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Three-Term Asymptotics of the Spectrum of

Self-Similar Fractal Drums

By Jürgen Gerling and Heinz-Jürgen Schmidt

Abstract. In the present paper we consider the number NΩ(λ)
of eigenvalues not exceeding λ of the negative Laplacian with ho-
mogeneous Dirichlet boundary conditions in a domain Ω ⊂ IRn

with fractal boundary ∂Ω. It is known that for λ → ∞, NΩ(λ) =
Cn|Ω|nλn/2 + O(λD/2), where D is the Minkowski dimension of ∂Ω.
For a certain class of domains with self–similar boundary, so-called
“fractal drums”, we obtain a second term of the form −F(lnλ)λD/2

with a bounded periodic function F and a third term. We investigate
the function F which contains a generalized Weierstrass function
with a self–similar fractal graph. Exact estimates for the Minkowski
dimension for this graph will be presented.

1. Introduction

Can one hear the shape of a drum? asked M. Kac [Ka] in 1966, thereby

comprising a whole mathematical research program into a suggestive head-

line. What he meant was the following inverse problem: Consider the spec-

trum of the Laplacian with Dirichlet boundary conditions on a domain

Ω ⊂ IRn. Which geometrical information concerning Ω could be recovered

from only knowing this spectrum? For the cases of interest, the spectrum

of the negative Laplacian is discrete and consists of an infinite sequence of

positive eigenvalues, each with finite multiplicity, written in increasing order

according to their multiplicity:

0 < λ1 ≤ λ2 ≤ . . . ≤ λi ≤ . . . , with λi → ∞ as i → ∞.(1.1)

All information about the spectrum can be obtained from the counting

function:

For λ ≥ 0 let NΩ : λ �→ NΩ(λ) be the counting function, that is the

number of positive eigenvalues counted with multiplicity not exceeding λ:

NΩ(λ) := #{i ∈ IN : λi ≤ λ}.(1.2)

1991 Mathematics Subject Classification. Primary 35P20.

101



102 Jürgen Gerling and Heinz-Jürgen Schmidt

H. Weyl’s classical asymptotic formula, obtained in this generality by G.

Métivier in [Me], states that

NΩ(λ) ∼ ΦΩ(λ) := (2π)−nBn|Ω|nλn/2, as λ → ∞,(1.3)

where Bn = πn/2(n/2)! denotes the volume of the unit ball in IRn and |A|n is

the n-dimensional Lebesgue measure or “volume” of A ⊂ IRn. According

to this formula, one can hear the “area” of a drum. By the way, this is

equivalent to the semi–classical approximation to the energy spectrum of a

quantum particle confined to Ω according to the rule: NΩ(λ) is roughly the

volume of the classically available part of the phase–space over the volume

of a Planck cell hn. From this it is plausible that the contribution of

those cells has to be subtracted which contribute by a fractional portion to

the Weyl term but not to NΩ. This part is proportional to |∂Ω|n−1 and

λ(n−1)/2, the latter also following from dimensional analysis. For domains

Ω with a smooth boundary (for details see below) we thus arrive at the

following asymptotic formula:

NΩ(λ) = ΦΩ(λ) − Cn−1λ
(n−1)/2 + O(λκ), as λ → ∞(1.4)

with a suitable constant κ ∈ [0, (n − 1)/2] and Cn−1 = 1
4 [Bn−1/(2π)n−1] ·

|∂Ω|n−1.

In this case one can also hear the “circumference” of a drum. However,

if Ω has a fractal boundary Γ = ∂Ω, the second term must be modified

since then |Γ|n−1 = ∞. But, following M.V. Berry [Be], one may argue

as follows: A vibrational mode (i.e. an eigenfunction of −∆) with energy

λ and wavelength ε = 2π/
√
λ cannot resolve details of the boundary of

smaller scale than ε, hence it “sees” a boundary of volume |Γ|n−1(ε) ≈
H(H; Γ)εn−1−H , where H is the (fractal) Hausdorff dimension of Γ and

H(H; Γ) its H–dimensional Hausdorff measure. Inserting this into the

above second term, Berry arrived at his conjecture:

NΩ(λ) = ΦΩ(λ) − Cn,HH(H; Γ)λH/2 + o(λH/2), as λ → ∞,(1.5)

where Cn,H is a positive constant depending only on n and H.

Later work clarified that this conjecture, however appealing it is, had

to be modified at least in two respects. First, J. Brossard and R. Car-

mona showed in [BrCa] by means of a counter–example that the Haus-

dorff dimension in (1.5) must be replaced by the Minkowski dimension
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D. Actually, M.L. Lapidus, in a more general context, proved the following

asymptotics [La1]:

NΩ(λ) = ΦΩ(λ) + O(λD/2), as λ → ∞.(1.6)

Further, J. Fleckinger and D.G. Vassiliev [FlVa1] gave an example,

where the factor of λD/2 is not a constant but a complicated function of λ.

The investigation of this function is the main objective of this paper.

To this end we consider a class of “self–similar” fractal drums which are

constructed from a smooth basic domain ω by adding more and more scaled

down copies of ω. Thus we obtain a domain Ω which is the disjoint union

of ω and N copies of rΩ, r ∈ (0, 1). For example, the Sierpiński gasket

will be obtained for N = 3, r = 1/2 and ω being an equilateral triangle, see

figure 1.

Fig. 1. This figure illustrates the kind of self–similar fractal drums considered in this
paper by means of the Sierpiński gasket.

Of course, this will be a proper subclass of the class of all fractal drums,

and it is not clear which of our results will be typical for the larger class.

But it has the advantage that NΩ can be explicitly calculated in terms of

Nω.

Generally, the counting function has the following scaling and summa-

tion properties:

(i) Let be r ∈ IR+. Then NrΩ(λ) = NΩ(r2λ), λ ≥ 0.
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(ii) Let Ω, Ω1, Ω2 ⊂ IRn be open bounded sets with Ω = Ω1 ∪ Ω2 and

Ω1 ∩ Ω2 = ∅. Then [Me, p. 133]:

NΩ(λ) = NΩ1(λ) + NΩ2(λ), λ ≥ 0.(1.7)

Hence NΩ must satisfy the following functional equation, if Ω is a self–similar

drum:

NΩ(λ) = NNrΩ(λ) + Nω(λ) = NNΩ(r2λ) + Nω(λ).(1.8)

We assume that both counting functions, NΩ and Nω possess asymptotic

expansions in λ,

Nω(λ) ∼
∑
ν∈σ

aνλ
ν and NΩ(λ) ∼

∑
µ∈Σ

Aµλ
µ, as λ → ∞.(1.9)

Here, aν and Aµ may be functions of λ satisfying

0 < lim inf
λ→∞

Aµ(λ) ≤ lim sup
λ→∞

Aµ(λ) < ∞,(1.10)

analogously for aν . Inserting these expansions in (1.8) yields a number of

relations. First, σ ⊂ Σ must hold. For µ ∈ Σ, µ /∈ σ we have Aµ(λ) =

NAµ(r2λ)r2µ. If Aµ(λ) �= Aµ(r2λ) this contradicts (1.10). Hence Aµ(λ) =

F(lnλ), F a bounded and 2 ln r–periodic function and Nr2µ = 1, i.e.

µ =
D

2
, where D =

lnN

ln(1/r)
.(1.11)

D is the Minkowski dimension of Ω. For µ ∈ σ ∩ Σ we only consider the

case of constant aν resp. Aµ. One easily obtains

Aµ =
aµ

1 −Nr2µ
.(1.12)

Some coefficients of the expansion in λ of Nω are well known (cf. Definition

2.2):
an/2 = Φω(1) ⇒ An/2 = ΦΩ(1)

a(n−1)/2 = −Cn−1 ⇒ A(n−1)/2 =
Cn−1

Nrn−1 − 1
.

(1.13)

Therefore we expect a priori the following asymptotic expansion of the

counting function NΩ for domains with (strongly) self–similar boundary

NΩ(λ) = ΦΩ(λ) −F(lnλ)λD/2 +
Cn−1

Nrn−1 − 1
λ(n−1)/2 + o(λ(n−1)/2),(1.14)

as λ → ∞.
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For the class of self–similar drums we have considered, it is easy to see why

the second term contains a proper function F(lnλ) and not just a constant

as Berry conjectured. From the scaling and summation properties of NΩ

it follows that

NΩ(λ) =

[I]∑
i=0

N iNω(r2iλ),(1.15)

where I is defined by r2Iλ = λ0 and λ0 denotes the lowest eigenvalue in

ω. It follows that lnλ ∼ 2I ln(1/r). Suppose that there are “noise–like”

deviations of Nω from its two–term asymptotics of amplitude ≤ Cλκ, κ > 0.

Since Nω is integer–valued there must be some deviations at least with

κ = 0. These sum up to deviations of NΩ from its mean value which are of

amplitude

DΩ(λ) ∼ C

[I]∑
i=0

N i(r2iλ)κ.(1.16)

From the leading term of the geometric sum we obtain

DΩ(λ) ∼ C1λ
κ(Nr2κ)I ∼ C2N

I ∼ C3λ
D/2,(1.17)

independent of κ.

The present paper is organized as follows: In the next section, after in-

troducing some definitions and results, we state and prove our main theorem

concerning the counting function of self–similar fractal drums (see Theorem

2.8). Section 3 is devoted to the discussion of the occurring generalized

Weierstrass function, especially the sharp estimates of the Minkowski

dimension of its fractal graph (see Theorem 3.8 and 3.9). The purpose of

section 4 is to illustrate our results by several examples.

2. Definitions and Main Theorem

Let Ω be an arbitrary nonempty bounded open set in IRn (n ∈ IN) with

boundary Γ := ∂Ω. We consider the following eigenvalue problem:

−∆u = λu in Ω, u = 0 on Γ,(2.1)

where ∆ denotes the Friedrichs extension of the n-dimensional Dirichlet

Laplacian
∑n

k=1 ∂
2/∂x2

k in Ω.
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Let the counting function NΩ be defined as above, cf. (1.2). Since we

are especially interested in the case when the boundary Γ is fractal, let us

now recall the definition of the interior (resp. exterior) Minkowski dimen-

sion [La1, Tr]. This dimension is greater than or equal to the Hausdorff

dimension defined for example in [Fa].

Definition 2.1 (Minkowski dimension). (a) Let Ω ⊂ IRn be an open

bounded set with boundary Γ = ∂Ω. Given ε > 0, let Γε = {x ∈ IRn :

d(x,Γ) < ε} be the open ε-neighborhood of Γ, where d(·, ·) denotes the

Euclidean distance in IRn. For d ≥ 0, let

M∗(d; Γ) := lim sup
ε→0+

ε−(n−d)|Γε ∩ Ω|n(2.2)

be the d-dimensional upper Minkowski content of Γ, relative to Ω. Then

D(Γ) := inf{d ≥ 0 : M∗(d; Γ) = 0} = sup{d ≥ 0 : M∗(d; Γ) = +∞}.(2.3)

is called the Minkowski dimension of Γ, relative to Ω.

(b) Let A ⊂ IRn be bounded. Given ε > 0, let Aε be the open ε-

neighborhood of A as above. For d ≥ 0 let

M̃∗(d;A) := lim sup
ε→0+

ε−(n−d)|Aε|n(2.4)

the d-dimensional Minkowski content of A. Then

D̃(A) := inf{d ≥ 0 : M̃∗(d;A) = 0}(2.5)

= sup{d ≥ 0 : M̃∗(d;A) = +∞}.

is called the Minkowski dimension of A.

For the rest of this paper we will fix the following notations:

(a) Let ω ⊂ IRn (n ∈ IN) be a bounded, open domain with corresponding

counting function Nω : λ �→ Nω(λ) satisfying

Nω(λ) = Φω(λ) − Cn−1λ
(n−1)/2 + O(λκ), as λ → ∞(2.6)

with a suitable constant κ ∈ [0, (n− 1)/2], the Weyl term

Φω(λ) = (2π)−nBn|ω|nλn/2(2.7)
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and the constant Cn−1 = 1
4 [Bn−1/(2π)n−1]|∂ω|n−1. The domain ω will be

called the basic domain. Its lowest eigenvalue will be denoted by λ0.

(b) Let be N ∈ {2, 3, . . .} and r ∈ (0, 1) such that Nrn−1 > 1 and

Nrn < 1, and let be n0 ∈ IN. Further let Ω ⊂ IRn be the open domain

which consists of the union of all n0N
i (i ∈ IN0) mutual disjoint copies of

riω:

Ω :=
⋃

i∈IN0

n0N i⊎
ν=1

riω.(2.8)

(c) Finally, we define

D :=
lnN

ln(1/r)
∈ (n− 1, n).(2.9)

Remark. Pham The Lai has proved (2.6) with κ = (n− 1)/2 if the

boundary ∂ω is of class C∞ [Ph, p. 5]. Under an additional condition (the

manifold Ω̄ does not have too many multiply reflected closed geodesics)

V.Ja. Ivrii showed (2.6) with o(λ(n−1)/2) instead of O(λκ) [Iv,p. 98], i.e. a

boundary term exists. In the case n = 1 expansion (2.6) holds with C0 = 0

and κ = 0.

Definition 2.2 (Curly Bracket). We define for all x ≥ 0:

{x}ω := x− [x]ω, where [x]ω := Nω(Φω(1)−2/nx2/n).(2.10)

Remark. Obviously the curly bracket is independent of the size of ω,

i.e. {x}αω = {x}ω, where α ∈ IR+, x ≥ 0. In the one–dimensional case we

have [x](0,1) = N(0,1)(x
2π2) = #{n ∈ IN : n2π2 ≤ x2π2} = [x], where [x]

denotes the integer part of x. Table 1 shows several basic domains ω where

upper bounds of κ are known.

Since the spectrum of −∆ is discrete and consists only of eigenvalues

with finite multiplicity, it is easy to show the following

Lemma 2.3. There exists positive constants C1 and C2 such that for

n ≥ 2:

|{x}ω − Cn−1Φω(1)−(n−1)/nx(n−1)/n| ≤ C1x
2κ/n + C2, x ≥ 0.(2.11)
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In the one-dimensional case (ω = (0, 1)) we have the estimate

0 ≤ {x}(0,1) =: {x} < 1, x ≥ 0.(2.12)

Now we are able to define the so-called generalized Weierstrass func-

tion fω which plays an important role in our theory (For examples see section

4 and [Ge]):

Definition 2.4 (Function fω). We define for all µ ≥ 0:

fω(µ) :=
∞∑
i=0

N−i{r−niµ}ω.(2.13)

The usual Weierstrass function obtains, if {·}ω in (2.13) is replaced by

the sinus function. The sum in (2.13) converges absolutely and by Lemma

2.3 the following remainder estimate holds:

Corollary 2.5.

fω(µ) = Cn−1Φω(1)−(n−1)/n Nrn−1

Nrn−1 − 1
µ(n−1)/n + O(µ2κ/n),(2.14)

as µ → ∞.

Definition 2.6 (Function gω). We define for all x ≥ 0:

gω(x) :=
∞∑

i=−∞
N i−x{rn(i−x)}ω.(2.15)

Proposition 2.7. For all λ > 0 we have:

gω

(
ln Φω(λ)

ln(1/rn)

)
= fω(µ)µ−D/n +

Nrn

1 −Nrn
µ1−D/n,(2.16)

where µ(λ) := rnI(λ)Φω(λ) and

I(λ) := max{i ∈ ZZ : Nω(r2iλ) > 0} = [ln(λ0/λ)/(2 ln r)].(2.17)
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Proof. Let J(x) := max{i ∈ ZZ : Nω(Φω(1)−2/nr2(i−x)) > 0}. Then

we split the sum in (2.15) into two parts and write

gω(x) =

J(x)∑
i=−∞

N i−x{rn(i−x)}ω +
∞∑

i=J(x)+1

N i−xrn(i−x)

= NJ(x)−xfω(rn(J(x)−x)) +
Nrn

1 −Nrn
(Nrn)J(x)−x.

(2.18)

We now set µ := rn(J(x)−x) and Φω(1)−2/nr−2x =: λ to simplify the argu-

ment of Nω in the definition of J . The proposition follows with

J (ln Φω(λ)/ ln(1/rn)) = I(λ). �

Remark. We illustrate the relation between µ and λ. One has

µ(λ) = rnI(λ)Φω(λ) = r−{ln(λ0/λ)/(2 ln r)}Φω(λ0).(2.19)

Therefore we have the estimate

µmin := Φω(λ0) ≤ µ < Φω(λ0/r
2) =: µmax.(2.20)

Figure 2 shows the relation between µ and λ.

Now we can state one of our main theorems as announced in [GeSc] (For

further details see also [Ge]):

Fig. 2. Relation between µ and λ.
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Theorem 2.8 (Counting function). Let ω and Ω be as above. Then:

(a) The upper Minkowski content of Γ = ∂Ω, relative to Ω is finite and

the Minkowski dimension of Γ, relative to Ω is

D = D(Γ) =
lnN

ln(1/r)
∈ (n− 1, n).(2.21)

(b) For all λ > λ0 the following identity holds:

NΩ(λ) = ΦΩ(λ) − n0Φω(1)D/ngω

(
ln Φω(λ)

ln(1/rn)

)
λD/2(2.22)

+
n0

N
fω(Φω(λ/r2)),

where the functions fω and gω are given by Definition 2.4 and 2.6, respec-

tively.

Remarks. (a) Part (a) gives the well-known Minkowski dimension of

(strictly) self–similar fractals which coincides for this class of fractals with

the Hausdorff dimension [Fa, p. 42 and p. 118].

(b) One easily shows the following identity

gω

(
ln Φω(λ)

ln(1/rn)

)
= Φω(1)−D/nG

(
lnλ

2

)
,(2.23)

where

G(t) =
∞∑

i=−∞
e−D(t+i ln r)δω(e2(t+i ln r))(2.24)

and δω(x) = Φω(x)−Nω(x), which is compatible with part (ii) of Conjecture

3 given by M.L. Lapidus in [La2, pp. 163–164] for drums with strictly self–

similar boundary.

(c) In [FlVa2] a special two–dimensional example is investigated. Choose

ω as a square of side s ∈ (1/3, 1/(1 +
√

2)), N = 3, r = s and n0 = 4 to get

a slightly modified version of that example which exhibits the same second

term in the asymptotic expansion.

(d) Notice that a slightly modified version of the famous counter–

example of Brossard and Carmona is included in our theorem too (cf.

[Ge]).

By Corollary 2.5 we have:
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Corollary 2.9.

1

N
fω(Φω(λ/r2)) =

Cn−1

Nrn−1 − 1
λ(n−1)/2 + O(λκ), as λ → ∞.(2.25)

In the one–dimensional case we have the estimate

0 ≤ fω(Φω(λ/r2)) <
N

N − 1
, λ ≥ 0.(2.26)

Corollary 2.10. The counting function NΩ satisfies the following

functional equation

NΩ(λ) = NNΩ(r2λ) + n0Nω(λ), λ ≥ 0.(2.27)

Using the estimate for the curly bracket (Lemma 2.3) and the condition

Nrn−1 > 1, one easily shows:

Lemma 2.11. The function fω is a bounded function on the interval

[µmin, µmax), where µmin and µmax are given by (2.20).

Corollary 2.12. The coefficient of the second term in the asymptotic

expansion of NΩ is bounded for all λ > 0.

Proof of Theorem 2.8. (a) Given ε > 0 sufficient small, let

ε0 = min{ε > 0 : |(∂ω)ε ∩ ω| = |ω|}(2.28)

and
i0(ε) := max{i ≥ 1 : |(∂(riω))ε ∩ Ω| ≤ |riω|}

= max{i ≥ 1 : |(∂ω)ε/ri ∩ ω| ≤ rni|ω|}
= max{i ≥ 1 : ε ≤ riε0} = [ln(ε/ε0)/ ln r]

(2.29)

using the two elementary facts rBε = (rB)ε and |rBε| = rn|Bε| for the

ε-neighborhood of a bounded set B ⊂ IRn. Since

|(∂(riω))ε ∩ Ω| =

{
rni|(∂ω)ε/ri ∩ ω|, i ≤ i0(ε)

rni|ω|, i > i0(ε)
(2.30)
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we have for the interior ε-neighborhood of Γ relative to Ω:

|Γε ∩ Ω| = n0

i0(ε)∑
i=0

(Nrn)i|(∂ω)ε/ri ∩ ω| + n0|ω|
∑

i>i0(ε)

(Nrn)i.(2.31)

Because of D(∂ω) = n − 1 it follows that there exists an ε1 > 0 and a

constant c > 0 such that |(∂ω)ε∩ω| ≤ cε, ε < ε1. Therefore |(∂ω)ε/ri∩ω| ≤
cε/ri, ε ≤ riε1. Now let

i1(ε) := max{i ≥ 1 : ε ≤ riε1} = [ln(ε/ε1)/ ln r].(2.32)

We suppose ε1 ≤ ε0, then i1(ε) ≤ i0(ε), ε ≤ ε1. It is an elementary exercise

to verify that there exist some constants m1, m2 > 0 and an ε2 > 0 such

that

m1ε
n−D ≤ |Γε ∩ Ω| ≤ m2ε

n−D, ε ≤ ε2.(2.33)

By Definition 2.1 we now conclude that D(Γ) = lnN/ ln(1/r) and

0 < m1 ≤ M∗(D; Γ) ≤ M∗(D; Γ) ≤ m2 < +∞.(2.34)

(b) Referring to the summation law and the scaling property of the

counting function we write:

NΩ(λ) = n0

∞∑
i=0

N iNω(r2iλ) = n0

I(λ)∑
i=0

N iNω(r2iλ)(2.35)

= n0(S2(λ) − S1(λ)),

where we have set I = I(λ) := max{i ∈ IN0 : Nω(r2iλ) > 0} for all λ ≥ λ0,

i.e. Nω(r2iλ) vanishes for all i > I(λ). Furthermore we have introduced the

two functions

S1(λ) =

I(λ)∑
i=0

N i{Φω(r2iλ)}ω and S2(λ) =

I(λ)∑
i=0

(Nrn)iΦω(λ).(2.36)

After introducing the new summation variable j = I − i and substitution

µ := Φω(r2Iλ) = rnIΦω(1)λn/2,(2.37)
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i.e. N I = r−ID = Φω(1)D/nµ−D/nλD/2, we have:

S1(λ) = N I
I∑

j=0

N−j{r−njµ}ω = Φω(1)D/nf I
ω(µ)µ−D/nλD/2,(2.38)

where f I
ω(µ) denotes the first I + 1 terms of fω, i.e. f I

ω(µ) =
∑I

i=0 ·
N−i{r−niµ}ω. Using Lemma 2.3 and the definition of fω it is an elementary

calculation to verify the estimate

|fω(µ) − f I
ω(µ)| = O

(
1

(Nrn−1)I
+

1

N I

)
, as λ → ∞,(2.39)

since µ is bounded and I(λ) increases with λ. Therefore we replace f I
ω by

fω and write

S1(λ) = Φω(1)D/nfω(µ)µ−D/nλD/2 −A(λ),(2.40)

where

A(λ) = N I
∞∑

i=I+1

N−i{rx−niµ}ω =
1

N
fω(Φω(λ/r2)),(2.41)

by the definition of µ. Transforming the second part S2(λ) with

(Nrn)I = rI(n−D) = Φω(1)D/n−1µ1−D/nλ(D−n)/2(2.42)

yields:

S2(λ) =
1 − (Nrn)I+1

1 −Nrn
Φω(λ)

=
Φω(λ)

1 −Nrn
− Φω(1)D/n Nrn

1 −Nrn
µ1−D/nλD/2.

(2.43)

Since |Ω|n = n0
∑∞

i=0(Nrn)i|ω|n is finite (Nrn < 1) the statement of our

theorem follows by applying Proposition 2.7. �

3. Discussion of fω

3.1. The general case

Theorem 3.1. (a) The graph of fω on [0, µmax), cf. (2.20) is self–

similar under the linear transformation

A =

(
rn 0

rn 1
N

)
.(3.1)
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(b) The function fω satisfies the following functional equation for all

µ ≥ 0:

fω(rnµ) = {rnµ}ω +
1

N
fω(µ).(3.2)

Proof. The statements follow immediately with Definition 2.4 from

fω(rnµ) = {rnµ}ω +
∞∑
i=1

N−i{r(1−i)nµ}ω = rnµ +
1

N
fω(µ),(3.3)

where the first identity is true for all µ ≥ 0, the second for 0 ≤ µ < µmax,

since Φω(1)−2/n(rnµ)2/n < λ0, and [rnµ]ω vanishes because of Definition

2.2. �

Remark. The graph of fω cannot be determined uniquely by only

using its functional equation, since f•(µ) = fω(µ) + A(µ)µD/n is a solution

of (3.2) too, where A : IR+
0 → IR is any function satisfying A(rnµ) =

A(µ), µ ≥ 0.

Lemma 3.2. Let fω be the function of Definition 2.4 and k ∈ IN. Then:

|fω(µ) −mkµ− bkµ
(n−1)/n +

k∑
i=0

N−i[r−niµ]ω| ≤ dkµ
2κ/n + ck,(3.4)

µ ≥ 0,

where

mk =
(Nrn)−k −Nrn

1 −Nrn
, bk =

Cn−1

Nrn−1 − 1

Φω(1)−(n−1)/n

(Nrn−1)k
,

dk =
C1

Nr2κ − 1

1

(Nr2κ)k
and ck =

C2

N − 1

1

Nk
,

(3.5)

and C1, C2 > 0 are constants given by Lemma 2.3.

Proof. This Lemma follows easily by splitting the sum in (2.13) and

applying Lemma 2.3. �

Definition 3.3 (k-system of strips). Given k ∈ IN, let be

f̃k
ω(µ) :=

k∑
i=0

N−i[r−niµ]ω,(3.6)
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and (a, b) ⊂ IR+ a bounded open interval. Denote with {µ̃k
i }imax

i=1 the se-

quence of discontinuities of f̃k
ω in (a, b), where µ̃k

i < µ̃k
i+1, i = 1, . . . , imax−1.

Further let be µ̃k
0 = a and µ̃k

imax+1 = b. Now define for all i = 1, . . . , imax+1:

Si
k := {(x, y) ∈ [a, b) × IR : µ̃k

i−1 ≤ x < µ̃k
i ;

|y −mkx− bkx
(n−1)/n + f̃k

ω(x)|
≤ dkb

2κ/n + ck},

(3.7)

where mk, bk, dk and ck are given by Lemma 3.2. Furthermore we define the

so-called k-system of strips on [a, b) by

Sk :=
imax+1⋃
i=1

Si
k.(3.8)

One easily shows the following three corollaries using Definition 3.3 and

the definition of the function fω.

Corollary 3.4. Given k ∈ IN, let Sk be the k-system of strips on a

bounded interval (a, b) ⊂ IR+ and G := {(µ, fω(µ)) : µ ∈ (a, b)} the graph of

fω on (a, b). Then G ⊂ Sk, k ∈ IN.

Corollary 3.5. For all k ∈ IN we have Sk+1 ⊂ Sk.

Corollary 3.6. The function fω is right continuous for all µ ≥ 0.

Since the graph of fω is self–similar the question arises: What is its

Minkowski dimension? This problem is not completely solved yet. But

we obtained exact estimates as announced in [GeSc]. A detailed analysis

shows that the Minkowski dimension of the graphs of the functions fω
and gω on each bounded interval (a, b) ⊂ IR+ are the same (cf. [Ge] for

further details). Therefore we restrict ourselves to the computation of the

Minkowski dimension of the fractal graph of fω.

Definition 3.7. Let G be the graph of fω restricted to any bounded

interval (a, b) ⊂ IR+. Then we denote by Σ the set of all points forming the

jumps of fω on (a, b), i.e. vertical line segments at the discontinuities.
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Theorem 3.8 (Dimension of the connected graph, upper bound). The

Minkowski dimension D̃(Gc) of the connected graph Gc := G ∪ Σ of fω
restricted to any bounded interval (a, b) ⊂ IR+ satisfies

D̃(Gc) ≤ 2 − D − 2κ

n− 2κ
.(3.9)

Theorem 3.9 (Dimension of the connected graph, lower bound). Let

{Λi}∞i=1 be the sequence of eigenvalues of −∆ in the basic domain ω counted

without multiplicity. If there exists some constants A, i0 > 0 and some

α < 1 such that

Λi+1 − Λi > AΛα
i , i ≥ i0, (gapcondition)(3.10)

then the Minkowski dimension D̃(Gc) of the connected graph of fω re-

stricted to any bounded interval (a, b) ⊂ IR+ satisfies

D̃(Gc) ≥ 1 +
1

1 − α

n−D

2
.(3.11)

Especially this applies if the eigenvalues are integer multiples of a “unit”

Λ0:

Corollary 3.10. If the spectrum of the basic domain satisfies

λi,ω = νiΛ0 for some νi ∈ IN with i ∈ IN(3.12)

and a constant Λ0 > 0, where {λi,ω}∞i=1 denotes the sequence of eigenvalues

of −∆ in the basic domain counted with multiplicity, it follows that α ≥ 0

and

D̃(Gc) ≥ 1 +
n−D

2
.(3.13)

Theorem 3.11. Let Gc be the connected graph of the “one–dimension-

al” function f := f(0,1). Then D̃(Gc) = 2 −D.

Proof. In the one–dimensional case we have κ = 0 and Λi = i2π2.

Apply Theorem 3.9 with A = 2π, i0 = 1 and α = 1/2. �
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Proof of Theorem 3.8. Given k ∈ IN, let Sk be the k-system of

strips on (a, b) in sense of Definition 3.3. Then we have Gε ⊂ (Sk)ε, ε >

0, k ∈ IN. Furthermore let Jk be the set of indices of the discontinu-

ities of the function f̃k
ω : µ �→ ∑k

i=0 N
−i[r−niµ]ω in (a, b). Denote the

height of the jump at µ̃k
i by σk

i , i ∈ Jk and the length of curve Bk : µ �→
mkµ + bkµ

(n−1)/n on (a, b) by 2k. Then the following estimate of the two–

dimensional Lebesgue measure of the ε-neighborhood of the connected

graph holds (cf. figure 3):

|Gc
ε| <∼ |Sk|2 + 22kε + 2|Σk|1ε + 4(dkb

2κ/n + ck + ε)ε,(3.14)

where Σk denotes the set of points forming the jumps of f̃k
ω on (a, b). We

have |Σk|1 =
∑

i∈Jk σ
k
i , and the area of Sk is given by

|Sk| = 2(b− a)(dkb
2κ/n + ck) ≈ (Nr2κ)−k, as k → ∞,(3.15)

since κ ≥ 0. (≈ is the short hand notation of weak asymptotic behavior, i.e

we write f(λ) ≈ g(λ), as λ → ∞, whenever their exist positive constants

c1, c2 and λ0 such that c1g(λ) ≤ f(λ) ≤ c2g(λ), λ ≥ λ0.) The length 2k is

Fig. 3. k-system of strips. This figure illustrates estimate (3.14). The dotted line shows
the ε-neighborhood of the system of strips including the ε-neighborhood at the jumps.
Gc

ε is included in this ε-neighborhood.
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given by

2k =

∫ µ=b

µ=a
ds =

∫ b

a
(1 + [B′

k(µ)]2)1/2 dµ

≤
∫ b

a

(
1 + (mk + n−1

n bka
−1/n)2

)1/2
dµ

∼ (b− a)(mk + n−1
n bka

−1/n) ≈ (Nrn)−k, as k → ∞.

(3.16)

For estimating |Σk| — the sum of all sizes of jumps of f̃k
ω on (a, b) —

we have to know the number of discontinuities of {·}iω : µ �→ {r−niµ}ω =

r−niµ−[r−niµ]ω (i = 0, . . . , k) in (a, b), say fi. Let {λj,ω}∞j=1 be the sequence

of eigenvalues according to −∆ in the basic domain ω. Then a discontinuity

µj of [·]ω : µ �→ [µ]ω occurs if and only if µj = Φω(λj,ω), see Definition 2.2,

and now it follows easily that

fi := #{j ∈ IN : µj ∈ (r−nia, r−nib)}
= #{j ∈ IN : r−nia < Φω(λj,ω) < r−nib}.(3.17)

Notice that |Σk| =
∑k

i=0 N
−ifi, since jumps of f̃k

ω only occur as multiples

of N−i (i = 0, . . . , k). Because of the properties of the spectrum according

to −∆ in the basic domain and since Φω(λj,ω) = j +O(j(n−1)/n), as j → ∞
we can show that |fi − (b− a)r−ni| ≤ c1r

−(n−1)i + c2, i ∈ IN0 with suitable

constants c1, c2 > 0, independent of i. Hence there exists two constants

s2, k2 > 0 such that |Σk| ≤ s2r
k(D−n), k ≥ k2. Together with the above

results it follows that we can choose some positive constants C and k0 such

that

|Gc
ε| ≤ C(rk(D−2κ) + rk(D−n)ε), k ≥ k0.(3.18)

Given 0 < ε < r, choose k > 0 such that rk+1 < ε1/(n−2κ) ≤ rk. We then

conclude that there exists some constants m2 > 0 and ε0 > 0 such that

|Gc
ε| ≤ m2ε

(D−2κ)/(n−2κ), ε ≤ ε0.(3.19)

For completing the proof remember the definition of the Minkowski di-

mension and note M̃∗(d;Gc) = 0 for all d > 2 − (D − 2κ)/(n − 2κ). �

Proof of Theorem 3.9. Given k ∈ IN (k ≥ i0), let {µk
i }∞i=1 be the

sequence of discontinuities of [·]kω : µ �→ [r−nkµ]ω in (a, b) and Ik the set of

the corresponding indices. Furthermore let

δµk = min{µk
i+1 − µk

i : i ∈ Ik}.(3.20)
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Discontinuities µk
i of [·]kω are given by µk

i = Φω(r2kΛi)
!∈ (a, b), i ∈ Ik.

Therefore we have

δµk = Φω(r2k) min{Λn/2
i+1 − Λ

n/2
i : i ∈ Ik}

≥ n

2
Φω(r2k)(Λi+1 − Λi)Λ

n/2−1
i >

nA

2
Φω(r2k)Λ

α+n/2−1
i

(3.21)

by assumption. Noting Φω(r2kΛi) ∈ (a, b) we obtain that there exist positive

constants M0 and k0 independent of k such that

δµk > M0r
k(2−2α), k ≥ k0.(3.22)

The connected graph consists at least of the discontinuities at µk
i ∈ (a, b)

since there are only decreasing jumps. Hence, for given ε > 0 (sufficient

small) we can choose k ≥ k0 such that

M0r
k(2−2α) < 2ε ≤ δµk.(3.23)

Therefore, since the ε-neighborhoods at the discontinuities do not overlap,

we have

|Gc
ε| = |(G ∪ Σ)ε| ≥ |Σε| ≥ 2εfkN

−k,(3.24)

where fk denotes the number of discontinuities in the corresponding λ-

interval, fk ∼ (b− a)r−nk, as k → ∞. Combining with (3.23) we obtain

M0r
k(2−2α) < 2ε ⇐⇒ r−k > (M0/2)1/(2−2α)ε1/(2α−2)(3.25)

since α < 1. So we can choose constants m1, ε0 > 0 such that

|Gc
ε| ≥ m1ε

1 + 1
1−α

n−D
2 , ε ≤ ε0.(3.26)

For all d < 1+ 1
1−α

n−D
2 we have M̃∗(d;Gc) = +∞. This fact completes our

proof. �

We complete this paragraph by considering a couple of basic domains

and employing the best known values for κ (cf. Table 1).
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Table 1. This table shows several basic domains and their best known κ-values, where
ε > 0 is arbitrary. It shows also lower and upper bounds for the Minkowski di-
mension of the connected graph Gc. The κ-values are taken from [IwMo] (square),
[Vi] (cube), [L] (4-dimensional cube), [Wa] (n-dimensional cube with n ≥ 5), [Hu]
together with [Pi] and [Ge, Appendix A] (equilateral triangle and isosceles right tri-
angle) and [KuFe] (circle). Confer also the review paper [Kr]. Notice that except for
the circular membrane problem the calculation of the counting function for the above
mentioned basic domains leads to the calculation of the number of integer lattice
points in n-dimensional ellipsoids.

upper bound lower bound upper bound maximal
n basic domain ω

for κ for D̃(Gc) for D̃(Gc) difference

1 interval 0 2 −D 2 −D 0

2 square 7
22 2 − D

2
37
15 − 11

15D
7
30

3 cube 2
3

5
2 − D

2
14
5 − 3

5D
1
10

4-dimensional
4

cube
1 + ε 3 − D

2 3 − D
2 0

n-dimensional≥ 5
cube

n
2 − 1 1 + n−D

2 1 + n−D
2 0

equilateral
2

triangle
7
22 + ε 2 − D

2
37
15 − 11

15D
7
30

isosceles
2

right triangle
7
22 + ε 2 − D

2
37
15 − 11

15D
7
30

2 circle 1
3 1 5

2 − 3
4D

3
4

3.2. The one–dimensional case

In the one–dimensional case more information about f := f(0,1) and

g := g(0,1) is available (cf. figure 5 in section 4). For further details see [Ge].

Theorem 3.12 (Congruence property of f). Let 1/r ∈ IN, then the

graph of function f on [0, 1) is invariant under the affine transformations

wi : IR2 → IR2, defined by wi(
x
y ) = A(xy ) + (i− 1)( rr ) (i = 1, . . . , 1/r), where

y := f(x). It is possible to reconstruct this graph on [0, 1) by merely using
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these transformations. Furthermore, f : µ �→ f(µ) is 1-periodical in µ.

The proof will be omitted.

Theorem 3.13 (Nonlinear self–similarity of g). Let be 1/r ∈ IN. Then

the graph of g given by

g(x) = f(µ)µ−D +
Nr

1 −Nr
µ1−D, where µ = r−{x}(3.27)

is self–similar for all x ∈ [0, 1) according to the following nonlinear map:

x �→ x′ =
ln(r1−x + 1 − r)

ln(1/r)

g(x) �→ g(x′) =

(
Nx−1g(x) +

Nr − r

1 −Nr

) (
r1−x + 1 − r

)−D
.

(3.28)

Remark. Notice that g is obviously a 1-periodic function in x, since

{·} : ν �→ {ν} is 1-periodic in ν.

Proof. Given x ∈ [0, 1), we have µ = r−x. An affine transformation

µ → µ′ = rµ + 1 − r(3.29)

corresponds with µ′ = r−x′
to a nonlinear transformation

x → x′ = ln(r1−x + 1 − r)/ ln(1/r).(3.30)

For all x ∈ [0, 1) we have therefore x′ ∈ [0, ln(2 − r)/ ln(1/r)), so µ′ =

r−x′ ∈ [1, 2− r) ⊂ [1, 2) follows, because of r ∈ (0, 1), definition of g and f ’s

functional equation yields

g(x′) = f(µ′)(µ′)−D +
Nr

1 −Nr
(µ′)1−D

=

(
N (f(rµ′) − rµ′) +

Nr

1 −Nr
µ′
)

(µ′)−D.
(3.31)

By evaluating of f(rµ′) with applying f ’s functional equation a twice, and

noting µ′ ∈ [1, 2) we have

f(rµ′) = {rµ′} +
1

N
{µ′} +

1

N2
f(µ′/r)

= rµ′ +
1

N
(µ′ − 1) +

1

N2
f(µ),

(3.32)



122 Jürgen Gerling and Heinz-Jürgen Schmidt

since 1/r − 1 ∈ IN, and applying the previous Theorem. Inserting (3.32)

in (3.31) and noting the assumption, the statement of our theorem follows

after a few steps. �

4. Examples

This section is devoted to a few examples illustrating our results. For

more examples see [Ge].

Fig. 4. The figure shows the counting function for the triadic Cantor string and the
two terms approximation given by Theorem 2.8 (see also Corollary 2.9).

Fig. 5. This figure shows the generalized Weierstrass function fω (left figure) and
the function gω (right figure) for the triadic Cantor string. Notice the linear
self–similarity of fω and the nonlinear self–similarity of gω. Notice also the congruence
property of fω given by Theorem 3.12.
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Example. Cantor String

In this example we consider the vibrations of the triadic Cantor string,

i.e. let Ω be the complement of the triadic Cantor set with respect to the

interval (0, 1). Figure 4 shows the counting function while figure 5 shows

the functions fω and gω, respectively.

Remark. The Cantor string has also been studied in [LaPo2, pp. 65–

67]. The authors show that the asymptotic expansions of NΩ does not admit

Fig. 6. The figure shows the counting function for the Sierpiński drum and the three
terms approximation (shifted with 5 units) according to Theorem 2.8 and Corollary
2.9.

Fig. 7. This figure shows the generalized Weierstrass function fω (left figure) and the
function gω (right figure) for the Sierpiński drum.
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a monotonic term (i.e. λ−D/2(NΩ(λ) − ΦΩ(λ)) does not converge).

Example. Sierpiński Drum

We now consider the vibrations of the Sierpiński drum (see figure 1),

i.e. let ω be an equilateral triangle with side 1/2. Therefore we have n0 = 1,

N = 3 and r = 1/2, hence D(Γ) = ln 3/ ln 2 (see figures 6 and 7).
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