Strict Convexity of Hypersurfaces in Spheres, II

By Naoya Ando

Abstract. This paper introduces and investigates the notion of r-strict convexity for hypersurfaces in the unit sphere. Particularly the r-strict convexity of hypersurfaces with the definite second fundamental form is studied.

1. Introduction

Let M be a connected, compact, n-dimensional differentiable manifold $(n \ge 1)$ and $\iota: M \to S^{n+1}$ an immersion of M into the unit (n+1)-sphere S^{n+1} . For any $p \in M$, we denote by S_p the totally geodesic hypersphere in S^{n+1} with $\iota(p) \in S_p$ and with $T_{\iota(p)}(S_p) = d\iota_p(T_p(M))$, and by H_p either of the two open hemispheres determined by S_p . An immersion ι is said to be locally strictly convex at a point $p \in M$ if there exists a neighborhood U_p of p in M such that $\iota(U_p \setminus \{p\})$ is contained in H_p . Moreover, ι is said to be strictly convex at p if $\iota(M \setminus \{p\})$ is contained in H_p . In [1], we have studied strict convexity of ι , particularly proved that if ι is an embedding, then ι is strictly convex at each point of M if and only if ι is locally strictly convex at each point of M. In this paper, we introduce and discuss the notion of r-strict convexity $(r \in (0, \pi))$ for an immersion ι . For any $p \in M$, we denote by $B_p(r)$ either of the two geodesic balls in S^{n+1} with radius r such that $\iota(p) \in \partial B_p(r)$ and $T_{\iota(p)}(\partial B_p(r)) = d\iota_p(T_p(M))$, and say that M is tangent to $B_p(r)$ at p by ι . An immersion ι is said to be locally r-strictly convex at a point $p \in M$ if there exists a neighborhood U_p of p in M such that $\iota(U_p \setminus \{p\})$ is contained in $B_p(r)$. Moreover, ι is said to be *r*-strictly convex at p if $\iota(M \setminus \{p\})$ is contained in $B_p(r)$. Notice that the (local) $\frac{\pi}{2}$ strict convexity is just the (local) strict convexity defined as above. As an analogy of our result with respect to strict convexity, we have the following.

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C40; Secondary 53C45, 53C99.

Naoya Ando

THEOREM 1.1. Let M be a connected, compact, n-dimensional differentiable manifold $(n \ge 1)$ and $\iota : M \to S^{n+1}$ an embedding of M into S^{n+1} . Then for $r \le \pi/2$, the following are equivalent:

- (1) ι is locally r-strictly convex at each point of M;
- (2) ι is r-strictly convex at each point of M.

In addition to the above definitions, we say that an immersion ι is *r*-strictly convex $(r \in (\pi/2, \pi))$ on both sides at $p \in M$ if $\iota(M \setminus \{p\}) \subset B_p^{(1)}(r) \cap B_p^{(2)}(r)$, where $B_p^{(1)}(r)$ and $B_p^{(2)}(r)$ are the geodesic balls in S^{n+1} with radius r to which M is tangent at p by ι (see Figure 1). Then we have the following.

THEOREM 1.2. Let M be a connected, compact, n-dimensional differentiable manifold $(n \ge 1)$ and $\iota : M \to S^{n+1}$ an embedding of M into S^{n+1} with positive principal curvatures $\{\kappa_i\}_{i=1}^n (\kappa_1 \le \ldots \le \kappa_n)$. Set

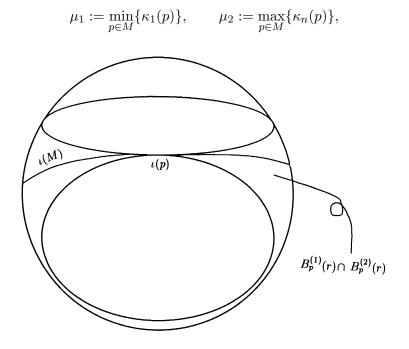


Figure 1. *r*-strict convexity on both sides $(r \in (\pi/2, \pi))$.

and let r_1, r_2 be the two constants satisfying

$$0 < r_1 < \pi/2 < r_2 < \pi,$$

$$\mu_i = |\cot r_i| \quad (i = 1, 2).$$

Then for any $\rho_1 \in (r_1, \pi/2)$, ι is ρ_1 -strictly convex at each point of M and for any $\rho_2 \in (r_2, \pi)$, ι is ρ_2 -strictly convex on both sides at each point of M.

Moreover, we have

THEOREM 1.3. If n = 1 or 2, and if $\mu_1 \neq \mu_2$, then there exists a point of M at which ι is r_1 -strictly convex and r_2 -strictly convex on both sides.

This paper is organized as follows. In Section 2, we prepare for the following sections, particularly define the Gauss map G_0 for an immersion ι carefully and discuss the properties of G_0 . In Section 3, in Section 4 and in Section 5, we prove Theorem 1.1, Theorem 1.2 and Theorem 1.3, respectively.

The author is grateful to Professor T.Ochiai and to Doctor Y.Otsu for helpful advices and for constant encouragement.

2. Preliminaries

Let M be an n-dimensional orientable differentiable manifold $(n \ge 1)$ and ι an immersion of M into S^{n+1} , and g the metric of M induced from the standard metric g' of S^{n+1} . We denote by ∇, ∇' the Levi-Civita connections of M, S^{n+1} respectively. In the following, we shall denote by X, Y, Z and W differentiable vector fields tangent to M and by ξ a differentiable unit vector field normal to M. Then Gauss' formula and Weingarten's formula are the following:

$$\nabla'_X Y = \nabla_X Y + \alpha(X, Y),$$

$$\nabla'_X \xi = -A_{\xi}(X),$$

where α is the second fundamental form of M, which is symmetric in X, Y, and A_{ξ} is the Weingarten map with respect to ξ . The following relation between α and A_{ξ} holds:

$$g(A_{\xi}(X), Y) = g'(\alpha(X, Y), \xi).$$

Consequently, at each $p \in M$, A_{ξ} is a symmetric linear mapping of the tangent space $T_p(M)$ with respect to g. Therefore A_{ξ} is diagonalizable and has the real eigenvalues $\kappa_1 \leq \ldots \leq \kappa_n$. These are called the principal curvatures and the directions of the corresponding eigenvectors are called the principal directions. Two principal directions corresponding to two distinct principal curvatures are perpendicular to each other. The Gauss-Cronecker curvature is defined by $K_n = \kappa_1 \cdots \kappa_n$. Particularly, if n = 1, i.e., M is a smooth curve, then $K_1 = \kappa_1$ is called the geodesic curvature, denoted by κ_g . The equations of Gauss and of Codazzi are

$$g(R(X,Y)Z,W) = \{g(X,W)g(Y,Z) - g(X,Z)g(Y,W)\} + \{g'(\alpha(X,W),\alpha(Y,Z)) - g'(\alpha(X,Z),\alpha(Y,W))\}$$

and

$$(\nabla_X \alpha)(Y, Z) = (\nabla_Y \alpha)(X, Z),$$

where R denotes the curvature tensor of M and

$$(\nabla_X \alpha)(Y, Z) = D_X(\alpha(Y, Z)) - \alpha(\nabla_X Y, Z) - \alpha(Y, \nabla_X Z)$$

(D is the normal connection of ι).

Suppose that M is oriented. We shall define the Gauss map for an immersion ι of M into S^{n+1} . A map $G: M \to S^{n+1}$ is said to be a Gauss map for an immersion ι of M into S^{n+1} if for any $p \in M$, G(p) is identified in \mathbf{R}^{n+2} with a unit vector tangent to S^{n+1} and normal to $(d\iota)_p(T_p(M))$ at $\iota(p)$. If M is connected and compact, and if ι is strictly convex at each point of M, then a Gauss map is one-to-one. We want to pay attension to a special Gauss map. We particularly denote by ι_M an immersion ι of M into S^{n+1} and by $\iota_{S^{n+1}}$ the standard embedding of S^{n+1} into R^{n+2} . However we shall also denote by ι_M the composite map of ι and $\iota_{S^{n+1}}$. Firstly, determine the positive orientation of \mathbf{R}^{n+2} . Next, we determine the positive orientation of \mathbf{R}^{n+1} as follows: At each $q \in S^{n+1}$, an ordered base $\{E'_1, \ldots, E'_{n+1}\}$ of $T_q S^{n+1}$ is positive if

$$\{(d\iota_{S^{n+1}})_q(E'_1),\ldots,(d\iota_{S^{n+1}})_q(E'_{n+1}),\ \iota_{S^{n+1}}(q)\}$$

is a positive ordered base of $T_{\iota_{S^{n+1}}(q)} \mathbf{R}^{n+2}$, where we denote by $\iota_{S^{n+1}}(q)$ not only the image of q by $\iota_{S^{n+1}}$ but also the unit vector tangent to \mathbf{R}^{n+2} at the image of q identified with the position vector of the image of q. Then we can uniquely determine the continuous unit vector field ξ normal to Min S^{n+1} as follows: For $p \in M$ and for a positive ordered base $\{E_1, \ldots, E_n\}$ of T_pM ,

$$\{(d\iota_M)_p(E_1), \ldots, (d\iota_M)_p(E_n), \xi(p)\}$$

is a positive ordered base of $T_{\iota_M(p)}S^{n+1}$. We call $\xi(p)$ the unit normal vector for an immersion ι_M compatible with the orientation of M. So we define the Gauss map $G_0: M \to S^{n+1}$ for an immersion ι_M so that for any $p \in M$, $G_0(p)$ is identified with $\xi(p)$ in \mathbf{R}^{n+2} . The map G_0 is differentiable. The following holds:

$$(dG_0)_p(X) = -A_{\xi}(X).$$

This implies that

$$(dG_0)_p(e_i) = -\kappa_i(p)e_i,$$

where $e_i(i = 1, ..., n) \in T_p(M)$ are unit vectors such that

- (1) $g(e_i, e_j) = 0$ if $i \neq j$;
- (2) e_i is in the principal directions corresponding to κ_i .

Then it follows that at $p \in M$, the map G_0 is non-degenerate if and only if the Gauss-Cronecker curvature K_n is nonzero at p. Therefore if K_n is non-vanishing everywhere, then G_0 is also an immersion of M into S^{n+1} . If G_0 is an immersion, then the Gauss map for G_0 can be considered and it is seen that the Gauss map for G_0 is $-\iota_M$, which is the map defined by $(-\iota_M)(p) = -\iota_M(p)$ (the antipodal point of $\iota_M(p)$ in S^{n+1}). We denote by η the unit normal vector field for G_0 compatible with the orientation of M. The following holds:

PROPOSITION 2.1. Let ι be an immersion of M into S^{n+1} with $K_n(p) \neq 0$ at each $p \in M$. Then the principal curvatures for G_0 with respect to $\eta(p)$ are given by

$$-\frac{1}{\kappa_1(p)},\ldots,-\frac{1}{\kappa_n(p)}.$$

PROOF. Avoiding confusion, we don't identify X and $(d\iota)_p(X)$, or X and $(dG_0)_p(X)$ for $X \in T_p(M)$. However we still identify two vectors parallel to each other in \mathbb{R}^{n+2} . Then we find that

$$(dG_0)_p(X) = -A_{\iota,\xi}((d\iota)_p(X))$$

and that

$$(d\iota)_p(X) = A_{G_0,\eta}((dG_0)_p(X)),$$

where $A_{\iota,\xi}(\text{resp. } A_{G_0,\eta})$ is the Weingarten map for ι with respect to $\xi(\text{resp.} for G_0$ with respect to $\eta)$. Particularly, setting $X = e_i$, we obtain

$$A_{G_0,\eta}((d\iota)_p(e_i)) = -\frac{1}{\kappa_i}(d\iota)_p(e_i).$$

This implies that the principal curvatures for G_0 with respect to $\eta(p)$ are given by

$$-\frac{1}{\kappa_1(p)},\ldots,-\frac{1}{\kappa_n(p)}.$$

3. Proof of Theorem 1.1

If there is not any danger of confusion, then we shall treat properties of an embedding ι as those of M and denote merely by M the image $\iota(M)$. Since (2) implies (1), we need to show that the converse holds.

Case 1. n = 1.

Let C be a simply closed curve in S^2 satisfying (1). For any $p \in C$, let $D_p(r)$ be the geodesic disc in S^2 with radius r such that

(1) C is tangent to $D_p(r)$ at p;

(2) $D_p(r)$ contains $U_p \setminus \{p\}$, where U_p is a neighborhood of p in C.

Suppose that there exists a point $q \in C \setminus \{p\}$ contained in $C_p(r)$, the boundary of $D_p(r)$. It follows that $q \notin U_p$. Moreover suppose that L, one of the two subarcs of C joining p and q, does not contain any point of $C_p(r)$ except p and q. Let s, t be the arc-length parameters of $C, C_p(r)$ respectively satisfying

$$C(0) = C_p(r)(0) = p, \quad C'(0) = [C_p(r)]'(0),$$

and $L = C([0, s_0])$ for a positive number $s_0 > 0$. We find that $C(s_0) = q$ and that $C_p(r)(t_0) = q$ for a number $t_0 \in (0, 2\pi \sin r)$ (notice that $\sin r$ is the radius of $C_p(r)$ in the plane in \mathbf{R}^3 containing $C_p(r)$). Then, with respect to t_0 , exactly one of the following happens:

- (a) $t_0 \in (0, \pi \sin r);$
- (b) $t_0 = \pi \sin r;$
- (c) $t_0 \in (\pi \sin r, 2\pi \sin r).$

Firstly, in case (a), we set Euclidean coordinates (x_1, x_2, x_3) of \mathbf{R}^3 such that

$$C_p(r) = S^2 \cap \{x_3 = \cos r\},$$

 $p, q \in \{x_2 > 0\}.$

Then it follows that

$$L \setminus \{p,q\} \subset \{x_3 > \cos r\}.$$

Now, set

$$\pi(\alpha) := (0, \sin \alpha, \cos \alpha)$$

for $\alpha \in (-\pi, 0)$ and denote by $D(\pi(\alpha); r)$ the geodesic disc in S^2 centered at $\pi(\alpha)$ with radius r, and set

$$\alpha_0 := \inf\{\alpha \in (-\pi, 0) ; D(\pi(\alpha); r) \cap L \neq \emptyset\}.$$

Then we see that L is tangent to $D(\pi(\alpha_0); r)$ at any point of $\partial D(\pi(\alpha_0); r) \cap L \neq \emptyset$ and that $D(\pi(\alpha_0); r) \cap L = \emptyset$. These contradict local r-strict convexity of C. If q is as in case (b) or (c), then we can also obtain the contradiction.

Case 2. $n \ge 2$. For any $p \in M$ and for any integer m with $2 \le m \le n$, set $X^m(p) := \{ \Pi^m ; \text{ an } m \text{-dimensional totally geodesic}$ sphere perpendicular to M at p in $S^{n+1} \}$.

Then the following lemma is obtained.

Naoya Ando

LEMMA 3.1. If M satisfies (1), then for any $\Pi^m \in X^m(p)$, the connected component $M_{\Pi^m}(p)$ of $M \cap \Pi^m$ containing p is a compact hypersurface embedded in Π^m and locally r-strictly convex at each point of $M_{\Pi^m}(p)$.

On the other hand, the following holds:

LEMMA 3.2 ([1]). For any $p \in M$,

 $M = \sqcup_{\Pi \in X^2(p)} M_{\Pi}(p).$

That is, for any $p \in M$ and for any $\Pi \in X^2(p)$,

$$M_{\Pi}(p) = M \cap \Pi.$$

Using Theorem 1.1 for n = 1, Lemma 3.1 and Lemma 3.2, we can prove Theorem 1.1 for $n \ge 2$.

4. Proof of Theorem 1.2

Notice that for a geodesic ball $B(r_i)$ in S^{n+1} with radius r_i , all the principal curvatures of its boundary $\partial B(r_i)$ are equal to $\cot r_i$ or $-\cot r_i$. The embedding ι is locally ρ_1 -strictly convex ($\rho_1 \in (r_1, \pi/2)$) and locally ρ_2 -strictly convex($\rho_2 \in (r_2, \pi)$) on both sides at each point. Therefore it follows from Theorem 1.1 that ι is ρ_1 -strictly convex at each point. We need to show that ι is ρ_2 -strictly convex on both sides at each point.

For any $p_0 \in M$, we set Euclidean coordinates (x_1, \ldots, x_{n+2}) of \mathbb{R}^{n+2} such that

$$\partial B_{\iota(p_0)}(\rho_2) = S^{n+1} \cap \{x_{n+2} = \cos \rho_2\},\$$

where $B_{\iota(p_0)}(\rho_2)$ is a geodesic ball with radius ρ_2 to which M is tangent at p_0 by ι , and determine the orientation of \mathbf{R}^{n+2} such that

$$G_0(p_0) \in \{x_{n+2} = -\sin\rho_2\},\$$

where G_0 is the Gauss map for the embedding ι . To prove that ι is ρ_2 -strictly convex on both sides at each point of M, we have only to show that at p_0 ,

$$\iota(M \setminus \{p_0\}) \subset S^{n+1} \cap \{x_{n+2} > \cos \rho_2\}.$$

Since ι is an embedding with positive principal curvatures, it follows that G_0 is an embedding. It follows from Proposition 2.1 that the principal curvatures $\{\kappa'_i\}_{i=1}^n$ for G_0 with respect to η (see Section 2) are negative and satisfy

$$-\frac{1}{\mu_1} \leq \kappa_1' \leq \ldots \leq \kappa_n' \leq -\frac{1}{\mu_2}$$

Then it is seen that G_0 is locally ρ'_2 -strictly convex ($\rho'_2 \in (0, \pi/2)$, $\cos \rho'_2 = \sin \rho_2$), so it follows from Theorem 1.1 that G_0 is ρ'_2 -strictly convex at each point. Particularly we obtain

(4.1)
$$G_0(M \setminus \{p_0\}) \subset B_{G_0(p_0)}(\rho'_2),$$

where $B_{G_0(p_0)}(\rho'_2)$ is a geodesic ball with radius ρ'_2 to which M is tangent at p_0 by G_0 . The following holds:

(4.2)
$$B_{G_0(p_0)}(\rho'_2) = \{x_{n+2} < -\sin \rho_2\}.$$

If there exists a point $p \in M \setminus \{p_0\}$ such that

$$\iota(p) \in S^{n+1} \cap \{x_{n+2} \leq \cos \rho_2\},\$$

then as p, we take a point at which a function x_{n+2} on M attains its minimum. Then we find that

$$G_0(p) \in \{x_{n+2} \ge -\sin \rho_2\},\$$

which contradicts (4.1) and (4.2). Since p_0 is any point of M, it follows that ι is ρ_2 -strictly convex on both sides at each point of M.

5. Proof of Theorem 1.3

By Theorem 1.2, we find that M is r_1 -convex at each point, i.e., $M \subset \overline{B_p(r_1)}$ for each $p \in M$, and that M is r_2 -convex on both sides at each point. To prove Theorem 1.3, firstly suppose that n = 1 and that $\mu_1 \neq \mu_2$, and let C be a closed curve as in Theorem 1.2. Then there exists a point $p \in C$ such that $\mu_1 < \kappa_g(p) < \mu_2$. It is seen that at p, C is locally r_1 -strictly convex and locally r_2 -strictly convex on both sides. Then as in Section 3 and as in Section 4, we find that C is r_1 -strictly convex and r_2 -strictly convex on both sides at p.

Next, suppose that n = 2 and that $\mu_1 \neq \mu_2$. We need lemmas.

LEMMA 5.1 (Hilbert). Let D be a domain of a surface in S^3 with positive Gaussian curvature and suppose that a point $p \in D$ is not umbilical, i.e., $\kappa_1(p) < \kappa_2(p)$. Then it is not possible that κ_2 has a relative maximum at p and κ_1 has a relative minimum at p.

PROOF. Noticing the equation of Codazzi for a surface in S^3 and the discussion in [3, pp. 124–125] or in [4, pp. 344–345], we can prove Lemma 5.1. \Box

LEMMA 5.2. For a compact surface M in S^3 with positive Gaussian curvature, just one of the following two holds:

- (1) M is a geodesic sphere;
- (2) There exists a point $p \in M$ such that $\kappa_1(p) > \mu_1$ and $\kappa_2(p) < \mu_2$.

In addition, (1) corresponds to the case $\mu_1 = \mu_2$ and (2) corresponds to the case $\mu_1 < \mu_2$.

PROOF. It follows from Lemma 5.1 that M is a constant curvature sphere if and only if $\mu_1 = \mu_2$. Suppose that $\mu_1 < \mu_2$. Then it follows from Lemma 5.1 that there exist two points $p_1, p_2 \in M$ such that $\kappa_1(p_1) > \mu_1$ and $\kappa_2(p_2) < \mu_2$. So set

$$X_{\mu_1} := \{ m \in M ; \kappa_1(m) = \mu_1 \},\$$
$$X_{<\mu_2} := \{ m \in M ; \kappa_2(m) < \mu_2 \}.$$

Notice that $X_{\mu_1} \neq \emptyset$ and M, and that $X_{<\mu_2} \neq \emptyset$ and M. It follows from Lemma 5.1 that $X_{\mu_1} \subset X_{<\mu_2}$. Since X_{μ_1} is compact in M and since $X_{<\mu_2}$ is open in M, it follows that $X_{\mu_1} \subsetneq X_{<\mu_2}$. For any $p \in X_{<\mu_2} \setminus X_{\mu_1}$, we find that $\kappa_1(p) > \mu_1$ and that $\kappa_2(p) < \mu_2$. \Box

By Lemma 5.2, we find that there exists a point $p \in M$ satisfying (2) of Lemma 5.2. In relation to p, we find that for any $\Pi \in X^2(p)$, the geodesic curvature of $M_{\Pi}(p)$ in Π is not less than μ_1 at any point of $M_{\Pi}(p)$ and more than μ_1 at p, which implies that in Π , $M_{\Pi}(p)$ is r_1 -strictly convex at p. Therefore it follows from Lemma 3.2 that M is r_1 -strictly convex at p. Using the Gauss map G_0 as in Section 4, we find that M is r_2 -strictly convex on both sides at p. Thus we have proved Theorem 1.3.

Noticing discussion appeared already, we obtain the following.

THEOREM 5.3. Let M be a connected, compact, n-dimensional differentiable manifold $(n \ge 1)$ and $\iota : M \to S^{n+1}$ an embedding of M into S^{n+1} . Suppose that the principal curvatures for ι are positive and that μ_1 and μ_2 are as in Theorem 1.2, and that r'_1, r'_2 are the two constants satisfying

$$0 < r'_2 < \frac{\pi}{2} < r'_1 < \pi,$$
$$\mu_i = |\tan r'_i| \quad (i = 1, 2).$$

Then for any $\rho'_2 \in (r'_2, \pi/2)$, the Gauss map G_0 for ι is ρ'_2 -strictly convex at each point, and for any $\rho'_1 \in (r'_1, \pi)$, G_0 is ρ'_1 -strictly convex on both sides at each point. Moreover, if n = 1 or 2, and if $\mu_1 \neq \mu_2$, then there exists a point of M at which G_0 is r'_2 -strictly convex and r'_1 -strictly convex on both sides.

References

- [1] Ando, N., Strict convexity of hypersurfaces in spheres, to appear in J. Math. Sci. Univ. Tokyo.
- [2] Dajczer, M., Submanifolds and isometric immersions, Publish or Perish, 1990.
- [3] Hopf, H., Lectures on differential geometry in the large, Notes by J. M. Gray, Stanford Univ., 1954. Reprinted in Lecture Notes in Math., vol. 1000, Springer-Verlag.
- [4] Kobayashi, S. and K. Nomizu, Foundations of differential geometry, vol. 2, Interscience, New York, 1963.

(Received May 14, 1998)

Graduate School of Mathematical Sciences University of Tokyo 3-8-1 Komaba, Meguro-ku Tokyo 153-8914, Japan E-mail: andou@ms.u-tokyo.ac.jp