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Uniqueness in Inverse Problems for

the Isotropic Lamé System

By Masaru Ikehata, Gen Nakamura and Masahiro Yamamoto

Abstract. For isotropic Lamé systems with variable coefficients,
we discuss inverse problems of determining force terms or densities from
a finite number of measurements of lateral boundary data. We establish
uniqueness results by the Carleman estimate. A Lamé system with
variable coefficients has different principal parts and usual application
of the Carleman estimate is difficult, and for the proof of the uniqueness,
we reduce the Lamé system to a system with the same principal part
by introducing a divergence component.

§1. Introduction

We consider an isotropic Lamé system with variable coefficients in a

bounded domain Ω ⊂ R
n whose boundary is of C2-class:

ρ(x)u′′(x, t) = µ(x)∆u(x, t)+(λ(x) + µ(x))∇(∇Tu(x, t))

+∇Tu(x, t)∇λ(x)+(∇u(x, t) + (∇u(x, t))T )∇µ(x) + R(x, t)f(x),

x ∈ Ω, −T < t < T,(1.1)

where we set u = (u1, ..., un)T , u′ = ∂u
∂t , u

′′ = ∂2u
∂t2

, ·T denotes the transpose

of vectors under consideration and we define an n× n matrix ∇v and real-

valued ∇T v by

∇v =

(
∂vi
∂xj

)
1≤i,j≤n

and ∇T v =
n∑

i=1

∂vi
∂xi

for v = (v1, ..., vn)T , the Lamé parameters λ, µ and the density ρ satisfy

(1.2) λ, µ, ρ ∈ C3(Ω),
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(1.3) 2µ(x) > δ0 > 0, x ∈ Ω,

(1.4) nλ(x) + 2µ(x) > δ0 > 0, λ(x) + µ(x) > δ0, x ∈ Ω,

and

(1.5) ρ(x) > δ0 > 0, x ∈ Ω,

with some constant δ0 > 0. Furthermore f = f(x) and R = R(x, t) are

suitable vector-valued or real-valued fucntions.

Remark. The condition (1.3) and (1.4) mean that the Lamé operator

at the right hand side of (1.1) is positive definite (e.g. Gurtin [6]). If n ≥ 2,

then the second inequality in (1.4) follows from the first one and (1.3).

We define a stress tensor σ(u) whose (i, j)-component σ(u)ij is defined

by

(1.6) σ(u)ij = λ(x)(∇Tu)δij + µ(x)((∇u)ij + (∇u)ji), 1 ≤ i, j ≤ n.

Henceforth Aij denotes the (i, j)-component of an n × n matrix A and

δij = 1 if i = j, δij = 0 if i 
= j. Let us denote the outward normal vector

to ∂Ω at x by ν = ν(x).

Then we formulate

Inverse problem for the isotropic Lamé system. Let u = u(x, t) satisfy

(1.1) with suitable initial and boundary conditions on ∂Ω. Let T > 0 and

R = R(x, t) be given. Then determine some of {λ, µ, ρ, f} from

(1.7) σ(u)(x, t)ν(x), x ∈ ∂Ω, 0 < t < T

provided that the other functions are given.

In this paper, we discuss the uniqueness in such inverse problems. Our

inverse problems are important parameter identification problems where

we are required to determine Lamé parameters, a density and/or a forcing

term from the surface traction σ(u)ν. Under some strict positivity of ini-

tial values, the weighted estimate called a Carleman estimate gives a good
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uniqueness result to similar inverse problems for a single hyperbolic equa-

tion and a single parabolic equation (e.g. Bukhgeim [2], Bukhgeim and

Klibanov [3], Isakov [9], [10], [11], Khăıdarov [13], [14], Klibanov [15], [16],

[17], Kubo [18]). Originally Carleman [4] has applied such a weighted esti-

mate to the unique continuation in a nonhyperbolic Cauchy problem and

for the Carleman estimate, we can further refer to Hörmander [7], Niren-

berg [20] for example. For proving the uniqueness in the inverse problem,

the key depends on whether we can establish the Carleman estimate.

An attempt has been made by Isakov [8] to obtain a Carleman estimate

for the isotropic Lamé system with variable coefficients. By applying the

differential operator whose principal symbol is the cofactor matrix of the

principal symbol of our system, he transformed the Lamé system to

(1.8) �α1�α2u + (terms of ”order ≤ 3”)

with α1 = ρ
λ+2µ , α2 = ρ

µ and �αu ≡ αu′′ − ∆u, so that the Carleman

estimate is proved and produces the uniqueness results. Furthermore in

Isakov [12], the unique continuation is discussed for the thin elastic plate

by the Carleman estimate. For the compensation of using the transform

is that it makes difficult to determine the density. His Carleman estimate

holds true for more general systems of the fourth order in the form (1.8),

not restricted to the Lamé system. However, unlike Isakov [8], we derive a

Carleman estimate for the equations for u and ∇Tu whose principal part is

diagonal and its diagonal components are �α1 · and �α2 ·.
The purpose of this paper is to show the uniqueness in two inverse prob-

lems: determination of a density ρ and determination of a forcing term f by

means of the equations for u and ∇Tu. In a forthcoming paper we discuss

the determination of Lamé parameters λ and µ.

For the stationary isotropic Lamé system with variable coefficients, the

unique continuation by direct application of Carleman estimates is compli-

cated (e.g. Dehman and Robbiano [5]) because of multiple characteristics.

However, the usage of similar equations for u and ∇Tu makes the argument

simple (Ang, Ikehata, Trong and Yamamoto [1]).

This paper is organized as follows:

Section 2: formulation and the uniqueness in determining a forcing term;

Theorems 1 - 3

Section 3: the uniqueness in determining a density ; Theorems 4 and 5
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Section 4: transform of the Lamé system into the system which is diagonal

in its principal part

Section 5: Carleman estimate for the transformed system

Section 6: transform of the boundary conditions

Section 7: proof of Theorem 1

Section 8: proof of Theorem 2

Section 9: proof of Theorem 3

Section 10: proofs of Theorems 4 and 5.

§2. Formulation and the Uniqueness in Determining Forcing

Terms

Throughout this paper, in addition to (1.2) - (1.5), we further assume

(2.1) 1 +

(
x,∇

(
ρ

λ+2µ

)
(x)

)
2
(

ρ
λ+2µ

)
(x)

> 0, 1 +

(
x,∇

(
ρ
µ

)
(x)

)
2
(

ρ
µ

)
(x)

> 0, x ∈ Ω.

Here (·, ·) denotes the scalar product in R
n.

Remark 2.1. The condition (2.1) is satisfied if ∇
(

ρ
λ+2µ

)
and ∇

(
ρ
µ

)
are small in comparison with Ω or they are monotonically increasing along

the x-direction. The condition (2.1) is necessary for actually establishing

a Carleman estimate in §5 and is rather restrictive for general λ, µ and ρ.

However, in our case where we assume Dirichlet data on the whole boundary

∂Ω, we do not know whether we can establish a Carleman estimate without

(2.1). In Isakov [8], [10], Khăıdarov [13], [14], Klibanov [17], etc., similar

conditions are assumed.

Henceforth we set

(Lu)(x) = µ(x)∆u(x) + (λ(x) + µ(x))∇(∇Tu(x)) + ∇Tu(x)∇λ(x)

+(∇u(x) + (∇u(x))T )∇µ(x), x ∈ Ω.(2.2)

In this paper, we mainly consider two kinds of systems with the principal
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part (2.2) in x:

(2.3)



ρ(x)y′′(x, t) = (Ly)(x, t) + r(x, t)

 f1(x)
...

fn(x)

 ,

x ∈ Ω, −T < t < T,

y(x, 0) = 0, x ∈ Ω,

y(x, t) = 0, x ∈ ∂Ω, −T < t < T,


where r is a scalar-valued function defined in Ω × (−T, T ).

(2.4)


ρ(x)y′′k(x, t) = L(yk)(x, t) + f(x)Rk(x, t), x ∈ Ω, −T < t < T,

yk(x, 0) = 0, x ∈ Ω,

yk(x, t) = 0, x ∈ ∂Ω, −T < t < T,


where we set

Rk(x, t) =

 r
(k)
1 (x, t)

...

r
(k)
n (x, t)

 , x ∈ Ω, −T < t < T, 1 ≤ k ≤ n,

and f is a scalar-valued function in Ω. We note that in (2.4) we consider

a set of n solutions corresponding to n-kinds of non-homogeneous terms

f(x)Rk(x, t), 1 ≤ k ≤ n. In (2.3) and (2.4), we do not assume any conditions

on y′(·, 0). In fact, like in Isakov [10], Klibanov [17] for example, we can

determine also y′(·, 0) and y′k(·, 0), 1 ≤ k ≤ n in (2.3) and (2.4) respectively.

We assume that λ, µ, ρ, r, r
(k)
i , 1 ≤ i, k ≤ n are given and consider

Inverse Problem I . Let T > 0 be given. In the system (2.3), does

σ(y)(x, t)ν(x) = 0, x ∈ ∂Ω, −T < t < T imply f1(x) = ... = fn(x) = 0,

x ∈ Ω?

Inverse Problem II . Let T > 0 be given. In the system (2.4), does

σ(yk)(x, t)ν(x) = 0, x ∈ ∂Ω, −T < t < T , 1 ≤ k ≤ n imply f(x) = 0,

x ∈ Ω?
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For the statements of our uniqueness results for these inverse problems,

we introduce notations. We set

(2.5) α1(x) =

(
ρ

λ + 2µ

)
(x), α2(x) =

(
ρ

µ

)
(x), x ∈ Ω

and

(2.6) dj(x) = |∇αj(x)|αj(x)−
1
2 , ej(x) = 1 +

(∇αj(x), x)

2αj(x)
, j = 1, 2.

For Ω ⊂ R
n, we define ω > 0 by

ω = inf
η∈Ω

sup
x∈Ω

|x− η|.

Henceforth after translating Ω by a fixed x0 ∈ R
n if necessary, we can

assume that

0 ∈ Ω and the infimum in η is attained at η = 0.

That is, throughout this paper, we assume

(2.7) ω = inf
η∈Ω

sup
x∈Ω

|x− η| = sup
x∈Ω

|x|.

Then we choose θ > 0 such that

(2.8)


0 < θ < min

x∈Ω, j=1,2

(√
ω2dj(x)2 + 4αj(x)ej(x) − ωdj(x)

2αj(x)

)2

0 < θ ≤ min
x∈Ω, j=1,2

1

αj(x)
.


For these inverse problems of determining forcing terms, we are ready

to state the uniqueness results, the first group of our main results.

Theorem 1 (Uniqueness for Inverse Problem I). Let r, ∂r
∂t ∈ C2(Ω ×

[−T, T ]), and f1, ..., fn ∈ C(Ω). Moreover let us assume that there exists a

constant r0 > 0 such that

(2.9) r(x, 0) ≥ r0 > 0, x ∈ Ω.
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Let

(2.10) T >
supx∈Ω |x|√

θ
.

If y ∈ C2(Ω × [−T, T ])n satisfies (2.3),

(2.11) y ∈ C4(Ω × [−T, T ])n

and

(2.12) σ(y)(x, t)ν(x) = 0, x ∈ ∂Ω, −T < t < T,

then

(2.13) f1(x) = · · · = fn(x) = 0, x ∈ Ω

and

(2.14) y(x, t) = 0 in {(x, t) ∈ Ω × (−T, T ); |x|2 − θt2 > 0}.

Theorem 2 (Uniqueness for Inverse Problem II). Let

(2.15)

{
Rk, R

′
k ∈ C2(Ω × [−T, T ])n, 1 ≤ k ≤ n

∇TRk,∇TR′
k ∈ C2(Ω × [−T, T ])

}

and

(2.16) f ∈ C1(Ω).

We assume that there exists a constant r0 > 0 and some i, k with 1 ≤ i, k ≤
n such that

(2.17) |det(R1(x, 0), ..., Rn(x, 0))| ≥ r0 > 0, x ∈ Ω

and

(2.18) |r(k)
i (x, 0)| ≥ r0 > 0, x ∈ Ω.
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Moreover let

T >
supx∈Ω |x|√

θ
.

If yk ∈ C2(Ω × [−T, T ])n satisfies (2.11), (2.4) and

(2.19) σ(yk)(x, t)ν(x) = 0, x ∈ ∂Ω, −T < t < T, 1 ≤ k ≤ n,

then

(2.20) f(x) = 0, x ∈ Ω

and

(2.21)
yk(x, t) = 0

in {(x, t) ∈ Ω × (−T, T ); |x|2 − θt2 > 0}, 1 ≤ k ≤ n.

Remark 2.2. The condition (2.10) for observation time is sufficient for

the uniqueness and same as the one in Isakov [8] or [10]. The time length

in (2.10) depends on both supx∈Ω |x| and θ given by (2.8). In a simple case

where ρ
λ+2µ and ρ

µ are constants, we can rewrite (2.8) as

(2.8’) 0 < θ ≤ min
x∈Ω,j=1,2

1

αj(x)

so that the condition (2.10) means that 2T has to be greater than the time

where the P-wave and the S-wave run over the diameter of Ω, and so in this

case, (2.10) gives the optimal observation time length for the uniqueness.

On the other hand, in the case of variable ρ
λ+2µ and ρ

µ , the optimal time is

an open problem.

Remark 2.3. In Theorems 1 and 2, we require that y, r and R are

sufficiently smooth on Ω × [−T, T ]. We can relax the regularity condition

if we can apply the Carleman estimate in Sobolev spaces of the negative

order. As for such a Carleman estimate for the D’Alembertian, we can refer

to Ruiz [21].
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In order to obtain the uniqueness of a scalar function f in Inverse Prob-

lem II, we have to change n-times non-homogeneous terms Rk so that (2.17)

is true. This is a very overdetermining formulation for Inverse Problem II.

In particular, in the case of determining 2-dimensional f , we can prove

the uniqueness without changing non-homogeneous terms.

Theorem 3 (Uniqueness in the two dimensional Inverse Problem I).

We consider

(2.22)


ρ(x)y′′(x, t) = (Ly)(x, t) + f(x)R(x, t),

x = (x1, ..., xn) ∈ Ω ⊂ R
n, −T < t < T,

y(x, 0) = y′(x, 0) = 0, x ∈ Ω,

y(x, t) = 0, x ∈ ∂Ω, −T < t < T,


where

R(x, t) =

 r1(x, t)
...

rn(x, t)

 , x ∈ Ω, −T < t < T.

We assume that

(2.23) f ∈ C1(Ω) and f(x) depends only on x1 and x2.

Moreover let R satisfy the regularity condition

(2.24)

{
R,R′, R′′ ∈ C2(Ω × [−T, T ])n,

∇TR,∇TR′,∇TR′′ ∈ C2(Ω × [−T, T ])

}

and

(2.25)

∣∣∣∣det

(
r1(x, 0) r′1(x, 0)

r2(x, 0) r′2(x, 0)

)∣∣∣∣ ≥ r0 > 0, x ∈ Ω

with some constant r0 > 0 independent of x ∈ Ω. Moreover let

T >
supx∈Ω |x|√

θ
.
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If y = y(x, t) satisfies (2.22) with the regularity condition

(2.26) y ∈ C5(Ω × [−T, T ])n

and

(2.27) σ(y)(x, t)ν(x) = 0, x ∈ ∂Ω, −T < t < T,

then

(2.28) f(x) = 0, x ∈ Ω

and

(2.29) y(x, t) = 0, x ∈ Ω, −T < t < T.

In Theorem 3, we note that Ω itself is a domain in R
n. We can deter-

mine f uniquely in a single system (2.22), while we have to further assume

y′(x, 0) = 0, x ∈ Ω.

We can restate Theorem 3 in the interval (0, T ).

Theorem 3’. We consider

(2.22’)


ρ(x)y′′(x, t) = (Ly)(x, t) + f(x)R(x, t),

x = (x1, ..., xn) ∈ Ω ⊂ R
n, 0 < t < T,

y(x, 0) = y′(x, 0) = 0, x ∈ Ω,

y(x, t) = 0, x ∈ ∂Ω, 0 < t < T.


Under the same assumptions as in Theorem 3, let y ∈ C2(Ω×[0, T ])n satisfy

(2.22)’ and

(2.26’) y ∈ C5(Ω × [0, T ])n

and

(2.27’) σ(y)(x, t)ν(x) = 0, x ∈ ∂Ω, 0 < t < T.
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Moreover we assume that R(x, t) can be extended to [−T, 0] such that the

extension is so smooth that the solution ŷ = ŷ(x, t) to

(2.30)


ρ(x)ŷ′′(x, t) = (Lŷ)(x, t) + f(x)R(x, t),

x ∈ Ω ⊂ R
n, −T < t < 0,

ŷ(x, 0) = ŷ′(x, 0) = 0, x ∈ Ω,

ŷ(x, t) = 0, x ∈ ∂Ω, −T < t < 0


satisfies ŷ ∈ C5(Ω× [−T, 0]). Then f(x) = 0, x ∈ Ω and y(x, t) = 0, x ∈ Ω,

0 < t < T follows.

For a sufficient regularity condition in order that ŷ ∈ C5(Ω× [−T, 0]) in

(2.30), we can apply results in Lions and Magenes [19] for example.

We can directly derive Theorem 3’ from Theorem 3, noting that

Y (x, t) =

{
y(x, t), t ≥ 0

ŷ(x, t), t < 0

is in C5(Ω × [−T, T ]).

§3. Uniqueness of Density

In this section, we apply Theorems 2 and 3 for Inverse Problem II of

determining a density ρ provided that the Lamé parameters λ and µ are

known. For fixed θ0 > 0, we define an admissible set of densities ρ’s in the

following way:

U =

{
ρ ∈ C2(Ω); 1 +

(
x,∇

(
ρ

λ+2µ

)
(x)

)
2
(

ρ
λ+2µ

)
(x)

> 0,

1 +

(
x,∇

(
ρ
µ

)
(x)

)
2
(

ρ
µ

)
(x)

> 0, x ∈ Ω,

min
x∈Ω, j=1,2

(√
ω2dj(x)2 + 4αj(x)ej(x) − ωdj(x)

2αj(x)

)2

> θ0,

min
x∈Ω, j=1,2

1

αj(x)
≥ θ0

}
,(3.1)
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where αj = αj(ρ, λ, µ), dj = dj(ρ, λ, µ), ej = ej(ρ, λ, µ), j = 1, 2 are defined

by (2.5) and (2.6) for ρ, λ and µ, and ω is given by (2.7). We discuss the

Lamé systems without non-homogeneous terms.

(3.2)


ρ(x)u′′(x, t) = (Lu)(x, t), x ∈ Ω, −T < t < T,

u(x, 0) = ak(x) = (a
(k)
1 (x), ..., a(k)

n (x))T , x ∈ Ω,

u(x, t) = ηk(x, t), x ∈ ∂Ω, −T < t < T,


and

(3.3)


ρ̃(x)ũ′′(x, t) = (Lũ)(x, t), x ∈ Ω, −T < t < T,

ũ(x, 0) = ak(x) = (a
(k)
1 (x), ..., a(k)

n (x))T , x ∈ Ω,

ũ(x, t) = ηk(x, t), x ∈ ∂Ω, −T < t < T


for 1 ≤ k ≤ n. Let u = uk and ũ = ũk satisfy (3.2) and (3.3) respectively

for ak and ηk, 1 ≤ k ≤ n. In this section, ak, ηk, 1 ≤ k ≤ n are given

suitably.

Henceforth we denote the i-th component of a ∈ R
n by [a]i; [a]i = ai,

1 ≤ i ≤ n for a = (a1, ..., an)T .

We are concerned with the unique determination of ρ̃ in (3.3) with 1 ≤
k ≤ n. In other words, we determine the density function by changing

n-times initial displacements ak, 1 ≤ k ≤ n and boundary values ηk, 1 ≤
k ≤ n. For this formulation, we can state the uniqueness result as follows.

Theorem 4 (Uniqueness of density by n observations of boundary trac-

tion). Let ρ, ρ̃ ∈ U . We assume

(3.4) T >
supx∈Ω |x|√

θ0

and there exists a constant r0 > 0 and some i, k with 1 ≤ i, k ≤ n such that

(3.5) |det((La1)(x), ..., (Lan)(x))| ≥ r0 > 0, x ∈ Ω

and

(3.6) |[(Lak)(x)]i| ≥ r0 > 0, x ∈ Ω.
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If for 1 ≤ k ≤ n, uk and ũk satisfy (3.2) and (3.3) respectively, and

(3.7) uk, ũk ∈ C4(Ω × [−T, T ])n, 1 ≤ k ≤ n,

(3.8)
σ(uk)(x, t)ν(x) = σ(ũk)(x, t)ν(x),

x ∈ ∂Ω, −T < t < T, 1 ≤ k ≤ n,

then we have ρ(x) = ρ̃(x), x ∈ Ω and

uk(x, t) = ũk(x, t)

in {(x, t) ∈ Ω × (−T, T ); |x|2 − θ0t
2 > 0}, 1 ≤ k ≤ n.

In the n-dimensional case, we do not know whether we can prove the

uniqueness by suitably choosing an initial displacement and boundary value

one time, not n-time. This theorem asserts that if we can choose initial dis-

placement and boundary data n-times in an appropriate way such that

(3.5) and (3.6) are satisfied, then the uniqueness follows. We should com-

pare Theorem 4 with a result by Isakov [8] which proved the uniqueness in

determining a density function in the three dimensional case by choosing

suitable four kinds of data. Moreover our regularity assumption (3.7) is

more relaxed.

According to Theorem 3, if we can assume that unknown densities de-

pend only on two components of x, say, x1 and x2, then a single adequate

choice of intial displacement and boundary data can guarantee the unique-

ness. More precisely, we have

Theorem 5 (Uniqueness of two dimensional density by a single obser-

vation). We consider

(3.9)


ρ(x)u′′(x, t) = (Lu)(x, t), x ∈ Ω ⊂ R

n, −T < t < T,

u(x, 0) = a(x), u′(x, 0) = b(x), x ∈ Ω,

u(x, t) = η(x, t), x ∈ ∂Ω, −T < t < T


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and

(3.10)


ρ̃(x)ũ′′(x, t) = (Lũ)(x, t), x ∈ Ω ⊂ R

n, −T < t < T,

ũ(x, 0) = a(x), ũ′(x, 0) = b(x), x ∈ Ω,

ũ(x, t) = η(x, t), x ∈ ∂Ω, −T < t < T.


Let us set

(3.11) V = {ρ ∈ U ; ρ depends only on x1 and x2}

where U is defined by (3.1). Let initial data a, b and boundary data η be

given such that

(3.12)

∣∣∣∣det

(
[(La)(x)]1 [(Lb)(x)]1
[(La)(x)]2 [(Lb)(x)]2

)∣∣∣∣ ≥ r0 > 0, x ∈ Ω

with some constant r0 > 0 independent of x ∈ Ω, and the solutions u and

ũ to (3.9) and (3.10) satisfy the regularity condition

(3.13) u, ũ ∈ C5(Ω × [−T, T ])n.

Moreover we assume

(3.14) ρ, ρ̃ ∈ V.

If

(3.15) σ(u)(x, t)ν(x) = σ(ũ)(x, t)ν(x), x ∈ ∂Ω, −T < t < T,

then

ρ(x) = ρ̃(x), u(x, t) = ũ(x, t), x ∈ Ω, −T < t < T

follows.
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§4. Diagonalization of the Lamé System

Our system ρy′′ − Ly has constant multiple characteristics and non-

diagonalizable principal parts, so that direct application of the usual Car-

leman estimate is difficult. Here we reduce (2.2) to a diagonal system for

y and ∇T y =
∑n

i=1
∂yi
∂xi

(x) by introducing ∇T y and changing variables.

Henceforth In denotes the n× n identity matrix. We set

(4.1)


γ(x) = µ(x)−

1
2

β(x) = γ(x)(λ(x) + µ(x))

ζ(x) = (λ + µ)(x)∇γ(x) + γ(x)∇µ(x), x ∈ Ω


and

(4.2)


Γ(x) = ∇λ(x) ⊗∇γ(x) + ∇γ(x) ⊗∇µ(x)

+(λ + µ)(x)∇2γ(x) + (∇γ(x) · ∇µ(x) + µ∆γ(x))In

Λ(x) = γ(x){Γ(x) − (∇ζ(x))T } − ∇γ(x) ⊗ ζ(x), x ∈ Ω,



(4.3)


Γ1(x) =

(− γζ
1+γβ

γ2ζ⊗ζ
1+γβ + Λ

γβ
1+γβ

γ
1+γβ ζ

T

)
Γ2(x) =

(
0 0

− γζ
1+γβ

γ2ζ⊗ζ
1+γβ + Λ

)
.


Moreover we define a differential operator P1 of the first order by

(
ργ (∇(ργ))T

0 (ργ)In

)−1

×
{

∆ +

(
∇T 0

0 ∇

)
Γ1 + Γ2

}
×

(
1 + γβ (γζ)T

0 In

)(
γ−1 (∇γ−1)T

0 γ−1In

)
z(x)

=ρ−1

(
λ + 2µ 2(∇µ)T − µ

ρ (∇ρ)T

0 µIn

)
∆z(x)

+(P1z)(x), x ∈ Ω(4.4)
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for z(x) = (z1(x), ..., zn(x), zn+1(x))T . We note that all the coefficients of

P1 are independent of t. Here we note(
ργ (∇(ργ))T

0 (ργ)In

)−1 (
1 + γβ (γζ)T

0 In

)(
γ−1 (∇γ−1)T

0 γ−1In

)
=ρ−1

(
λ + 2µ 2(∇µ)T − µ

ρ (∇ρ)T

0 µIn

)
.(4.5)

Let us set

(4.6) A0(x) = ρ−1

(
λ + 2µ 2(∇µ)T − µ

ρ (∇ρ)T

0 µIn

)
(x).

By (1.4), we see that λ(x) + µ(x) > 0, x ∈ Ω. Moreover in view of (1.2),

we can show

Lemma 4.1. We set

(4.7) Q(x) =

(
1 2(∇µ)T − µ

ρ (∇ρ)T

0 −(λ + µ)In

)
, x ∈ Ω.

Then Q,Q−1 ∈ C2(Ω) and

Q(x)−1A0(x)Q(x) =

(
α1(x)−1 0

0 α2(x)−1In

)
, x ∈ Ω.

Here we recall (2.5). Moreover we set

(4.8) Π(x) =

(
α1(x) 0

0 α2(x)In

)
, x ∈ Ω,

and we define differential operators P2, D1 and P by

(4.9) P2w = ∆(Qw) −Q∆w,

(4.10) D1w = −Π(Q−1P1Q + Q−1A0P2)w,
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and

(4.11) Pw = (Π∂2
t − ∆)w + D1w

for w ∈ C2(Ω × [−T, T ])n+1. Here Q, P1 and A0 are defined by (4.7), (4.4)

and (4.6). Then we note that D1 is of order 1 and that all the coefficients

of D1 and P are independent of t.

We are ready to state the diagonalization:

Proposition 4.1. Let us set

(4.12) w(x, t) = Q(x)−1

(
∇T y(x, t)

y(x, t)

)
.

Then

ΠQ−1

(
ργ (∇(ργ))T

0 (ργ)In

)−1 (
∇T

In

)
γ[ρy′′ − Ly − Φ(x, t)]

=(Π∂2
t − ∆)w − Π(Q−1P1Q + Q−1A0P2)w

−ΠQ−1

(
ργ (∇(ργ))T

0 (ργ)In

)−1 (
∇T

In

)
γΦ(x, t)

=Pw − ΠQ−1

(
ργ (∇(ργ))T

0 (ργ)In

)−1 (
∇T

In

)
γΦ(x, t)

in Ω × (−T, T ).(4.13)

Here Φ = Φ(x, t) is an n× 1 matrix and

Φ,
∂Φ

∂xi
∈ C(Ω × [−T, T ]), 1 ≤ i ≤ n.

Henceforth for a k × l matrix-valued function Ψ, we simply write Ψ ∈
C(Ω× [−T, T ]), not Ψ ∈ C(Ω× [−T, T ])k×l, when all the components of Ψ

are in C(Ω × [−T, T ]).

Proof of Proposition 4.1. Here we recall that the operator L is

defined by (2.2). First lengthy but direct calculations yield
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Lemma 4.2.(
∇T

In

)
γ(ρy′′ − Ly) =

(
ργ (∇(ργ))T

0 (ργ)In

)[
∂2
t −A0(x)∆ − P1

](∇T y

y

)
.

By Lemma 4.2, we have

(
ργ (∇(ργ))T

0 (ργ)In

)−1 (
∇T

In

)
γ(ρy′′ − Ly − Φ)

=(∂2
t −A0(x)∆ − P1)

(
∇T y

y

)
−

(
ργ (∇(ργ))T

0 (ργ)In

)−1 (
∇T

In

)
γΦ,

and

Q−1

(
ργ (∇(ργ))T

0 (ργ)In

)−1 (
∇T

In

)
γ(ρy′′ − Ly − Φ)

=Q−1∂2
t

(
∇T y

y

)
−Q−1A0∆

(
∇T y

y

)
−Q−1P1

(
∇T y

y

)
−Q−1

(
ργ (∇(ργ))T

0 (ργ)In

)−1 (
∇T

In

)
γΦ

=Q−1∂2
t (Qw) −Q−1A0∆(Qw) −Q−1P1Qw

−Q−1

(
ργ (∇(ργ))T

0 (ργ)In

)−1 (
∇T

In

)
γΦ

by (4.12). By noting (4.9), multiplication of Π = Π(x) from the left com-

pletes the proof of Proposition 4.1. �

§5. Carleman Estimate for a Diagonal System

By Proposition 4.1, we can reduce the Lamé system to a diagonal system

of hyperbolic equations. Therefore on the basis of an existing Carleman

estimate, we can establish the Carleman estimate for the Lamé system.
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We set

(5.1) φ = φ(x, t) = |x|2 − θt2

where θ > 0 is given by (2.8), and

(5.2) φε = {(x, t) ∈ Ω × (−∞,∞);φ(x, t) > ε2}

with a constant ε > 0. Henceforth we further set

(5.3) ‖w‖2
L2(φε)

=
n+1∑
k=1

∫
φε

|wk(x, t)|2dxdt

for w = (w1, ..., wn, wn+1)
T , and

(5.4) xn+1 = t, x = (x1, ..., xn),

(5.5) Dα = ∂α1
x1

. . . ∂αn+1
xn+1

, α = (α1, ..., αn+1) ∈ (N ∪ {0})n+1,

(5.6) |α| = α1 + . . . + αn+1.

For the operator P , we show the following Carleman estimate.

Proposition 5.1. In addition to (2.10), we assume that φε ⊂ Ω ×
(−T, T ) and T − supx∈Ω |x|√

θ
is sufficiently small. Let ε > 0 be given. Then

there exist constants τ = τ(ε) > 0, M = M(ε) > 0 and Ξ = Ξ(ε) > 0 such

that if ξ > Ξ(ε), then

ξ3‖w exp(ξeτφ)‖2
L2(φε)

+ ξ
∑
|α|=1

‖(Dαw) exp(ξeτφ)‖2
L2(φε)

≤M‖(Pw) exp(ξeτφ)‖2
L2(φε)

(5.7)

for any w ∈ H2
0 (φε)

n+1.
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Here and henceforth
∑

|α|=1 means the sum when the multi-index α

varies over |α| = 1.

Proof of Propositio 5.1. First we can restate the Carleman esti-

mate by Isakov [10], [11] as follows:

Proposition 5.2. Let

(5.8) c ∈ C2(Ω), c(x) > 0, 1 +
(∇c(x), x)

2c(x)
> 0, x ∈ Ω

and φε ⊂ Ω × (−T, T ). We set d̃(x) = |∇c(x)|c(x)−
1
2 and ẽ(x) = 1 +

(∇c(x),x)
2c(x) > 0. Moreover we fix θ > 0 such that

(5.9) 0 < θ < min
x∈Ω


√

ω2d̃(x)2 + 4c(x)ẽ(x) − ωd̃(x)

2c(x)

2

and

(5.10) 0 < θ ≤ min
x∈Ω

1

c(x)
.

Then there exists η0 = η0(c) > 0 such that if

(5.11) 0 < T − supx∈Ω |x|√
θ

< η0,

then for ε > 0, there exist constants τ = τ(ε) > 0, M = M(ε) > 0 and

Ξ = Ξ(ε) > 0 such that if ξ > Ξ(ε), then

ξ3‖u exp(ξeτφ)‖2
L2(φε)

+ ξ
∑
|α|=1

‖(Dαu) exp(ξeτφ)‖2
L2(φε)

≤M‖(c(x)
∂2u

∂t2
− ∆u) exp(ξeτφ)‖2

L2(φε)

for any u ∈ H2
0 (φε).



Uniqueness in Inverse Lamé Problems 647

In fact, the Carleman estimate by Isakov (e.g. Corollary 1.2.5 in [10])

reads as follows: If

θ
(
c(x) + |t||∇c(x)|c(x)−

1
2

)
<1 +

(x,∇c(x))

2c(x)
, x ∈ Ω, −T < t < T(5.12)

(5.13) 0 < c(x) ≤ 1

θ
, x ∈ Ω

and

(5.14) ω2 < θT 2,

then the conclusion of Proposition 5.2 holds.

For the proof of Proposition 5.2, it is sufficient to verify that if θ satisfies

(5.9) and (5.10), and T satisfies (5.11), then (5.12) - (5.14) hold. First (5.13)

and (5.14) follow from (5.10) and (5.11). Now we have to verify (5.12). We

define a function Ψ = Ψ(x, η) by

Ψ(x, η) =
−ωd̃(x) +

√
ω2d̃2(x) + 4c(x)ẽ(x) + 4ηd̃(x)ẽ(x)

2c(x) + 2ηd̃(x)

for x ∈ Ω and η ≥ 0. The condition (5.9) implies that minx∈Ω Ψ(x, 0) >
√
θ.

Since Ψ(x, η) is continuous in x ∈ Ω and η ≥ 0, we see that

(5.15) Ψ(x, η) >
√
θ, x ∈ Ω

for sufficiently small η > 0. By (5.11) we can set T = ω√
θ

+ η, where η > 0

makes (5.15) valid. That is,

Ψ

(
x, T − ω√

θ

)
>

√
θ, x ∈ Ω.

This inequality means

θ

(
c(x) +

(
T − ω√

θ

)
d̃(x)

)
+ ωd̃(x)

√
θ − ẽ(x) < 0,
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namely,

θ(c(x) + T d̃(x)) < ẽ(x), x ∈ Ω.

Recalling the definition of d̃ and ẽ, by |t| ≤ T , we can see (5.12). Thus the

derivation of Proposition 5.2 from Corollary 1.2.5 in [10] is complete.

Proposition 5.1 can be easily derived from Proposition 5.2. In fact, by

the assumption (2.8), we can apply Proposition 5.2 separately to α1(x)∂2
t −

∆ and α2(x)∂2
t − ∆, so that

ξ3‖w1 exp(ξeτφ)‖2
L2(φε)

+ ξ
∑
|α|=1

‖(Dαw1) exp(ξeτφ)‖2
L2(φε)

≤M‖(α1(x)
∂2w1

∂t2
− ∆w1) exp(ξeτφ)‖2

L2(φε)

and

ξ3‖wk exp(ξeτφ)‖2
L2(φε)

+ ξ
∑
|α|=1

‖(Dαwk) exp(ξeτφ)‖2
L2(φε)

≤M‖(α2(x)
∂2wk

∂t2
− ∆wk) exp(ξeτφ)‖2

L2(φε)
, 2 ≤ k ≤ n + 1

for w = (w1, ...., wn+1)
T ∈ H2

0 (φε)
n+1. Therefore we have

ξ3‖w exp(ξeτφ)‖2
L2(φε)

+ ξ
∑
|α|=1

‖(Dαw) exp(ξeτφ)‖2
L2(φε)

≤M‖(Π(x)∂2
t − ∆)w exp(ξeτφ)‖2

L2(φε)
,(5.16)

for w ∈ H2
0 (φε)

n+1. Since D1 is a differential operator of the first order

with bounded coefficients, we have

(5.17) ‖(D1w) exp(ξeτφ)‖2
L2(φε)

≤ M
∑
|α|≤1

‖(Dαw) exp(ξeτφ)‖2
L2(φε)

.

Recalling (4.11), we see that

‖(Π(x)∂2
t − ∆)w exp(ξeτφ)‖L2(φε) ≤ ‖(Pw) exp(ξeτφ)‖L2(φε)

+ ‖(D1w) exp(ξeτφ)‖L2(φε),

so that in view of (5.16) and (5.17), we complete the proof of Proposition

5.1. �
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§6. Relation between the Boundary Conditions for the Lamé

System and the Diagonalized System

For the Carleman estimate for the diagonalized system P , we have to

take w|∂Ω and ∂w
∂ν |∂Ω

into consideration. For this, in this section we prove

Lemma 6.1. Let y ∈ C2(Ω × [−T, T ])n satisfy

(6.1) ρ(x)y′′(x, t) − (Ly)(x, t) = 0, x ∈ ∂Ω, −T < t < T

(6.2) y(x, t) = 0, x ∈ ∂Ω, −T < t < T

and

(6.3) σ(y)(x, t)ν(x) = 0, x ∈ ∂Ω, −T < t < T.

Then

(6.4)
∂y

∂xi
=

∂2y

∂xj∂xk
= 0 on ∂Ω × (−T, T ), 1 ≤ i, j, k ≤ n.

Therefore, setting

w(x, t) = Q(x)−1

(
∇T

In

)
y(x, t), x ∈ Ω, −T < t < T

where Q is defined by (4.7), we see that

(6.5) w(x, t) = 0, x ∈ ∂Ω, −T < t < T

and

(6.6)
∂w

∂ν
(x, t) = 0, x ∈ ∂Ω, −T < t < T.

Proof. We divide the proof into three steps.
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First Step. For a = (a1, ..., an)T and b = (b1, ..., bn)T , we define the

tensor product a⊗ b by

(6.7) a⊗ b = (aibj)1≤i,j≤n.

We note that a⊗ b is an n× n matrix. Then, under the assumption (6.2),

we have

(6.8) ∇y = {(∇y)ν} ⊗ ν on ∂Ω × (−T, T )

and

(6.9) ∇T y = (∇y)ν · ν on ∂Ω × (−T, T ).

In fact, setting y = (y1, ..., yn)T and ν = (ν1, ..., νn)T , we see that the

condition (6.2) implies

∇yi =


∂yi
∂x1

...
∂yi
∂xn

 = (∇yi · ν)ν =

(
∂yi
∂ν

)
ν, 1 ≤ i ≤ n.

Therefore we have

(6.10) ∇y =

 (∇y1)
T

...

(∇yn)T

 =

 (∇y1 · ν)νT

...

(∇yn · ν)νT

 = ((∇yi · ν)νj)1≤i,j≤n.

By the definition (6.7), this means (6.8). Moreover by ννT = 1, we have

(∇y)ν =

 (∇y1 · ν)νT

...

(∇yn · ν)νT

 ν =

 (∇y1 · ν)
...

(∇yn · ν)

 ,

and so

(∇y)ν · ν = (∇y1 · ν)ν1 + · · · + (∇yn · ν)νn = Trace∇y = ∇T y

by (6.10). Thus we see (6.8) and (6.9).
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Second Step. In this step, we will prove that (6.2) and (6.3) imply

(6.11) ∇y = 0 on ∂Ω × (−T, T ).

Proof of (6.11). We define an n× n matrix B = B(x) by

(6.12) B(x)a = λ(x)(a · ν(x))ν(x) + 2µ(x){Sym (a⊗ ν(x))}ν(x)

for a ∈ R
n. Here and henceforth, for square matrices A = (aij)1≤i,j≤n and

B = (bij)1≤i,j≤n, we set SymA = 1
2(A + AT ) and A · B =

∑n
i,j=1 aijbij ,

|A|2 =
∑n

i,j=1 a
2
ij . Then

(6.13) B = B(x) is invertible for all x ∈ ∂Ω.

In fact, since

(Sym (a⊗ ν))ν · a = (Sym (a⊗ ν)) · (a⊗ ν)

=|Sym (a⊗ ν)|2

by direct calculations, we see

(Ba · a) = λ|a · ν|2 + 2µ|Sym (a⊗ ν)|2

=λ|trA|2 + 2µ|A|2.(6.14)

Here we set

A = Sym (a⊗ ν)

and

(6.15) C = A− trA

n
In.

Then trC = 0, so that

(6.16) C · In = 0
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by the identity C · In = trC. Therefore (6.14) - (6.16) imply

Ba · a = λ|trA|2 + 2µ

∣∣∣∣trAn In + C

∣∣∣∣2
=λ|trA|2 + 2µ

(∣∣∣∣trAn In

∣∣∣∣2 + |C|2 + 2
trA

n
In · C

)

=
nλ + 2µ

n
|trA|2 + 2µ|C|2 ≥ δ0

n
|trA|2 + δ0|C|2.

At the last inequality, we have used (1.3) and (1.4). By (6.15), we have

A = C + trA
n In, so that δ0|A|2 = δ0

n |trA|2 + δ0|C|2 by (6.16). Therefore

Ba · a ≥ δ0|Sym (a⊗ ν)|2.

Moreover we have

|Sym (a⊗ ν)|2 =
1

4
(|a⊗ ν|2 + 2(a⊗ ν) · (ν ⊗ a) + |ν ⊗ a|2)

=
1

4
(|a|2 + 2|a · ν| + |a|2) =

1

2
(|a|2 + |a · ν|) ≥ 1

2
|a|2,

so that

(6.17) Ba · a ≥ δ0

2
|a|2 on ∂Ω.

Moreover direct calculations verify that Ba · b = Bb · a for every a, b ∈ R
n,

which means that B is a symmetric matrix. Therefore (6.17) implies (6.13).

On the other hand, by (6.8) and (6.9) we have

B((∇y)ν) = λ{(∇y)ν · ν}ν + 2µ{Sym ((∇y)ν ⊗ ν)}ν
=λ(∇T y)ν + 2µ{Sym (∇y)}ν = σ(y)ν on ∂Ω × (−T, T ).

Therefore by (6.3) we obtain B((∇y)ν) = 0 on ∂Ω × (−T, T ), which is

(∇y)ν = 0 by (6.13). Therefore, in view of (6.8), we see that ∇y = 0. Thus

the proof of (6.11) is complete. �
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Third Step. Recalling (2.2), since y ∈ C2(Ω × [−T, T ])n, we see from

(6.11) that Ly = µ∆y + (λ + µ)∇(∇T y) on ∂Ω × (−T, T ). Therefore by

(6.1) and (6.2), we obtain

(6.18) µ∆y + (λ + µ)∇(∇T y) = 0 on ∂Ω × (−T, T ).

Since ∂Ω is of C2-class, for any x0 = (x0
1, x

0
2, ..., x

0
n) ∈ ∂Ω, we can take

neighbourhoods V in R
n of x0 and U in R

n−1 of (x0
1, ..., x

0
n−1), a function

σ = σ(x1, ..., xn−1) ∈ C2(U) such that

(6.19) (x1, ..., xn−1, xn) ∈ V ∩ ∂Ω if and only if xn = σ(x1, ..., xn−1).

We introduce a new coordinate η = η(x) = (η1, ..., ηn−1, ηn) by

(6.20) η1 = x1, ..., ηn−1 = xn−1, ηn = xn − σ(x1, ..., xn−1)

for (x1, ..., xn−1) ∈ U . We define a set W of (η1, ..., ηn) by W = η(V ∩ ∂Ω).

Henceforth we locally regard y = y(x1, ..., xn) as a function in (η1, ..., ηn) ∈
η(V). Then the boundary conditions (6.2) and (6.11) imply

(6.21) y =
∂y

∂ηj
=

∂2y

∂ηi∂ηj
= 0, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n

in W. For simplicity, we set

σi =
∂σ

∂xi
(x1, ..., xn−1), 1 ≤ i ≤ n− 1

and σn = −1. Then noting that

∂y

∂xi
=

∂y

∂ηi
− σi

∂y

∂ηn
, 1 ≤ i ≤ n− 1,

∂y

∂xn
=

∂y

∂ηn
,

we see

∂2y

∂xi∂xj
=

∂2y

∂ηi∂ηj
− σj

∂2y

∂ηi∂ηn
− ∂2σ

∂xi∂xj

∂y

∂ηn

−σi
∂2y

∂ηj∂ηn
+ σiσj

∂2y

∂η2
n

, 1 ≤ i, j ≤ n− 1,
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∂2y

∂x2
n

=
∂2y

∂η2
n

,
∂2y

∂xi∂xn
=

∂2y

∂ηi∂ηn
− σi

∂2y

∂η2
n

, 1 ≤ i ≤ n− 1.

Therefore (6.21) implies

(6.22)
∂2y

∂xi∂xj
= σiσj

∂2y

∂η2
n

, 1 ≤ i, j ≤ n

in W. Here we note that we set σn = −1. We substitute (6.22) into (6.18),

and we obtain

µ(σ2
1 + · · · + σ2

n)
∂2yi
∂η2

n

+ (λ + µ)

(
σiσ1

∂2y1

∂η2
n

+ · · · + σiσn
∂2yn
∂η2

n

)
= 0,

1 ≤ i ≤ n

in W. We can rewrite the above equalities as

(6.23) D(η)

(
∂2y1

∂η2
n

, · · · , ∂
2yn
∂η2

n

)T

= 0 in W

where we define an n× n matrix D = D(η) by

D(η) = (λ + µ)κ⊗ κ + µ|κ|2In

with κ = (σ1, · · · , σn)T . For any a ∈ R
n, we have

Da · a = (λ + µ)((κ⊗ κ)a) · a + µ|κ|2(a · a)
=(λ + µ)(a · κ)2 + µ|κ|2|a|2.(6.24)

On the other hand, (1.4) implies

(6.25) λ(x) + 2µ(x) > δ0, x ∈ ∂Ω.

In fact, if λ ≥ 0, then (6.25) is straightforward from (1.3). If λ(x) < 0, then

nλ(x) + 2µ(x) < λ(x) + 2µ(x) implies (6.25).

Since µ ∈ C(Ω), by (6.25) we can choose a sufficiently small ε > 0 such

that

(6.26) λ(x) + (2 − ε)µ(x) >
δ0

2
, x ∈ ∂Ω.
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Applying Schwarz’s inequality in (6.24), by (6.26) and (1.3), we obtain

Da · a = (λ + µ)(a · κ)2 + (µ− µε)|κ|2|a|2 + µε|κ|2|a|2

≥(λ + (2 − ε)µ)(a · κ)2 + µε|κ|2|a|2 ≥ µε|κ|2|a|2

≥δ0ε

2
|κ|2|a|2 ≥ δ0ε

2
|a|2.(6.27)

At the last inequality, we use

|κ|2 = σ2
1 + · · · + σ2

n = 1 +

(
∂σ

∂x1

)2

+ · · · +
(

∂σ

∂xn−1

)2

≥ 1.

By the definition, D(η) is symmetric, the inequality (6.27) implies that

D = D(η) is invertible in W. Therefore (6.23) yields

∂2y1

∂η2
n

= · · · =
∂2yn
∂η2

n

= 0 in W,

with which we combine (6.22) to obtain

∂2y

∂xi∂xj
(x, t) = 0, x ∈ V ∩ ∂Ω, −T < t < T, 1 ≤ i, j ≤ n.

Since x0 ∈ V is an arbitrary point of ∂Ω, we see that

∂2y

∂xi∂xj
(x, t) = 0, x ∈ ∂Ω, −T < t < T, 1 ≤ i, j ≤ n.

Thus the proof of the former part of the lemma is complete. �

Now we will complete the proof of the latter part. First (6.5) is straight-

forward from (6.2) and (6.11). Next as for (6.6), we obtain

∂w

∂ν
=

n∑
i=1

∂Q−1

∂xi
νi

(
∇T

In

)
y +

n∑
i=1

Q−1(x)

(
∇T

In

)
∂y

∂xi
νi

on ∂Ω× (−T, T ), and the equalities (6.2), (6.11) and (6.4) yield the conclu-

sion (6.6).
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§7. Proof of Theorem 1

Our proof is a variant of Isakov [10] and Klibanov [17], because we

establish the Carleman estimate (Proposition 5.1) for the Lamé system and

we reduce the original boundary conditions to the ones of H2
0 -class (Lemma

6.1). We here point that the proof of Theorem 1 is done by first eliminating

the non-homogeneous term r(f1, ..., fn)T and then diagonalizing. On the

other hand, for the proof of Theorem 2 in §8, we first diagonalize the system

and then eliminate the non-homogeneous term.

We divide the proof into four steps. We can assume that

T − supx∈Ω |x|√
θ

> 0 is sufficiently small for α1 and α2,

so that Proposition 5.1 is applicable.

First Step. We set f = (f1, ..., fn)T . By the assumption (2.9), we can

take small δ ∈ (0, T ) such that

(7.1) r(x, t) 
= 0, x ∈ Ω, |t| < δ.

For simplicity, we set

Ly ≡ρy′′ − µ∆y − (λ + µ)∇(∇T y) −∇T y(∇λ) − (∇y + (∇y)T )∇µ

=ρy′′ − Ly.(7.2)

Since

(Ly)(x, t) = r(x, t)f(x), x ∈ Ω, |t| < T,

we see by (7.1) that

r(x, t)−1(Ly)(x, t) = f(x), x ∈ Ω, |t| < δ.

We differentiate the both sides with respect to t, so that

r(x, t)−1(Ly)′(x, t) − r(x, t)−2r′(x, t)(Ly)(x, t) = 0, x ∈ Ω, |t| < δ,

namely,

(7.3) (Ly)′(x, t) − h(x, t)(Ly)(x, t) = 0, x ∈ Ω, |t| < δ,
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where

(7.4) h(x, t) = r′(x, t)r(x, t)−1, x ∈ Ω, |t| < δ.

We define a differential operator N in t by

(7.5) (Ny)(x, t) = y′(x, t) − h(x, t)y(x, t), x ∈ Ω, |t| < δ.

Consequently we obtain

(7.6) (NLy)(x, t) = 0, x ∈ Ω, |t| < δ.

Second Step. We recall

(7.7) ω = sup
x∈Ω

|x|.

For a sufficiently small ε > 0, we set

(7.8) c(ε) = (ω2 − θδ2 + ε2)
1
2

where δ ∈ (0, T ) is chosen such that (7.1) is true. Let χ ∈ C∞(Ω × [−δ, δ])

such that 0 ≤ χ(x, t) ≤ 1, x ∈ Ω, |t| ≤ δ and

(7.9) χ(x, t) =

{
1, (x, t) ∈ φc(3ε)

0, (x, t) ∈ (Ω × [−δ, δ]) \ φc(2ε).

We set

(7.10) v(x, t) = χ(x, t)y(x, t), (x, t) ∈ φc(ε).

In this step, we will prove

(7.11) (Nv)(x, t) = 0, (x, t) ∈ φc(3ε).

First we directly verify that

φc(ε) ⊂ φc(0) ⊂ {(x, t);x ∈ Ω,
√

ω2 − θδ2 < |x| < ω, |t| < δ}
⊂Ω × (−T, T ).(7.12)
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Then we have

γLNv = γNLv + γ[L,N ]v

=γ[NL,χ]y + γχNLy + γ[L,N ]v in φc(ε).

Here [L,N ] denotes the commutator of the two operators:

(7.13) [L,N ]v = L(Nv) −N(Lv).

By (7.6) we have

(7.14) γLNv = γ[NL,χ]y + γ[L,N ]v in φc(ε).

We set

(7.15) w = Q−1

(
∇T

In

)
Nv = Q−1

(
∇T

In

)
N(χy) in φc(ε).

Then we can prove

(7.16) w ∈ H2
0 (φc(ε))

n+1.

Proof of (7.16). By the definition (7.9) of χ, we readily see that

w = ∂w
∂ν = 0 on ∂φc(ε) ∩ (Ω × (−T, T )). Therefore for the proof of (7.16), it

is sufficient to prove w = ∂w
∂ν = 0 on ∂φc(ε) ∩ (∂Ω × (−T, T )), namely,

w =
∂w

∂ν
= 0 on ∂Ω × (−T, T ).

In view of Lemma 6.1, we have to verify

(7.17) N(χy) ∈ C2(Ω × [−T, T ])n

(7.18) L(Nχy) = 0 on ∂Ω × (−T, T )

(7.19) N(χy) = 0 on ∂Ω × (−T, T )
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and

(7.20) σ(N(χy))ν = 0 on ∂Ω × (−T, T ).

First, since N(χy) = (χy)′ − hχy, the equalities (7.17) and (7.19) follow

from y, y′ ∈ C2(Ω × [−T, T ])n and y = 0 on ∂Ω × (−T, T ).

Next we see

(7.21)
∂y

∂xi
=

∂2y

∂xj∂xk
= 0 on ∂Ω × (−T, T ), 1 ≤ i, j, k ≤ n.

In fact, since y ∈ C2(Ω × [−T, T ])n satisfies the first equation in (2.3), we

have

(7.22) (Ly)(x, t) = r(x, t)

 f1(x)
...

fn(x)

 on ∂Ω × (−T, T ).

Consequently at t = 0, the boundary condition and the initial condition

in (2.3) yield r(x, 0)(f1(x), ..., fn(x))T = 0, x ∈ ∂Ω. The assumption (2.9)

implies

(7.23) f1(x) = ..... = fn(x) = 0, x ∈ ∂Ω.

Hence, by (7.22) and (7.23), we obtain

(7.24) (Ly)(x, t) = 0, x ∈ ∂Ω, −T < t < T.

Thus application of Lemma 6.1 with (2.12) and the boundary condition in

(2.3), yields (7.21). Let us proceed to completing the proof of (7.18) and

(7.20). By the definition (1.6) of σ(·), we see that σ(N(χy))ν is given by a

linear combination of ∂y
∂xi

, ∂y′

∂xj
, 1 ≤ i, j ≤ n with variable coefficients on ∂Ω×

(−T, T ). Therefore the conclusion (7.20) is straigthforward from (7.21).

Similarly we readily verify that L(Nχy) is given by a linear combination of(
∂
∂t

)l
y, 0 ≤ l ≤ 3,

(
∂
∂t

)m ∂y
∂xi

,
(

∂
∂t

)m ∂2y
∂xj∂xk

, m = 0, 1, 1 ≤ i, j, k ≤ n, so that

(7.21) and the regularity condition (2.11) imply (7.18). Thus the proof of

(7.16) is complete. �
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We set

(7.25) S(x) =

(
ργ (∇(ργ))T

0 (ργ)In

)−1

, x ∈ Ω.

Then with P and L given by (4.11) and (7.2) we can rewrite Proposition

4.1 for Nv:

Π(x)Q(x)−1S(x)

(
∇T

In

)
γ(x)(LNv)(x, t) = (Pw)(x, t),

(x, t) ∈ φc(ε).(7.26)

In view of (7.12) and (7.16), we can apply Proposition 5.1 to Pw, so that

there exist constants τ = τ(c(ε)) > 0, M = M(c(ε)) > 0 and Ξ = Ξ(c(ε)) >

0 such that if ξ > Ξ, then

ξ3‖w exp(ξeτφ)‖2
L2(φc(ε))

+ ξ
∑
|α|=1

‖(Dαw) exp(ξeτφ)‖2
L2(φc(ε))

≤M‖(Pw) exp(ξeτφ)‖2
L2(φc(ε))

,

with which we combine (7.26) to obtain

ξ3‖w exp(ξeτφ)‖2
L2(φc(ε))

+ ξ
∑
|α|=1

‖(Dαw) exp(ξeτφ)‖2
L2(φc(ε))

≤M

∥∥∥∥ΠQ−1S

((
∇T

In

)
γLNv

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

.(7.27)

Since S = S(x) is a matrix whose components are smooth on Ω, we have

|(ΠQ−1S)(x)w| ≤ M0|w|, x ∈ Ω, w ∈ R
n+1 with a constant M0. Conse-

quently

[the right hand side of (7.27)] ≤ M

∥∥∥∥((
∇T

In

)
γLNv

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

.
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Substitution of (7.14) and (7.15) into (7.27) yields

ξ3

∥∥∥∥(Q−1

(
∇T

In

)
Nv

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

+ξ
∑
|α|=1

∥∥∥∥Dα

(
Q−1

(
∇T

In

)
Nv

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

≤M

∥∥∥∥((
∇T

In

)
γ[NL,χ]y

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

+M

∥∥∥∥((
∇T

In

)
γ[L,N ]v

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

.(7.28)

Since Q(x)−1 is a regular matrix on Ω, we have |Q(x)−1w| ≥ M0|w| and

|(DαQ−1)(x)w| ≤ M1|w|, x ∈ Ω, w ∈ R
n+1 with constants M0 > 0 and

M1 > 0, which are independent of x ∈ Ω and w ∈ R
n+1. Then, noting

Dα(Q−1w) = Q−1Dαw + (DαQ−1)w, we have

ξ

∥∥∥∥Dα

(
Q−1

(
∇T

In

)
Nv

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

≥ξ

∥∥∥∥Q−1

(
Dα

(
∇T

In

)
Nv

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

−ξ

∥∥∥∥(DαQ−1)

((
∇T

In

)
Nv

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

≥M0ξ

∥∥∥∥Dα

((
∇T

In

)
Nv

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

−M1ξ

∥∥∥∥((
∇T

In

)
Nv

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

and

ξ3

∥∥∥∥(Q−1

(
∇T

In

)
Nv

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

≥M0ξ
3

∥∥∥∥((
∇T

In

)
Nv

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

.
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Therefore from (7.28) we obtain

(M0ξ
3 −M1(n + 1)ξ)

∥∥∥∥((
∇T

In

)
Nv

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

+M0ξ
∑
|α|=1

∥∥∥∥Dα

((
∇T

In

)
Nv

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

≤M

∥∥∥∥((
∇T

In

)
γ[NL,χ]y

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

+M

∥∥∥∥((
∇T

In

)
γ[L,N ]v

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

,

namely,

ξ
∑
|α|≤1

∥∥∥∥Dα

((
∇T

In

)
Nv

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

≤M

∥∥∥∥((
∇T

In

)
γ[NL,χ]y

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

+M

∥∥∥∥((
∇T

In

)
γ[L,N ]v

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

(7.29)

for all sufficiently large ξ > 0. Now we give an upper estimate of the right

hand side.

Upper estimate of the second term of the right hand side of

(7.29). We will prove∥∥∥∥((
∇T

In

)
γ[L,N ]v

)
exp(ξeτφ)

∥∥∥∥
L2(φc(ε))

≤M
∑
|α|≤1

∥∥∥∥Dα

((
∇T

In

)
Nv

)
exp(ξeτφ)

∥∥∥∥
L2(φc(ε))

(7.30)

for all sufficiently large ξ > 0. Because the coefficients of L are independent

of t, we see by direct calculations that

(γ[L,N ]v)(x, t) =
∑
|α|≤1

pα(x, t)(Dαv)(x, t)
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where pα ∈ (L∞(φc(ε)))
(n+1)×(n+1), |α| ≤ 1. For the proof of (7.30), it is

sufficient to verify

‖(Dκv) exp(ξeτφ)‖L2(φc(ε))

≤M
∑
|α|≤1

‖Dα(Nv) exp(ξeτφ)‖L2(φc(ε))
, |κ| ≤ 1,(7.31)

and

‖∇T (Dκv) exp(ξeτφ)‖L2(φc(ε))

≤M
∑
|α|≤1

‖Dα(Nv) exp(ξeτφ)‖L2(φc(ε))

+M
∑
|α|≤1

‖Dα(∇T (Nv)) exp(ξeτφ)‖L2(φc(ε))
, |κ| ≤ 1.(7.32)

By the definition of (7.5) of N , we have

(7.33) v′(x, t) − h(x, t)v(x, t) = (Nv)(x, t), (x, t) ∈ φc(ε).

Moreover we see that

v(x, 0) = 0, (x, 0) ∈ φc(ε) ∩ {t = 0}

by y(x, 0) = 0, x ∈ Ω. Therefore in terms of the fundamental solution of

an ordinary differential equation (7.33) in t, we can take a scalar-valued

function K = K(x, t, s) such that K ∈ C1({(x, t, s); (x, t) ∈ φc(ε), 0 < s <

t}) and DαK are bounded there for |α| ≤ 1, and

(7.34) v(x, t) =

∫ t

0
K(x, t, s)(Nv)(x, s)ds, (x, t) ∈ φc(ε).

Now we can proceed to

Verification of (7.31). By (7.33) and (7.34), we have

(∂xiv)(x, t) =

∫ t

0
(∂xiK)(x, t, s)(Nv)(x, s)ds

+

∫ t

0
K(x, t, s)(∂xi(Nv))(x, s)ds in φc(ε), 1 ≤ i ≤ n



664 Masaru Ikehata, Gen Nakamura and Masahiro Yamamoto

and

(∂tv)(x, t) = (Nv)(x, t) + h(x, t)v(x, t)

=(Nv)(x, t) + h(x, t)

∫ t

0
K(x, t, s)(Nv)(x, s)ds in φc(ε).

Therefore

|(Dκv)(x, t)| ≤ M |(Nv)(x, t)|+M
∑
|α|≤1

∫ t

0
|Dα(Nv)(x, s)|ds, (x, t) ∈ φc(ε)

for all κ ∈ (N ∪ {0})n+1 with |κ| ≤ 1. Thus

‖(Dκv) exp(ξeτφ)‖L2(φc(ε))
≤ M‖(Nv) exp(ξeτφ)‖L2(φc(ε))

+M
∑
|α|≤1

(∫
φc(ε)

∣∣∣∣∫ t

0
|Dα(Nv)(x, s)|ds

∣∣∣∣2 exp(2ξeτφ)dxdt

) 1
2

.(7.35)

Here we show

Lemma 7.1. Let ψ ∈ C1(φc(ε)) and t∂ψ∂t ≤ 0. Then∫
φc(ε)

e2ξψ

∣∣∣∣∫ t

0
|p(x, s)|ds

∣∣∣∣2 dxdt ≤ sup
(x,t)∈φc(ε)

|t|2
∫
φc(ε)

e2ξψ|p(x, t)|2dxdt

for p ∈ L2(φc(ε)).

This lemma is proved for example in Klibanov [17], and we will give the

proof in Appendix for convenience.

Since in Lemma 7.1 we can set ψ(x, t) = eτφ(x,t), we can derive (7.31)

from (7.35).

Verification of (7.32). By (7.34) we have

(∇T v)(x, t) =

∫ t

0

n∑
i=1

(∂xiK)(x, t, s)[Nv]i(x, s)ds

+

∫ t

0
K(x, t, s)(∇T (Nv))(x, s)ds in φc(ε).(7.36)
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Therefore similarly to (7.31), in view of Lemma 7.1, we can see (7.32) with

|κ| = 0. Let us prove (7.32) with |κ| = 1. In fact, by (7.36) we obtain

∇T (Dκv) = Dκ(∇T v)

=

∫ t

0

n∑
i=1

Dκ(∂xiK)(x, t, s)[Nv]i(x, s)ds

+

∫ t

0

n∑
i=1

(∂xiK)(x, t, s)Dκ[Nv]i(x, s)ds

+

∫ t

0
(DκK)(x, t, s)(∇T (Nv))(x, s)ds +

∫ t

0
K(x, t, s)(Dκ∇T (Nv))(x, s)ds.

Again by Lemma 7.1 we similarly obtain (7.32) with |κ| = 1.

Next we proceed to

Upper estimate of the first term of the right hand side of (7.29).

Since [NL, 1]y = 0, by (7.9) we have

∥∥∥∥((
∇T

In

)
γ[NL,χ]y

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

=

∥∥∥∥((
∇T

In

)
γ[NL,χ]y

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε)\φc(3ε))

≤ exp(2ξeτc(3ε)
2
)

∥∥∥∥(∇T

In

)
γ[NL,χ]y

∥∥∥∥2

L2(φc(ε)\φc(3ε))

.(7.37)

Consequently applying (7.30) and (7.37) in (7.29), we obtain

ξ
∑
|α|≤1

∥∥∥∥Dα

((
∇T

In

)
Nv

)
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

≤M exp(2ξeτc(3ε)
2
)

∥∥∥∥(∇T

In

)
γ[NL,χ]y

∥∥∥∥2

L2(φc(ε)\φc(3ε))

(7.38)
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for all sufficiently large ξ > 0. By φc(3ε) ⊂ φc(ε) and φ(x, t) ≥ c(3ε)2 in

φc(3ε), the estimate (7.38) immediately implies

∑
|α|≤1

∥∥∥∥Dα

((
∇T

In

)
Nv

)∥∥∥∥2

L2(φc(3ε))

≤M

ξ

∥∥∥∥((
∇T

In

)
γ[NL,χ]y

)∥∥∥∥2

L2(φc(ε)\φc(3ε))

(7.39)

for all sufficiently large ξ > 0. Hence we can let ξ > 0 tend to ∞ in (7.39),

so that we obtain Nv = 0 in φc(3ε), namely, (7.11) is seen.

Third Step. By (7.11) and (7.34) we have v(x, t) = 0, (x, t) ∈ φc(3ε).

Consequently by the definition (7.9) and (7.10) of χ and v, we see y(x, t) =

0, (x, t) ∈ φc(3ε). Since ε > 0 is arbitrarily small, it follows that

(7.40)
y(x, t) = 0,

(x, t) ∈ φc(0) = {(x, t) ∈ Ω × (−T, T ); |x|2 − θt2 > ω2 − θδ2}.

Substitution of (7.40) into the first equation in (2.3) in (x, t) ∈ φc(ε) for an

arbitrarily small ε > 0, yields

r(x, t)

 f1(x)
...

fn(x)

 = 0, (x, t) ∈ φc(ε),

namely

r(x, t)

 f1(x)
...

fn(x)

 = 0, (x, t) ∈ φc(0).

Since (x, t) ∈ φc(0) implies |t| < δ, in view of (7.1) we obtain

(7.41) f1(x) = · · · = fn(x) = 0, x ∈ Ω with
√

ω2 − θδ2 ≤ |x| ≤ ω.

Fourth Step. By (7.41), near the boundary ∂Ω, we can write (2.3):

(7.42) (Ly)(x, t) = 0,
√

ω2 − θδ2 ≤ |x| ≤ ω, −T < t < T
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(7.43) y(x, 0) = 0, x ∈ Ω

(7.44) y(x, t) = 0, x ∈ ∂Ω, −T < t < T

and

(7.45) σ(y)(x, t)ν(x) = 0, x ∈ ∂Ω, −T < t < T.

In this step, we will prove

(7.46) f1(x) = · · · = fn(x) = 0, x ∈ Ω with
√

ω2 − 2θδ2 ≤ |x| ≤ ω

and

(7.47) y(x, t) = 0, (x, t) ∈ φc1(ε)

for sufficiently small ε > 0. Here and henceforth we set

(7.48) c1(ε) =
√

ω2 − 2θδ2 + θε2.

In other words, we will expand a domain where the uniqueness holds. For

this, we will extend r in t to r̃, keeping the positivity and the equality

Ly = r̃f simultaneously (see (7.53) and (7.55)).

We define a function κ = κ(t) such that

κ ∈ C∞
0 (R), 0 ≤ κ(t) ≤ 1,

κ(t) =

{
1 |t| ≤

√
δ2 − ε2

0 |t| > δ
(7.49)

and we define an extension r̃ of r by

(7.50) r̃(x, t) = r(x, 0) + κ(t)(r(x, t) − r(x, 0)), (x, t) ∈ φc1(ε).

Then by (7.49), we have

(7.51) r̃(x, t) =

{
r(x, t), |t| ≤

√
δ2 − ε2

r(x, 0), |t| > δ.
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Furthermore for |t| ≤ δ, we have r̃(x, t)−r(x, t) = (1−κ(t))(r(x, 0)−r(x, t)),

so that |r̃(x, t) − r(x, t)| ≤ sup|t|≤δ |r(x, 0) − r(x, t)| ≤ ‖r′‖L∞(Ω×(−T,T ))δ.

Therefore in view of (2.9), we can actually take δ > 0 so that

r̃(x, t) ≥ r0

4
, x ∈ Ω, |t| ≤ δ

and

(7.52) δ =
T√
l

for large l ∈ N

as well as (7.1). Hence by (7.51) we obtain

(7.53) r̃(x, t) ≥ r0

4
, (x, t) ∈ φc1(ε).

By (7.41), (7.51) and the geometry of φc1(ε), we see that

r̃(x, t)f(x)

=

{
0, (x, t) ∈ φc1(ε) ∩ {(x, t);

√
ω2 − θδ2 ≤ |x| ≤ ω}

r(x, t)f(x), (x, t) ∈ φc1(ε) ∩ {(x, t); |x| <
√
ω2 − θδ2}.

(7.54)

In fact, as direct calculations show, if (x, t) ∈ φc1(ε) ∩ {(x, t); |x| <√
ω2 − θδ2}, then |t| <

√
δ2 − ε2, and so (7.51) implies that r̃(x, t)f(x) =

r(x, t)f(x) for (x, t) ∈ φc1(ε) ∩ {(x, t); |x| <
√
ω2 − θδ2}. If (x, t) ∈ φc1(ε) ∩

{(x, t);
√
ω2 − θδ2 ≤ |x| ≤ ω}, then (7.41) implies r̃(x, t)f(x) = 0.

Moreover we note

φc1(ε) ≡ {(x, t) ∈ Ω × (−∞,∞);φ(x, t) > c1(ε)
2}

⊂Ω × (−
√

2δ,
√

2δ),

so that

φc1(ε) = {(x, t) ∈ Ω × (−T, T );φ(x, t) > c1(ε)
2},

provided that δ > 0 is sufficiently small. Therefore by (7.42) and (2.10) we

obtain

(7.55) (Ly)(x, t) = r̃(x, t)f(x), (x, t) ∈ φc1(ε)
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and

(7.56) y(x, t) = σ(y)(x, t)ν(x) = 0, (x, t) ∈ ∂φc1(ε) ∩ (∂Ω × (−∞,∞)).

Hence in view of (7.53), we can repeat the arguments in First, Second and

Third Steps to the system (7.55) with (7.43) and (7.56), so that we obtain

(7.46) and (7.47).

Repeating (m + 1)-times the above argument, we see

(7.57) f(x) = 0, x ∈ Ω with
√

ω2 −mθδ2 < |x| < ω

and

y(x, t) = 0 in φ√
ω2−mθδ2

≡{(x, t) ∈ Ω × (−∞,∞); |x|2 − θt2 > ω2 −mθδ2}.(7.58)

We have φ√
ω2−mθδ2 ⊂ Ω × {|t| < δ

√
m}. Therefore we can repeat the

argument until a natural number m satisfies δ
√
m ≤ T < δ

√
m + 1, namely,

m = l by (7.52). Then ω2 − θmδ2 = ω2 − θlδ2 = ω2 − θT 2 < 0 by (2.10).

Hence our process can be repeated until ω2 − mθδ2 = 0. Therefore we

have f(x) = 0, x ∈ Ω with |x| < ω, that is, f(x) = 0 for all x ∈ Ω. Then

y(x, t) = 0, if |x|2 − θt2 > 0.

Thus the proof of Theorem 1 is complete. �

§8. Proof of Theorem 2

First Step. In contrast with the proof of Theorem 1, for the proof of

Theorem 2, we first apply Proposition 4.1. We set

wk(x, t) = Q(x)−1

(
∇T yk(x, t)

yk(x, t)

)
, x ∈ Ω, −T < t < T, 1 ≤ k ≤ n.

Here the matrix fucntions Q = Q(x), S = S(x) and the differential operator

P are given by (4.7), (7.25) and (4.11) respectively. Since Q−1 ∈ C2(Ω) by

Lemma 4.1, from (2.11) we see

wk ∈C1([−T, T ];C2(Ω)n+1) ∩ C2([−T, T ];C1(Ω)n+1)

∩C3([−T, T ];C(Ω)n+1), 1 ≤ k ≤ n.(8.1)
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By (2.4) we apply Proposition 4.1, so that

(Pwk)(x, t) − Π(x)Q−1(x)S(x)

(
∇T

In

)
(γf)(x)Rk(x, t) = 0

x ∈ Ω, −T < t < T, 1 ≤ k ≤ n.(8.2)

For Rk(x, t) = (r
(k)
1 (x, t), ..., r

(k)
n (x, t))T , we set

(8.3) r
(k)
0 = r

(k)
0 (x, t) = (∇TRk)(x, t), x ∈ Ω, −T < t < T, 1 ≤ k ≤ n,

and define an (n+1)× (n+1) matrix Ck and an (n+1)-dimensional vector

gk respectively by

(8.4) Ck(x, t) =


r
(k)
0 r

(k)
1 · · · r

(k)
n

r
(k)
1 0 · · · 0
... · · · · · · · · ·

r
(k)
n 0 · · · 0


and

(8.5) g(x) =


(γf)(x)

∂x1(γf)(x)
...

∂xn(γf)(x)


for x ∈ Ω, −T < t < T and 1 ≤ k ≤ n. Then by direct calculations from

(8.2) we can derive

(Pwk)(x, t)−Π(x)Q−1(x)S(x)Ck(x, t)g(x) = 0,

x ∈ Ω, −T < t < T, 1 ≤ k ≤ n.(8.6)

Moreover we can prove

(8.7) wk(x, t) =
∂wk

∂ν
(x, t) = 0, x ∈ ∂Ω, −T < t < T, 1 ≤ k ≤ n.

Proof of (8.7). Since yk ∈ C2(Ω × [−T, T ])n satisfies (2.4), we see

(8.8) (Lyk)(x, t) = f(x)Rk(x, t), x ∈ ∂Ω, −T < t < T, 1 ≤ k ≤ n,
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so that 0 = (Lyk)(x, 0) = f(x)Rk(x, 0), x ∈ ∂Ω, 1 ≤ k ≤ n by yk(x, 0) = 0,

x ∈ Ω, 1 ≤ k ≤ n. Therefore (2.17) yields

(8.9) f(x) = 0, x ∈ ∂Ω.

Hence

(8.10) (Lyk)(x, t) = 0, x ∈ ∂Ω, −T < t < T.

Consequently by yk(x, t) = 0, x ∈ ∂Ω, −T < t < T , 1 ≤ k ≤ n and (2.19),

we apply Lemma 6.1 to see (8.7). �

On the other hand,

(8.11) wk(x, 0) = 0, x ∈ Ω, 1 ≤ k ≤ n.

For the proof we have to verify g(x) = 0, x ∈ Ω from (8.6), (8.7) and

(8.11). Through Proposition 5.1, we know that the Carleman estimate is

applicable to (8.6), but in our case we have to overcome a difficulty that

the matrices Ck = Ck(x, t) in (8.6) are not invertible. Thus for recovering

the invertibility, we simultaneously consider n solutions w1, ..., wn. First

we write (8.6) as

 Pw1
...

Pwn

−Π(x)Q−1(x)S(x)


C1 0 · · · 0

0 C2 · · · 0
...

...
. . .

...

0 · · · · · · Cn




g

g
...

g

 = 0

in Ω × (−T, T ).(8.12)

Then we will determine (n + 1) × (n + 1) matrices Aij , 1 ≤ i, j ≤ n such

that

(8.13)


A11(x, t) + · · · + A1n(x, t) = C1(x, t)

A21(x, t) + · · · + A2n(x, t) = C2(x, t)

...

An1(x, t) + · · · + Ann(x, t) = Cn(x, t), x ∈ Ω, −T < t < T,


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and

(8.14) |det(Aij(x, 0))1≤i,j≤n| ≥ r0 > 0, x ∈ Ω

where r0 > 0 is independent of x ∈ Ω. In fact, we can prove

Lemma 8.1. Under the assumptions (2.17) and (2.18) there exist (n+

1) × (n + 1) matrices Aij, 1 ≤ i, j ≤ n satisfying (8.13), (8.14) and

Aij ,
∂Aij

∂t ∈ C2(Ω × [−T, T ]).

Proof of Lemma 8.1. In view of (2.18), without loss of generality,

we may assume

(8.15) |r(1)
1 (x, 0)| ≥ r0 > 0, x ∈ Ω.

Let Aij , 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 be chosen. We set

Ain(x, t) = Ci(x, t) −
n−1∑
j=1

Aij(x, t), x ∈ Ω, −T ≤ t ≤ T, 1 ≤ i ≤ n.

Then (8.13) is satisfied. Therefore it is sufficient to choose Aij , 1 ≤ i ≤ n,

1 ≤ j ≤ n− 1 in order that (8.14) is true. We have∣∣∣∣∣∣det

A11(x, 0) · · · A1n(x, 0)
...

...

An1(x, 0) · · · Ann(x, 0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣det

C1(x, 0) A11(x, 0) · · · A1n−1(x, 0)
...

... · · · ...

Cn(x, 0) An1(x, 0) · · · Ann−1(x, 0)

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



r
(1)
0 r

(1)
1 · · · r

(1)
n

...
...

... b1 · · · bn2−1

r
(n)
0 r

(n)
1 · · · r

(n)
n

r
(1)
1 0 · · · 0
...

...
... a1 · · · an2−1

r
(n)
n 0 · · · 0


(x, 0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(8.16)
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by exchanging rows. Here

b1, ....,bn2−1 : n-dimensional column vectors dependent on x

a1, ....,an2−1 : n2-dimensional column vectors dependent on x

and an (n2 + n) × (n2 + n) matrix(
b1 · · · bn2−1

a1 · · · an2−1

)
is given from A11(x, 0) · · · A1n−1(x, 0)

...
...

An1(x, 0) · · · Ann−1(x, 0)


by exchanging rows suitably. Therefore for (8.14) it is sufficient to choose

b1(x, t), ...., bn2−1(x, t), a1(x, t), ...., an2−1(x, t). Let ai,bi ∈ C2(Ω ×
[−T, T ]) satisfy a′

i,b
′
i ∈ C2(Ω × [−T, T ]) for 1 ≤ i ≤ n2 − 1 and

b1(x, 0) = · · · = bn2−1(x, 0) = On,1,

(a1(x, 0), · · · ,an2−1(x, 0)) =

(
O1,n2−1

In2−1

)
.

Here Om,n and Im denote the m × n zero matrix and the m × m identity

matrix respectively. This choice gives our desired Aij . In fact, from (8.16)

by exchanging columns, we see∣∣∣∣∣∣det

A11(x, 0) · · · A1n(x, 0)
... · · · ...

An1(x, 0) · · · Ann(x, 0)

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



r
(1)
1 · · · r

(1)
n r

(1)
0

...
...

...
... On,n2−1

r
(n)
1 · · · r

(n)
n r

(n)
0

0 · · · 0 r
(1)
1 0 · · · 0

0 · · · 0 ∗ 1 · · · 0

0 · · · 0
...

...
. . .

...

0 · · · 0 ∗ 0 · · · 1


(x, 0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣det

 r
(1)
1 (x, 0) · · · r

(1)
n (x, 0)

...
...

r
(n)
1 (x, 0) · · · r

(n)
n (x, 0)


∣∣∣∣∣∣∣× |r(1)

1 (x, 0)|,
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which never vanishes for x ∈ Ω by (8.15) and (2.17). Thus the proof of

Lemma 8.1 is complete. �

For completing the proof of Theorem 2 along the line of [3], [10], [17],

we rewrite (8.12) in terms of the matrix (Aij)1≤i,j≤n which is invertible at

t = 0. In view of (8.13), we can rewrite (8.12) as (Pw1)(x, t)
...

(Pwn)(x, t)

−Π(x)Q−1(x)S(x)A(x, t)

 g(x)
...

g(x)

 = 0,

x ∈ Ω, −T < t < T,(8.17)

where we set

(8.18) A(x, t) =

A11(x, t) · · · A1n(x, t)
...

...
...

An1(x, t) · · · Ann(x, t)

 , x ∈ Ω, −T < t < T.

The condition (8.14) implies

(8.19) |detA(x, 0)| ≥ r0 > 0, x ∈ Ω.

Consequently we choose a small δ ∈ (0, T ) such that

(8.20) |detA(x, t)| ≥ r0 > 0, x ∈ Ω, |t| < δ.

Then it follows from (8.17) that

A−1S−1QΠ−1

 Pw1
...

Pwn

−

 g
...

g

 = 0

in Ω × (−δ, δ). Since g is independent of t, we differentiate the both sides

in t, and we obtain

(8.21)
∂

∂t

 Pw1
...

Pwn

−H(x, t)

 Pw1
...

Pwn

 = 0 in Ω × (−δ, δ)
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where

H(x, t) = −Π(x)Q−1(x)S(x)A(x, t)(A−1(x, t))′S−1(x)Q(x)Π−1(x),

x ∈ Ω, |t| < δ.(8.22)

We easily see

(8.23) H ∈ C2(Ω × [−δ, δ]).

Similarly to (7.5), defining an ordinary differential operator N in t by

N

 v1(x, t)
...

vn(x, t)

 =

 v′1(x, t)
...

v′n(x, t)

−H(x, t)

 v1(x, t)
...

vn(x, t)

 ,

x ∈ Ω, |t| < δ,(8.24)

for functions vk(x, t) ∈ R
n, we obtain

(8.25) NP

w1
...

wn

 = 0 in Ω × (−δ, δ).

Second Step. Now we can proceed similarly to the second - fourth steps

in the proof of Theorem 1. We will here show a sketch. Let us recall (7.7),

(7.8), let ε > 0 be sufficiently small and the cut-off function χ = χ(x, t) be

defined by (7.9). We set

(8.26) W (x, t) =

w1(x, t)
...

wn(x, t)

 , V (x, t) = χ(x, t)W (x, t), (x, t) ∈ φc(ε).

Then by (8.25) we have

PNV = PN(χW ) = NP (χW ) + [P,N ]V

=[NP,χ]W + χNPW + [P,N ]V

=[NP,χ]W + [P,N ]V, (x, t) ∈ φc(ε).(8.27)
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By noting ∆(Kv) = (∆K)v + K∆v + 2
(∑m

j=1

∑n
k=1

∂Kij

∂xk

∂vj
∂xk

)T

1≤i≤m
for

an m × m matrix K = (Kij)1≤i,j≤m and an m-dimensional vector v =

(v1, ..., vm)T , in terms of the regularity (8.1), direct calculations show

[P,N ]V = (HΠ − ΠH)V ′′

+
n+1∑
i=1

ai(x, t)
∂V

∂xi
(x, t) + a0(x, t)V (x, t) in φc(ε)(8.28)

with some ai ∈ L∞(φc(ε)), 0 ≤ i ≤ n + 1. Here we note that HΠ 
= ΠH in

general for the matrices H and Π.

By (8.7) and the definition (7.9) of χ, we have NV ∈ (H2
0 (φc(ε)))

n+1.

Apply Proposition 5.1, the Carleman estimate, to (8.27) by noting (8.28):

ξ
∑
|α|≤1

‖Dα(NV ) exp(ξeτφ)‖2
L2(φc(ε))

≤M‖(PNV ) exp(ξeτφ)‖2
L2(φc(ε))

≤M‖([NP,χ]W ) exp(ξeτφ)‖2
L2(φc(ε))

+M
∑
|α|≤1

‖(DαV ) exp(ξeτφ)‖2
L2(φc(ε))

+ M‖V ′′ exp(ξeτφ)‖2
L2(φc(ε))

(8.29)

for sufficiently large ξ > 0. Similarly to the verification of (7.31) and (7.32),

we apply Lemma 7.1 for ψ(x, t) = eτφ(x,t) to obtain∑
|α|≤1

‖(DαV ) exp(ξeτφ)‖2
L2(φc(ε))

≤M
∑
|α|≤1

‖Dα(NV ) exp(ξeτφ)‖2
L2(φc(ε))

.(8.30)

On the other hand, since V ′ − HV = NV in φc(ε), we have V ′′ = HV ′ +

H ′V + (NV )′ in φc(ε), so that application of (8.30) yields

(8.31) ‖V ′′ exp(ξeτφ)‖2
L2(φc(ε))

≤ M
∑
|α|≤1

‖Dα(NV ) exp(ξeτφ)‖2
L2(φc(ε))

.
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Therefore by (8.29) - (8.31), we obtain

(ξ − 2M2)
∑
|α|≤1

‖Dα(NV ) exp(ξeτφ)‖2
L2(φc(ε))

≤M‖([NP,χ]W ) exp(ξeτφ)‖2
L2(φc(ε))

=M‖([NP,χ]W ) exp(ξeτφ)‖2
L2(φc(3ε))

+M‖([NP,χ]W ) exp(ξeτφ)‖2
L2(φc(ε)\φc(3ε))

for sufficiently large ξ > 0. By the definition (7.9) of χ, we have χ = 1 in

φc(3ε) and [NP, 1]W = 0. Consequently we see

ξ
∑
|α|≤1

‖Dα(NV ) exp(ξeτφ)‖2
L2(φc(3ε))

≤M‖[NP,χ]W exp(ξeτφ)‖2
L2(φc(ε)\φc(3ε))

(8.32)

for sufficiently large ξ > 0. Since exp(ξeτφ) ≥ exp(ξeτc(3ε)
2
) in φc(3ε) and

exp(ξeτφ) ≤ exp(ξeτc(3ε)
2
) in φc(ε) \ φc(3ε), the estimate (8.32) implies

ξ
∑
|α|≤1

‖Dα(NV )‖2
L2(φc(3ε))

≤ M‖[NP,χ]W‖2
L2(φc(ε)\φc(3ε))

for sufficiently large ξ > 0. Hence we see

(8.33) (NV )(x, t) = 0, (x, t) ∈ φc(3ε)

by letting ξ tend to ∞. By (8.11) and (7.9), recalling (8.26), we have

V (x, 0) = 0, x ∈ Ω. Moreover by means of the uniqueness of solutions to the

initial value problem for the ordinary differential equation (NV )(x, t) = 0,

we see by (8.33) that V (x, t) = 0, (x, t) ∈ φc(ε). Returning to the definition

(8.26) of V , since ε > 0 is arbitrarily small, we obtain W (x, t) = 0, (x, t) ∈
φc(0). Then we can directly follow the argument after Third Step in §7. In

particular, the extension argument by (7.50) is similarly carried out. Hence

we do not repeat the arguments here. Thus the proof of Theorem 2 is

complete. �
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§9. Proof of Theorem 3

Similarly to the proof of Theorem 2, we set

(9.1) w(x, t) = Q−1(x)

(
∇T y(x, t)

y(x, t)

)
, x ∈ Ω, −T < t < T,

q0(x, t) = (∇T (γR))(x, t) = ∇T

γ

 r1
...

rn

 (x, t),

qk(x, t) = (γrk)(x, t), x ∈ Ω, −T < t < T, 1 ≤ k ≤ n(9.2)

and

(9.3) g(x) =



f(x)

(∂x1f)(x)

(∂x2f)(x)

0
...

0

 ∈ R
n+1, x ∈ Ω, −T < t < T.

By (2.26) and Lemma 4.1, we see

w ∈C2([−T, T ];C2(Ω)n+1) ∩ C3([−T, T ];C1(Ω)n+1)

∩C4([−T, T ];C(Ω)n+1).(9.4)

We define an (n + 1) × (n + 1) matrix by

C(x, t) =



q0(x, t) q1(x, t) q2(x, t)

q1(x, t) 0 0 O3,n−2

q2(x, t) 0 0

q3(x, t) 0 0
...

...
... In−2

qn(x, t) 0 0


,

x ∈ Ω, −T < t < T,(9.5)
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where O3,n−2 denotes the 3×(n−2) zero matrix. Then by (2.23) and (2.24),

we see that

C,C ′, C ′′ ∈ C2(Ω × [−T, T ]), qk, q
′
k, q

′′
k ∈ C2(Ω × [−T, T ]),

0 ≤ k ≤ n.(9.6)

We recall that Q, S and Π are defined by (4.7), (7.25) and (4.8) respectively

and In−2 is the identity matrix of order n− 2.

Then using the assumptions (2.23) and (2.24), and noting (9.4) and

(9.6), in view of Proposition 4.1, we can obtain from (2.22)

(9.7)


(Pw)(x, t)−Π(x)Q−1(x)S(x)C(x, t)g(x) = 0,

(Pw)′(x, t)−Π(x)Q−1(x)S(x)C ′(x, t)g(x) = 0,

x ∈ Ω, −T < t < T,


(9.8) w(x, 0) = w′(x, 0) = 0, x ∈ Ω

and

(9.9) w(x, t) =
∂w

∂ν
(x, t) = 0, x ∈ ∂Ω, −T < t < T.

In fact, (9.9) can be derived similarly to (8.7).

Non-invertibility of C involves a similar difficulty to §8 for the application

of the Carleman estimate, and we have to apply similar enlargement by

taking time derivatives of (9.7) without changing non-homogeneous terms

in the system (2.4). First we show

Lemma 9.1. Under the assumption (2.23), we can choose (n + 1) ×
(n + 1) matrices A1, A2, A3, A4 such that

(9.10) Ak, A
′
k ∈ C2(Ω × [−T, T ]), 1 ≤ k ≤ 4,

(9.11)

{
A1(x, t) + A2(x, t) = C(x, t)

A3(x, t) + A4(x, t) = C ′(x, t), x ∈ Ω, −T ≤ t ≤ T

}
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and

(9.12)

∣∣∣∣det

(
A1(x, 0) A2(x, 0)

A3(x, 0) A4(x, 0)

)∣∣∣∣ ≥ r0 > 0, x ∈ Ω,

where r0 > 0 is independent of x ∈ Ω.

Proof of Lemma 9.1. Since∣∣∣∣det

(
q1(x, 0) q2(x, 0)

q′1(x, 0) q′2(x, 0)

)∣∣∣∣ = γ2(x)

∣∣∣∣det

(
r1(x, 0) r2(x, 0)

r′1(x, 0) r′2(x, 0)

)∣∣∣∣ ,
we have

(9.13) |q′1(x, 0)q2(x, 0) − q1(x, 0)q′2(x, 0)| ≥ ζ1 > 0, x ∈ Ω

by (1.3), (4.11) and (2.25). Here ζ1 > 0 is independent of x ∈ Ω. Therefore

we can choose a large constant σ > 0 such that

(9.14) p0(x) ≡ q2(x, 0)−σ{q′1(x, 0)q2(x, 0)−q1(x, 0)q′2(x, 0)} 
= 0, x ∈ Ω.

Defining an (n + 1) × (n + 1) matrix A2(x, t) by

(9.15) A2(x, t) =


0 q1(x, t) q2(x, t)

1 0 0 O3,n−2

0 σq2(x, t) −σq1(x, t)

On−2,3 In−2

 , x ∈ Ω,

we see by (9.6) that A2, A
′
2 ∈ C2(Ω × [−T, T ]). We further set

(9.16)


A1(x, t) = C(x, t) −A2(x, t)

A3(x, t) = C ′(x, t) − In+1

A4(x, t) = In+1, x ∈ Ω, −T < t < T.


Then these A1, A2, A3, A4 are desired matrices. In fact, the condition

(9.10) and (9.11) are satisfied directly by (9.6) and (9.16). We will verify

(9.12). It is sufficient to verify that for any fixed x ∈ Ω, the equations

(9.17)

{
A1(x, 0)a + A2(x, 0)b = 0

A3(x, 0)a + A4(x, 0)b = 0, a, b ∈ R
n+1

}
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implies a = b = 0. We set

(9.18) E(x, t) = C(x, t) −A2(x, t)C
′(x, t).

Direct computations yield

E(x, 0) =



(q0 − q1q
′
1 − q2q

′
2)(x, 0) q1(x, 0) q2(x, 0)

(q1 − q′0)(x, 0) −q′1(x, 0) −q′2(x, 0) O3,n−2

p0(x) 0 0

(q3 − q′3)(x, 0) 0 0
...

...
... In−2

(qn − q′n)(x, 0) 0 0


and

detE(x, 0) = p0(x)(q′1(x, 0)q2(x, 0) − q1(x, 0)q′2(x, 0)), x ∈ Ω.

Therefore by (9.13) and (9.14) we see that

(9.19) E−1(x, 0) exists for all x ∈ Ω.

Furthermore we note

(9.20) A2(x, 0)−1 exists for all x ∈ Ω.

In fact, we have

detA2(x, 0) = σ(q1(x, 0)2 + q2(x, 0)2), x ∈ Ω,

and (9.13) implies that q1(x, 0)2 + q2(x, 0)2 never vanishes for x ∈ Ω.

Therefore from (9.17) we derive A2(x, 0)−1A1(x, 0)a+b = A3(x, 0)a+b =

0, namely, (A2(x, 0)−1A1(x, 0)−A3(x, 0))a = 0. On the other hand, we see

by (9.16)

A2(x, 0)−1A1(x, 0) −A3(x, 0)

=A2(x, 0)−1(C(x, 0) −A2(x, 0)) − (C ′(x, 0) − In+1)

=A2(x, 0)−1(C(x, 0) −A2(x, 0)C ′(x, 0)) = A2(x, 0)−1E(x, 0).
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By (9.19) we obtain a = 0 and so b = 0. Thus the proof of Lemma 9.1 is

complete. �

In view of Lemma 9.1, we can rewrite (9.7) as(
Pw(x, t)

(Pw)′(x, t)

)
−ΠQ−1S

(
A1 A2

A3 In+1

)(
g(x)

g(x)

)
= 0,

x ∈ Ω, −T < t < T.(9.21)

By (9.12), (9.19) and (9.20), there exists δ > 0 such that∣∣∣∣det

(
A1(x, t) A2(x, t)

A3(x, t) In+1

)∣∣∣∣ , |detE(x, t)|,

|detA2(x, t)| ≥
r0

2
, x ∈ Ω, |t| ≤ δ.(9.22)

We set (
X1(x, t) X2(x, t)

X3(x, t) X4(x, t)

)(
A1(x, t) A2(x, t)

A3(x, t) A4(x, t)

)
=

(
In+1 0

0 In+1

)
, x ∈ Ω, |t| ≤ δ,(9.23)

where Xk, 1 ≤ k ≤ 4 are (n + 1) × (n + 1) matrices. In terms of (9.6),

(9.10), (9.13) and (9.18), direct calculations show that

X1(x, t) = E−1(x, t), X2(x, t) = −E−1(x, t)A2(x, t),

x ∈ Ω, |t| < δ,(9.24)

and

(9.25) E,E′, X1, X2, X
′
1, X

′
2 ∈ C2(Ω × [−δ, δ]).

Therefore by (9.21) and (9.23) we obtain(
X1 X2

X3 X4

)(
S−1QΠ−1(Pw)

S−1QΠ−1(Pw)′

)
−

(
g

g

)
= 0 in Ω × (−δ, δ).
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The first component gives

X2S
−1QΠ−1(Pw)′ + X1S

−1QΠ−1(Pw) = g in Ω × (−δ, δ).

Differentiating the both sides in t, we obtain

(X2S
−1QΠ−1)(Pw)′′ + ((X2S

−1QΠ−1)′ + X1S
−1QΠ−1)(Pw)′

+(X1S
−1QΠ−1)′(Pw) = 0 in Ω × (−δ, δ).

Hence

(Pw)′′(x, t)+H1(x, t)(Pw)′(x, t) + H2(x, t)(Pw)(x, t) = 0,

x ∈ Ω, |t| < δ,(9.26)

where

H1(x, t) = − ΠQ−1SA−1
2 E((X2S

−1QΠ−1)′ + X1S
−1QΠ−1)(x, t)

H2(x, t) = − ΠQ−1SA−1
2 E(X1S

−1QΠ−1)′(x, t), x ∈ Ω, |t| < δ.(9.27)

Then

(9.28) H1, H2 ∈ C2(Ω × [−δ, δ]).

We define a differential operator N of the second order by

(Nv)(x, t) = v′′(x, t) + H1(x, t)v
′(x, t) + H2(x, t)v(x, t),

x ∈ Ω, |t| < δ.(9.29)

Then we can rewrite (9.26) as

(9.30) (NPw)(x, t) = 0, x ∈ Ω, |t| < δ.

Now we can follow the argument in Second Step of the proof of Theorem 1 in

§7 with some modifications. Here we will mainly explain such modifications.

Let us recall (7.7) - (7.9), (5.1) and (5.2). We set

(9.31) v(x, t) =

 v1(x, t)
...

vn+1(x, t)

 = χ(x, t)w(x, t) in φc(ε).
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Then, noting (9.30) and ∆(H2v) = H2∆v + (∆H2)v +

2
(∑n+1

j=1

∑n
k=1

∂(H2)ij
∂xk

∂vj
∂xk

)T

1≤i≤n+1
, etc., we have

PNv = NPv + [P,N ]v

=[NP,χ]w + χNPw + [P,N ]v = [NP,χ]w + [P,N ]v in φc(ε).(9.32)

Moreover by direct calculations we see that

[P,N ]v = (ΠH1 −H1Π)v′′′ + (2ΠH ′
1 + ΠH2 −H2Π)v′′

+(ΠH ′′
1 + 2ΠH ′

2 − ∆H1 + D1H1)v
′

−2

n+1∑
j=1

n∑
k=1

∂(H1)ij
∂xk

∂v′j
∂xk

T

1≤i≤n+1

− 2

n+1∑
j=1

n∑
k=1

∂(H2)ij
∂xk

∂vj
∂xk

T

1≤i≤n+1

+(ΠH ′′
2 − ∆H2 + D1H2)v in Ω × (−δ, δ).

That is, in view of (9.28), we can write it as

[P,N ]v(x, t) =

3∑
k=0

ak(x, t)
∂kv

∂tk
(x, t) +

n∑
j=1

bj(x, t)
∂v′

∂xj
(x, t)

+

n∑
j=1

cj(x, t)
∂v

∂xj
(x, t),(9.33)

where ak, bj , cj ∈ C(Ω × [−δ, δ]), 0 ≤ k ≤ 3, 1 ≤ j ≤ n. Furthermore

similarly to (7.16), we can prove that

Nv ∈ H2
0 (φc(ε))

n+1.

Without loss of generality, in addition to T >
supx∈Ω |x|√

θ
, we can assume that

T − supx∈Ω |x|√
θ

is sufficicently small such that Proposition 5.1 is applicable.
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Thus we apply Proposition 5.1 to (9.32):

ξ
∑
|α|≤1

‖Dα(Nv) exp(ξeτφ)‖2
L2(φc(ε))

≤M‖[NP,χ]w exp(ξeτφ)‖2
L2(φc(ε))

+ M‖[P,N ]v exp(ξeτφ)‖2
L2(φc(ε))

≤M‖[NP,χ]w exp(ξeτφ)‖2
L2(φc(ε))

+ M
3∑

i=0

∥∥∥∥∂iv

∂ti
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

+M
n∑

j=1

∥∥∥∥ ∂v

∂xj
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

+ M
n∑

j=1

∥∥∥∥ ∂2v

∂xj∂t
exp(ξeτφ)

∥∥∥∥2

L2(φc(ε))

(9.34)

for sufficiently large ξ > 0. Since v(x, 0) = v′(x, 0) = 0, x ∈ Ω, by the

initial condition in (2.22) and the definition (7.9) of χ, in view of (9.28),

we can construct an (n + 1) × (n + 1) matrix function K = K(x, t, s) ∈
C2(Ω × [−δ, δ]2) which solves (9.29) by

(9.35) v(x, t) =

∫ t

0
K(x, t, s)(Nv)(x, s)ds, (x, t) ∈ φc(ε).

Therefore in φc(ε), we have

∂v

∂t
(x, t) = K(x, t, t)(Nv)(x, t) +

∫ t

0

∂K

∂t
(x, t, s)(Nv)(x, s)ds,

∂2v

∂t2
(x, t) =

∂K(x, t, t)

∂t
(Nv)(x, t) + K(x, t, t)(Nv)′(x, t)

+
∂K

∂t
(x, t, t)(Nv)(x, t) +

∫ t

0

∂2K

∂t2
(x, t, s)(Nv)(x, s)ds,

∂2v

∂t∂xj
(x, t) =

∂K

∂xj
(x, t, t)(Nv)(x, t) + K(x, t, t)

∂(Nv)

∂xj
(x, t)

+

∫ t

0

∂2K

∂t∂xj
(x, t, s)(Nv)(x, s)ds +

∫ t

0

∂K

∂t
(x, t, s)

∂(Nv)

∂xj
(x, s)ds,
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so that Lemma 7.1 implies∥∥∥∥(∂iv

∂ti

)
exp(ξeτφ)

∥∥∥∥
L2(φc(ε))

,

∥∥∥∥( ∂2v

∂t∂xj

)
exp(ξeτφ)

∥∥∥∥
L2(φc(ε))

≤M
∑
|α|≤1

∥∥∥Dα(Nv) exp(ξeτφ)
∥∥∥
L2(φc(ε))

, i = 0, 1, 2, 1 ≤ j ≤ n.(9.36)

Moreover in view of (9.29), we have

v′′′(x, t) = −H1(x, t)v
′′(x, t) −H ′

1(x, t)v
′(x, t) −H2(x, t)v

′(x, t)

−H ′
2(x, t)v(x, t) + (Nv)′(x, t), (x, t) ∈ φc(ε),

so that from (9.36) we obtain

(9.37) ‖v′′′ exp(ξeτφ)‖L2(φc(ε))
≤ M

∑
|α|≤1

‖Dα(Nv) exp(ξeτφ)‖L2(φc(ε))
.

Consequently substitution of (9.36) and (9.37) in (9.34) yields

ξ
∑
|α|≤1

‖Dα(Nv) exp(ξeτφ)‖2
L2(φc(ε))

≤M‖[NP,χ]w exp(ξeτφ)‖2
L2(φc(ε))

(9.38)

for sufficiently large ξ > 0. Now similarly to the proof of Theorem 1, noting

χ = 1 in φc(3ε), and letting ξ tend to ∞ in (9.38), we see that Nv = 0 in

φc(3ε). Then in view of (9.35), it follows that v = 0 in φc(3ε), namely, w = 0

in φc(3ε). Therefore g = 0 and y = 0 in φc(3ε) by (9.1). Since ε > 0 is

arbitrarily small, we obtain

(9.39)

{
g(x) = 0, x ∈ Ω with

√
ω2 − θδ2 ≤ |x| ≤ ω

y(x, t) = 0, (x, t) ∈ φc(0).

}
Then we can follow the argument after Third Step of the proof of Theorem

1 in §7. For convenience, we will supply a sketch of the proof. We recall

that c1(ε) and κ = κ(t) are given by (7.48) and (7.49), and we set

(9.40)


Ãk(x, t) = Ak(x, 0)+κ(t)(Ak(x, t) −Ak(x, 0)),

Ẽ(x, t) = E(x, 0)+κ(t)(E(x, t) − E(x, 0)),

(x, t) ∈ φc1(ε), 1 ≤ k ≤ 4.


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First we verify ∣∣∣∣det

(
Ã1(x, t) Ã2(x, t)

Ã3(x, t) Ã4(x, t)

)∣∣∣∣ , |det Ẽ(x, t)|,

|det Ã2(x, t)| 
= 0, (x, t) ∈ φc1(ε).(9.41)

If (9.41) is verified, then we can repeat the arguments after Fourth Step of

the proof of Theorem 1 in §7. In fact, by (9.39) and (9.40), we easily have

Π(x)Q−1(x)S(x)

(
Ã1(x, t) Ã2(x, t)

Ã3(x, t) Ã4(x, t)

)(
g(x)

g(x)

)

=


0, (x, t) ∈ φc1(ε) ∩ {(x, t);

√
ω2 − θδ2 ≤ |x| ≤ ω}

Π(x)Q−1(x)S(x)

(
A1(x, t) A2(x, t)

A3(x, t) In(x, t)

)(
g(x)

g(x)

)
,

(x, t) ∈ φc1(ε) ∩ {(x, t); |x| <
√
ω2 − θδ2},

so that in φc1(ε) we can repeat the previous argument.

Now we return to the proof of (9.41). Here we will show only (9.41) for

Ã2, because the positivity of the rest two determinants are seen similarly.

We set

A2(x, t) = (a
(2)
ij (x, t))1≤i,j≤n+1, Ã2(x, t) = (ã

(2)
ij (x, t))1≤i,j≤n+1.

Then for 1 ≤ i, j ≤ n + 1 and |t| < δ, we have

|a(2)
ij (x, t) − ã

(2)
ij (x, t)| = |(1 − κ(t))(a

(2)
ij (x, t) − ã

(2)
ij (x, 0))|

≤δ‖(a(2)
ij )′‖L∞(Ω×(−T,T )).

Since the determinant: A = (aij)1≤i,j≤n+1 �−→ detA is continuous in aij ,

1 ≤ i, j ≤ n+1, in terms of (9.22), we can in advance choose δ > 0 so small

that

|detA2(x, t)| ≥
r0

2
, |detA2(x, t) − det Ã2(x, t)| ≤

r0

4
, x ∈ Ω, |t| ≤ δ.

Then we obtain

(9.42) |det Ã2(x, t)| ≥
r0

4
, x ∈ Ω, |t| ≤ δ.
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On the other hand, by (9.20) and the definition (7.49) of κ, we see

(9.43) |det Ã2(x, t)| = |detA2(x, 0)| ≥ r0

2
, x ∈ Ω, |t| > δ.

The inequalities (9.42) and (9.43) yield

|det Ã2(x, t)| ≥
r0

4
, (x, t) ∈ φc1(ε).

Consequently we see (9.41) for Ã2(x, t).

Thus the proof of Theorem 3 is complete. �

§10. Proofs of Theorems 4 and 5

Proof of Theorem 4. We set

yk(x, t) = ũk(x, t) − uk(x, t), x ∈ Ω, −T ≤ t ≤ T, 1 ≤ k ≤ n

and

f(x) = ρ(x) − ρ̃(x), Rk(x, t) = u′′
k(x, t), x ∈ Ω, −T ≤ t ≤ T, 1 ≤ k ≤ n.

Then from (3.2), (3.3) and (3.8), we obtain

(10.1)


ρ̃(x)y′′k(x, t) = (Lyk)(x, t) + f(x)Rk(x, t), x ∈ Ω, −T < t < T,

yk(x, 0) = 0, x ∈ Ω,

yk(x, t) = σ(yk)(x, t)ν(x) = 0, x ∈ ∂Ω, −T < t < T,


for 1 ≤ k ≤ n. Since yk ∈ C4(Ω × [−T, T ])n, by (3.2) we have

Rk(x, 0) = u′′
k(x, 0) =

1

ρ(x)
(Luk)(x, 0)

=
1

ρ(x)
(Lak)(x), x ∈ Ω, 1 ≤ k ≤ n.(10.2)

Therefore the conditions (3.5) and (3.6) imply the corresponding (2.17) and

(2.18) in Theorem 2. In view of ρ̃ ∈ U , we can apply Theorem 2 and the

proof of Theorem 4 is complete. �
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Proof of Theorem 5. Setting

y(x, t) = ũ(x, t) − u(x, t), f(x) = ρ(x) − ρ̃(x),

R(x, t) = u′′(x, t), x ∈ Ω, −T ≤ t ≤ T,

from (3.9) and (3.10) we derive

(10.3)


ρ̃(x)y′′(x, t) = (Ly)(x, t) + f(x)R(x, t), x ∈ Ω, −T < t < T,

y(x, 0) = y′(x, 0) = 0, x ∈ Ω,

y(x, t) = σ(y)(x, t)ν(x) = 0, x ∈ ∂Ω, −T < t < T.


Similarly to (10.2), since y ∈ C5(Ω × [−T, T ])n from (3.9) we see

R(x, 0) =
1

ρ(x)
(La)(x), x ∈ Ω

and

R′(x, 0) = u′′′(x, 0) =
∂

∂t

(
1

ρ(x)
(Lu)(x, t)

)∣∣∣∣∣
t=0

=
1

ρ(x)
(Lb)(x), x ∈ Ω.

Therefore in the system (10.3) the condition (3.12) means (2.25). Since

f = ρ− ρ̃ satisfies (2.23), we apply Theorem 3. Thus the proof of Theorem

5 is complete. �

Appendix. Proof of Lemma 7.1

By the definition (5.2) of φc, we can take a domain D ⊂ Ω such that

φc(ε) = {(x, t) ∈ R
n+1;x ∈ D, |t| < l(x)},

where we set

l(x) =
1√
θ

(
|x|2 − c(ε)2

) 1
2 .
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Therefore by Schwarz’s inequality and change of orders of integrations in s

and t, we have

∫
φc(ε)∩{t≥0}

e2ξψ(x,t)

∣∣∣∣∫ t

0
|p(x, s)|ds

∣∣∣∣2 dxdt
=

∫
D

(∫ l(x)

0
e2ξψ(x,t)

(∫ t

0
|p(x, s)|ds

)2

dt

)
dx

≤
∫
D

(∫ l(x)

0
te2ξψ(x,t)

(∫ t

0
|p(x, s)|2ds

)
dt

)
dx

=

∫
D

(∫ l(x)

0
|p(x, s)|2

(∫ l(x)

s
te2ξψ(x,t)dt

)
ds

)
dx

≤
∫
D
l(x)

(∫ l(x)

0
|p(x, s)|2

(∫ l(x)

s
e2ξψ(x,t)dt

)
ds

)
dx.

Since ψ′(x, t) ≤ 0 for t ≥ 0, we obtain

∫
φc(ε)∩{t≥0}

e2ξψ(x,t)

∣∣∣∣∫ t

0
|p(x, s)|ds

∣∣∣∣2 dxdt
≤

∫
D
l(x)

(∫ l(x)

0
(l(x) − s)|p(x, s)|2e2ξψ(x,s)ds

)
dx

≤l(x)2
∫
D

(∫ l(x)

0
|p(x, s)|2e2ξψ(x,s)ds

)
dx

=l(x)2
∫
φc(ε)∩{t≥0}

|p(x, s)|2e2ξψ(x,s)dxds.

Similarly we can prove

∫
φc(ε)∩{t<0}

e2ξψ(x,t)

∣∣∣∣∫ t

0
|p(x, s)|ds

∣∣∣∣2 dxdt
≤l(x)2

∫
φc(ε)∩{t<0}

|p(x, s)|2e2ξψ(x,s)dxds.
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The proof of Lemma 7.1 is complete. �
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