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Lifts of Analytic Discs from X to T ∗X

By Luca Baracco and Giuseppe Zampieri

Abstract. We state a general criterion for existence of analytic
discs attached to conormal bundles of CR manifolds. In particular
let S be a CR (non–generic) submanifold of X = C

n and E∗ a CR
subbundle of the complex conormal bundle T ∗

SX ∩
√
−1T ∗

SX such that

E∗+
√
−1E∗ = T ∗

SX∩
√
−1T ∗

SX (where sum and multiplication by
√
−1

are understood in the sense of the fibers). We then show that for any
small disc A attached to S through zo , and for any point po ∈ (E∗)zo ,
there is an analytic lift A∗ attached to E∗ through po. In particular
we regain the theorem by Trepreau and Tumanov [T 3] on existence of
lifts for discs attached to non–minimal manifolds. Our criterion also
applies to discs attached to manifolds with a constant number of neg-
ative Levi–eigenvalues. We finally state the uniqueness of small discs
attached to (non–necessarily CR) manifoldsM through a given point zo
and with prescribed components in TC

zoM . This is a slight, but perhaps
interesting, generalization of the classical result (often used all through
this paper), on uniqueness of lifts of small discs attached to generic
manifolds.

§1. Sufficient Conditions for Lifting Analytic Discs

Let X be a complex manifold of dimension n, M a real C2 submanifold

of codimension l, zo a point of M . We assume that M is generic at zo in

the sense that it is defined by l real equations rj = 0 j = 1, . . . , l whose

differentials ∂rj(zo) j = 1, . . . , l are C-independent. It is easy to see that

we can then choose complex coordinates z = (z′, z′′), z = x +
√
−1y in

C
n = C

l × Cn−l such that ∂rj = dx′j j = 1, . . . , l. Also, by the implicit

function theorem, the equations of M can be put in the form:

(1.1) (rj =)xj − gj(y′, z′′, z̄′′) = 0 with dgj(0, 0, 0) = 0∀j = 1, . . . , l.

We shall denote in the sequel by r the column vector t(r1, . . . , rl).
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Let T ∗X be the cotangent bundle to X, Ṫ ∗X the bundle T ∗X with

the 0–section removed, T ∗
MX the conormal bundle to M in X, po a point of

Ṫ ∗
MX with πM (po) = zo. Recall that T ∗

MX is an R–Lagrangian submanifold

of T ∗X i.e. Lagrangian for σR the real part of the symplectic 2–form σ.

T ∗
MX is said to be I symplectic when σI, the imaginary part of σ, is non–

degenerate over T ∗
MX. This is equivalent to the fact that the Levi form of

M (cf. the definition which follows Lemma 1.2) is non–degenerate. (Either

of the above conditions turn out to coincide with the assumption that T ∗
MX

is totally real.)

Let π (resp. πM ) denote the projection T ∗X → X (resp. T ∗
MX → M).

Let C⊗R T
∗
MX = T ∗

MX⊕
√
−1T ∗

MX be the complexification of T ∗
MX in the

(totally real) fibers.

We shall consider an analytic disc in X attached to M through zo, that

is an analytic mapping A = A(τ) from the unit disc ∆ ⊂ C into X, C1 up

to the boundary, with A(∂∆) ⊂ M and A(1) = zo. We shall also consider

a lift A∗ of A to Ṫ ∗X attached to T ∗
MX through po (i.e. an analytic section

of Ṫ ∗X over A with A∗(∂∆) ⊂ T ∗
MX and A∗(1) = po). Special attention

will be voted to the A∗’s attached to T ∗
MX and contained in C⊗R T

∗
MX i.e.

in the form A∗ = (A;
∑l

i=1 θ
i∂ri ◦A) with A(∆) ⊂M and (θi)|∂∆ ∈ R

l. In

the sequel we shall denote by A (or A∗) both the disc A(∆) (or A∗(∆)) and

its parametrization A(τ) (or A∗(τ)).
Recall (1.1) and observe that it implies ∂z′r(zo) = 1

2 idl×l. It follows that

∂z′r|A will be close to 1
2 idl×l if A is small. In this situation we may find an

l × l invertible matrix λ(τ) = (λij)(τ) such that

(1.2)

{
λ|∂A real , λ(zo) = 1

2 idl×l

λ∂z′r extends holomorphically to A.

In fact the solution λ to (1.2) can be found by solving in the Hölder spaces

Cα(∂A,Rl×l) α < 1, the functional system

(1.3) (F (λ ◦A) =)λ�m∂z′r ◦A− T1(λ�e∂z′r ◦A) = 0 in ∂∆,

where T1 is the Hilbert transform normalized by the condition T1(u)|τ=1 = 0

for u ∈ Cα(∂∆,Rl×l). Since F is linear in λ and close to −T1(λ ◦A) which

is invertible, then the implicit function theorem for F : Cα(∂∆,Rl×l) →
Cα(∂∆,Rl×l) provides the conclusion.
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Note that since ∂z′r is invertible, then the extension is still in the form

λ∂z′r for an extension of λ from ∂A to A that we still denote by λ. Let

θ = (θ1, . . . , θl) be a real valued function on ∂A such that θ · ∂z′r extends

holomorphically to A. Then

θλ−1 = (θ · ∂z′r)(λ∂z′r)−1 is holomorphic in A.

Since

θλ−1|∂A is real,

then

θλ−1 is constant.

Finally, from λ−1(zo) = 2idl×l, we get

θ(A(τ)) = θ(zo)2λ(A(τ)) = θo2λ(A(τ)).

Let λ be the (extension to ∆ of the ) l × l matrix which satisfies (1.2).

Lemma 1.1. Let A be a small disc with A(1) = zo, and assume, for

some θo and for θ = θo2λ :

(1.4) ∂τA(τ) ∈ Ker∂̄(θ∂r)(z)|{u|<∂r,u>=0} ∀τ ∈ ∆ and with z = A(τ).

Then

(1.5) A∗ = (A; θ∂r) is holomorphic.

Proof. Fix an (n− l) × l matrix U ′′ and solve:

(1.6) ∂z′rU
′ = ∂z′′rU

′′,

in the unknown l× l matrix U ′. Choose coordinates such that A is a disc in

the zn–plane. By assumption, for any U ′, U ′′ verifying (1.6), we must have

by (1.4)

∂z̄n(θ∂z′r)U
′ = ∂z̄n(θ∂z′′r)U

′′.
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Since λ∂z′r is holomorphic and θ = θ02λ, then ∂z̄nθ∂z′r = 0 and therefore

∂z̄n(θ∂z′′r)U
′′ = 0.

Since this holds for any U ′′, it follows that

θ∂z′′r|A is holomorphic. �

Clearly (1.4) is also a necessary condition for A∗ = (A; θ∂r) to be ana-

lytic.

Similarly to Lemma 1.1, we can prove:

Lemma 1.2. Suppose

(1.7) ∂τA(τ) ∈ Ker∂̄∂rj(z)|{u|<∂r,u>=0} ∀j,∀τ ∈ ∆ and with z = A(τ).

Then for any po ∈ Ṫ ∗
MXzo , po = θo∂r(zo), there exists a holomorphic lift

A∗ = (A; θ∂r) with θ(zo) = θo.

Proof. Let λ be the complex invertible l×l matrix of above. By (1.7):

∂(θo2λr)|A is holomorphic for any θo. �

Denote by TCM = TM ∩
√
−1TM the complex tangent bundle to M .

Let θ∂r be a section of T ∗
MX; we have for any zo ∈M :

θ(zo)∂̄∂r(zo)|TC
zo

M = ∂̄(θ∂r)(zo)|TC
zo

M .

Thus the above form only depends on po = (zo; θ(zo)∂r(zo)) and not on the

choice of the section θ∂r in T ∗
MX through po; we shall denote it by LM (po).

We shall also use the notation θ∂̄∂r =
∑
θj ∂̄∂r

j .

Proposition 1.3. (i) Let A be an analytic disc attached to M , λ a

solution of (1.2), set θ = θo2λ, A
∗ = (A; θ∂r), and suppose

(1.8) ∂τA(τ) ∈ Ker θ∂̄∂r(z)|{w;<w,∂r>=0} ∀τ ∈ ∆ and with z = A(τ).
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Then A∗ is analytic.

(ii) In particular let A be contained in M and assume (with A∗ =

(A; θ∂r)):

(1.9) ∂τA(τ) ⊂ KerLM (A∗(τ)) ∀τ ∈ ∆.

Then A∗ is analytic. (Note that in this case A∗ is a lift (attached to T ∗
MX

and) contained in C ⊗R T
∗
MX.

Proof. (i): Immediate consequence of Lemma 1.1.

(ii): Since A ⊂ M , then ∀z ∈ A we have {u :< ∂r(z), u >= 0} = TC
z M ,

and moreover ∂̄(θ∂r)(z)|TC
z M = LM (z; θ∂r(z))(= LM (A∗(z)). �

Remark 1.4. We can similarly prove (i) (resp. (ii)) ∀θo above by re-

quiring

∂τA(τ) ∈ Ker∂̄∂rj(z)|{w;<w,∂r>=0}(1.10)

(resp. ∂τA(τ) ∈ KerLM (z; ∂rj(z))) ∀z ∈ A, ∀j.

Remark 1.5. In the situation of Proposition 1.3, there cannot be an-

alytic lifts of A attached to T ∗
MX through po = θo∂r(zo) other than A∗ =

(A; θ∂r) (cf. subsequent §3).

Let S be now a CR submanifold of X i.e. such that TCM has constant

rank, and define

δ = dim(T ∗
SX ∩

√
−1T ∗

SX).

We shall assume δ > 0 i.e. S non–generic. The following proposition deals

with the problem of finding δ quasi–analytic and Levi–flat equations for S.

Proposition 1.6. There are δ complex functions h1, . . . , hδ vanishing

on S such that ∂hj are C–independent, and verify ∂̄hj |S = 0 and ∂̄∂hj |S ≡
0∀j. Moreover on any small disc A attached to S the differentials ∂hj have

holomorphic extensions ∂̃hj.

Proof. We set TzoS +
√
−1TzoS = C

m, (m = n − δ) with coordinate

z′. Then the projection τ : z �→ z′ induces a bijection between S and τS.

Moreover g
def.
:= (τ |S)−1 being CR on τS, it is extended to a function that
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we still denote g = (gj) on C
m such that ∂̄g vanishes together with its

derivatives on τS. If we then set hj = zj − gj , j = n− δ + 1, . . . , n, we get

the desired equations.

As for the second claim we notice that the ∂hj ’s being CR on S, they are

approximated by polynomials, and hence extended to A by the maximum

principle (cf. e.g. [B]). �

Theorem 1.7. Let S be CR, and let E∗ be a CR subbundle of T ∗
SX ∩√

−1T ∗
SX, such that

(1.11) E∗ ⊕
√
−1E∗ = T ∗

SX ∩
√
−1T ∗

SX.

Then for any small disc A attached to S with A(1) = zo, and for any

po ∈ E∗
zo there is an unique analytic lift A∗ attached to E∗ with A∗(1) = po.

Proof. According to Proposition 1.6 there is a C basis {∂h1, . . . , ∂hδ}
for T ∗

SX∩
√
−1T ∗

SX such that each ∂hj extends holomorphically to A. Let d

denote the real dimension of E∗ (in the fibers). Let {vj}j =

{
∑

k ajk∂hk}j=1,...,d verify:

E∗ = SpanR{v1, . . . , vd},

and

po =
d∑

j=1

θojv
j , θo ∈ R

d.

Put V =


 v1

...

vd


 = (V ′, V ′′) where V ′ (resp. V ′′ ) are the first d (resp.

the last n−d ) column in V . We can suppose that coordinates in C
n are so

chosen that V ′(z0) = idd×d and V ′′(z0) = 0. For any function θ with values

in R
d we have

< ∂̄u(θV ), w >= 0 if w ∈ Span{∂hj}⊥.

On the other hand our assumption (1.11) is equivalent to E∗⊥ =

{Span∂hj}⊥. It follows ∀u ∈ C
n:

(1.12) < ∂̄θV,w >= 0 if V w = 0.
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According to the remarks which precede Lemma 1.1, there is a function

λ on A, real on ∂A, with λ(z0) = 1
2 id and such that λV ′ is holomorphic.

Hence for θ = θ02λ and u = ∂τA, we have ∂̄uθV
′ = 0. Together with (1.12)

this gives ∂̄uθV
′′ = 0 and finally ∂̄uθV = 0. Hence A∗ = (A; θV ◦ A) is

the lift of A through p0 = θ0V (z0) ∈ E∗
z0 . Finally notice that, since E∗

has totally real fibers, then the lift of A through any prescribed point of

E∗
zo , (zo = A(1)), exists and is unique (cf. §3). �

Corollary 1.8. Let M be generic, assume there exists S ⊂ M such

that TCM |S = TCS, and define E∗ = T ∗
MX|S ∩

√
−1T ∗

SX. Then for any A

attached to S with A(1) = zo there exists an unique lift A∗ attached to E∗

through each point po ∈ E∗
zo.

Proof. If TCM |S = TCS then TSM � TX|S
TM |S+

√
−1TS

. Hence E∗ �
T ∗
SM has constant rank (= codMS). It remains to prove that (1.11) is

fullfilled. In fact

TCM |S = TCS

if and only if

T ∗
SX ⊂ T ∗

MX|S +
√
−1T ∗

MX|S
only if

T ∗
SX ∩

√
−1T ∗

SX ⊂ (T ∗
MX|S ∩

√
−1T ∗

SX) +
√
−1T ∗

MX|S

if and only if

T ∗
SX ∩

√
−1T ∗

SX ⊂ (E∗ +
√
−1T ∗

MX|S) ∩ (
√
−1E∗ + T ∗

MX|S)

if and only if

T ∗
SX ∩

√
−1T ∗

SX ⊂ E∗ +
√
−1E∗.

The converse of this inclusion is trivial and the right side is in fact a direct

sum (since E∗ is totally real in fibers). Thus we get (1.12). �

We are now in a position to explain the link with the results by Tumanov

[T 3] and Trepreau [Tr]. We start from S CR (non–generic), consider a set of

δ(= dim(T ∗
SX zo∩

√
−1T ∗

SX zo)) quasi–holomorphic and Levi–flat equations

hj = 0 j = 1, . . . , δ for S (i.e. satisfying ∂̄hj |S = 0 and ∂̄∂hj |S = 0) and
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complete by a set of real equations rj = 0 j = 2δ+1, . . . , l. Let po ∈ Ṫ ∗
SX ∩√

−1Ṫ ∗
SX with π(po) = zo, and assume po ∈ SpanR{∂�eh1, . . . , ∂�ehδ}

(otherwise we just need to take a complex combination of the hj ’s). Define

M = {z;�eh1 = 0, . . . ,�ehδ = 0, r2δ+1 = 0, . . . , rl = 0}. Now M is generic

and, since ∂�ehj |S =
√
−1∂�mhj |S (due to ∂̄hj |S = 0), then

(1.13) TCM |S = TCS.

In this case small analytic discs attached to M (and then in fact to S),

through zo, can be lifted to discs attached to E∗ := T ∗
MX|S ∩

√
−1T ∗

SX

through po according to [T 3], [Tr]. (This is by the way the main tool in

the proof of propagation of CR–extandibility.) We point out that in [T

3], [Tr] what is given in the beginning is M (generic) with the assump-

tion of the existence of such a S ⊂ M which verifies (1.13). (This prop-

erty is called non–minimality of M .) Moreover the lift A∗ is obtained by

showing that E∗ = T ∗
MX|S ∩

√
−1T ∗

SX is a CR subbundle of T ∗X (with

the projection TT ∗X
π′
→ TX inducing an isomorphism TCE∗

π′
∼→ TCS)

and then by attaching A∗ to E∗ whose CR components are the TCS–

components of A via Bishop equation. On the contrary we start from

S and attach discs to any subbundle E∗ ⊂ T ∗
SX ∩

√
−1T ∗

SX satisfying the

assumptions of Theorem 1.7. We point out that if (1.11) is fullfilled and

even with E∗ ∩
√
−1E∗ �= {0} we should still prove that E∗ is CR (with

TC
poE

∗ � TC
zoS⊕ (E∗

zo ∩
√
−1E∗

zo)). However our construction of A∗, defined

as a combination of differentials of Levi–flat equations of S instead of solu-

tions of Bishop equation, is much more explicit. For instance it shows that

when A ⊂ S, then A∗ ⊂ C⊗R T
∗
MX|S . It also shows that the “size ” of the

discs which can be “lifted” is only subjected to the condition of finding λ

such that λV ′ is holomorphic (which leads to a simple Bishop equation).

This could not follow from attaching discs to the CR manifold E∗: First

because E∗ is never generic in T ∗X (and hence the celebrated approxima-

tion argument by Baouendi–Treves is needed). And second because the

Bishop’s equation is in this case more complicated.

§2. Discs Attached and Discs Contained in Real Submanifolds

Let M be a generic real submanifold of codimension l in a complex

manifold X of dimension n. Let π : T ∗X → X (resp. πM : T ∗
MX →M) be
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the cotangent bundle toX (resp. the conormal bundle toM inX). Let zo ∈
M , po ∈ Ṫ ∗

MX(= T ∗
MX \ {0}) with π(po) = zo, and recall LM (po) the Levi

form of M at zo in the direction po. If θo∂r(zo) = po, this is defined as the

Hermitian form LM (po) := θo∂̄∂r(zo)|TC
zo

M where TCM = TM ∩
√
−1TM

is the complex tangent plane to M . Let s+,−,0
M (po) be the numbers of

respectively positive, negative, and null eigenvalues of LM (po). We shall

consider analytic discs A (resp. A∗), C1 up to the boundary, attached to

M (T ∗
MX), through zo (po). We want to discuss some particular situations

where A and A∗ are contained in either M or T ∗
MX. Let us choose complex

coordinates z ∈ X � C
n, such that M is defined by rj = 0 j = 1, . . . , l with

rj of type (1.1). Let A = A(τ) be a small analytic disc attached to M with

A(1) = zo.

Proposition 2.1. Assume there exists a lift A∗ through po attached to

T ∗
MX. Then

(2.1) < po, ∂τA > |τ=1 = 0.

(In particular A is tangent to M at zo when M has codimension 1.)

Proof. Denote by τ = te
√
−1φ the variable in ∆, and denote by f ◦A

the second components of the disc A∗ (thus A∗ = (A, f ◦A)). Then

�m < f ◦A, τ∂τA > |∂∆ = −�e < f ◦A, ∂φA >
= 0,

(2.2)

where the first equality follows from Cauchy–Riemann relations, and the

second from the fact that ∂A ⊂M and f |∂A is orthogonal to TM . �

In particular the Proposition applies to the case when for θ = θo2λ∂r

with θo∂r(zo) = po, we have ∂τA ∈ Ker∂̄(θ∂r)|{u|<∂r,u>=0}. (Here λ = λ(τ)

is the invertible l × l matrix which satisfies (1.2).) Let LM (p), p ∈ Ṫ ∗
MX

denote the Levi–form ofM with respect to p; (if θr|M ≡ 0, and θ∂r(zo) = p,

this is defined as θ∂̄∂r(zo)|TC
zo

M ).

Proposition 2.2. (Cf. [Z 3].) Let A be small and have a lift A∗ at-

tached to T ∗
MX with A∗(1) = po. Assume in addition

(2.3) s−M (p) ≡ const ∀p ∈ Ṫ ∗
MX, close to po.
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Then A is contained in M and A∗ in CT ∗
MX.

Proof. We shall follow the lines of [Z 3]. We can find a complex

symplectic homogeneous transformation χ of Ṫ ∗X from a neighborhood of

po to one of qo = χ(po) which interchanges

(2.4) χ(T ∗
MX) = T ∗

M̃
X, codim M̃ = 1, s−

M̃
(qo) = 0.

(Cf. [Z 3, formula (1)].) Owing to (2.4) we also know that in fact s−
M̃

≡ 0 i.e.

M̃ is the boundary of a pseudoconvex domain. (In fact the constancy of the

numbers s−M is invariant under symplectic complex transformation.) Then

Ã :
def.
= πχ(A∗) is an analytic disc attached to a pseudoconvex hypersur-

face. The first consequence is that Ã is in fact contained in the closed half

space M̃+ with boundary M and outward conormal qo (otherwise pseudo-

convexity would be violated). In fact let r̃ be a plurisubharmonic bounded

exhaustion function for the interior of Ã+ as in [D–F]. We have

r̃ ◦ Ã|∆ ≤ 0 r̃ ◦ Ã(1) = 0.

If then r̃ ◦ Ã < 0 at some τ ∈ ∆, then Hopf Lemma would imply (with the

notation τ = te
√
−1φ) < ∂r̃(Ã), ∂tÃ > |τ=1 < 0 whence < qo, ∂τ Ã > |τ=1 �=

0. But this is impossible because Ã has a lift (namely χ(A∗)) through qo
and thus Proposition 2.1 applies. Therefore Ã ⊂ M̃ .

We observe now that we have

(2.5) ∂τ Ã ∈ KerLM̃ (Ã).

In fact, let u = ∂τ Ã. By applying ∂̄∂ to the identity r̃ ◦ Ã ≡ 0, we get

∂̄∂r̃(ū, u) = 0. But, ∂̄∂r̃|TCM̃ being semi–definite, this immediately implies

(2.5). We can apply now the results of §1 and conclude that there exists a

lift Ã∗ ⊂ C ⊗R T
∗
M̃
X(= CT ∗

M̃
X) (where the last equality follows from the

fact that M̃ is a hypersurface). By the uniqueness of the (small) lift (cf.

subsequent §3), we have in fact Ã∗ = χ(A∗). Thus χ(A∗) ⊂ CT ∗
M̃
X whence

A∗ ⊂ CT ∗
MX, and in particular A ⊂M . �

It is possible to prove (cf. [Z 3, Th. 2]) that A∗ is in fact contained in

T ∗
MX.



Lifts of Analytic Discs from X to T ∗X 723

§3. Uniqueness of Attached Discs

Let M be a C2–submanifold of codimension l in a complex manifold X

at a point zo. We do not necessarily assume that M is generic and not even

CR. We identify in complex coordinates X � TzoX � C
n, TC

zoM � C
m and

choose a complex projection g:

(3.1)

M ↪→ X

↓ g|M ↓ g

TC
zoM � C

m .

Proposition 3.1. The small analytic disc A attached to M with

A(1) = zo and with prescribed TC
zoM–components g ◦A is unique if it exists.

Proof. Let l′ :
def.
= dimM − 2m; (thus l′ ≤ l and l′ = l only in case M

is generic). Let idm×m × f :

C
m × R

l′ → M

(z, ρ) �→ (z, f(z, ρ)),

be a parametrization of M such that g|M ◦ (id× f) is the projection C
m ×

R
l′ → C

m. Since g|M has totally real fibers, then it is possible to choose l′

components f ′′ = (fm+1, . . . , fm+l′) of f such that

∂ρf
′′(zo, ρo) = idl′×l′ .

Let ∆ be the unit disc of C, and let Cα (α < 1) be the Banach space of the

α–Lipschitz–continuous functions endowed with the norm || · ||α. Consider

the mapping F between Banach spaces:

Cα(∂∆,Cm) × Cα(∂∆,Rl′) × R
l′ → Cα(∂∆,Cn−m)

(A, ρ, ρo) �→ �ef ′′(A, ρ) + T1�mf ′′(A, ρ) −�ef ′′(A(1), ρo).

Since f is C2, then F is C1 and

F (A, ρ, ρo) = 0 iff

{
f ′′(A, ρ)extends holomorphically to ∆

�ef ′′(A, ρ)(1) = �ef ′′(A(1), ρo) i.e. ρ(1) = ρo.
.
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Let Ao denote the constant disc {zo}. We have F (Ao, ρo, ρo) = 0 and:

∂F

∂ρ
(Ao, ρo, ρo) = �e∂ρf

′′(Ao, ρo) + T1�m∂ρf
′′(Ao, ρo) = id.

If then A ∈ Cα(∂∆,Cm) with ||A − Ao||α small, then, by the implicit

function theorem, there exists an unique ρ such that ρ(1) = ρo and f ′′(A, ρ)
extends holomorphically to ∆.

Thus let Ã be a disc of C
n attached to M with Ã(1) = zo and g(Ã) =

A. This means that f(A, ρ) extends holomorphically. Thus in particular

f ′′(A, ρ) extends, and therefore ρ is unique. �

Let M (resp. M∗) be a submanifold of C
m (resp. C

n (n > m)), and

let g : C
n → C

m be a complex projection which induces a submersion

g|M∗ :M∗ →M . We thus have a commuting diagram:

M∗ ↪→ C
n

↓ g|M∗ ↓ g

M ↪→ C
m .

Corollary 3.2. Let g|M∗ have totally real fibers. Then for any small

disc A attached toM there exists at most one lift A∗ attached toM∗ through

any fixed point of M∗.

Proof. Fix z∗ ∈M∗ with g(z∗) = z. Then

TC

z∗g|−1
M∗(z) = {0} if and only if TC

z∗M
∗ g′
↪→ TC

z M is injective.

Let us consider the projections:

C
n g→ C

m g1→ C
m1

g2→ C
m2

|| ||
TC
z M TC

z∗M
∗,

and define g3 = g2 ◦ g1 ◦ g : C
n → C

m2 � TC
zoM

∗. Let A∗
1 and A∗

2 be two

lifts of A. Then

g3(A
∗
1) = g2 ◦ g1 ◦ g(A∗

1) = g2 ◦ g1(A) = g2 ◦ g1 ◦ g(A∗
2) = g3(A

∗
2).

If therefore A∗
1 and A∗

2 are attached to M∗ and have a common point z∗,
we must have A∗

1 = A∗
2 due to Proposition 3.1. �
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