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Maximal Quasiprojective Subsets and

the Kleiman-Chevalley Quasiprojectivity Criterion

By Jaros	law W�lodarczyk∗

Abstract. We prove that any complete Q-factorial variety con-
tains only finitely many maximal open quasiprojective subsets.

Let X be a normal variety defined over an algebraically closed field of

any characteristic. By Div(X), respectively Car(X) denote the group of

Weil (resp. Cartier) divisors on X. We prove the following theorem

Theorem A. Let X be a complete normal variety such that

(Div(X)/Car(X)) ⊗ Q is finite dimensional (in particular X can be Q-

factorial or rational). Then X contains only finitely many maximal (in the

sense of inclusion) open quasiprojective subsets.

Remark. The conclusion of the above theorem holds for any open

subset X ′ ⊂ X. However it is not clear that any normal variety X ′ such that

(Div(X ′)/Car(X ′)) ⊗ Q is finite dimensional admits an open embedding

into a complete normal variety with the above mentioned property. This is

clearly true for smooth varieties defined over a field of characteristic 0. In

this case we can complete our variety by the Nagata theorem (see [6]) and

then apply the Hironaka resolution theorem (see [4]).

As a simple corollary of Theorem A we get

Theorem B. Let X ′ be a normal variety for which there exists an open

embedding X ′ ⊂ X into a complete normal variety X such that

(Div(X)/Car(X)) ⊗ Q is finite dimensional. Then X ′ is quasiprojective

iff any finite subset of X ′ is contained in some open affine subset of X ′.
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This generalizes the Kleiman-Chevalley criterion stated for smooth and

complete varieties. (See [5] Chapter IV, Section 2, Theorem 3 or [3] Chapter

I, Section 9, Theorem 9.1.)

Proof of Theorem B. Suppose X ′ is not quasiprojective. Then it

contains finitely many maximal open quasiprojective sets U1, ..., Uk. Let

xi ∈ X ′\Ui. Then {x1, ..., xk} is contained in some open affine subset and

hence in some maximal open quasiprojective set Ui, a contradiction to the

choice of x1, ..., xk. The converse is evident. �

Theorem B can also be stated in a relative form:

Theorem C. Let X ′ be as above and Z ⊂ X ′ be any subset of X ′.
Then Z is contained in some open quasiprojective subset U ⊂ X ′ iff any

finite subset of Z is contained in some open affine subset of X ′.

Proof of Theorem C. Choose xi ∈ Z\Xi and follow the proof of

Theorem B. �

A consequence of Theorem B is the following

Theorem D. Let X ′ be as in Theorem B and let G be a connected

algebraic group acting on X ′. Let U ⊂ X ′ be any open quasiprojective

subset. Then G · U is also quasiprojective.

Remark. This is analogous to the Theorem of Sumihiro which says

that on a normal variety with an action of a linear group G, each point has

a G-invariant open quasiprojective neighbourhood (see [9]).

Proof of Theorem D. Let {x1, ..., xk} be any finite subset of G·V =
⋃

g∈G g · V . For any xi the set Gi := {g ∈ G : xi ∈ g · V } is non-empty and

open. Since G is connected we have
⋂k

i=1 Gi �= ∅. Then for any g ∈ ⋂k
i=1 Gi

we have {x1, ..., xk} ⊂ g · V . The set g · V is open quasiprojective, hence

it contains an open affine set U ⊂ g · V containing all xi. We are done by

Theorem B. �
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Proof of the Main Theorem

Proof of Theorem A. Let D be a Weil divisor on a normal variety

X. We say that D is very ample on an open subset U ⊂ X iff there exists an

open embedding of U into a projective variety Y and a very ample divisor

D0 on Y such that D0|U = D|U . We say that D is ample on U iff a positive

multiple of D is very ample on U .

For any two Weil divisors D1 and D2 on a complete normal variety X

we write D1 ≡ D2 iff D1 −D2 is a Cartier divisor numerically equivalent to

0.

Lemma 1. Let X be a complete normal variety, D1 and D2 be Weil

divisors such that D1 ≡ D2. Then, for any open U ⊂ X the divisor D1 is

ample on U iff D2 is ample on U .

Proof. By assumption there is an ample divisor D0 on a projective

variety X0 ⊃ U such that the restrictions of D0 and D1 to U are equal.

By a theorem of Nagata ([7] Theorem 3.2) we can find X0 containing U ,

dominating X and obtained from X0 by a join of finitely many blow-ups

Xi with centers Ci disjoint from U . Let pi : Xi → X be the blow-up with

center Ci. Then X0 = X1 ∗ ... ∗Xk. Let si : X0 → Xi and p : X0 → X be

the standard projections. For any pi, let Ei := p−1
i (Ci) be the exceptional

divisor. Then −Ei is relatively very ample, and by [2], II, 4.6.13 (ii) Di :=

ni · p∗i (D0) − Ei is very ample for ni >> 0. Finally, D :=
∑k

i=1 s
∗
i (Di) is

ample on X0. Note that D|U = mD1|U for m = n1 + ... + nk. The Cartier

divisor D′ := D + m · p∗(D2 −D1) is numerically equivalent to D, hence it

is ample by the Seshadri criterion ([8]). But D′
|U = mD2|U . �

Lemma 2. Let X be a normal variety. Assume that D is ample on both

U1 and U2. If (U1\U2) ∪ (U2\U1) is of codimension at least 2 in U1 ∪ U2,

then D is ample on U1 ∪ U2.

Proof. We can choose n >> 0 such that nD has no base points on

U1 ∪U2, and sections of nD intersect properly each curve meeting U1 ∪U2.

Thus nD defines a quasifinite morphism p : U1 ∪ U2 → P(nD). By the

Zariski Theorem we can factor p as U1 ∪ U2
i→ Z

π→ P(nD) where i is

an open immersion and π is finite. Then nD = π∗(O(1))|U1∪U2
is ample

because π preserves ampleness (see [3], Chapter 1, Proposition 4.4). �
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Lemma 3 (Z.Jelonek). Let X be any normal variety and U ⊆ X be

maximal open quasiprojective. Then X\U is of codimension at least 2.

Proof. We may assume X to be complete. By the Nagata theorem

there is a projective X0 containing U and dominating X. Let p : X0 → X

be the standard projection. Then p−1 defines an open embedding into the

projective variety X0 outside the exceptional locus S, which by normality

and the Zariski theorem, is of codimension ≥ 2 in X ([10]). Hence X\S is

quasiprojective and contains U . By maximality, U = X\S. �

From now on, let X be a complete normal variety with

dimQ((Div(X)/Car(X)) ⊗ Q) < ∞. For a complete variety X let r =

r(X) := dim((Div(X)/ ≡)⊗Q) where ≡ has been defined before. This is a

finite number by finiteness of dimQ((Div(X)/Car(X)) ⊗ Q) and

dimQ((Car(X)/ ≡) ⊗ Q) (see [5]).

Lemma 4. Let X ′ ⊂ X be an open subset and let U1, ..., Us with s > r

be open quasiprojective subsets of X ′. Assume X ′\Ui is of codimension at

least 2 in X ′. Then for some pairwise distinct indices i1, ..., ik, ik+1, ..., is′ ∈
{1, ..., s} where 1 ≤ k < s′ the set U := (Ui1 ∩ ... ∩ Uik) ∪ (Uik+1

∩ ... ∩ Uis)

is quasiprojective.

Proof. Let Di be a divisor on X such that Di is ample on Ui. Then we

can find i1, ..., ik, ik+1, ..., is′ such that
∑k

j=1 nijDij ≡ ∑s
j=k+1 nijDij with

all nij positive. Note that by Lemmas 1 and 2,
∑k

j=1 nijDij is ample on

U . �

Lemma 5. Let U1, ..., Us be open quasiprojective sets of X ′ as above.

Assume X ′\Ui are of dimension ≤ l ≤ dim(X) − 2 and have no common

components. Let U be as in the statement of Lemma 4. Then dim(X ′\U) ≤
l − 1.

Proof. Follows directly from the definition of U . �

Now we prove Theorem A along the following lines. Given a variety X

(not necessarily complete) satisfying the condition

(∗) X contains infinitely many maximal open quasiprojective subsets.
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Let l(X) be the maximal dimension of their complements. We will construct

an open subset X ′ ⊂ X such that X ′ satisfies (∗) and that l(X ′) < l(X).

Set n = dim(X). We say that an open subset U of X has property P(k)

for −1 ≤ k ≤ n− 1 iff

1. dimX\U ≤ k

2. Each component of dimension k of X\U is contained in the comple-

ments of only finitely many maximal open quasiprojective sets.

(We mean here that dim(∅) = −1.)

Let Un−2
1 be a maximal open quasiprojective subset of X. By Lemma

3 we see that dimX\Un−2
1 ≤ n − 2. Remove from X, one by one, all

components of X\Un−2
1 which are of dimension n− 2 and contained in the

complement of infinitely many maximal open quasiprojective sets. As a

result we get X ′ such that Un−2
1 ⊂ X ′ ⊂ X and X ′ satisfies (∗). Observe

that Un−2
1 has property P(n− 2) on X ′. By abuse of notation write X for

X ′. Because of (∗) and by the fact that Un−2
1 has property P(n − 2) on

the new X, we can find open qusiprojective Un−2
2 in the new X for which

X\Un−2
1 and X\Un−2

2 have no common component of dimension n− 2. By

an analogous procedure of removing components we can assume that Un−2
2

has property P(n− 2) on some new X ′ satisfying (∗). Again we rename X ′

as X.

Continuing this process we find Un−2
1 , Un−2

2 , ..., Un−2
r+1 such that all sets

satisfy condition P(n−2) on the varying X, and X\Un−2
i for i = 1, ..., r+1

have no common component.

Note that by shrinking X we are also shrinking its open subsets Un−2
1 ,

Un−2
2 , ..., Un−2

r+1 . However all these subsets are still quasiprojective and have

property P(n− 2) on shrinked X, and X still satisfies condition (∗).
Apply Lemma 4 to the sets Un−2

1 , ..., Un−2
r+1 and call the resulting set

Un−3
1 . By Lemma 5 dimX\Un−3

1 ≤ n−3. As before by removing ”bad” com-

ponents of dimension n−3 we can assume that Un−3
1 has property P(n− 3).

Now we construct Un−2
r+1 , ..., U

n−2
2r+2 which satisfy condition P(n− 2) on X

and such that the X\Un−2
i have no common components and do not con-

tain any components of dimension n−3 of X\Un−3
1 . The last condition can

be maintained since Un−3
1 has property P(n− 3). Then we find Un−3

2 = U

for Un−2
r+1 , ..., U

n−2
2r+2 as in Lemma 4. Again by continuing this process we

construct Un−3
1 , Un−3

2 , ...., Un−3
r+1 and then find Un−4

1 and so on. Finally we

get quasiprojective X = U−1
1 containing infinitely many maximal quasipro-
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jective sets. �

Remark. As was noted by Z.Jelonek one can easily prove Theorem A

for smooth normal surfaces.

Proof. Let X be a normal surface. Then X contains finitely many

singular points {x1, ..., xn}. Let U ⊂ X be a maximal open quasiprojective

subset. Resolve all singular points which are not in U . We get a variety X̃

which is projective by a Zariski theorem ([11]). Let V := X \{x1, ..., xn}\U .

Then U ⊆ V ⊆ X and by the above V ⊆ X̃ is quasiprojective. Finally

U = V by the maximality of U . �
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