉 〈h1, k

′〉 〈h3, g
′〉 〈h2|σ′(h′

2, l
′
1)〉 φ(h4, h

′
3l

′
3)

= 〈k1, h
′
1〉〈k2, l

′
1〉 〈h1, k

′〉 〈h3, g
′〉 φ(h2, h

′
2) φ(h4, l

′
2)

Now, again using (1.2.8) and (1.3.1), this reduces to

〈h1, σ
′(h′

1, l
′
1)〉 φ(h2, h

′
2l

′
2) = φ(h1, h

′) φ(h2, l
′),

or equivalently to

σ′(h′, l′) = φ(h′
1)φ(l′1)φ

−1
(h′

2l
′
2) = (δφ)(h′, l′),

as claimed.

It remains to discuss the non-degeneracy of 〈 , 〉φ. It is clear that if

(3.2.5) is non-degenerate, then (3.2.4) also is. To prove the converse, it is

enough to take R trivial, i.e., to show that the bilinear form

〈 | 〉φ : K#σH×K ′#σ′H ′ → k, 〈k#h, k′#h′〉φ := 〈k, h′
1〉 〈h1, k

′〉 φ(h2, h
′
2),

is non-degenerate. Now, define ζ : K#σH ×K ′#σ′H ′ → k in the form

ζ(k#h, k′#h′) = ε(k)ε(k′)φ−1(h, h′),

for k ∈ K, k′ ∈ K ′, h ∈ H, h′ ∈ H ′. Denote also by ( , ) : K#σH ×
K ′#σ′H ′ → k, the non-degenerate bilinear form ( , ) = 〈 | 〉ε⊗ε.

Then, it is easily verified that the identity

〈 | 〉φ > ζ = ( , )

holds in Hom(K#σH ⊗K ′#σ′H ′,k).

Denote by A := K#σH, and A′ := K ′#σ′H ′. Let S := {x ∈ A :

〈x, y〉φ = 0,∀y ∈ A′}. As 〈 | 〉φ is a right duality, ∆(S) ⊆ S ⊗ A + A ⊗ S.

On the other hand, let W := {x ∈ A : ζ(x, y) = 0,∀y ∈ A′}. We will

show that S ⊆ W and hence, that ∆(S) ⊆ S ⊗ A + A ⊗ W . For this, let

x =
∑

i ki#hi ∈ S, then for all k′ ∈ K ′, and for all h′ ∈ H ′,

0 = 〈x, k′#h′〉φ
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=
∑
i

〈ki, h′
1〉〈hi,1, k′〉φ(h2, h

′
2)

= 〈
∑
i

〈ki, h′
1〉hi,1φ(h2, h

′
2), k

′〉.

Hence, by the non-degeneracy of the form H ×K ′ → k in (3.2.2), we have

∑
i

〈ki, h′
1〉φ(h2, h

′
2)hi,1 = 0,

for all h′ ∈ H ′. Putting h′ = 1, we obtain,

0 =
∑
i

〈ki, 1〉φ(h2, 1)h1 =
∑
i

ε(ki)hi.

Thus, for all k′ ∈ K ′, and for all h′ ∈ H ′,

ζ(x, k′#h′) = ε(k′)
∑
i

ε(ki)φ
−1(hi, h

′)

= ε(k′)φ−1(
∑
i

ε(ki)hi, h
′) = 0,

and the claimed inclusion follows. Now, if y ∈ A′, then

0 = 〈x1, y1〉φζ(x2, y2)

= (x | y),

hence x = 0. Similarly, using that 〈 | 〉φ is a left duality, one can prove that

S′ = {y ∈ A′ : 〈x, y〉φ = 0,∀x ∈ A} = 0, and hence (3.2.11) follows. �

Remark (3.2.12). Assume that (3.2.4) is non-degenerate. The argu-

ment of the proof of (3.2.11) shows that under the assumption that 〈 | 〉φ
is a right duality, the radical S := {x ∈ A : 〈x, y〉φ = 0,∀y ∈ A′} is zero.

In the finite dimensional case, this suffices for the non-degeneracy of 〈 | 〉φ,
since dimA = dimA′.
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3.3 The finite dimensional case

We apply now Theorem (3.2.6) to show that certain basic datum, sat-

isfying notably a symmetry condition on the cocycle, give rise to self-dual

bialgebras. Compare with Proposition (1.6.3).

Let (H,K,R, ., ρ, σ) be a basic data, such that H, K, R are finite di-

mensional. Call A := R � K#σH the associated bialgebra. Let also

〈 , 〉 : K × H → k be a non-degenerate duality. So that ρ gives rise to

a right H-action R⊗H → R, r.h := 〈r−1, h〉r0.

For f ∈ Reg1,ε(H,K), let tf ∈ Reg1,ε(H,K) be defined by 〈tf(h), l〉 =

〈f(l), h〉, for h, l ∈ H.

Theorem (3.3.1). Suppose ( | ) : R × R → k is a non-degenerate

(H,H)- invariant bilinear map, that is

(3.3.2) (h.r|s) = (r|s.h), and (r.h|s) = (r|h.s),

for all r, s ∈ R, h ∈ H. Assume that σ = δf , f ∈ Reg1,ε(H,K). Then

(3.3.3). If ( | ) is a left duality, A � A∗ as algebras, and hence as

coalgebras.

(3.3.4). If ( | ) is a duality and σ = δ(tf), then A � A∗ as bialgebras.

Proof. Claim (3.3.3) follows from (3.2.9) and Remark (3.2.12), taking

〈 , 〉 for (3.2.1), the non-degenerate duality 〈 , 〉op : H ×K → k for (3.2.2),

and φ : H ×H → k, φ(h, l) = 〈f(h), l〉, ∀h, l ∈ H, for (3.2.3). Observe that

φ̃ : H → H∗ coincides with f when identifying K � H∗ by means of 〈 , 〉.
Claim (3.3.4) follows from (3.2.11), observing that when identifying K �

H∗ by means of 〈 , 〉, φ coincides with tf . �

§4. Examples (Continuation)

In this section, we investigate conditions under which the examples

shown in §2 are self dual. We assume in what follows that the base field k

is algebraically closed.

4.1

Keep the notation and hypothesis of (2.1). Then

(4.1.1). A non-degenerate duality 〈 , 〉 : H×K → k as in (3.3), amounts

to a group isomorphism Γ → G.
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(4.1.2). Identify Γ = G via a fixed isomorphism. A non-degenerate

bilinear map ( | ) : R×R → k is (H,H)- invariant, iff it satisfies

(θ(g)(r) | µ(g)(s)) = (r | s) = (µ(g)(r) | θ(g)(s)),

for all g ∈ G, r, s ∈ R.

(4.1.3). Let Π be the multiplicative subgroup of (kΓ)
×

defined by

Π = {f ∈ (kΓ)× : f(1) = 1}.

Then Ĝ is a subgroup of Π. Consider the trivial G-action on Π. Condition

σ = δf , f ∈ Reg1,ε(kG,kΓ), amounts in this case to [σ] = 1 in H2(G,Π).

(4.1.4). Condition σ = δf = δ(tf), amounts to the aditional condition

f−1(tf) ∈ Homgroups(G,Π).

Putting together (2.1) and §3, we get the following proposition.

Proposition (4.1.5). Let R be a bialgebra, Γ, G finite groups, and

[σ] ∈ H2(G, Γ̂), satisfying the hypothesis of Proposition (2.1.5). Assume

that:

i). G � Γ.

ii). There is a non-degenerate duality ( | ) : R × R → k, satisfying

(4.1.2).

iii). σ = δf , for some f : G → (kG)
×
, such that f(g)(1) = 1 = f(1)(g),

∀g ∈ G, and f−1(tf) ∈ Homgroups(G, (kG)
×
).

Then the bialgebra R � kG#σkG in (2.1.5) is self dual.

Proof. Follows from Theorem (3.3.1) and the remarks above. �

4.2

Recall the construction in (2.2), and assume that Γ = G. We assume in

this subsection that the field k is algebraically closed.

(4.2.1). Let Π be as in (4.1.3). In view of the correspondence H2(G,Π) �
Π/Πa mencioned in (2.2.1), and as Π is a divisible abelian group, we have

H2(G,Π) = 1.

Let [σ] ∈ H2(G, Ĝ) be the cocycle in (2.2.1) corresponding to an element

χ ∈ Ĝ, where 〈χ, g〉 = ν ∈ k. Let ω ∈ k such that ωa = ν. Define a function

fω : G → (kG)×, in the form

fω(gi)(gj) := ωij ,
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for 0 ≤ i, j ≤ a − 1. Then fω ∈ Π, fω = tfω, and σ = δfω. In fact, for

0 ≤ i, j, l ≤ a− 1,

δf(gi, gj)(gl) = f(gi)(gl) f(gj)(gl) f(gigj)(gl)
−1

= ω(i+j)lω−rij l = ω(i+j−rij)l

= ω(aqij)l = νqij l = χqij (gl).

So that conditions (4.1.3) and (4.1.4) are always satisfied when G is a cyclic

group.

(4.2.2). Let R = kN , θ, µ : Γ = G → Aut(N), and [σ] ∈ H2(G, Ĝ).

Assume in adition that mt = 1(modn). This amounts to requiring that

θ(g) = µ(g−1).

Let ζ ∈ k be a primitive n-th root of unity. Hence we have a duality

( | ) : N ×N → k, defined by

(4.2.3) (xi | xj) = ζij ,

for 0 ≤ i, j ≤ n. In particular,

(θ(g)(xi) | µ(g)(xj)) = (xim | xjt) = ζmtij = ζij = (xi | xj).

So that (4.2.2) satisfies (4.1.2).

We summarize this remarks in the following corollary.

Corollary (4.2.4). Let A be the Hopf algebra of dimension nab con-

structed in (2.2.4). Assume that Γ = G, and mt = 1(modn). Then A is

self dual.

In particular, we obtain the self-duality of the Hopf algebras of dimension

pq2 in (2.4.1). See [G].

4.3 Self dual Hopf algebras arising from dual pairs

We switch now to the setting in (2.5). So we suppose that N is a

finite dimensional vector space over a finite field F = Fq; G = Γ is a non-

trivial finite group, µ, θ : G → GL(N) are group homomorphisms such that

[µ(G), θ(G)] = 1 and [σ] ∈ H2(G, Ĝ). Assume k is algebraically closed.
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Let [ , ] : N × N → F be a non-degenerate bilinear form over F. Let

ω ∈ k be a primitive q-th root of unity. Define ( | ) : kN × kN → k by

(4.3.1) (x|y) = ω[x,y], x, y ∈ N.

Then ( | ) is non-degenerate and satisfies (4.1.2) whenever [ , ] does.

(4.3.2). Consider in (2.5.1), the trace map on Fqr , Tr : Fqr → Zq,

Tr(s) =
∑

f f(s), for s ∈ Fqr ; where f ranges over the Galois group of the

extension Fqr/Fq. It is well known that the bilinear form [x, y] �→ Tr(xy)

is non-degenerate and it clearly satisfies (4.1.2). Then using Proposition

(4.1.5) and (4.2.1), we find that the associated Hopf algebra, H, is self

dual.

(4.3.3). In (2.5.2), consider the usual trace map on M(d,F). It is well

known that the bilinear form (x, y) �→ Tr(xy) is non-degenerate and satisfies

(4.1.2). Then, applying (4.2.1), we find that the associated Hopf algebra is

self dual whenever σ satisfies iii) in Proposition (4.1.5).

§5. Self Dual Hopf Data

5.1

In this section, we broach the following question: let H be a finite di-

mensional Hopf algebra, ⇀: H∗ ⊗ H → H a left weak action and σ :

H∗⊗H∗ → H a 2-cocycle. Let ρ : H∗ → H∗⊗H be the weak coaction and

τ : H∗ → H ⊗H be the dual cocycle obtained respectively from ⇀ and σ

by transposition. When is (⇀,σ, ρ, τ) a Hopf data?

We follow again [A, §3]. We assume that the map σ satisfies (1.2.2),

(1.2.3) as it should. A straightforward checking shows that ρ is a weak

coaction and τ a dual cocycle. We need then to investigate the compatibility

conditions [A, (3.1.7 - 11)]. For convenience, we introduce maps ↼: H∗ ⊗
H∗ → H∗, ↽: H ⊗H∗ → H and ⇁: H∗ ⊗H∗ → H∗ by

〈β, α ⇀ h〉 = 〈β ↼ α, h〉 = 〈α, h ↽ β〉 = 〈β ⇁ α, h〉;

all these expressions are also equal to 〈ρ(β), a⊗α〉. Here h ∈ H, α, β ∈ H∗.
The answer to our initial question is summarized in the following result.

Proposition (5.1.1). The collection (⇀,σ, ρ, τ) is a Hopf data if and

only if they satisfy (1.2.5),

(5.1.2) ε(α ⇀ a) = 〈α, 1〉ε(a),
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(h ↽ (α1β1))σ(α2 ⊗ β2)(5.1.3)

= σ(α1 ⊗ β1) (β2 ⇀ (h1 ↽ α2)) (h2 ↽ β3),

σ(α1 ⊗ β1) (h ↽ (α2β2))(5.1.4)

= (h1 ↽ α1) (α2 ⇀ (h2 ↽ β1))σ(α3 ⊗ β2),

(5.1.5) 〈α1⊗(α2 ⇀ h) ,
(
β1 ⇀ h′)⊗β2〉 = 〈(α1 ⇀ h)⊗α2, β1⊗

(
β2 ⇀ h′)〉,

(5.1.6) 〈σ(α1 ⊗ β1), γ1µ1〉 〈α2β2, σ(γ2 ⊗ µ2)〉
= 〈α1, σ(γ1 ⊗ µ1)〉 〈β1, σ ((γ2 ⇁ (α2 ↼ µ2) ⊗ (µ3 ↼ α3))〉

〈σ ((α4 ↼ µ4) ⊗ (β2 ↼ (µ5 ↼ α5))) , γ3〉 〈σ(α6 ⊗ β3), µ6〉.

Proof. The conditions (1.2.5) and (5.1.2) are the half of [A, (3.1.7)];

by transposition we get the other half. The conditions (5.1.3), (5.1.4),

(5.1.5) and (5.1.6) correspond respectively to [A, (3.1.8), (3.1.9), (3.1.10),

(3.1.11)]. We leave to the reader these lenghty but straightforward compu-

tations. �

It follows immediately from (5.1.2) that

(5.1.7) 〈β ↼ α, 1〉 = 〈β ⇁ α, 1〉 = 〈α, 1〉〈β, 1〉.

We discuss in the rest of this section some examples of self dual Hopf

algebras obtained from Proposition 5.1.1.

5.2

Let us seek for weak actions ⇀: H∗⊗H → H producing a self dual Hopf

data with trivial cocycle: σ(α ⊗ β) = 〈α, 1〉〈β, 1〉. The conditions stated

above are simplified in the following way. First, (1.2.3) says that ⇀ is an

algebra action. Using (5.1.7) we see that (5.1.6) is void in this case. So, we

have only to impose (5.1.5) and the following translation of (5.1.3, 4):

h ↽ (αβ) = (β1 ⇀ (h1 ↽ α1)) (h2 ↽ β2)(5.2.1)

= (h1 ↽ α1) (α2 ⇀ (h2 ↽ β1)) .
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