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On the Singularities of Non-Analytic Szegö Kernels

By Joe Kamimoto

Abstract. The CR manifold Mm = {(z1, z2) ∈ C
2
; �z2 =

[�z1]
2m}(m = 2, 3, . . .) is a counterexample, which was given by Christ

and Geller, to analytic hypoellipticity of ∂̄b and real analyticity of the
Szegö kernel. In order to give a direct interpretation for the breakdown
of real analyticity of the Szegö kernel, we give a Borel summation type
representation of the Szegö kernel in terms of simple singular solutions
of the equation ∂̄bu = 0.

0. Introduction

In [10], Christ and Geller gave the following remarkable counterexample

to analytic hypoellipticity of ∂̄b for real analytic CR manifolds of finite type

(in the sense of Kohn or D’Angelo):

Theorem 0.1. On the three-dimensional CR manifold Mm = {(z1, z2)

∈ C
2;�z2 = [�z1]

2m} (m = 2, 3, . . .), ∂̄b fails to be analytically hypoelliptic

(in the modified sense of [10]).

Moreover analytic hypoellipticity of ∂̄b is closely connected with real

analyticity of the Szegö kernel off the diagonal. By considering the Szegö

kernel as a singular solution of the equation ∂̄bu = 0, Christ and Geller

obtained Theorem 0.1 as a corollary to the following theorem.

Theorem 0.2. The Szegö kernel of Mm (m=2, 3, . . .) fails to be real

analytic off the diagonal.

The proof of Theorem 0.2 by Christ and Geller [10] is based on cer-

tain formula of Nagel [23]. Although their proof is logically clear, it seems

difficult to understand the singularity of the Szegö kernel of Mm directly,
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since their proof is established by contradiction. On the other hand, Christ

([5],[6]) directly constructed singular solutions of ∂̄bu = 0 and proved Theo-

rem 0.1. In this paper, we give an integral representation of the Szegö kernel

of Mm in terms of the singular solutions of Christ. Since the singular solu-

tions of Christ are substantially simpler, our integral representation makes it

easy to understand the singularity of the Szegö kernel of Mm. Moreover we

give the direct proof of Theorem 0.2. We also give a similar representation

of the Bergman kernel of the domain {(z1, z2) ∈ C
2;�z2 > [�z1]

2m} (m =

2, 3, . . .) on the boundary.

We remark that our study is based on the argument due to Christ

([6],§7), and that our result can be considered as an improvement of Propo-

sition 7.2 in [6].

In general we consider the hypersurface

MP := {(z1, z2) ∈ C
2;�z2 = P (z1)},

where P : C → R is a real analytic function. We assume that �P is

non-negative and does not vanish identically on any open set in C. Such a

surface is pseudoconvex and of finite type. A nonvanishing, antiholomor-

phic, tangent vector field is ∂/∂z̄1 − 2i(∂P/∂z̄1)∂/∂z̄2. As coordinates for

the surface we use C × R � (z = x + iy, t) �→ (z, t + iP (z)); the vector field

pulls back to ∂̄b = ∂/∂z̄ − i(∂P/∂z̄)∂/∂t. Let ∂̄∗
b denote the formal adjoint

of ∂̄b with respect to the Lebesgue measure on C × R. We say that ∂̄b is

analytically hypoelliptic on MP (in the modified sense of [10]) if whenever

∂̄bu is real analytic in an open set U and u = ∂̄∗
b v for some v ∈ L2 in U , u is

real analytic in U . In the usual sense, ∂̄b is not even C∞ hypoelliptic, but

it is known that if ∂̄b∂̄
∗
bu ∈ C∞, then ∂̄∗

bu ∈ C∞([20]).

Let S((z, t); (w, s)) be the Szegö kernel of MP ; that is, the distribution

kernel associated to the operator defined by the orthogonal projection of

L2(C × R), with respect to the Lebesgue measure, onto the kernel of ∂̄b. It

is known that the Szegö kernel is C∞ off the diagonal ([24]).

There are many interesting studies on real analyticity for ∂̄b and Szegö

kernels. For certain strictly pseudoconvex CR manifolds MP (i.e. �P >

0), it is known in [12] that ∂̄b is analytically hypoelliptic. In the weakly

pseudoconvex case, there are many important results (see the references

in [10]), but the precise condition for them to be real analyticity is still

unknown.
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In investigating the properties of Szegö kernels, it is an important prob-

lem to find a good expression for them. Although the Szegö kernels for

some classes of CR manifolds (or the Bergman kernels for some domains)

are explicitly computed in closed form (see the reference in [2]), almost all

Szegö kernels seem impossible to be written in closed form. Therefore the

following two types of the integral representation for the Szegö kernels are

useful to analyse its singularities (e.g. [3],[10],[14]).

The representations of first type are obtained in [13],[22],[21],[23], [15],

[26]. The Szegö kernel of MP (P satisfies certain conditions) can be repre-

sented as follows:

S((z, t); (w, s)) =

c

∫ ∞

0

∫ ∞

−∞

τ exp(τ(η(z+w̄)−P (z)−P (w)−i(s−t)))∫ ∞

−∞
exp(2τ(rη − P (r)))dr

dηdτ.(0.1)

The representations of this type can be obtained by using the generalized

Paley-Wiener theorem. Those of second type are represented as the Borel

(or Mittag-Leffler) summation of some countably many functions. For ex-

ample, Bonami and Lohoué [3] gave a representation for the Szegö kernel of

the CR manifold {z ∈ C
n;

∑n
j=1 |zj |2mj = 1} (mj ∈ N):

S(z, w) = c

∫ ∞

0
e−p


 n∏
j=1

∞∑
νj=0

(zjw̄jp
1/mj )νj

Γ(νj/mj + 1/mj)


 p

∑n

j=1
1/mj−1

dp.

The purpose of this paper is to give a representation of the Borel sum-

mation type for the Szegö kernel of Mm by using the representation of first

type, which is obtained by Nagel ([23]). Since the Szegö kernel is expressed

by the superposition of certain simple singular solutions of ∂̄bu = 0 due

to Christ, the structure of the singularity can be understood directly. The

singularity of the Szegö kernel is almost equal to that of Christ’s singular

solution involving the first eigenfunction of the certain ordinary differential

operator (see §6).

In this paper, we analyse the counterexample of Christ and Geller di-

rectly by using the classical asymptotic analysis for ordinary differential

equations with irregular singular points. In particular, some techniques to

obtain the asymptotic expansion of the functions admitting an integral rep-

resentation or a Taylor series expansion are very useful for our computation
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([11],[28]). Explicitly the properties of the entire function:

ϕ(x) =

∫ ∞

−∞
e−2(w2m−xw)dw(0.2)

play an important role in the breakdown of real analyticity. The function ϕ

appears in many mathematical subjects and its properties have been studied

in detail (ref. the Introduction in [18]).

The plan of this paper is as follows. We state our results and outline of

the proofs in Section 1. In Section 2, we recall the direct construction of the

singular solutions of ∂̄bu = 0 in [5],[6], which are used in our representations.

In Section 3, we establish our theorems. In Sections 4,5, we give the proofs

of propositions and lemmas respectively, which are necessary for the proofs

of our theorems. In Section 6, we directly show the failure of real analyticity

of the Szegö kernel by using our representation.

In this paper, we use c or C (C(X1, X2, · · ·)) for various constants (de-

pending on X1, X2, · · ·) without further comment.

I would like to express my deepest gratitude to Professors Hiroki Tan-

abe, Kazuo Okamoto, Takeo Ohsawa and Katsunori Iwasaki for their con-

stant encouragement and very useful conversations. I am also indebted to

Professor Iwasaki who carefully read the manuscript and supplied many

corrections.

1. Statement of Main Results

For Mm = {(z1, z2) ∈ C
2;�z2 = [�z1]

2m} (m= 2, 3, . . .), Christ in [5],[6]

constructed the singular solutions of the equation ∂̄bu = 0 (u = ∂̄∗
b v, v ∈ L2)

by applying the partial Fourier transformation and by solving a certain sim-

ple ordinary differential equation (see §2). The following functions Sv
j (z, t)

(j ∈ N) are slight generalization of the singular solutions of Christ. Let

ϕ(x) be the function defined as in (0.2) in the Introduction. It is known

that ϕ has infinitely many zeros and that all of them are simple and exist

on the imaginary axis ([25],[19]). We denote them by ±iaj (j ∈ N), where

the aj ’s are positive and arranged in the increasing order. (More detailed

information of ϕ is given in Subsection 3.1.) Let Sv
j (z, t) be defined by

Sv
j (z, t) =

2πi

ϕ′(iaj)

∫ ∞

0
eitτe−x2mτeσ(y)iajzτ

1/(2m)
τ v+1/mdτ,(1.1)
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for y �= 0, j ∈ N, v ≥ 0 where σ(y) is the sign of y (z = x+ iy). It is easy to

check that the Sv
j ’s are not real analytic on {(0+iy, 0); y ∈ R}. Besides this,

the Sv
j ’s belong to sth order Gevrey class Gs for all s ≥ 2m, but no better

on {(0 + iy, 0); y �= 0}, where Gs :={f ;∃C > 0 s.t. |∂αf | ≤ C |α|Γ(s|α|) ∀α}.
For Mm (m = 2, 3, . . .), define the distribution K(z, t) = S((z, t); (0, 0)).

Then K is a C∞ function away from (0, 0) ([24]). We give a representation

of K in terms of the singular solutions {S0
j }j∈N.

Theorem 1.1. Suppose | arg z ± π/2| < π/(4m− 2). Then we have

K(z, t) = cS
∫ ∞

0
e−pH(z, t; p)dp,(1.2)

where

H(z, t; p) =
∞∑
j=1

S0
j (z, t)

Γ(fj + 1)
pfj ,(1.3)

for some sequence fj = j + O(j−1)(> 0) as j → ∞ and cS is a constant.

Here the series (1.3) absolutely converges with respect to p ≥ 0 for fixed

(z, t) ; moreover there exist a positive constant CS(z) depending on z such

that

|H(z, t; p)| ≤ CS(z)pm/(4m−2) for p ≥ 1.(1.4)

Let B((z1, z2); (w1, w2)) be the Bergman kernel of the domain D⊂C
n;

that is, the distribution kernel for the orthogonal projection of L2(D) onto

the subspace of holomorphic functions. Then B extends to a C∞ function

on D ×D minus the diagonal ([24]). When D=Dm :={(z1, z2) ∈ C
2;�z2>

[�z1]
2m} (m = 2, 3, . . .), we obtain a similar representation of KB(z, t) :=

B((z, t + ix2m); (0, 0)).

Theorem 1.2. Suppose | arg z ± π/2| < π/(4m− 2). Then we have

KB(z, t) = cB
∫ ∞

0
e−pHB(z, t; p)dp,(1.5)

with

HB(z, t; p) =
∞∑
j=1

S1
j (z, t)

Γ(fj + 1)
pfj ,(1.6)
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where fj’s are as in Theorem 1.1 and cB is a constant. Here the series (1.6)

absolutely converges with respect to p ≥ 0 for fixed (z, t) ; moreover there

exist a positive constant CB(z) depending on z such that,∣∣∣HB(z, t; p)
∣∣∣ ≤ CB(z)pm/(4m−2) for p ≥ 1.(1.7)

Remarks. 1) If we change the order of the sum and the integral in

(1.2),(1.5) formally, we obtain the formal sum of the form c
∑∞

j=1 Sv
j (z, t).

However the formal sum is not convergent in the usual sense. We shall show

this fact in Subsection 5.6.

2) We conjecture that O(j−1) can be omitted in the above theorems.

3) We do not know whether the estimates (1.4),(1.7) are optimal.

Outline of the proofs. We explain the idea of the proof of Theorem

1.1 roughly. The proof of Theorem 1.2 is given in the same fashion.

First let us recall the argument due to Christ [6] and consider his result.

His computation starts from the formula (0.1) due to Nagel [23]. Normal-

izing (0.1), we have

K(z, t) = cS
∫ ∞

0
eitτe−x2mτ

[∫ ∞

−∞
ezτ

1/(2m)v 1

ϕ(v)
dv

]
τ1/mdτ.(1.8)

As mentioned above, the function ϕ has countably many zeros on the imag-

inary axis. Therefore by shifting the integral contour with respect to v,

applying the residue formula and changing the order of the sum and the

integral, the following formula is obtained:

K(z, t) = cS
n−1∑
j=1

S0
j (z, t) + En(z, t),(1.9)

S0
j ’s are as in (1.1). But |En| does not become small as n → ∞ for fixed

(z, t), so (1.9) can not be interpreted as a standard asymptotic expansion.

(Of course the sum
∑∞

j=1 S0
j (z, t) does not converge in the usual sense (see

§5.6)). Our purpose of this paper is to regularize the above expansion of

Christ. Our method to deal with the divergent sum is based on the idea of

the exact WKB method (ref. [27],[1], e.g.). We remark that the alternation

of the series {S0
j (z, t)}j strongly effects our computation.
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Introducing the positive large parameter q, we consider the integral

K(z, t; q) = cS
∫ ∞

0
eitτe−x2mτ

[∫
Γ
ezτ

1/(2m)v q
−F (v)−1

ϕ(v)
dv

]
τ1/mdτ,(1.10)

where F and Γ are an appropriate function and contour, respectively. Note

that K(z, t; 1) = K(z, t). By the same procedure as above, the convergent

sum
∑∞

j=1 S0
j (z, t)q

−fj−1 can be obtained, where fj is as in the theorem.

Next we apply the Borel and Laplace transformations to the above conver-

gent sum with respect to q in this order, then we can obtain the following

representation:

K(z, t; q) = cS
∫ ∞

0
e−qp


 ∞∑
j=1

S0
j (z, t)

Γ(fj + 1)
pfj


 dp,(1.11)

which is equal to the above convergent sum. Note that the Borel sum in

the above integral absolutely converges for p ≥ 0 (see §5.7). Now we regard

q as a complex variable. Since the sum in the integral has a good estimate

(Proposition 3.2 in §3), the above integral can be analytically continued to

q = 1. Then we obtain the integral representation (1.2) in the theorem.

The estimate (1.4) of the Borel sum can be obtained by using the idea

of Wright [28]. The method of Wright is useful to obtain the asymptotic

expansion of entire functions which are expressed by Taylor series.

2. Construction of Singular Solutions

In this section we recall Christ’s construction [5],[6] of singular solutions

to ∂̄bu = 0 that are in the range of ∂̄∗
b .

We show that there exist the function F such that ∂̄∗
bF is not real ana-

lytic and ∂̄b∂̄
∗
bF ≡ 0. We identify Mm with C × R as in the Introduction.

Let ∂̄∗
b be the formal adjoint of ∂̄b with respect to the Lebesgue measure on

C × R.

In the case of Mm = {�z2 = [�z1]
2m} (m ∈ N), ∂̄b = X + iY and

∂̄∗
b = −X + iY where

X =
∂

∂x
, Y =

∂

∂y
− 2mx2m−1 ∂

∂t
.
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Applying the partial Fourier transformation in the y and t variables, we seek

solutions to ∂̄b∂̄
∗
bu ≡ 0 of the form u(x, y, t) = eitτeiηyf(x). Then ∂̄b∂̄

∗
bu = 0

reduces to the ordinary differential equation:

[
− d

dx
+

(
η − 2mτx2m−1

)]
◦
[

d

dx
+

(
η − 2mτx2m−1

)]
f(x) = 0.(2.1)

We suppose that τ > 0 and change the variables by u = τ1/(2m)x, η =

τ1/(2m)ξ, with ξ ∈ C. If we set f(x) = g(τ1/(2m)x), then (2.1) reduces to

Lξg(u) :=

[
− d

du
+ (ξ − 2mu2m−1)

]
◦
[

d

du
+ (ξ − 2mu2m−1)

]
g(u) = 0

Since Lξ factors as a product of two first-order operators, one finds an

explicit solution of Lξgξ = 0:

gξ(u) = e−ξu+u2m
∫ u

−∞
e−2(s2m−ξs)ds.

Here we fix ξ ∈ C and define formally

Fξ(z, t) =

∫ ∞

0
eitτeiξyτ

1/(2m)
gξ(τ

1/(2m)x)dτ.

Then Fξ satisfies ∂̄b∂̄
∗
bFξ ≡ 0 formally and

∂̄∗
bFξ(z, t) =

∫ ∞

0
eitτe−x2mτezξτ

1/(2m)
dτ.

If the imaginary part σ of ξ is positive (resp. negative) and if gξ is a

bounded function on R, then the above two integrals converge absolutely

for y > 0 (resp. y < 0). Moreover

∣∣∣∣∣ ∂
k

∂tk
∂̄∗
bFξ(0 + iy, 0)

∣∣∣∣∣ =

∣∣∣∣
∫ ∞

0
τke−τ1/(2m)σydτ

∣∣∣∣
= 2m(σy)−2mk−2mΓ(2mk + 2m).

Thus ∂̄∗
bFξ would not be real analytic and moreover ∂̄∗

bFξ would belong to

s-th order Gevrey class Gs for all s ≥ 2m, but no better, where Gs =

{f ; ∃C > 0 s.t. |∂αf | ≤ C |α|Γ(s|α|) ∀α}.
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From the above, if there exists ξ ∈ C, with �ξ �= 0, such that gξ is

bounded on R, we obtain singular solutions of ∂̄bu = 0. The following

lemma gives the condition for gξ to be bounded.

Lemma 2.1 ([4]). The function gξ is bounded on R if and only if ξ ∈ C

satisfies ϕ(ξ) = 0, where the function ϕ is as in the Introduction (0.2).

Here we remark that the function ϕ appears in the integral formula of

the Szegö kernel of Mm (1.8), which has been computed by Nagel [23].

As was mentioned in Section 1, the function ϕ has infinitely many zeros

and all of them exist on the imaginary axis for m ∈ {2, 3, . . .}. Hence

we obtain non-real analytic solutions, in the range of ∂̄∗
b , to ∂̄bu = 0 for

m ∈ {2, 3, . . .}. However when m = 1, ϕ is a Gaussian function and it has

no zeros, so we can not construct the singular solutions.

3. Proofs of Theorems 1.1 and 1.2

In this section we give the proofs of Theorems 1.1 and 1.2. Suppose that

m is an integer with m ≥ 2.

3.1. The function ϕ

In this subsection, let us recall important properties of ϕ, which are

given in [25],[6],[8],[9],[18],[19].

From the integral formula (1.8) due to Nagel, in order to investigate the

properties of K(z, t), the analysis of the function ϕ seems to be important.

Actually the following properties of ϕ in the two lemmas below are very

important in our computations. From now on we regard the function ϕ as

an entire function on the complex plane. Note that ϕ is an even function

(i.e. ϕ(−x) = ϕ(x) for x ∈ C) and ϕ(0) > 0.

The first lemma is concerned with the asymptotic behavior of ϕ at in-

finity. Set b = (1/2m)1/(2m−1) − (1/2m)2m/(2m−1).

Lemma 3.1. Let A(x) = c1x
(1−m)/(2m−1) exp{c2x

2m/(2m−1)}, where

c1 =
√

π(2m − 1)−1/2(2m)−m/(4m−2) and c2 = 2b. If −π/2 + ε ≤ arg x ≤
π/2 − ε, then

ϕ(x) = A(x){1 + O(x−2m/(2m−1))},
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and if π/2 + ε ≤ arg x ≤ 3π/2 − ε, then

ϕ(x) = A(xe−πi){1 + O(x−2m/(2m−1))},

as x → ∞, where ε is an arbitrary constant with 0 < ε < π/4. On the line

arg x = π/2,

ϕ(x) = c3x
(1−m)/(2m−1)e−c4x2m/(2m−1) ×

cos

(
c5x

2m/(2m−1) +
1 −m

2m− 1

π

2

)
{1 + O(x2m/(2m−1))},

as x → ∞, where c3 = 2(m+1)/(2m)(2m)(m−1)/(2m−1), c4 = 2b sin(π/(4m−2))

and c5 = 2b cos(π/(4m− 2)).

The above lemma gives the exponential order of ϕ and the distribution

of its zeros by Rouché’s theorem. Moreover, it is known in [25] that all

zeros of ϕ exist on the imaginary axis. The following lemma implies more

detailed properties of zeros of ϕ.

Lemma 3.2. All zeros of ϕ are simple. Let {±iaj ; 0 < aj < aj+1, j ∈
N} be the set of zeros of ϕ, then we have

j =
1

π
c5a

2m/(2m−1)
j +

m

2(2m− 1)
+ O(j−1) as j → ∞.

The simpleness of the zeros is shown in [19].

3.2. Proof of Theorem 1.1

The proofs of the lemmas and propositions below are given in Sections

4,5.

For the computation below, we prepare the integral contours Γ±, L± in

the v-plane. Let ε0 � 1, 0 < ε1 < a1 be arbitrary positive numbers. Let D±
be domains defined by D± = {v ∈ C; |�v| < ε0 and ±�v > ε1}, respectively.

The integral contours Γ+, L+ are defined in the following way. L+ follows

the boundary of D+ from −ε0 + i∞ to +ε0 + i∞. Next the contour Γ+

is defined in the following way: Γ+ follows the half-line v = rei(m+1)π/(2m)

from r = ∞ to r = ε1, the circle v = ε1e
+iθ from θ = (m + 1)π/(2m) to

θ = (m − 1)π/(2m) and the half-line v = rei(m−1)π/(2m) from r = ε1 to
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r = ∞. Reflecting the contours Γ+, L+ with respect to the real axis, we

obtain Γ−, L−, respectively. (See Figure 1.)

First as mentioned in the outline of the proof in §1, Christ [6] obtains

the formula (1.9). The function K(z, t) is expressed as follows:

K(z, t) = cS
∫ ∞

0
eitτe−x2mτ

[∫ ∞

−∞
ezτ

1/(2m)v 1

ϕ(v)
dv

]
τ1/mdτ,(3.1)

Fig. 1. Integral contours Γ±, L±.
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where σ(y) is the sign of y (= �z). Next we define K(z, t; q) as follows:

K(z, t; q) = cS
∫ ∞

0
eitτe−x2mτP (zτ1/(2m); q)τ1/mdτ,(3.2)

with

P (u; q) =

∫
Γσ(y)

euv
q−Fσ(y)(v)−1

ϕ(v)
dv,(3.3)

F±(v) = c2e
∓i(2m)π/(4m−2)v2m/(2m−1) +

m

2(2m− 1)

= c2

[
±1

i
v

]2m/(2m−1)

+
m

2(2m− 1)
,(3.4)

where q is a complex parameter belonging to a region on which the integral

in (3.3) makes sense. Such a region is given by the following lemma.

Lemma 3.3. There exist positive constants δ < 1 and α0 < π/2 such

that P (u; q) is a holomorphic function of q in the domain V := {q ∈ C; |q| >
1 − δ and | arg q| < α0}.

From now on we suppose that q belongs to V . We remark that the point

{1} is contained in V and K(z, t; 1) = K(z, t). In fact we can deform the

integral contour R into Γ+ or Γ− in (3.3) by Lemma 3.1.

First we give the proof of the theorem in the case where z is in the sector

| arg z − π/2| < π/(4m− 2). By Lemma 3.1, there exists a positive number

q0 > 1 such that if | arg v − π/2| < π/(2m) and v /∈ D+, then∣∣∣∣∣euv q
−F+(v)−1
0

ϕ(v)

∣∣∣∣∣ ≤ C exp

{
−c|v|2m/(2m−1) cos

π

2m− 1

}
,

where C, c are positive constants independent of v. Thus we have

P (u; q0) =

∫
Γ+

euv
q
−F+(v)−1
0

ϕ(v)
dv =

∫
L+

euv
q
−F+(v)−1
0

ϕ(v)
dv,

by Cauchy’s theorem. Moreover by the residue formula and Lemma 3.2, we

have

P (u; q0) = 2πi
∞∑
j=1

1

ϕ′(aji)
eiajuq

−fj−1
0 ,(3.5)
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for some sequence {fj}j satisfying that fj = j + O(j−1) > 0 as j → ∞.

Substituting (3.5) into (3.2) and changing the order of the sum and the

integral, we have

K(z, t; q0) = cS
∞∑
j=1

S0
j (z, t)q

−fj−1
0 ,(3.6)

with

S0
j (z, t) =

2πi

ϕ′(aji)

∫ ∞

0
eitτe−x2mτeσ(y)iajzτ

1/(2m)
τ

1
mdτ.(3.7)

Now we define by H(z, t; p) the Borel transformation of (3.6) with respect

to q, where

H(z, t; p) =
∞∑
j=1

S0
j (z, t)

Γ(fj + 1)
pfj .(3.8)

Proposition 3.1. If | arg z ± π/2| < π/(4m − 2), then the Borel sum

(3.8) absolutely converges with respect to p ≥ 0 ; moreover there is a positive

constant C(z) depending z such that

∞∑
j=1

∣∣∣∣∣ S0
j (z, t)

Γ(fj + 1)
pfj

∣∣∣∣∣ < C(z)p2ep p ≥ 1.

The above proof will be given in Subsection 5.7.

By Proposition 3.1, Fubini’s theorem implies that

K(z, t; q0) = cS
∫ ∞

0
e−q0pH(z, t; p)dp.

In the same fashion, we have

K(z, t; q) = cS
∫ ∞

0
e−qpH(z, t; p)dp for q ≥ q0.(3.9)

In fact if q ≥ q0, then

∣∣∣∣∣euv q
−F+(v)−1

ϕ(v)

∣∣∣∣∣ ≤
∣∣∣∣∣euv q

−F+(v)−1
0

ϕ(v)

∣∣∣∣∣ ,
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in | arg v − π/2| < π/(2m). Moreover, since the right-hand side of (3.9)

extends analytically with respect to q to the region {�q > q0} ∩ V , (3.9) is

satisfied there. If we admit Proposition 3.2 below, then (3.9) is satisfied on

the region V in the same fashion.

Proposition 3.2. If | arg z ± π/2| < π/(4m− 2), then there is a pos-

itive constant CS(z) depending on z such that

|H(z, t; p)| ≤ CS(z)pm/(4m−2) for p ≥ 1.

In particular, (3.9) is satisfied when q = 1. Hence we have

K(z, t) = K(z, t; 1) = cS
∫ ∞

0
e−pH(z, t; p)dp.(3.10)

On the other hand, if z is in the sector | arg z +π/2| < π/(4m− 2), then

we can also obtain (3.3) by replacing Γ+ with Γ−, F+(v) with F−(v) and

+iaj with −iaj in the above argument.

This completes the proof of Theorem 1.1. �

3.3. Proof of Theorem 1.2

The relation between the Szegö kernel of Mm and the Bergman kernel

B((z1, z2); (w1, w2)) of the domain Dm = {(z1, z2) ∈ C
2;�z2 > [�z1]

2m}
was obtained in [24], §7 . We define KB(z, t) = B((z, t+ ix2m); (0, 0)). This

relation and the integral formula (1.8) due to Nagel yield

KB(z, t) = cB
∫ ∞

0
eitτe−x2mτ

[∫ ∞

−∞
ezτ

1/(2m)v 1

ϕ(v)
dv

]
τ1+1/mdτ,(3.11)

The difference between (1.8) and (3.11) does not give any essential influence

on the argument in the proof of Theorem 1.1. If we admit Proposition 4.1

in the next section, we can obtain Theorem 1.2 in a similar fashion. �

4. Proposition 4.1

In this section, we prove Proposition 4.1 below, which is a slight gener-

alization of Proposition 3.2. Now we define the function Hv by

Hv(z, t; p) =
∞∑
j=1

Sv
j (z, t)

Γ(fj + 1)
pfj ,(4.1)
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where Sv
j is as in (3.7).

Proposition 4.1. If | arg z ± π/2| < π/(4m− 2), then there is a pos-

itive constant C(z, v) depending on z and v such that

|Hv(z, t; p)| ≤ C(z, v)pm/(4m−2) for p ≥ 1.(4.2)

Proof of Proposition 4.1. First we consider the case where z (=

x + iy) is in the sector | arg z − π/2| < π/(4m− 2).

By Cauchy’s theorem and the residue formula, we have

Hv(z, t; p) =

∫
L+

1

Γ(F+(ξ) + 1)

1

ϕ(ξ)
Sv(ξ; z, t)pF+(ξ)dξ,(4.3)

with

Sv(ξ; z, t) =

∫ ∞

0
eitτe−x2mτeξzτ

1/(2m)
τ v+1/mdτ,

where the function F+(ξ) and the integral contour L+ is as in Section 3.

Define the domains D±
ξ , Dζ in C by

D±
ξ =

{
ξ ∈ C;

∣∣∣∣arg ξ ∓ π

2

∣∣∣∣ < 2m− 2

2m− 1

π

2

}
,

Dζ = {ζ ∈ C;�ζ > A0} .

Then F± : D±
ξ → Dζ are biholomorphic functions. Let G± : Dζ → D±

ξ be

the inverse functions of F±. Here G±(ζ) = ±i[c−1
2 (ζ −A0)]

(2m−1)/(2m).

Let Aj be the values of F+(iaj) = F−(−iaj) > 0 for j ∈ N (A0 :=

m/(4m − 2)). Let ε1 � 1 and ε < A1 − A0 be arbitrary positive numbers.

Let D be the domain defined by D = {ζ; |�ζ| < ε2 and�ζ > A0 + ε}. We

define the integral contours L,M1,M2, N in Dζ in the following way. L

follows the boundary of D from +∞+ iε2 to +∞− iε2. M1 follows the circle

ζ = Reiθ from θ = −θ1 to θ = θ1, where cos θ1 = A0/R (θ1 > 0) and R > 0

is a large number, with R �= Aj . M2 follows the circle ζ = r[eiθ + A0] from

θ = −π/2 to θ = π/2, where r is a small positive number. N follows the

line �ζ = A0 downwards. (See Figure 2.)

By changing the integral variable in (4.3), we have

Hv(z, t; p) =

∫
L
P v(ζ; z, t; p)dζ,(4.4)
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Fig. 2. Integral contours L, M1, M2, N .

with

P v(ζ; z, t; p) (= P (ζ; p)) =
pζ

Γ(ζ + 1)
Φv(ζ; z, t),

Φv(ζ; z, t) =
1

ϕ(G+(ζ))
Sv(G+(ζ); z, t)G′

+(ζ).

Note that P (ζ; p) extends analytically with respect to ζ to the region {�ζ >

0} \ ({Aj}j∈N ∪ {ζ ≤ A0}) for fixed z and p. Set ζ = reiθ.

Lemma 4.1. For any h ≥ A0(= m/(4m− 2)), there are positive num-
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bers a, ρ0, α0, κ0 and δ such that, (i) if �ζ ≥ h, |ζ| ≥ max{ρ0, ap} and

|�ζ| ≥ ε2, then

|P (ζ; p)| ≤ C(z, v, h)r−α0e−κ0rph,(4.5)

(ii) if �ζ ≥ A0 and |ζ −A0| ≤ ε3, then

|P (ζ; p)| ≤ C(z) |ζ −A0|−1/(2m) · pA0 .(4.6)

Lemma 4.1 (i) implies∫
M1

P (ζ; p)dζ tends to zero as R → ∞,(4.7)

whereas Lemma 4.1 (iii) implies∫
M2

P (ζ; p)dζ tends to zero as r → 0.(4.8)

Cauchy’s theorem applied to (4.7) yields∫
L
P (ζ; p)dζ =

∫
N

P (ζ; p)dζ.(4.9)

Lemma 4.1 implies∣∣∣∣
∫
N

P (ζ; p)dζ

∣∣∣∣ ≤
∫ ∞

−∞
|P (A0 + it; p)|dt

≤ C(z, v)pA0(4.10)

Therefore we obtain the estimate (4.2) in the proposition by putting

(4.4),(4.9),(4.10) together.

On the other hand, we consider the case where z is in the sector | arg z+

π/2| < π/(4m−2). Replacing +iaj with −iaj , F+(ξ) with F−(ξ) and G+(ζ)

with G−(ζ) in the above argument, we can obtain (4.2) in the same fashion.

This completes the proof of Proposition 4.1. �

5. Proof of Lemmas

In this section we establish the lemmas mentioned previously. We sup-

pose that z is in the sector | arg z ± π/2| < θ0, where θ0 := π/(4m− 2). Set

ζ = reiθ.
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5.1. Proof of Lemma 3.3

We only give the proof for the case where the integral contour in (3.3)

is Γ+. The proof in the case of Γ− can be done in the same fashion. By

Lemma 4.1, we obtain∣∣∣∣ euv

ϕ(v)

∣∣∣∣ ≤ C(u) exp
{
−c1r

2m/(2m−1) sin θ0

}
,

and ∣∣∣q−F+(v)−1
∣∣∣ ≤ c|q|−3/4 ×

exp
{
−c2r

2m/(2m−1)[cos 2θ0 · log |q| − sin 2θ0 · | arg q|]
}
,

for v ∈ Γ+, where c1 is as in Lemma 3.1, c2 is as in Lemma 3.2. Then∣∣∣∣∣euv q
−F+(v)−1

ϕ(v)

∣∣∣∣∣ ≤ C(u)|q|−1×

exp
{
−r2m/(2m−1) [ c1 sin θ0 + c2 cos 2θ0 · log |q| − c2 sin 2θ0 · | arg q|]

}
.

Now set

V =

{
q ∈ C ; |q| ≥ exp

{
−1

3

sin θ0

cos 2θ0

c1

c2

}
and

| arg q| ≤ min

{
π

2
,
1

3

sin θ0

sin 2θ0

c1

c2

}}
,

then we obtain ∣∣∣∣∣euv q
−F+(v)−1

ϕ(v)

∣∣∣∣∣ ≤ C(u)e−cr2m/(2m−1)
on V.

Note that 0 < exp{−(c1 sin θ0)/(3c2 cos 2θ0)} < 1. Since the integrand in

(3.3) satisfies the above inequality and is a holomorphic function of q on V ,

we can obtain Lemma 3.3. �

5.2. Proof of Lemma 4.1

In order to prove Lemma 4.1, we prepare the following two lemmas.

We write P (ζ; p) = pζΓ(ζ + 1)−1Φv(ζ; z, t), where Φv(ζ; z, t) =

ϕ(G±(ζ))−1Sv(G±(ζ); z, t)G′
±(ζ).
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Lemma 5.1. Let h be a real number. If either (i) �ζ = h or (ii) �ζ ≥ h

and |ζ| ≥ bep with b ≥ 1, then∣∣∣∣∣ pζ

Γ(ζ + 1)

∣∣∣∣∣ ≤ cr−1/2−hbh−r cos θph exp{r sin θ · θ}.(5.1)

Lemma 5.2. There are positive constants ρ0, β0, ε3 such that, (i) if

�ζ ≥ A0, |ζ| ≥ ρ0 and |�ζ| ≥ ε2, then

|Φv(ζ; z, t)| ≤ C(z, v)r−β0 exp

{
−πr

cos(θ0 + π/2 − |θ|)
cos θ0

}
,(5.2)

and (ii) if �ζ ≥ A0 and |ζ −A0| ≤ ε3, then

|Φv(ζ; z, t)| ≤ C(z)|ζ −A0|−1/(2m).(5.3)

By using the above two lemmas, we obtain Lemma 4.1 as follows.

First we consider the case (i). By Lemma 5.1 (ii) and Lemma 5.2 (i), if

�ζ ≥ h, |ζ| ≥ max{ρ0, bep} (b ≥ 1) and |�ζ| ≥ ε2, then we have

|P (ζ; p)| =

∣∣∣∣∣ pζ

Γ(ζ + 1)

∣∣∣∣∣ · |Φv(ζ; z, t)|

≤ C(z, v)r−β0− 1
2
−hbh−r cos θ ×

exp

{
−πr

cos(θ0 + π/2 − |θ|)
cos θ0

+ r sin θ ·θ
}
·ph

≤ C(z, v, h)r−β0− 1
2
−h ×

exp

{
−r

[
log b · cos θ + π

cos(θ0+π/2−|θ|)
cos θ0

+ sin θ ·θ
]}

·ph.

We consider the case θ ≥ 0. We put b = exp{π/(cos θ0)}, then we can

obtain

log b · cos θ + π
cos(θ0 + π/2 − θ)

cos θ0
≥ 1

cos θ0

π

2
,

for 0 ≤ θ ≤ π/2. Therefore if 0 ≤ θ ≤ π/2 and |�ζ| ≥ ε2, then we have

|P (ζ; p)| ≤ C(z, v, h)r−β0−1/2−h exp

{
−r

[
1

cos θ0

π

2
− sin θ · θ

]}

≤ C(z, v, h)r−β0−1/2−h exp

{
−r

[
π

4

(
1

cos θ0
− 1

)]}
.(5.4)
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If −π/2 ≤ θ ≤ 0 and �ζ ≥ ε2, then we obtain the inequality (5.4) in the

same fashion. Here if we put a = exp{π/(cos θ0) + 1}, α0 = β0 + 1/2 + h

and κ0 = (π/4)(1/(cos θ0) − 1), then we have (4.5) under the condition (i).

Last we can easily obtain the estimate (4.6) by Lemma 5.2 (ii). �

5.3. Proof of Lemma 5.1

When �ζ ≥ h, we have

1

Γ(ζ + 1)
=

1

(2π)1/2
eζ

ζζ+1/2

{
1 + O(ζ−1)

}
.

by Stirling’s formula. Hence∣∣∣∣∣ pζ

Γ(ζ + 1)

∣∣∣∣∣ < cr−1/2 exp{r cos θ log(epr−1) + r sin θ · θ}

= cr−1/2b−r cos θ · exp{r cos θ · log(bepr−1) + r sin θ · θ}.

If the condition (i) is satisfied, then∣∣∣∣∣ pζ

Γ(ζ + 1)

∣∣∣∣∣ < cr−1/2b−r cos θ · exp{h log(bepr−1) + r sin θ · θ}

< cr−1/2−hbh−r cos θph · exp{r sin θ · θ}.

If the condition (ii) is satisfied, then

r cos θ log(bepr−1) ≤ h log(bepr−1),

and the result follows as before. �

5.4. Proof of Lemma 5.2

First we consider the case (i). We define the sectors V± ⊂ C×C×R by

V± =

{
(ξ; z, t);

∣∣∣∣arg ξ ∓ π

2

∣∣∣∣ ≤ 2m− 2

2m− 1

π

2
and

∣∣∣∣arg z ∓ π

2

∣∣∣∣ < 1

2m− 1

π

2

}
.

We need the following lemma about the behavior of Sv(·; z, t) at infinity on

V±:

Lemma 5.3. If (ξ; z, t) is in the sectors V±, then there is a non-zero

constant Av(z) ∈ C depending on z and v such that

lim
|ξ|→∞

ξ2mv+2mSv(ξ; z, t) = Av(z).(5.5)



Non-Analytic Szegö Kernels 33

By the above lemma, we have

|Sv(ξ; z, t)| ≤ C(z, v)|ξ|−2mv−2m.(5.6)

By Lemma 3.1, we have the following: If | arg ζ| ≤ π/2 and |�ζ| ≥ ε1, then

∣∣∣∣ 1

ϕ(G±(ζ))

∣∣∣∣ ≤ Cr
m−1
2m exp

{
−πr

cos(θ0 + π/2 − |θ|)
cos θ0

}
.(5.7)

Since G′
±(ζ) = ±i(2m−1)/(2m)[(1/c2)(ζ−A0)]

−1/(2m) (A0 = m/(4m−2)),

we have

|G′
±(ζ)| ≤ C|ζ −A0|−1/(2m).(5.8)

If we put β0 = (2m−1)(v+1)−(m−1)/(2m)+1/(2m), we have (5.2) under

the condition (i) by (5.6), (5.7), (5.8). We remark that the above value of

β0 is best possible.

Last we can easily obtain the estimate (5.3) by (5.8). �

5.5. Proof of Lemma 5.3

First we consider the case (ξ; z, t) ∈ V+. Writing ξ = ρeiα, with ρ > 0

and |α− π/2| ≤ (2m− 2)π/(4m− 2) and changing the integral variable, we

have

Sv(ξ; z, t) =

∫ ∞

0
eitτe−x2mτeξzτ

1/(2m)
τ vdτ

=
2m

ρ2mv+2m

∫ ∞

0
exp

{
it
u2m

ρ2m
− x2mu2m

ρ2m
+ eiαzu

}
u2mv+2m−1du.

Since �(eiαz) < 0 on V+,

∫ ∞

0
exp

{
it
u2m

ρ2m
− x2mu2m

ρ2m
+ eiαzu

}
u2mv+2m−1du

→
∫ ∞

0
ee

iαzuu2mv+2m−1du =
Γ(2mv + 2m)

[ei(α−π)z]2mv+2m
�= 0,

as ρ → ∞.

In the case (ξ; z, t) ∈ V−, we have (5.5) in the same fashion as above. �
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5.6. Divergence of the formal sum in Remark 3

If we change the order of the integral and the sum in (1.2) (resp. (1.5)),

we obtain the formal sum:

c
∞∑
j=1

Sv
j (z, t),(5.9)

where v = 0 (resp. v = 1). Then we have

Proposition 5.1. If | arg z±π/2| < π/(4m−2), the formal sum (5.9)

is not convergent in the usual sense.

Proof. Lemma 3.1 implies that there are two constants a1, a2 (1 <

a1 < a2) such that

aj1 ≤ |ϕ′(iaj)|−1 ≤ aj2 for j ∈ N.(5.10)

Moreover by Lemma 5.3, there are positive constants j0 ∈ N and b1(z), b2(z)

depending on z such that

b1(z)j
−2mv−2m ≤

∣∣∣∣
∫ ∞

0
eitτe−x2mτeσ(y)iajzτ

1/(2m)
τ v+1/mdτ

∣∣∣∣
≤ b2(z)j

−2mv−2m(5.11)

on | arg z ± π/2| ≤ π/(4m − 2) for j ≥ j0. The inequalities (5.10),(5.11)

imply that the formal sum (5.9) is not convergent in the usual sense. �

5.7. Absolute convergence of the Borel sums H and HB

In this subsection, we give the proof of Proposition 3.1.

From the previous subsection, there is an integer j1 greater than j0 such

that

Γ(fj + 1) ≥ Γ(j), fj ≤ j + 1 and

|Sv
j (z, t)| ≤ a2b2(z)j

−2mv−2m ≤ a2b2(z),

for j ≥ j1, v ≥ 0 and | arg z ± π/2| < π/(4m − 2). The above three

inequalities imply

∞∑
j=j1

∣∣∣∣∣ Sv
j (z, t)

Γ(fj + 1)
pfj

∣∣∣∣∣ ≤ a2b2(z)
∞∑

j=j1

pj+1

Γ(j)
≤ a2b2(z)p

2ep,

for p ≥ 1. This completes the proof of Proposition 3.1.
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6. Direct Proof of Theorem 0.2

In this section, we can directly show that the Szegö kernel of Mm, off

the diagonal, fails to be real analytic and moreover it belongs to s-th order

Gevrey class Gs for all s ≥ 2m, but no better on certain set. In the case

of the Bergman kernel of Dm, we can obtain the same result in a similar

fashion.

We show that the singularity of the Szegö kernel of Mm is almost equal

to that of the function S0
1 , where S0

1 is the singular solution involving the

first eigenfunction for Lξg = 0 (see §2). Now we suppose that z is in the

sector |argz − π/2| < π/(4m− 2). Recall the expansion due to Christ :

K(z, t) = cS
n−1∑
j=1

S0
j (z, t) + En(z, t).(6.1)

The following lemma is also obtained by Christ [6].

Lemma 6.1. There is a positive constant C independent of k such that∣∣∣∣∣ ∂
k

∂tk
En(0 + iy, 0)

∣∣∣∣∣ ≤ C
Γ(2mk + 2m + 2)

[|y|(an−1 + ε)]2mk+2m+2
,

where ε is an arbitrary constant with 0 < ε < an − an−1.

By the above lemma and (6.1), we have

∂k

∂tk
K(0 + iy, 0) = c

∂k

∂tk
S0

1(0 + iy, 0)
{
1 + O

(
a−k

)}

as k → ∞, where a > 1 is a constant. Note that

∂k

∂tk
S0
j (0 + iy, 0) = 2mik

Γ(2mk + 2m + 2)

(|y|aj)2mk+2m+2

(see §2). Since S0
1 does not belong to s-th order Gevrey class Gs for s < 2m,

we can easily obtain∣∣∣∣∣ ∂
k

∂tk
K(0 + iy, 0)

∣∣∣∣∣ ≥ c
Γ(2mk + 2m + 2)

(|y|a1)2mk+2m+2
.



36 Joe Kamimoto

for sufficiently large k ∈ N. We can obtain the same result in the case where

|argz + π/2| < π/(4m− 2) in the same fashion.

Proof of Lemma 6.1. It is easy to obtain the following equation:

∂k

∂tk
En(0 + iy, 0) =

cSi(2m+1)k+2m+22mΓ(2mk + 2m + 2)|y|−2mk−2m−2Ik,n,

with

Ik,n =

∫
γσ(y)

h(v)dv,

where h(v) = [ϕ(v)]−1v−2mk−2m−2 and integral contour γσ(y) is as in Section

3. Therefore in order to prove Lemma 6.1, it is sufficient to show that

|Ik,n| ≤ c(an + ε)−2mk,(6.2)

where ε is an arbitrary constant with 0 < ε < an − an−1.

We shall prove the inequality (6.2). By changing the integral contour,

we have

Ik,n =

∫
Cn

h(v)dv,

where the integral contour Cn consists of three parts L1, L2, L3: L1 follows

the half-line from −∞ to −an−1 − ε, L2 follows the circle v = (an−1 + ε)eiθ

from θ = π to θ = 0 and L3 follows the half-line from an−1 + ε to ∞. (See

Figure 3.)

Since h is a positive function on L3, we have by Schwarz’s inequality

∫
L3

h(v)dv ≤
{∫ ∞

an−1+ε
ϕ(v)−2dv

}1/2

·
{∫ ∞

an−1+ε
v−4mk−4m−4dv

}1/2

≤ c(an−1 + ε)−2mk.(6.3)

Since h is an even function, we have∫
L1

h(v)dv ≤ (an−1 + ε)−2mk.(6.4)

Moreover we have∣∣∣∣
∫
L2

h(v)dv

∣∣∣∣ ≤ (an−1 + ε)−2mk−2m−3

∣∣∣∣∣
∫ π

0

e−i(2mk+2m+1)θ

ϕ((an−1 + ε)eiθ)
dθ

∣∣∣∣∣
≤ c(an−1 + ε)−2mk.(6.5)
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Fig. 3. Integral contour Cn.

Therefore we have ∣∣∣∣
∫
C
h(v)dv

∣∣∣∣ < c(an−1 + ε)−2mk,

by (6.3),(6.4),(6.5), so we obtain (6.2).

This completes the proof of Lemma 6.1. �
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