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The Mellin Transformation of

Strongly Increasing Functions

By Grzegorz �Lysik

Abstract. The definition of the Mellin transformation is modi-
fied in a way suitable for the study of some classes of functions with
exponential growth at zero.

Introduction

The (local) Mellin transform of a continuous function f on I = (0, t], t >

0 can be defined by

Mtf(z) =

t∫
0

f(x)x−z−1dx.

To make the integral convergent it is required usually that f has polyno-

mial growth at zero i.e. |f(x)| ≤ Cxv with some v ∈ R. Then Mtf is

a holomorphic function on {Re z < v}. If we further assume that f is

a generalized analytic function, i.e. a function representable in the form

f(x) = S[x·], where S is a Laplace distribution supported by Z ⊂ v + R+,

then Mf extends holomorphically to a function on C \ Z and Mf deter-

mines uniquelly the S ([SZ]). For a generalized analytic function f the set

suppS can be interpreted as the set of those exponents α ∈ R which enter

into decomposition of f into powers xα and (lnx)kxα, 0 ≤ k ≤ m with some

m ∈ N0. It appears that generalized analytic functions are defined on the

universal covering space B̃(ρ) of the punctured disc B(ρ) \ {0}, ρ > 0 and

the information about S is also carried by a pair of functions

M±
t f(z) =

∫
γ±(t)

f(x)x−z−1dx,
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where γ±(t) = {x ∈ B̃(ρ) : ∓ arg x > 0, |x| = t}, t < ρ. Now M±
t f ∈

O({± Im z > 0}) and the definition ofM±
t f requires only some estimation

of f on γ±(t) (e.g. polynomial growth in arg x) and not on the interval (0, t].

Using this observation we extend the definition of the Mellin transformation

to some classes of holomorphic functions on B̃(ρ; r) = B̃(ρ)\ B̃(r) with r <

ρ. In fact we study the Mellin transforms of functions f ∈ O(N)
(
B̃(ρ; r)

)
,

where O(N)
(
B̃(ρ; r)

)
is the image under the Taylor transformation of the

space L
(Np)′
(lnr,lnρ)(R) of Laplace ultradistributions on R, (see Section 2) i. e.

f ∈ O(N)
(
B̃(ρ; r)

)
if and only if f is representable in the form

f(x) = S[x·] for r < |x| < ρ

with some S ∈ L
(Np)′
(lnr,lnρ)(R). ThenM±

t f ∈ O({± Im z > 0}), has the growth

of type t−Re zexp{N∗(L/| Im z|
)
} near the real axis (N∗ is the growth func-

tion of the sequence (Np)) and the difference of the boundary values of

M+
t f andM−

t f is equal to 2πi · S.

A special attention is paid on the study of the space O(N)
(M∗)

(
B̃(ρ)

)
of

holomorphic functions on B̃(ρ) bounded by

Cexp{M∗(K/|x|) + N(L|lnx|)}

for |x| close to zero. To justify our interest in this space let us recall that

solutions of differential equations of type P (x1+kD)f = 0, where P is a

polynomial and k > 0, have the above growth with M∗(ρ) = ρk. More

generally - as will be proved in the subsequent paper ([8L3]) - the same

remains true for solutions of linear differential equations with analytic co-

efficients at zero. On the other hand, if f(x) = S[x·] with S ∈ L
(Np)′
(∅,lnρ)(R+)

and J(D) =
∑∞

k=0 akD
k is an ultradifferential operator of class (Mp) then

u = J(D)f ∈ O(N)
(M∗)

(
B̃(ρ)

)
. Since Mtf ∈ O(C \ R+) and Mt(Df)(z) =

(z+ 1)Mtf(z+ 1) + f(t)t−z−1 we can also define the Mellin transform of u

by

Mtu(z) =
∞∑
k=0

ak
Γ(z + k + 1)

Γ(z + k)
Mtf(z + k) modOexp(C).

It appears that the series on the right hand side of the above formula is

locally uniformly convergent on C\R and the definition ofMtu is consistent

with the previous one.
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In the final section we compute some explicit examples of Taylor and

Mellin tranforms. In particular, we compute the Mellin transform of

f(x) = exp{1/xk}, k > 0. Since M1f is the Laplace transform of g(y) =

f(exp{−y}) this is equivalent to the computation of the Laplace transform

of g(y) = exp{exp{yk}}. In the case k = 1 similar result was obtained by

Deakin in [D] by means of asymptotic expansions. Let us also point out here

that Komatsu defined in [K2] the Laplace transformation for functions with

arbitrary growth but he has not given any explicitly evaluated transforms

of functions with superexponential growth.

Finally let us remark that throughout the paper one can omit the sym-

bols (N) and (Np) working with the spaces of Laplace distributions and

replacing exp{N
(
K · ρ(z)

)
} and exp{N∗(K · ρ(z))} by

(
ρ(z)

)K
.

1. Preliminaries

Throughout the paper (Mp)p∈N0
, (Np)p∈N0

are sequences of positive

numbers with M0 = N0 = 0. We assume that both sequences satisfy the

conditions

(M.1) M2
p ≤Mp−1Mp+1 for p ∈ N;

(M.2) Mp ≤ HpMqMp−q for p ∈ N, 0 < q ≤ p with some H <∞;

(M.3)
∞∑
p=q

Mp−1

Mp
≤ Aq

Mq

Mq+1
for q ∈ N with some A <∞.

We refer to [K1] or [M] for the significance of these conditions. We associate

with the sequence (Mp) the weight function

(1) M(ρ) = sup
p∈N0

ln
ρp

Mp
, ρ > 0

and the growth function

(2) M∗(ρ) = sup
p∈N0

ln
ρpp!

Mp
, ρ > 0.

The weight function M is an increasing, convex function in lnρ, which

vanishes for ρ ∈ (0, 1] and satisfies ([K1], [BMT], Remark 8.9)

(3) M(2ρ) ≤ C
(
M(ρ) + 1

)
for ρ > 0;
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(4) lim
ρ→∞

lnρ

M(ρ)
= 0;

(5)

∞∫
0

M(tρ)

t2
dt ≤ C

(
M(ρ) + 1

)
for ρ > 0.

By (3) it follows that ([BMT], Lemma 1.2)

(6) M(ρ1 + ρ2) ≤ C
(
M(ρ1) + M(ρ2) + 1

)
for ρ1, ρ2 > 0.

The growth function M∗ is also increasing and vanishing near zero. Fur-

thermore by (2) and (M.2) we get

(7) ρexp{M∗(ρ)} ≤ Cexp{M∗(Hρ)} for ρ > 0

where H is the constant in (M.2). We also have

(8)
∞∑
n=0

n!ρn

Mn
≤ 2exp{M∗(2ρ)} for ρ > 0

and

(8′)
∞∑
n=0

ρn

Mn
≤ 2exp{M(2ρ)} for ρ > 0.

Put mp = Mp/Mp−1 for p ∈ N and

m(ρ) = |{p ∈ N : mp ≤ ρ}|, m∗(ρ) = |{p ∈ N : mp/p ≤ ρ}| for ρ > 0.

Then ([R], p.65)

(9) M(ρ) =

ρ∫
0

m(λ)

λ
dλ, M∗(ρ) =

ρ∫
0

m∗(λ)

λ
dλ for ρ > 0.
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Lemma 1. For every c > 0 one can find H(c) <∞ such that

(10) M∗(ρ) ≤ cM∗(rρ) for r ≥ H(c), ρ > 0.

Proof. Put Np = min0≤q≤pMqMp−q for p ∈ N0. Then ([R], p. 55)

n2p−1 = n2p = mp, p ∈ N. So 2m∗(λ) ≤ n∗(λ) for λ ≥ 0. By (9) and (M.2)

we get

2M∗(ρ) ≤ N∗(ρ) ≤ sup
p∈N0

ln
(Hρ)pp!

Mp
= M∗(Hρ) for ρ > 0.

Fix c > 0 and take N ∈ N0 such that 2N ≥ c−1. Iterating the above

inequality N times we get (10) with H(c) = HN . �

We say that functions f and g defined in a neighbourhood of ∞ are

equivalent, and we write f(ρ) ∼ g(ρ) as ρ → ∞, if there are positive

constants C and L such that

(11) C−1f(L−1ρ) ≤ g(ρ) ≤ Cf(Lρ) for ρ big enough.

In a similar way we define f(ρ) ∼ g(ρ) as ρ→ 0.

The Young conjugate of the weight function M is defined by

(12) ω∗(t) = sup
ρ>0

(
M(ρ)− ρt

)
for t > 0.

It follows by the Stirling formula that ([PV], Lemma 5.6)

ω∗(1/ρ) ∼M∗(ρ) as ρ→∞

and by (5) we get

Lemma 2 ([F], Lemma 2.3). For every L < ∞ there exists CL < ∞
such that

(13) M∗(Lρ) ≤ CL

(
M∗(ρ) + 1

)
for ρ > 0.
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The most important example of a sequence (Mp) satisfying (M.1) – (M.3)

is the Gevrey sequence Mp = (p!)s for p ∈ N0 where s > 1. Then M(ρ) ∼
ρ1/s and M∗(ρ) ∼ ρ1/(s−1) as ρ→∞.

An entire function P (z) =
∑∞

k=0 akz
k is called a symbol of class (Mp)

if it satisfies one of the following equivalent conditions ([K1], Propositions

4.5 and 4.6)

(i) There are constants L <∞ and C <∞ such that

|ak| ≤ CLk/Mk for k ∈ N0;

(ii) There are constants L <∞ and C <∞ such that

|P (z)| ≤ Cexp{M(L|z|)} for z ∈ C;

(iii) P has Hadamard’s factorization

P (z) = azν0

∞∏
k=ν0+1

(
1− z

ck

)

and there are constants L <∞ and C <∞ such that

ρ∫
0

ν(λ)− ν0

λ
dλ ≤M(Lρ) + C for ρ > 0,

where ν(λ) = |{k ∈ N0 : |ck| ≤ λ}|.

Definition ([8L2]). Let (Np)p∈N0
be a sequence of positive numbers

satisfying the conditions (M.1) — (M.3) and N0 = 1. Let ν ∈ R ∪ {−∞}
and ω ∈ R ∪ {∞}. The space L

(Np)′
(ν,ω) (R) of Laplace ultradistributions on R

is defined as the dual space of

L
(Np)
(ν,ω)(R) = lim−→

a>ν,b<ω

L
(Np)
a,b (R)
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where for any a, b ∈ R

L
(Np)
a,b (R) = lim←−

h>0

L
(Np)
a,b,h(R)

with

L
(Np)
a,b,h(R) = {ϕ ∈ C∞(R) : ‖ϕ‖(Np)a,b,h = sup

x∈R

sup
α∈N0

|Dαϕ(x)|κa,b(x)

hαNα
<∞ }(14)

and

(15) κa,b(x) =

{
e−ax for x < 0,

e−bx for x ≥ 0.

The space L
(Np)′
(∅,ω) (R+) of Laplace ultradistributions on R+ is defined in

an analogous way replacing L
(Np)
a,b,h(R) by

L
(Np)
∅,b,h(R+)(16)

= {ϕ ∈ C∞(R+) : ‖ϕ‖(Np)∅,b,h = sup
x∈R+

sup
α∈N0

|Dαϕ(x)|e−bx

hαNα
<∞ }.

We have topological inclusion

L
(Np)′
(∅,ω) (R+) ↪→ L

(Np)′
(ν,ω) (R) for any ν ∈ R ∪ {−∞}.

Immediately by the definition we get

Lemma 3. A linear functional S on L
(Np)
(ν,ω)(R) (resp. L

(Np)
(∅,ω)(R+)) be-

longs to L
(Np)′
(ν,ω) (R) (resp. L

(Np)′
(∅,ω) (R+)) iff for every a > ν, b < ω one can find

h > 0 such that

(17) |S[ϕ]| ≤ C‖ϕ‖(Np)a,b,h for ϕ ∈ L
(Np)
a,b (R)

(resp. |S[ϕ]| ≤ C‖ϕ‖(Np)∅,b,h for ϕ ∈ L
(Np)
∅,b (R+) ).
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Let P (z) =
∑∞

k=0 akz
k be a symbol of class (Np). Then an ultradiffer-

ential operator P (D) of class (Np) defines linear continuous mappings

P (D) : L
(Np)
(ν,ω)(R)→ L

(Np)
(ν,ω)(R), L

(Np)′
(ν,ω) (R)→ L

(Np)′
(ν,ω) (R)

where for S ∈ L
(Np)′
(ν,ω) (R), ϕ ∈ L

(Np)
(ν,ω)(R)

P (D)S[ϕ]
def
= S[P ∗(D)ϕ] with P ∗(D) =

∞∑
k=0

(−1)kakD
k.

The space of Laplace ultradistributions can be characterized as follows.

Theorem 1 (Structure theorem, [8L2], Theorem 7). In order that an

ultradistribution S ∈ D(Np)′(R) belong to L
(Np)′
(ν,ω) (R) it is necessary and

sufficient that for any a > ν, b < ω there are ultradifferential operators

Ja(D), Jb(D) of class (Np) and functions Sa, Sb ∈ C0(R) such that

suppSa ⊂ R−, |Sa(x)| ≤ Ce−ax for x ≤ 0, suppSb ⊂ R+, |Sb(x)| ≤ Ce−bx

for x ≥ 0 and

S = Ja(D)Sa + Jb(D)Sb in L
(Np)′
(a,b) (R).

Definition ([8L2]). Let W be a tubular neighbourhood of R i.e. W =

R + iΩ where Ω is a neighbourhood of zero. Put W± = W ∩ {± Im z > 0}.
Let H ∈ O(W±) and let ν ∈ R ∪ {−∞}, ω ∈ R ∪ {∞}. Assume that for

any a > ν, b < ω, H(· ± iy) ∈ L
(Np)′
a,b (R) for 0 < ±y small enough. If for any

ϕ ∈ L
(Np)
(ν,ω)(R) there exists the limit lim±y→0 H(· ± iy)[ϕ]

def
= b±H[ϕ] then,

by the Banach-Steinhaus theorem, b±H ∈ L
(Np)′
(ν,ω) (R) and we say that H has

the boundary value b±H from above (below) in L
(Np)′
(ν,ω) (R).

In the sequel we shall assume that ν < ω. Let z ∈ C. Denote by expz

the function

R � x→ expz(x)
def
= exz.
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Then expz is an L
(Np)
(ν,ω)(R)-valued holomorphic function on {ν < Re z < ω}

and for any ν < a < b < ω, h > 0 we have

‖expz‖
(Np)
a,b,h = exp{N(|z|/h)} for a ≤ Re z ≤ b.

Thus, the Laplace transform of S ∈ L
(Np)′
(ν,ω) (R) defined by

LS(z) = S[expz] for ν < Re z < ω

is a holomorphic function on ν < Re z < ω and by Lemma 3 it satisfies for

any ν < a < b < ω

(18) |LS(z)| ≤ Cexp{N(Ka,b|z|)} for a ≤ Re z ≤ b

with some Ka,b <∞ and C <∞.

Conversely assume that F ∈ O({ν < Re z < ω}) satisfies (18) with F

in place of LS. Then for any ν < a < b < ω one can find a symbol Pa,b of

class (Np) not vanishing on {Re z < b + 1} such that

exp{N(Ka,b|z|)}
|Pa,b(z)|

≤ 1

(1 + |z|)2 for a ≤ Re z ≤ b

([8L1], Lemma 3). Thus, modifying the proof of Theorem 3.6.1 of [Z] we find

that there exists an S ∈ L
(Np)′
(ν,ω) (R) such that F (z) = LS(z) for ν < Re z < ω.

Let S ∈ L
(Np)′
(ν,ω) (R). We define the Taylor transform of S by

T S(x) = S[x·] for x ∈ B̃(eω; eν).

To describe the image of L
(Np)′
(ν,ω) (R) under the Taylor transformation we

introduce the space

(19)

O(N)
(
B̃(eω; eν)

)
=

{
u ∈ O

(
B̃(eω; eν)

)
:

for every eν < r < t < eω there exist K and C <∞ such that

|u(x)| ≤ Cexp{N
(
K|lnx|

)
} for r ≤ |x| ≤ t

}
.
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Since

T S(x) = LS(lnx) for x ∈ B̃(eω; eν)

we have

Theorem 2. The Taylor transformation is an isomorphism of

L
(Np)′
(ν,ω) (R) onto the space O(N)

(
B̃(eω; eν)

)
.

Analogously we have

Theorem 3 ([8L1], Theorem 6). The Taylor transformation is an iso-

morphism of L
(Np)′
(∅,ω) (R+) onto the space O(N)

(
B̃(eω, ∅)

)
, where

O(N)
(
B̃(eω, ∅)

)
=

{
u ∈ O

(
B̃(eω)

)
: for every t < eω

there exist K and C <∞ such that (19) holds for |x| ≤ t
}
.

The elements of O(N)
(
B̃(eω, ∅)

)
are called generalized analytic functions.

2. The Mellin Transformation

Let u ∈ O(N)
(
B̃(eω, ∅)

)
and t < eω. Then the (local) Mellin transform

of u is defined by

(20) Mtu(z) =

t∫
0

u(x)x−z−1dx.

Since |u(x)| ≤ Cexp{N(K|lnx|)} ≤ Cεx
−ε for 0 < x ≤ t with any ε > 0 the

integral converges for Re z < 0. Let Re z < 0 with ± Im z > 0. Then by the

Cauchy formula we have

t∫
0

u(x)x−z−1dx =

∫
γ±(t)

u(x)x−z−1dx
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where γ±(t) = {x ∈ B̃(eω; eν) : ∓ arg x ≥ 0, |x| = t} and the orientation of

±γ±(t) is positive. Since the right hand side of above equality converges

locally uniformly on {± Im z > 0} we get Mtu ∈ O(C \ R+).

Now let u ∈ O(N)
(
B̃(eω; eν)

)
with ν < ω. Inspired by the above consid-

erations we define the Mellin transformsM±
t u by

(21) M±
t u(z) =

∫
γ±(t)

u(x)x−z−1dx for ± Im z > 0

with γ±(t) as above.

To study properties ofM±
t u observe that

(22) M±
t u(z) = ±it−z

∞∫
0

u(te∓iϕ)e±iϕzdϕ

and since |u(te∓iϕ)| ≤ Cexp{N
(
K(|lnt| + ϕ)

)
} ≤ Cεe

εϕ for any ε > 0, the

integral converges locally uniformly in {z ∈ C : ± Im z > 0}. So M±
t u ∈

O({± Im z > 0}). To estimate the integral in (22) write z = α + iβ. Then

by the definition of N(ρ) we derive for 0 < β ≤ 1 with K̃ = K max(1, |lnt|)

|
∞∫
0

u(te−iϕ)eiϕzdϕ| ≤ C

∞∫
0

exp{N
(
K̃(1 + ϕ)

)
− ϕβ}dϕ

= C

∞∫
0

sup
p∈N0

K̃p(1 + ϕ)p

Np
e−ϕβ/2 · e−ϕβ/2dϕ ≤ C sup

p∈N0

K̃p

Np

(2p

β

)p
e−p+β/2 · 2

β

since sup
ϕ≥0
{(1 + ϕ)pe−ϕβ/2} = (2p)pβ−pe−p+β/2.

Similary if β > 1 writing e−ϕβ = e−ϕ · e−ϕ(β−1) we obtain

|
∞∫
0

u(te−iϕ)eiϕzdϕ| ≤ C sup
p∈N0

K̃p

Np
ppe−p+1 · 1

β − 1
.
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Thus, by the Stirling formula, the definition of N∗(ρ) and (7) we get with

some L <∞

(23) |M±
t u(z)| ≤

{
Ct−Re zexp

{
N∗(L/| Im z|)

}
for 0 < ± Im z ≤ 1,

Ct−Re z
/
| Im z| for ± Im z ≥ 1.

Our next aim is to compute the boundary value of M±
t u. To this end

fix eν < r < t < eω and take K such that (19) is true. By Lemma 3 of [8L1]

there exists a symbol P of class (Np) not vanishing on {z : Re z < lnt + 1}
such that

(24) | 1

P (lnx)
| ≤ exp{−N(K|lnx|)}

(1 + |lnx|)2 for |x| ≤ t.

Put

(25) v(x) =u(x)/P (lnx) for |x| ≤ t.

Then |v(x)| ≤ C(1 + |lnx|)−2 for r ≤ |x| ≤ t. So for r ≤ τ ≤ t, M±
τ v ∈

O({± Im z > 0}) ∩ C0({Im z ≥ 0}) and the function

(26) R � α→ g(α) =
1

2πi

(
M+

τ v(α)−M−
τ v(α)

)
does not depend on the choise of τ . Observe that

g(α) =
1

2π

∞∫
−∞

u(τeiϕ)(τeiϕ)−α−iβdϕ|β=0

=
1

2πi

∫
lnτ+iR

u(eζ)e−ζ(α+iβ)dζ|β=0.

Thus, by Lemma 3.6.1 of [Z], g ∈ L
(Np)′
(lnr,lnt)(R) and

T g(x) = Lg(lnx) = v(elnx) = v(x) for r < |x| < t.

Finally put S = P ∗(D)g ∈ L
(Np)′
(lnr,lnt)(R). Then

T S(x) = P (lnx)T g(x) = P (lnx)v(x) = u(x) for r < |x| < t.
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Since the above holds for any eν < r < t < eω, by the uniqueness theorem

([Z], Theorem 5.3.2) we get S ∈ L
(Np)′
(ν,ω) (R) and T S(x) = u(x) for eν < |x| <

eω. Thus, we have proved

Theorem 4. Let u ∈ O(N)
(
B̃(eω; eν)

)
with ν < ω. Then for any

eν < t < eω, M±
t u ∈ O({± Im z > 0}) satisfies (23) with some L <∞ and

C <∞. Furthermore the difference of boundary values S
def
= 1

2πi

(
b+(M+

t u)−
b−(M−

t u)
)
∈ L

(Np)′
(ν,ω) (R) is independent of t and T S = u.

Remark 1. For eν < r < t < eω the difference M±
t u−M±

r u extends

holomorphically to an entire function Gr,t which satisfies

(27) |Gr,t(z)| ≤ C
κlnt,lnr(Re z)

1 + | Im z| .

with κlnt,lnt given by (15).

Proof. Indeed

M±
t u(z)−M±

r u(z) =

t∫
r

u(x)x−z−1dx for ± Im z > 0

and the integral converges for z ∈ C. Now since

z

t∫
r

u(x)x−z−1dx = u(r)r−z − u(t)t−z +

t∫
r

Du(x)x−zdx, z ∈ C

and Du is bounded on [r, t] we get (27). �

Theorem 5. Let ν < ω and let W be a bounded tubular neighbourhood

of R. Let{Ht}t∈(eν ,eω) be a family of functions Ht ∈ O(W \ R) satisfying :

for every ε > 0 there exists L < ∞ such that for any closed tubular set

W̃ ⊂⊂W

(28) |Ht(z)| ≤ Cexp
{
N∗(L/| Im z|

)}
· κlnt+ε,lnt−ε(Re z) for z ∈ W̃ \ R
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Assume that for any eν < r < t < eω, H±
t −H±

r extends holomorphically to

a function Hr,t ∈ O(V ) with some tubular neighbourhood V of R such that

for any ε > 0 and Ṽ ⊂⊂ V

|Hr,t(z)| ≤ Cκlnt+ε,lnr−ε(Re z) for z ∈ Ṽ .

Then one can find a unique u ∈ O(N)
(
B̃(eω; eν)

)
such that for any eν <

t < eω, M±
t u − H±

t extends to a function Ft holomorphic on a tubular

neighbourhood V of R satisfying with any ε > 0 and Ṽ ⊂⊂ V

(29) |Ft(z)| ≤ Cκlnt+ε,lnr−ε(Re z) for z ∈ Ṽ .

Proof. It follows by Proposition 2 of [8L2] that Ht admits boundary

values S±
t

def
= b±(H±

t ) ∈ L
(Np)′
(lnt,lnt)(R). Since for any eν < r < t < eω

S+
t −S−

t = b+(H+
t )−b−(H−

t ) = b+(H+
r +Hr,t)−b−(H−

r +Hr,t) = S+
r −S−

r ,

the difference S = S+
t −S−

t does not depend on t and thus defines an element

of L
(Np)′
(ν,ω) (R). Put u = 2πiT S. Then by Theorem 2, u ∈ O(N)

(
B̃(eω; eν)

)
.

Let S̃ = b+(M+
t u)−b−(M−

t u). It follows by Theorem 4 that S̃ ∈ L
(Np)′
(ν,ω) (R)

and 2πiT S̃ = u. So by Theorem 2, S̃ = S and b+(M+
t u−H+

t ) = b−(M−
t u−

H−
t ). Thus, it follows by the proof of Theorem 9 of [8L2] that M±

t u −H±
t

extends to a function Ft holomorphic on a tubular neighbourhood V of R

satisfying (29) with any ε > 0 and Ṽ ⊂⊂ V . To show the uniqueness of u

assume that ũ ∈ O(N)
(
B̃(eω; eν)

)
is another function such thatM±

t ũ−H±
t

extends to F̃t ∈ O(V ) and satisfying (29). Since M±
t (u − ũ) = Ft − F̃t,

M±
t (u − ũ) is an entire function which satisfies by Theorem 4 and the

Phragmén-Lindelöf theorem ([B])

|M±
t (u− ũ)(z)| ≤ C

t−Re z

1 + | Im z| for z ∈ C.

Hence by the Liouville theoremM±
t (u− ũ) = 0 and so u = ũ. �
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3. The Space O(N)
(M∗)

(
B̃(ρ)

)
Definition. Let ρ > 0.

(30)

O(N)
(M∗)

(
B̃(ρ)

)
=

{
u ∈ O

(
B̃(ρ)

)
:

for every r < ρ one can find H <∞ and K <∞ such that

|u(x)| ≤ Cexp
{
M∗(H/|x|) + N(K|lnx|)

}
for |x| ≤ r

}
.

Let u ∈ O(N)
(M∗)

(
B̃(eω)

)
. Since O(N)

(M∗)

(
B̃(eω)

)
⊂ O(N)

(
B̃(eω; 0)

)
it follows

by Theorem 4 that for any t < eω, M±
t u ∈ O({± Im z > 0}) satisfies (23)

and with S = 1
2πi

(
b+(M+

t u) − b−(M−
t u)

)
∈ L

(Np)′
(−∞,ω)(R) we have T S = u.

This time however we have a little more information. Namely repeating the

computations leading to (23) we find that the constant C in (23) can be

choosen as C = C̃exp{M∗(H/t)} where C̃ does not depend on 0 < t ≤ r

with any r < eω.

To compute the difference b+(M+
t u)− b−(M−

t u) let us define

(31) M∗(r) = sup
ρ≥0

(
rρ−M∗(eρ)

)
for r > 0.

Proposition 1. Let t > 0. Then for every c > 0 one can find H =

H(c)t <∞ such that

(32) t−αexp
{
− (1/c)M∗(−cα)

}
≤ inf

τ≤t
exp

{
M∗(H/τ

)}
τ−α for α < 0,

and for every H <∞ one can find c = c(H/t) > 0 such that

(33) inf
τ≤t

exp
{
M∗(H/τ

)}
τ−α ≤ Ct−αexp

{
− (1/c)M∗(−cα)

}
for α < 0.

Proof. Fix c > 0 and note that

(1/c)M∗(−cα) = sup
ρ≥0

{
− αρ− (1/c)M∗(eρ)

}
for α < 0.
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Thus applying Lemma 1 we derive for α < 0

t−αexp
{
− (1/c)M∗(−cα)

}
≤exp

{
−
[
αlnt + sup

ρ≥0

(
− αρ−M∗(H(c)eρ)

)]}
τ=te−ρ

= exp
{
− sup

τ≤t

(
αlnτ −M∗(H/τ

))}
= inf

τ≤t
exp

{
M∗(H/τ

)}
τ−α where H = H(c)t.

To prove the second part fix H < ∞ and observe that by Lemma 2 we

can find CH = C(H/t) <∞ such that

M∗(Heρ/t
)
≤ CH

(
M∗(eρ) + 1

)
for ρ ≥ 0.

So we estimate for α < 0

inf
τ≤t

exp
{
M∗(H/τ

)}
τ−α = exp

{
− sup

τ≤t

(
αlnτ −M∗(H/τ)

)}
≤ exp

{
− αlnt + CH − sup

ρ≥0

(
− αρ− CHM

∗(eρ)
)}

= Ct−αexp
{
− CH sup

ρ≥0

(
− αρ−M∗(eCHρ

))}
= Ct−αexp

{
− CHM∗

(
−α/CH

)}
where C = eCH .

Thus we get (33) with c = (CH)−1. �

Now fix t < eω and define g by (26) with v given by (25) and P by (24).

Since g does not depend on the choise of 0 < τ ≤ t we get by (33)

|g(α)| ≤C inf
τ≤t

exp{M∗(H/τ)}τ−α

≤Ct−αexp
{
− (1/c)M∗(−cα)

}
for α < 0

with some c = c(H/t) > 0. So we have

Theorem 6. Let u ∈ O(N)
(M∗)

(
B̃(eω)

)
and fix t < eω. Then one can find

H <∞, L <∞ and C <∞ such that for 0 < τ ≤ t

|M±
τ u(z)| ≤ Cexp{M∗(H/τ)}τ−Re z(34)

×
{

exp{N∗(L/| Im z|)} for 0 < ± Im z ≤ 1,

1/| Im z| for ± Im z ≥ 1.
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Furthermore there exists a symbol P of class (Np) and a function g ∈ C0(R)

satisfying

(35) |g(α)| ≤ C ·
{
t−αexp

{
− (1/c)M∗(−cα)

}
for α < 0,

t−α for α ≥ 0

with some c > 0 and M∗ given by (31) such that u(x) = T S(x) for |x| < t

with S = P ∗(D)g.

Remark 2. If Mp = (p!)s with s > 1 then expM∗(ρ) ∼ ρ(s−1)ρ as

ρ→∞.

Now we shall give converse statements to those in Theorem 6.

Theorem 7. Let S ∈ L
(Np)′
(−∞,ω)(R). Assume that for every t < eω there

exist a symbol Pt of class (Np) and gt ∈ C0(R) such that for any ε > 0

(36) |gt(α)| ≤ Cε ·
{(

teε
)−α

exp
{
− (1/c)M∗(−cα)

}
for α < 0,(

te−ε
)−α

for α ≥ 0

with some c > 0 independent of ε > 0 and

S = P ∗
t (D)gt in L

(Np)′
(−∞,lnt)(R).

Then u = T S ∈ O(N)
(M∗)

(
B̃(eω)

)
Proof. Fix r < eω and choose r < t < eω. Put v−(x) =

0∫
−∞

gt(α)xαdα, v+(x) =
∞∫
0

gt(α)xαdα and v = v− + v+. Then choosing

ε = 1/2 min(ln2, lnt/r) in (36) we get for |x| ≤ r

|v+(x)| ≤ Cε

∞∫
0

(eε|x|
t

)α
dα ≤ Cr.
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Now, by (32) and the Fatou lemma we derive for |x| ≤ r

|v−(x)| ≤ Cε

0∫
−∞

inf
τ≤t

exp
{
M∗(H/τ)

}(
e−ε|x|/τ

)α
dα

≤ Cε inf
τ≤t

exp
{
M∗(H/τ)

}
(ln|x| − lnτ − ε)−1

τ=|x|/2
≤ Crexp

{
M∗(2H/|x|)

}
.

So |v(x)| ≤ Cexp
{
M∗(2H/|x|)

}
for |x| ≤ r. Since for |x| ≤ r

u(x) = T
(
P ∗
t (D)gt

)
(x) = Pt(lnx)T gt(x) = Pt(lnx)v(x)

and

|Pt(lnx)| ≤ Cexp{N(K|lnx|)} with some K <∞

we get the conclusion. �

Theorem 8. Let {Hτ}τ<eω be a family of functions Hτ ∈ O(C \ R)

satisfying for any t < eω and 0 < τ ≤ t

|Hτ (z)| ≤ Cexp{M∗(H/τ)}τ−Re z(34′)

×
{

exp{N∗(L/| Im z|)} for 0 < ± Im z ≤ 1,

1/| Im z| for ± Im z ≥ 1

with some C,H and L independent of 0 < τ ≤ t. If for any 0 < r < t < eω,

H±
t −H±

r extends holomorphically to an entire function Gr,t satisfying (27)

then one can find a unique u ∈ O(N)
(M∗)

(
B̃(eω)

)
such that Hτ = Mτu for

τ < eω.

Proof. As in the proof of Theorem 5, Hτ admits boundary values

b±(Hτ ) ∈ L
(Np)′
(lnτ,lnτ)(R) and S = b+(Hτ ) − b−(Hτ ) does not depend on 0 <

τ < eω. Hence S ∈ L
(Np)′
(−∞,ω)(R). Now, since C,H and L does not depend

on 0 < τ ≤ t following the proof of Proposition 2 of [8L2] we find by (33)

that for any t < eω there exist a symbol Pt of class (Np) and gt ∈ C0(R)

satisfying (36) such that S = P ∗
t (D)gt in L

(Np)′
(−∞,lnt)(R). Hence by Theorem
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7, u
def
= 2πiT S ∈ O(N)

(M∗)

(
B̃(eω)

)
. Put Fτ =Mτu−Hτ . Then Fτ is an entire

function satisfying

|Fτ (z)| ≤
C

1 + | Im z| · exp{M∗(H/τ)}τ−Re z for z ∈ C

and the Liouville theorem implies Fτ ≡ 0. The uniqueness of u follows by

Theorem 4. �

4. Relations between O(N)
(
B̃(ρ, ∅)

)
and O(N)

(M∗)

(
B̃(ρ)

)
Obviously O(N)

(
B̃(ρ, ∅)

)
⊂ O(N)

(M∗)

(
B̃(ρ)

)
for any growth function M∗.

The theorem below implies that applying an ultradifferential operator P of

class (Mp) to f ∈ O(N)
(
B̃(ρ, ∅)

)
we get an element of O(N)

(M∗)

(
B̃(ρ)

)
.

Theorem 9. Let u ∈ O
(
B̃(ρ)

)
. Assume that for every t < ρ one can

find an ultradifferential operator Pt of class (Mp) and ft ∈ O(N)
(M∗)

(
B̃(t)

)
such that

(37) u(x) = Pt(D)ft(x) for |x| < t.

Then u ∈ O(N)
(M∗)

(
B̃(ρ)

)
.

Proof. Fix r < t and choose r < r′ < t < ρ. Take x ∈ B̃(t) with

|x| ≤ r and write for n ∈ N0

Dnft(x) =
n!

2πi

∫
γx

f(ζ)

(ζ − x)n+1
dζ,

where γx = {ζ ∈ B̃(t) : |ζ−x| = |x|/R} with R = max
(
2, r/(r′− r)

)
. Since

for ζ ∈ γx

|ft(ζ)| ≤ Cexp{M∗(H/|ζ|) + N(K|lnζ|)}
≤ Cexp{M∗(2H/|x|) + N

(
K(|lnx|+ ln2 + π/6)

)
}
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we get by (6)

|Dnft(x)| ≤ n!(R/|x|)n · sup
ζ∈γx
|ft(ζ)|

≤ C1n!(R/|x|)nexp{M∗(2H/|x|) + N(K|lnx|)}.

Now let Pt(D) =
∞∑
n=0

anD
n with |an| ≤ CLn/Mn. Then for |x| ≤ r we get

by (8)

|u(x)| ≤ C
∞∑
n=0

n!

Mn

(LR
|x|

)n
exp{M∗(2H/|x|) + N(K|lnx|)}

≤ 2Cexp{M∗(H̃/|x|) + N(K|lnx|)}

where H̃ = max(2H, 2LR). Since r < ρ was arbitrary this implies that

u ∈ O(N)
(M∗)

(
B̃(ρ)

)
. �

Corollary 1. Let u ∈ O
(
B̃(ρ)

)
. If for every t < ρ one can find an

ultradifferential operator Pt of class (Mp) and ft ∈ O(N)
(
B̃(t, ∅)

)
such that

(37) holds then u ∈ O(N)
(M∗)

(
B̃(ρ)

)
.

We would like to show a converse result to that of Corollary 1. Namely

that for every u ∈ O(N)
(M∗)

(
B̃(ρ)

)
and t < ρ there exist an ultradifferential

operator Pt of class (Mp) and ft ∈ O(N)
(
B̃(t)

)
such that (37) holds. How-

ever we are not able to prove this conjecture in general, we have only a

weaker result.

Theorem 10. Let u ∈ O(N)
(M∗)

(
B̃(ρ)

)
and assume that M∗(r) ∼ r1/(s−1)

as r →∞ with s > 1. Then for every t < ρ one can find an ultradifferential

operator J(D) of class (p!)s and a sequence of functions

vν ∈ O
(
{x ∈ B̃(t) : | arg x− 2νπ| < 3π/2}

)
, ν ∈ Z

satisfying with some δ > 0 and C, K̃ <∞ not depending on ν ∈ Z

(38) |vν(x)| ≤ Cexp{N
(
K̃|ν|

)
} for x ∈ B̃(t) with | arg x− 2νπ| ≤ π + δ
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and

J(D)vν = u on B̃(t) ∩ {| arg x− 2νπ| < 3π/2}.

Furthermore for any β > 0 one can find H̃, K̃ and C <∞ such that

(39) |vν(x)| ≤ Cexp{M∗(H̃/|x|
)

+ N
(
K̃|ν|

)
}

for x ∈ B̃(t) with | arg x− (2ν + 1)π| ≤ π/2− β.

We procede the proof of Theorem 10 by two lemmas

Lemma 4. Let mp ∼ ps with s > 1. Put

P (ζ) =
∞∏
p=1

(
1 +

ζ

mp

)
for ζ ∈ C.

Then there exist ψ > 0 and c > 0 such that

ln|P (ζ)| ≥ c|ζ|1/s for ζ ∈ Aψ
def
={ζ ∈ C : | arg ζ| ≤ ψ + π/2}.

Hence

|1/P (ζ)| ≤ Cexp{−M(k|ζ|)}(40)

for ζ ∈ Aψ with some C <∞ and k > 0.

Furthermore for any δ > 0 we can find Kδ <∞ such that

(41)
∣∣∣ 1

P (ζ)

∣∣∣ ≤ Cexp
{
M

(
Kδ|ζ|

)}
for | arg ζ| ≤ π − δ.

Proof. Take 0 < ψ < π/2 min(1, s − 1). Since P does not vanish on

Aψ it is sufficient to show that Re lnP (ζ) ≥ c|ζ|1/s for ζ ∈ Aψ with |ζ| big

enough. To this end recall that ([R])

lnP̃ (ζ) = ζ

∞∫
m0

m(ρ)

ρ(ρ + ζ)
dρ,
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where m(ρ)
def
= |{p ∈ N : mp ≤ ρ}| and write

ζ

∞∫
m0

m(ρ)

ρ(ρ + ζ)
dρ =

|ζ|∫
m0

+

|ζ|/ sinψ∫
|ζ|

+

∞∫
|ζ|/ sinψ

m(ρ)

ρ

ζ

ρ + ζ
dρ

def
= I1(ζ) + I2(ζ) + I3(ζ).

Since mp ∼ ps we can find C < ∞ such that 1/Cρ1/s ≤ m(ρ) ≤ Cρ1/s for

ρ ≥ m0. If 0 < ρ ≤ |ζ| then | arg
( ζ
ρ+ζ

)
| ≤ π/4 +ψ/2 and | ζ

ρ+ζ | ≥
√

2/2. So

Re
( ζ
ζ+ρ

)
≥

√
2

2 cos(π/2 + ψ/2)
def
= Cψ > 0 and

Re I1(ζ) ≥
|ζ|∫

m0

Cψ

C
ρ1/s−1dρ =

Cψs

C

(
|ζ|1/s −m

1/s
0

)
.

Now observe that Re I2(ζ) ≥ 0 and Re I3(ζ) ≥ 0 if Re ζ ≥ 0. Finally, if

ζ ∈ Aψ with Re ζ < 0 and ρ ≥ |ζ|/ sinψ then

−Re
( ζ

ρ + ζ

)
≤

∣∣ ζ

ρ + ζ

∣∣ sinψ ≤ |ζ|
ρ

sinψ.

So

−Re I3(ζ) ≤
∞∫

|ζ|/ sinψ

Cρ1/s−2|ζ| sinψdρ =
C(s− 1)

s
(sinψ)2−1/s|ζ|1/s.

Hence chosing ψ > 0 and c > 0 small enough we get the desired estimation

of Re lnP .

To show (41) we repeat the estimations of −Re I3 with ψ replaced by

π/2− δ. �

The next lemma improves Lemma 11.4 of [K1].

Lemma 5. Let mp ∼ ps with s > 1 and L <∞. Put

(42) J(ζ) = (1 + ζ)2
∞∏
p=1

(
1 +

Lζ

mp

)
for ζ ∈ C
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and define the Green kernel for J

(43) G(z) =
1

2πi

∞∫
0

ezζ

J(ζ)
dζ for Re z < 0.

Then G ∈ O({Re z < 0}) can be holomorphically continued to the Riemann

domain {z ∈ C̃ : −π/2 < arg z < 5π/2} on which we have

J(D)G(z) = − 1

2πi

1

z
.

For any 0 < ϕ < π/2 there exist Kϕ <∞ and Cϕ <∞ such that

|G(z)| ≤ Cϕexp
{
M∗

(Kϕ

|z|
)}

(44)

for z ∈ Bϕ
def
={z ∈ C̃ : −ϕ ≤ arg z ≤ 2π + ϕ}.

Furthermore, one can find 0 < ψ < π/2 such that G is bounded on Bψ and

(45) |g(z)| ≤ C
√
|z|exp

{
−M∗(kL

|z|
)}

for | arg z| ≤ ψ

with some k > 0, where

g(z) = G+(z)−G−(e2πiz) for Re z > 0,

with G+ being the branch of G on {−π/2 < arg z < π/2} and G− that on

{3π/2 < arg z < 5π/2}.

Proof. We have only to prove the estimations of G and g. To this

end observe that

(46) G(z) =
1

2πi

∫
lα

ezζ

J(ζ)
dζ for {−α + π/2 < arg z < 3π/2− α}

where lα = {ζ ∈ C : arg ζ = α} with −π < α < π. Since by Lemma 4 there

exists ψ̃ > 0 such that 1/J is bounded on {| arg ζ| ≤ ψ̃ + π/2} we get the
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boundedness of G on Bψ with any ψ < ψ̃. Now to show (44) it is sufficient

to estimate G on {−ϕ ≤ arg z ≤ 0} and on {2π ≤ arg z ≤ 2π + ϕ}. On the

first set G is defined by (46) with π/2 + ϕ < α < π. So by (41)

|G(z)| ≤ Cα

∞∫
0

exp{r|z| cos(arg z + α) + M(Kαr)}dr

≤ Cα

∞∫
0

exp{−δα,ϕr|z|+ M(Kαr)}dr

with some δα,ϕ > 0. Now using the definitions of M and M∗ we conclude

that G satisfies (44). The estimation on the second set is derived in an

analogous way.

Now we shall prove (45). To this way fix 0 < ψ < π/2 and observe that

g(z) =
1

πi

∫
l̃ψ

ezζ

J(ζ)
dζ for | arg z| ≤ ψ,

where l̃ψ
def
={ζ ∈ C : | arg ζ| = ψ + π/2}. Now by Lemma 4 if ψ is small

enough we can replace l̃ψ under the integral sign by r + l̃ψ with any r > 0.

Note that if ζ ∈ r+ l̃ψ and | arg z| ≤ ψ than |ζ| ≥ r cosψ and Re(zζ) ≤ |z|r.
We also have ∫

r+l̃ψ

|dζ|
|1 + ζ|2 =

π + 2ψ

(1 + r) cosψ
≤ 2π

(1 + r) cosψ
.

Thus, emploing estimate (40) we derive

|g(z)| ≤ inf
r>0

1

2π

∫
r+l̃ψ

|ezζ |
|J(ζ)| |dζ|

≤ inf
r>0

C

∫
r+l̃ψ

|dζ|
|1 + ζ|2 exp{−M(kLr cosψ) + |z|r}
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≤ C

cosψ
inf

r>0,p∈N0

1√
r

Mp

(kLr cosψ)p
e|z|r.

Finally, putting r = p/|z|, by the Stirling formula we arrive at (45). �

Remark 3. If mp = ps, s > 1 then (40) holds for ζ ∈ Aψ with any

0 < ψ < π/2 min(1, s− 1) ([B], Theorem 4.1.1). Hence also in (45) one can

choose any 0 < ψ < π/2 min(1, s− 1).

Proof of Theorem 10. Fix t < ρ and choose t < x0 < ρ. Let H

and K be such that (30) holds for |x| ≤ x0. Let G be the Green kernel for

J(ζ) = (1 + ζ)2
∞∏
p=1

(
1 + Lζ/ps

)

where L will be chosen later. For ν ∈ Z put xν = x0e
2νπi Then for x ∈ B̃(x0)

with | arg x − 2νπ| < 3π/2 one can find a closed curve γν ⊂ B̃(x0) with

endpoints at xν , encircling x once in the positive direction and such that

−π/2 < arg(y − x) < 5π/2 for y ∈ γν . Define

vν(x) =

∫
γν

G(y − x)u(y)dy for x ∈ B̃(x0) with | arg x− 2νπ| < 3π/2.

Then vν ∈ O
(
{x ∈ B̃(x0) : | arg x − 2νπ| < 3π/2}), vν does not depend

on the choise of γν satisfying the above properties and J(D)vν = u on

B̃(t) ∩ {| arg x− 2νπ| < 3π/2}. Hence we only need to show (38) and (39).

First we shall show (38) for x ∈ Sδ,+
ν

def
={x ∈ B̃(t) : 0 ≤ arg x−2νπ ≤ π−δ}

where 0 < δ < π/2. To this end take a convenient curve γν = γ1
ν ∪ γ2

ν ∪ γ3
ν .

To define γj
ν , j = 1, 2, , 3 denote by x a point of C̃ with |x| = x0 such that

x = x+τ0 with some τ0 ∈ R+. Set γ1
ν = {y ∈ B̃(ρ) : |y| = x0, 2νπ ≤ arg y ≤

arg x}; γ3
ν = −γ1

ν ; γ
2
ν - a curve from x to x encircling once the interval [x, x]

and close to that interval. Define

vjν(x) =

∫
γjν

G(y − x)u(y)dy, j = 1, 2, 3.
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Note that for x ∈ Sδ,+
ν and y ∈ γ1

ν ∪ γ3
ν we have −ϕ ≤ arg(y − x) ≤ 2π + ϕ

with some ϕ < π/2, |y − x| ≥ x0 − t, |y| = x0 and | arg y − 2νπ| < π/2. So

by estimations of the Green kernel G and of u we conclude that on Sδ,+
ν ,

v1
ν and v3

ν are bounded by Cexp{N
(
K̃|ν|

)
} with C and K̃ independent of

ν ∈ Z. Now

v2
ν(x) =

τ0∫
0

g(τ)u(x + τ)dτ

Observe that for x ∈ Sδ,+
ν and 0 ≤ τ ≤ τ0 we have 0 ≤ arg(x + τ)− 2νπ ≤

π − δ and |x + τ | ≥ τ sin δ. Since for any ε > 0

(47) N
(
K|lnρ|

)
+ M∗(H/ρ

)
≤ CM∗((H + ε)/ρ

)
for 0 < ρ < 1

and by (45)

|g(τ)| ≤ C
√
τexp{−M∗(kL/τ)} for τ > 0

with some k > 0, choosing L > H/(k sin δ) in the definition of J we obtain

by (6)

|v2
ν(x)| ≤ C

τ0∫
0

√
τexp{−M∗

(kL
τ

)
+ M∗

( H

|x + τ |
)

+ N
(
K|ln(x + τ)|

)
}dτ

≤ Cexp{N
(
K̃|ν|

)
}

with C and K̃ = (2π + 1)K independent of ν ∈ Z. Analogously (38) holds

for x ∈ Sδ,−
ν

def
={x ∈ B̃(t) : −π + δ ≤ arg x− 2νπ ≤ 0} with 0 < δ < π/2.

Next we estimate vν on {| arg x − (2ν + 1)π| ≤ δ} where 0 < δ < ψ

with ψ > 0 as in Lemma 5. To this end find a curve γ such that −ψ ≤
arg(y − x) ≤ 2π + ψ, |y| ≥ |x| sin(ψ − δ) for y ∈ γ. Then

vν(x) =

∫
γ̃

g(τ)u(x + τ)dτ

where γ̃ is a curve connecting 0 to xν−x such that | arg τ | ≤ ψ and |x+τ | ≥
|τ | sin(ψ− δ) for τ ∈ γ̃. So taking L > H/(k sin(ψ− δ)) in the definition of

J , where k > 0 is a constant in (45) we get by (6)

|vν(x)| = |
∫
γ̃

g(τ)u(x + τ)dτ |
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≤ C sup
τ∈γ̃

√
|τ |exp{−M∗

(kL
|τ |

)
+ M∗

( L

|x + τ |
)

+ N
(
K|ln(x + τ)|

)
}

≤ Cexp{N
(
K̃|ν|

)
}

for | arg x− (2ν + 1)π| ≤ δ which ends the proof of (38).

To show (39) fix β > 0 and observe that if x ∈ B̃(t) with | arg x −
(2ν + 1)π| ≤ π/2 − β than we can choose a curve γν in such a way that

4|y| ≥ |x|/ sinβ, 4|y−x| ≥ |x|/ sinβ, | arg y| ≤ 1+ | arg x| and −π/2+β/4 ≤
arg(y−x) ≤ 2π+π/2−β/4 for y ∈ γν . Thus by (44) and (47) we estimate

|vν(x)| ≤ Cβ sup
y∈γν

exp{M∗
( Kβ

|y − x|
)

+ M∗
(H

|y|
)

+ N
(
K|lny|

)
}

≤ Cβexp{M∗
( 4Kβ

|x sinβ|
)

+ M∗
( 4K + 1

|x| sinβ
)

+ N
(
K(1 + | arg x|

)
}

and we get (39) with H̃ = C(s) max(4Kβ, 4H+1)/ sinβ, K̃ = (2π+1)K. �

5. Relation between Mg and M(J(D)g)

Let J(D) =
∞∑
k=0

akD
k be an ultradifferential operator of class (Mp). Let

S ∈ L
(Np)′
(∅,ω) (R+) and g = T S. Put

u(x) = J(D)g(x) for 0 < |x| < eω.

Then by Corollary 1, u ∈ O(N)
(M∗)

(
B̃(eω)

)
. So Mtu, t < eω defined by (21)

satisfies the estimation in Theorem 6. In this section we define the Mellin

transform of χu, χ – a (smooth) cut-off function, by means of the Mellin

transform of χg. First of all we shall study properties ofMχ andM(χg).

Lemma 6. Let χ be a cut-off function of class (Mp) equal to one on

(0, r] and zero on [t,∞) where 0 < r < t. Then Ψ =Mχ ∈ O(C \ {0}) has

simple pole at zero with residuum −1 and satisfies for any L <∞

(48) |Ψ(z)| ≤ CL/|z|exp{−M(L|z|)}κlnt,lnr(Re z) for z �= 0.
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Furthermore for a fixed z ∈ C \ R+ the function

(49) Ψz(x)
def
= Ψ(z − x) for x ∈ R+

belongs to L
(Np)
b (R+) with b > t and for any h > 0, L <∞

‖Ψz‖(Np)∅,b,h ≤ C(L)exp{N∗
( 2H

hd(z)

)
−M(Ld(z))}κlnt,lnr(Re z)(50)

for z ∈ C \ R+

where d(z)
def
= dist(z,R+) and H is the constant in (M.2).

Proof. Since

zΨ(z) =

t∫
r

dχ

dx
x−zdx ∈ O(C)

and zΨ(z)|z=0 = −1 the first assertion is clear. To show the second one put

µ(y) = e−y dχ

dx
(e−y) for y ∈ R.

Since the function R+ � x → −lnx is analytic on R+ it follows by the

Roumieu theorem ([R], Théorème 13) that µ ∈ D(Mp)(R) with suppµ ⊂
[−lnt,−lnr]. We also have

zΨ(z) =

t∫
r

dχ

dx
x−zdx

x=e−y
=

−lnr∫
−lnt

µ(y)eyzdy = Lµ(z) for z ∈ C

and for any k ∈ N0

zkLµ(z) = L(Dkµ)(z) for z ∈ C.

So for any L <∞ we can find CL <∞ such that

|zΨ(z)| ≤ CL
Mk

Lk|z|k κlnt,lnr(Re z) for z �= 0.
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Taking the infimum over k ∈ N0 we arrive at (48).

To show the last statement fix z ∈ C\R+, and take ρ = d(z)/2 if d(z) ≤ 2

and ρ = 1 otherwise. Then

DαΨz(x) =
α!

2π

2π∫
0

Ψz(x + ρeiϕ)ρ−αe−iϕαdϕ for x ∈ R+.

So for d(z) ≥ 2

|DαΨz(x)| ≤ α! sup
0≤ϕ≤2π

|Ψ(z − x− eiϕ)|

≤ CLα!exp{−M(Ld(z))}κlnt,lnr(Re z − x)

and since r < t < eb

‖Ψz‖(Np)∅,b,h ≤ CLexp{N∗(1/h)−M(Ld(z))}κlnt,lnr(Re z).

Now in the case 0 < d(z) ≤ 2

|DαΨz(x)| ≤ C̃Lα!
2α+1(

d(z)
)α+1κlnt,lnr(Re z − x).

So

‖Ψz‖(Np)∅,b,h ≤ C(L)
2

d(z)
exp{N∗

( 2

hd(z)

)
−M(Ld(z))}κlnt,lnr(Re z)

and by (7) we get (50). �

Proposition 2. Let S ∈ L
(Np)′
(∅,ω) (R+) and g = T S. Let χ be a cut-off

function as in Lemma 6 with r < t < eω. Then

G
def
=M(χg) ∈ O(C \ R+)

and for every L < ∞ one can find CL < ∞ such that with K < ∞ inde-

pendent of L

(51) |G(z)| ≤ CLexp{N∗
( K

d(z)

)
−M(Ld(z))}κlnt,lnr(Re z) for z ∈ C \R+.
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Proof. The holomorphicity of G follows from the continuity of S by

the standard arguments. To show (51) observe that

G(z) =M(χT S)(z) =

∫
R+

χ(x)S[x·]x−z−1dx

= S[

∫
R+

χ(x)x·−z−1dx] = S[Ψz]

with Ψz given by (49). The exchange of the integral with the action of S is

legitimate by the continuity if S. Now applying Lemma 3 with lnt < b < ω

we get the existence of h > 0 such that

|S[Ψz]| ≤ C‖Ψz‖(Np)∅,b,ω.

Hence (51) follows by (50). �

Returning to the considerations from the begining of this section observe

that χu−J(D)(χg)
def
= ϕ belongs to D(Mp)([r, t]). As in the proof of Lemma

6 we find thatMϕ is an entire function satisfying with any L <∞

(52) |Mϕ(z)| ≤ CLexp{−M(L|z|)}κlnt,lnr(Re z) for z ∈ C.

Since for any k ∈ N0

M(Dkχg)(z) =
Γ(z + k + 1)

Γ(z + 1)
M(χg)(z + k)

we define the Mellin transform of χu by

(53) M(χu)(z) =
∞∑
k=0

ak
Γ(z + k + 1)

Γ(z + 1)
M(χg)(z+k)+Mϕ(z) for z ∈ C\R.

To justify this definition we shall show that the series on the right hand

side of (53) converges locally uniformly on C \ R. To this end put

G(z) =M(χg)(z) for z ∈ C \ R+.
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Observe that for k ∈ N0

Γ(z + k + 1)

Γ(z + 1)
=

k∑
j=0

{
k

k − j

}
zj

where{
k

0

}
def
= 1 and

{
k

l

}
def
=

∑
1≤j1<...<jl≤k

j1 · . . . · jl for 1 ≤ l ≤ k, k ∈ N0.

So

∞∑
k=0

ak
Γ(z + k + 1)

Γ(z + 1)
M(χg)(z + k) =

∞∑
k=0

ak

( k∑
j=0

{
k

k − j

}
zj
)
G(z + k)

=

∞∑
n=0

zn
( ∞∑

k=n

ak

{
k

k − n

}
G(z + k)

)
=

∞∑
n=0

zn
( ∞∑

l=0

an+l

{
n + l

l

}
G(z + n + l)

)
.

Now {
n + l

l

}
=

(n + l)!

n!
·

∑
1≤j1<···<jl≤n+l

j1 · . . . · jl
(n + 1) · . . . · (n + l)

≤ (n + l)!

n!

(
n + l

l

)
≤ 4n+ll!.

Thus, if |ak| ≤ CLk
1Mk for k ∈ N0 with some L1 < ∞, using (51), (M.1)

and (8) we derive for Re z ≥ 0, z �∈ R+

|
∞∑
l=0

an+l

{
n + l

l

}
G(z + n + l)|

≤ C
∞∑
l=0

Ln+l
1

Mn+l
4n+ll!
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× exp{N∗
( K

d(z + n + l)

)
−M

(
Ld(z + n + l)

)
}r−Re z−n−l

≤ C
(4L1/r)

n

Mn
exp{N∗

( K

d(z)

)
−M

(
Ld(z)

)
}

∞∑
l=0

l!(4L1/r)
l

Ml
r−Re z

≤ 2C
(4L1/r)

n

Mn
exp{M∗

(8L1

r

)
+ N∗

( K

d(z)

)
−M

(
Ld(z)

)
}r−Re z.

Now let Re z < 0 with Im z �= 0 and let k ∈ N0 be such that −k − 1 ≤
Re z < −k. Put kn = k − n if n ≤ k and kn = −1 if n > k. Then we

estimate (omiting the sum
∑kn

l=0 if kn = −1)

|
∞∑
l=0

an+l

{
n + l

l

}
G(z + n + l)|

≤ C
[ kn∑

l=0

(4L1)
n

Mn

(4L1)
ll!

Ml

× exp{N∗
( K

d(z + n + l)

)
−M

(
Ld(z + n + l)

)
}t−Re z−n−l

+
∞∑

l=kn+1

(4L1)
n

Mn

(4L1)
ll!

Ml

× exp{N∗
( K

d(z + n + l)

)
−M

(
Ld(z + n + l)

)
}r−Re z−n−l

]
≤ Ct−Re z

[(4L1/t)
n

Mn
exp{N∗

( K

| Im z|
)
−M

(
L| Im z|

)
}

kn∑
l=0

(4L1/t)
ll!

Ml

+
(r
t

)−Re z (4L1/r)
n

Mn
exp{N∗

( K

| Im z|
)
−M

(
L| Im z|

)
}

∞∑
l=kn+1

(4L1/r)
ll!

Ml

]
≤ 2Ct−Re z

[(4L1/t)
n

Mn
exp{M∗

(8L1

t

)
+ N∗

( K

| Im z|
)
−M

(
L| Im z|

)
}

+
(4L1/r)

n

Mn
exp{M∗

(8L1

r

)
+ N∗

( K

| Im z|
)
−M

(
L| Im z|

)
}
]

≤ 4C
(4L1/r)

n

Mn
exp{M∗

(8L1

r

)
+ N∗

( K

| Im z|
)
−M

(
L| Im z|

)
}t−Re z.
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Thus, by the above estimations we conclude that the series

∞∑
n=0

zn
( ∞∑

l=0

an+l

{
n + l

l

}
G(z + n + l)

)
converges locally uniformly on C \R to a function F ∈ O(C \R) and having

in mind (52), by (8′) we obtain

Theorem 11. Let J(D) be an ultradifferential operator of class (Mp),

S ∈ L
(Np)′
(∅,ω) (R+), g = T S and u = J(D)g. Let χ be a cut-off function of class

(Mp) equal to one on (0, r] and zero on [t,∞) where 0 < r < t < eω. Then

M(χu) defined by (53) is a holomorphic function on C \ R. Furthermore,

one can find H < ∞ and K < ∞ such that for any L < ∞ there exists

CL <∞ (independent of r) such that

(54)

|M(χu)(z)|

≤ CLexp{M∗
(H
r

)
+ N∗

( K

| Im z|
)
−M

(
L| Im z|

)
+ M

(H|z|
r

)
}

× κlnt,lnr(Re z) for z ∈ C \ R.

We also have u = T T where

(55)

T =
1

2πi

(
b+

(
M+(χu)

)
− b−

(
M−(χu)

))
=

∞∑
k=0

ak
Γ(α + k + 1)

Γ(α + 1)
S(·+ k) in L

(Np)′
(−∞,ω)(R).

Remark 4. If in Theorem 11 we take as a cut-off function χ the char-

acteristic function χt of the interval (0, t] then since for k ∈ N

M±
t D

kg(z) =
Γ(z + k + 1)

Γ(z + 1)
M±

t g(z + k) +
k−1∑
l=0

Γ(z + k − l)

Γ(z + 1)
g(l)(t)t−z−k+l

for ± Im z > 0

we obtain

M±
t u(z) =

∞∑
k=0

ak
Γ(z + k + 1)

Γ(z + 1)
M±

t g(z + k) + F (z) for ± Im z > 0



82 Grzegorz �Lysik

where

F (z) =
∞∑
k=0

Γ(z + k + 1)

Γ(z + 1)

( ∞∑
l=0

ak+l+1g
(l)(t)

)
t−z−k−1 for z ∈ C

is an entire function satisfying with some C <∞ and L <∞

|F (z)| ≤ Cexp{M
(
L|z|

)
}t−Re z for z ∈ C.

(The estimation of F can be derived following the lines of the proof of

Theorem 11 with G(z) = t−z−1.)

Remark 5. If we assume in Theorem 11 that S is a Laplace distri-

bution S ∈ L′
(∅,ω)(R+) then the factor exp{N∗(K/| Im z|)} in (54) can be

replaced by | Im z|−K . Also in previous theorems we can omit the sym-

bol (N) (or (Np)) replacing exp{N
(
K · ρ(z)

)
} and exp{N∗(K · ρ(z))} by(

ρ(z)
)K

.

6. Examples

Example 1. Let S = δ′(0) ∈ L′
(∅,∞)(R+) and f(x) = T S(x) = −lnx for

x ∈ C̃. For k ∈ N put

Jk(z) =
∞∑
j=1

ajz
kj with aj =

(−1)kj

(kj − 1)!j!
.

Then Jk(D) is an ultradifferential operator of class (p!)s with s = 1 + 1/k.

Put u = 1 + Jk(D)f . Then

u(x) = 1 +
∞∑
j=1

ajD
kj(−lnx) =

∞∑
j=0

1

j!

1

xkj
= exp{ 1

xk
} for x �= 0.

So u ∈ O(M∗)(C̃) with M∗(ρ) ∼ ρk as ρ→∞. For 0 < t <∞ we compute

M±
t u(z)

(21)
=

∫
γ±(t)

e1/xkx−z−1dx =

∫
γ±(t)

( ∞∑
j=0

1

j!

1

xkj

)
x−z−1dx
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=
∞∑
j=0

1

j!

∫
γ±(t)

x−kj−z−1dx(56)

=

∞∑
j=0

1

j!

t−kj−z

−kj − z
for ± Im z > 0.

So by Theorem 4

(57) u = T T

where

T =
1

2πi

(
b+

(
M+

t u
)
− b−

(
M−

t u
))

=
∞∑
j=0

1

j!
δ(−kj) ∈ L′

(−∞,∞)(R).

We also have

T = δ(0) +

∞∑
j=1

aj
Γ(α + kj + 1)

Γ(α + 1)
S(·+ kj) in L′

(−∞,∞)(R)

Note that if u(x) = exp{1/xk} that the formulae (56) and (57) remain true

under the assumption k > 0.

Observe also that (sinceM1

(
u(x)

)
= L

(
u(e−y)

)
, L - the Laplace trans-

formation) we can write

L
(
exp{eyk}

)
(z) =M1

(
exp{1/xk}(z) =

∞∑
j=0

1

j!

1

−kj − z
for z ∈ C \ R,

which in the case k = 1 agrees with the formula (3.2) of [D].

Example 2. Under the notation of Example 1

if aj =
(−1)(k+1)j

(kj − 1)!j!
then u(x) = exp{−1

xk
}

for x �= 0 and S =
∞∑
j=0

(−1)j

j! δ(−kj).
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Note here that

M±
t u(z) =

∞∑
j=0

(−1)j

j!

t−kj−z

−kj − z
for ± Im z > 0,

but the integral
t∫

0

u(x)x−z−1dz

defines an entire function. The inequality betweenM±
t u and the last inte-

gral is caused by the fact that u is not a generalized analytic function.

Example 3. Let S(α) = exp{−α2} for α ∈ R and u = T S. Then

u(x) =

∫
R

exp{−α2}xαdα = exp{ ln
2x

4
}
∫
R

exp{−
(
α +

lnx

2

)2
}dα

=
√
πx(1/4)lnx for x ∈ C̃.

Since |u(x)| = √πexp{1/4
(
ln2|x| − arg2 x

)
}, u ∈ O(M∗)(C̃) for M∗(ρ) ∼ ρk

as ρ→∞ with any k > 0. Now for 0 < t <∞ and ± Im z > 0 we compute

M±
t u(z) =

∫
γ±(t)

∫
R

exp{−α2}xαdαx−z−1dx

=

∫
R

exp{−α2}
∫

γ±(t)

xα−z−1dxdα =

∫
R

exp{−α2} t
α−z

α− z
dα.

Note thatM±
t u can not be holomorphically extended to any larger domain

than {± Im z > 0}.

Example 4. Let s = 1 + 1/k with k > 0 and

u(x) =
∞∑
j=0

1

(j!)s
Dj

( 1

−lnx

)
for x ∈ B̃(1).
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Then by Corollary 1, u ∈ O(M∗)

(
B̃(1)

)
with M∗(ρ) ∼ ρk as ρ→∞. Since

1/(−lnx) =
∫∞
0 xαdα for |x| < 1 we compute for 0 < t < 1 and ± Im z > 0

M±
t u(z) =

∞∑
j=0

1

(j!)s
M±

t

(
Dj

( 1

−lnx

))
(z) modOexp(C)

=
∞∑
j=0

1

(j!)s
Γ(z + j + 1)

Γ(z + 1)
G(z + j) modOexp(C)

where

G(ζ) =Mt

( 1

−lnx

)
(ζ) =

∞∫
0

tα−ζ

α− ζ
dζ for ζ ∈ C \ R+.

Since 1/(2πi)b(G) = Y (Y -the Heaviside function) we obtain by Theorem

4, u = T S with

S(α) =
∞∑
j=0

1

(j!)s
Γ(α + j + 1)

Γ(α + 1)
Y (α + j) for α ∈ R.
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Scient. Éc. Norm. Sup. 77 (1960), 41–121.
[SZ] Szmydt, Z. and B. Ziemian, The Mellin transformation and Fuchsian type

partial differential equations, Mathematics and Its Applications, Kluwer,
1992.

[Z] Zemanian, A. H., Generalized integral transformations, Interscience Pub-
lishers, 1969.

(Received February 12, 1997)
(Revised September 21, 1998)

Institute of Mathematics
Polish Academy of Sciences
Sniadeckich 8
00-950 Warszawa, POLAND
E-mail: lysik@impan.gov.pl


