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Strict Convexity of Hypersurfaces in Spheres, II

By Naoya Ando

Abstract. This paper introduces and investigates the notion of r-
strict convexity for hypersurfaces in the unit sphere. Particularly the r-
strict convexity of hypersurfaces with the definite second fundamental
form is studied.

1. Introduction

Let M be a connected, compact, n-dimensional differentiable manifold

(n� 1) and ι : M → Sn+1 an immersion of M into the unit (n+ 1)-sphere

Sn+1. For any p ∈ M , we denote by Sp the totally geodesic hypersphere

in Sn+1 with ι(p) ∈ Sp and with Tι(p)(Sp) = dιp(Tp(M)), and by Hp either

of the two open hemispheres determined by Sp. An immersion ι is said to

be locally strictly convex at a point p ∈ M if there exists a neighborhood

Up of p in M such that ι(Up \ {p}) is contained in Hp. Moreover, ι is said

to be strictly convex at p if ι(M \ {p}) is contained in Hp. In [1], we have

studied strict convexity of ι, particularly proved that if ι is an embedding,

then ι is strictly convex at each point of M if and only if ι is locally strictly

convex at each point of M . In this paper, we introduce and discuss the

notion of r-strict convexity(r ∈ (0, π)) for an immersion ι. For any p ∈ M ,

we denote by Bp(r) either of the two geodesic balls in Sn+1 with radius r

such that ι(p) ∈ ∂Bp(r) and Tι(p)(∂Bp(r)) = dιp(Tp(M)), and say that M

is tangent to Bp(r) at p by ι. An immersion ι is said to be locally r-strictly

convex at a point p ∈ M if there exists a neighborhood Up of p in M such

that ι(Up \ {p}) is contained in Bp(r). Moreover, ι is said to be r-strictly

convex at p if ι(M \ {p}) is contained in Bp(r). Notice that the (local) π
2 -

strict convexity is just the (local) strict convexity defined as above. As an

analogy of our result with respect to strict convexity, we have the following.
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Theorem 1.1. Let M be a connected, compact, n-dimensional differ-

entiable manifold (n� 1) and ι : M → Sn+1 an embedding of M into Sn+1.

Then for r�π/2, the following are equivalent :

(1) ι is locally r-strictly convex at each point of M ;

(2) ι is r-strictly convex at each point of M .

In addition to the above definitions, we say that an immersion ι is r-

strictly convex (r ∈ (π/2, π)) on both sides at p ∈M if ι(M \{p}) ⊂ B(1)
p (r)∩

B
(2)
p (r), where B

(1)
p (r) and B

(2)
p (r) are the geodesic balls in Sn+1 with radius

r to whichM is tangent at p by ι (see Figure 1). Then we have the following.

Theorem 1.2. Let M be a connected, compact, n-dimensional differ-

entiable manifold (n� 1) and ι : M → Sn+1 an embedding of M into Sn+1

with positive principal curvatures {κi}ni=1(κ1 � . . .�κn). Set

µ1 := min
p∈M

{κ1(p)}, µ2 := max
p∈M

{κn(p)},

Figure 1. r-strict convexity on both sides(r ∈ (π/2, π)).
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and let r1, r2 be the two constants satisfying

0 < r1 < π/2 < r2 < π,

µi = | cot ri| (i = 1, 2).

Then for any ρ1 ∈ (r1, π/2), ι is ρ1-strictly convex at each point of M and

for any ρ2 ∈ (r2, π), ι is ρ2-strictly convex on both sides at each point of M .

Moreover, we have

Theorem 1.3. If n = 1 or 2, and if µ1 	= µ2, then there exists a

point of M at which ι is r1-strictly convex and r2-strictly convex on both

sides.

This paper is organized as follows. In Section 2, we prepare for the

following sections, particularly define the Gauss map G0 for an immersion

ι carefully and discuss the properties of G0. In Section 3, in Section 4

and in Section 5, we prove Theorem 1.1, Theorem 1.2 and Theorem 1.3,

respectively.

The author is grateful to Professor T.Ochiai and to Doctor Y.Otsu for

helpful advices and for constant encouragement.

2. Preliminaries

LetM be an n-dimensional orientable differentiable manifold(n� 1) and

ι an immersion of M into Sn+1, and g the metric of M induced from the

standard metric g′ of Sn+1. We denote by ∇,∇′ the Levi-Civita connections

of M,Sn+1 respectively. In the following, we shall denote by X,Y, Z and

W differentiable vector fields tangent to M and by ξ a differentiable unit

vector field normal to M . Then Gauss’ formula and Weingarten’s formula

are the following:

∇′
XY = ∇XY + α(X,Y ),

∇′
Xξ = −Aξ(X),

where α is the second fundamental form of M , which is symmetric in X,Y ,

and Aξ is the Weingarten map with respect to ξ. The following relation
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between α and Aξ holds:

g(Aξ(X), Y ) = g′(α(X,Y ), ξ).

Consequently, at each p ∈ M , Aξ is a symmetric linear mapping of the

tangent space Tp(M) with respect to g. Therefore Aξ is diagonalizable

and has the real eigenvalues κ1 � . . .�κn. These are called the principal

curvatures and the directions of the corresponding eigenvectors are called the

principal directions. Two principal directions corresponding to two distinct

principal curvatures are perpendicular to each other. The Gauss-Cronecker

curvature is defined by Kn = κ1 · · ·κn. Particularly, if n = 1, i.e., M is a

smooth curve, then K1 = κ1 is called the geodesic curvature, denoted by κg.

The equations of Gauss and of Codazzi are

g(R(X,Y )Z,W ) = {g(X,W )g(Y,Z) − g(X,Z)g(Y,W )}
+{g′(α(X,W ), α(Y,Z)) − g′(α(X,Z), α(Y,W ))}

and

(∇Xα)(Y,Z) = (∇Y α)(X,Z),

where R denotes the curvature tensor of M and

(∇Xα)(Y,Z) = DX(α(Y,Z)) − α(∇XY,Z) − α(Y,∇XZ)

(D is the normal connection of ι).

Suppose that M is oriented. We shall define the Gauss map for an

immersion ι of M into Sn+1. A map G : M → Sn+1 is said to be a Gauss

map for an immersion ι of M into Sn+1 if for any p ∈M , G(p) is identified

in Rn+2 with a unit vector tangent to Sn+1 and normal to (dι)p(Tp(M)) at

ι(p). IfM is connected and compact, and if ι is strictly convex at each point

ofM , then a Gauss map is one-to-one. We want to pay attension to a special

Gauss map. We particularly denote by ιM an immersion ι of M into Sn+1

and by ιSn+1 the standard embedding of Sn+1 into Rn+2. However we shall

also denote by ιM the composite map of ι and ιSn+1 . Firstly, determine the

positive orientation of Rn+2. Next, we determine the positive orientation

of Sn+1 as follows: At each q ∈ Sn+1, an ordered base {E′
1, . . . , E

′
n+1} of

TqS
n+1 is positive if

{(dιSn+1)q(E
′
1), . . . , (dιSn+1)q(E

′
n+1), ιSn+1(q)}
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is a positive ordered base of TιSn+1 (q)R
n+2, where we denote by ιSn+1(q) not

only the image of q by ιSn+1 but also the unit vector tangent to Rn+2 at

the image of q identified with the position vector of the image of q. Then

we can uniquely determine the continuous unit vector field ξ normal to M

in Sn+1 as follows: For p ∈M and for a positive ordered base {E1, . . . , En}
of TpM ,

{(dιM )p(E1), . . . , (dιM )p(En), ξ(p)}

is a positive ordered base of TιM (p)S
n+1. We call ξ(p) the unit normal vector

for an immersion ιM compatible with the orientation of M . So we define

the Gauss map G0 : M → Sn+1 for an immersion ιM so that for any p ∈M ,

G0(p) is identified with ξ(p) in Rn+2. The map G0 is differentiable. The

following holds:

(dG0)p(X) = −Aξ(X).

This implies that

(dG0)p(ei) = −κi(p)ei,

where ei(i = 1, . . . , n) ∈ Tp(M) are unit vectors such that

(1) g(ei, ej) = 0 if i 	= j;

(2) ei is in the principal directions corresponding to κi.

Then it follows that at p ∈ M , the map G0 is non-degenerate if and only

if the Gauss-Cronecker curvature Kn is nonzero at p. Therefore if Kn is

non-vanishing everywhere, then G0 is also an immersion of M into Sn+1.

If G0 is an immersion, then the Gauss map for G0 can be considered and

it is seen that the Gauss map for G0 is −ιM , which is the map defined by

(−ιM )(p) = −ιM (p)(the antipodal point of ιM (p) in Sn+1). We denote by

η the unit normal vector field for G0 compatible with the orientation of M .

The following holds:

Proposition 2.1. Let ι be an immersion of M into Sn+1 with

Kn(p) 	= 0 at each p ∈ M . Then the principal curvatures for G0 with

respect to η(p) are given by

− 1

κ1(p)
, . . . ,− 1

κn(p)
.
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Proof. Avoiding confusion, we don’t identify X and (dι)p(X), or X

and (dG0)p(X) for X ∈ Tp(M). However we still identify two vectors par-

allel to each other in Rn+2. Then we find that

(dG0)p(X) = −Aι,ξ((dι)p(X))

and that

(dι)p(X) = AG0,η((dG0)p(X)),

where Aι,ξ(resp.AG0,η) is the Weingarten map for ι with respect to ξ(resp.

for G0 with respect to η). Particularly, setting X = ei, we obtain

AG0,η((dι)p(ei)) = − 1

κi
(dι)p(ei).

This implies that the principal curvatures for G0 with respect to η(p) are

given by

− 1

κ1(p)
, . . . ,− 1

κn(p)
. �

3. Proof of Theorem 1.1

If there is not any danger of confusion, then we shall treat properties of

an embedding ι as those of M and denote merely by M the image ι(M).

Since (2) implies (1), we need to show that the converse holds.

Case 1. n = 1.

Let C be a simply closed curve in S2 satisfying (1). For any p ∈ C, let

Dp(r) be the geodesic disc in S2 with radius r such that

(1) C is tangent to Dp(r) at p;

(2) Dp(r) contains Up \ {p}, where Up is a neighborhood of p in C.

Suppose that there exists a point q ∈ C \{p} contained in Cp(r), the bound-

ary of Dp(r). It follows that q /∈ Up. Moreover suppose that L, one of the

two subarcs of C joining p and q, does not contain any point of Cp(r) ex-

cept p and q. Let s, t be the arc-length parameters of C,Cp(r) respectively

satisfying

C(0) = Cp(r)(0) = p, C ′(0) = [Cp(r)]
′(0),
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and L = C([0, s0]) for a positive number s0 > 0. We find that C(s0) = q

and that Cp(r)(t0) = q for a number t0 ∈ (0, 2π sin r) (notice that sin r is

the radius of Cp(r) in the plane in R3 containing Cp(r)). Then, with respect

to t0, exactly one of the following happens:

(a) t0 ∈ (0, π sin r);

(b) t0 = π sin r;

(c) t0 ∈ (π sin r, 2π sin r).

Firstly, in case (a), we set Euclidean coordinates (x1, x2, x3) of R3 such that

Cp(r) = S2 ∩ {x3 = cos r},

p, q ∈ {x2 > 0}.

Then it follows that

L \ {p, q} ⊂ {x3 > cos r}.

Now, set

π(α) := (0, sinα, cosα)

for α ∈ (−π, 0) and denote by D(π(α); r) the geodesic disc in S2 centered

at π(α) with radius r, and set

α0 := inf{α ∈ (−π, 0) ; D(π(α); r) ∩ L 	= ∅}.

Then we see that L is tangent to D(π(α0); r) at any point of ∂D(π(α0); r)∩
L(	= ∅) and that D(π(α0); r) ∩ L = ∅. These contradict local r-strict con-

vexity of C. If q is as in case (b) or (c), then we can also obtain the

contradiction.

Case 2. n� 2.

For any p ∈M and for any integer m with 2�m�n, set

Xm(p) := {Πm ; an m-dimensional totally geodesic

sphere perpendicular to M at p in Sn+1}.

Then the following lemma is obtained.
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Lemma 3.1. If M satisfies (1), then for any Πm ∈ Xm(p), the con-

nected component MΠm(p) of M ∩ Πm containing p is a compact hypersur-

face embedded in Πm and locally r-strictly convex at each point of MΠm(p).

On the other hand, the following holds:

Lemma 3.2 ([1]). For any p ∈M ,

M = �Π∈X2(p)MΠ(p).

That is, for any p ∈M and for any Π ∈ X2(p),

MΠ(p) = M ∩ Π.

Using Theorem 1.1 for n = 1, Lemma 3.1 and Lemma 3.2, we can prove

Theorem 1.1 for n� 2.

4. Proof of Theorem 1.2

Notice that for a geodesic ball B(ri) in Sn+1 with radius ri, all the

principal curvatures of its boundary ∂B(ri) are equal to cot ri or − cot ri.

The embedding ι is locally ρ1-strictly convex (ρ1 ∈ (r1, π/2)) and locally

ρ2-strictly convex(ρ2 ∈ (r2, π)) on both sides at each point. Therefore it

follows from Theorem 1.1 that ι is ρ1-strictly convex at each point. We

need to show that ι is ρ2-strictly convex on both sides at each point.

For any p0 ∈ M , we set Euclidean coordinates (x1, . . . , xn+2) of Rn+2

such that

∂Bι(p0)(ρ2) = Sn+1 ∩ {xn+2 = cos ρ2},
where Bι(p0)(ρ2) is a geodesic ball with radius ρ2 to which M is tangent at

p0 by ι, and determine the orientation of Rn+2 such that

G0(p0) ∈ {xn+2 = − sin ρ2},

where G0 is the Gauss map for the embedding ι. To prove that ι is ρ2-

strictly convex on both sides at each point of M , we have only to show that

at p0,

ι(M \ {p0}) ⊂ Sn+1 ∩ {xn+2 > cos ρ2}.
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Since ι is an embedding with positive principal curvatures, it follows

that G0 is an embedding. It follows from Proposition 2.1 that the principal

curvatures {κ′i}ni=1 for G0 with respect to η(see Section 2) are negative and

satisfy

− 1

µ1
�κ′1 � . . .�κ′n�− 1

µ2
.

Then it is seen that G0 is locally ρ′2-strictly convex(ρ′2 ∈ (0, π/2), cos ρ′2 =

sin ρ2), so it follows from Theorem 1.1 that G0 is ρ′2-strictly convex at each

point. Particularly we obtain

G0(M \ {p0}) ⊂ BG0(p0)(ρ
′
2),(4.1)

where BG0(p0)(ρ
′
2) is a geodesic ball with radius ρ′2 to which M is tangent

at p0 by G0. The following holds:

BG0(p0)(ρ
′
2) = {xn+2 < − sin ρ2}.(4.2)

If there exists a point p ∈M \ {p0} such that

ι(p) ∈ Sn+1 ∩ {xn+2 � cos ρ2},

then as p, we take a point at which a function xn+2 on M attains its mini-

mum. Then we find that

G0(p) ∈ {xn+2 �− sin ρ2},

which contradicts (4.1) and (4.2). Since p0 is any point of M , it follows that

ι is ρ2-strictly convex on both sides at each point of M .

5. Proof of Theorem 1.3

By Theorem 1.2, we find that M is r1-convex at each point, i.e., M ⊂
Bp(r1) for each p ∈M , and thatM is r2-convex on both sides at each point.

To prove Theorem 1.3, firstly suppose that n = 1 and that µ1 	= µ2, and let

C be a closed curve as in Theorem 1.2. Then there exists a point p ∈ C such

that µ1 < κg(p) < µ2. It is seen that at p, C is locally r1-strictly convex

and locally r2-strictly convex on both sides. Then as in Section 3 and as

in Section 4, we find that C is r1-strictly convex and r2-strictly convex on

both sides at p.
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Next, suppose that n = 2 and that µ1 	= µ2. We need lemmas.

Lemma 5.1 (Hilbert). Let D be a domain of a surface in S3 with pos-

itive Gaussian curvature and suppose that a point p ∈ D is not umbilical,

i.e., κ1(p) < κ2(p). Then it is not possible that κ2 has a relative maximum

at p and κ1 has a relative minimum at p.

Proof. Noticing the equation of Codazzi for a surface in S3 and

the discussion in [3, pp. 124–125] or in [4, pp. 344–345], we can prove

Lemma 5.1. �

Lemma 5.2. For a compact surface M in S3 with positive Gaussian

curvature, just one of the following two holds:

(1) M is a geodesic sphere;

(2) There exists a point p ∈M such that κ1(p) > µ1 and κ2(p) < µ2.

In addition, (1) corresponds to the case µ1 = µ2 and (2) corresponds to the

case µ1 < µ2.

Proof. It follows from Lemma 5.1 that M is a constant curvature

sphere if and only if µ1 = µ2. Suppose that µ1 < µ2. Then it follows from

Lemma 5.1 that there exist two points p1, p2 ∈ M such that κ1(p1) > µ1

and κ2(p2) < µ2. So set

Xµ1 := {m ∈M ; κ1(m) = µ1},

X<µ2 := {m ∈M ; κ2(m) < µ2}.
Notice that Xµ1 	= ∅ and M , and that X<µ2 	= ∅ and M . It follows from

Lemma 5.1 that Xµ1 ⊂ X<µ2 . Since Xµ1 is compact in M and since X<µ2

is open in M , it follows that Xµ1 �X<µ2 . For any p ∈ X<µ2 \Xµ1 , we find

that κ1(p) > µ1 and that κ2(p) < µ2. �

By Lemma 5.2, we find that there exists a point p ∈M satisfying (2) of

Lemma 5.2. In relation to p, we find that for any Π ∈ X2(p), the geodesic

curvature of MΠ(p) in Π is not less than µ1 at any point of MΠ(p) and

more than µ1 at p, which implies that in Π, MΠ(p) is r1-strictly convex

at p. Therefore it follows from Lemma 3.2 that M is r1-strictly convex at
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p. Using the Gauss map G0 as in Section 4, we find that M is r2-strictly

convex on both sides at p. Thus we have proved Theorem 1.3.

Noticing discussion appeared already, we obtain the following.

Theorem 5.3. Let M be a connected, compact, n-dimensional differ-

entiable manifold (n� 1) and ι : M → Sn+1 an embedding of M into Sn+1.

Suppose that the principal curvatures for ι are positive and that µ1 and µ2

are as in Theorem 1.2, and that r′1, r
′
2 are the two constants satisfying

0 < r′2 <
π

2
< r′1 < π,

µi = | tan r′i| (i = 1, 2).

Then for any ρ′2 ∈ (r′2, π/2), the Gauss map G0 for ι is ρ′2-strictly convex at

each point, and for any ρ′1 ∈ (r′1, π), G0 is ρ′1-strictly convex on both sides

at each point. Moreover, if n = 1 or 2, and if µ1 	= µ2, then there exists a

point of M at which G0 is r′2-strictly convex and r′1-strictly convex on both

sides.
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