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On Tunnel Number One Alternating Knots and Links

By Koya Shimokawa

Abstract. In this article we consider tunnel number one alternat-
ing knots and links. We characterize tunnel number one alternating
knots and links which have unknotting tunnels contained in regions of
reduced alternating diagrams. We show that such a knot or link is a
2-bridge or a Montesinos knot or link or the connected sum of the Hopf
link and a 2-bridge knot.

§1. Introduction

C. C. Adams [1] and M. Sakuma and J. Weeks [17] studied unknotting

tunnels for hyperbolic knots and links in S3 by analyzing vertical geodesics

and canonical decompositions of their complements. For tunnel number

one hyperbolic alternating knots and links, the relation among unknotting

tunnels, canonical decompositions of their complements and their reduced

alternating diagrams is studied in [17]. Furthermore Sakuma proposed the

following conjecture,

Conjecture. Let L be a tunnel number one hyperbolic alternating

knot or link. Then some unknotting tunnel for L is isotopic to the polar

axis of some crossing ball of a reduced alternating diagram of L.

Note that prime alternating knots other than (2, p)-torus knots are hy-

perbolic. See [9], [10] and [14].

There are many knots and links satisfying the above conjecture. For

example, upper and lower tunnels for 2-bridge knots and links satisfy the

condition. See Figure 1.3(1).

In this article, we consider tunnel number one alternating knots and

links with unknotting tunnels satisfying a little weaker condition. We char-

acterize an alternating diagram of a tunnel number one alternating knot
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or link which has an unknotting tunnel contained in a region of a reduced

alternating diagram and show that such a knot or link is a 2-bridge or

a Montesinos knot or link or the connected sum of the Hopf link and a

2-bridge knot.

Let E be a diagram of L on S2. As in [9], we place a 3-ball at each

crossing of E and isotope L so that the overstrand at the crossing runs on

the upper hemisphere and the understrand runs on the lower hemisphere

as shown in Figure 1.1. The 3-ball above is called a crossing ball. The polar

axis of a crossing ball is an arc γ as in Figure 1.1.

Fig. 1.1

A region of a diagram E on the 2-sphere S2 of a link is a component

of S2 − (∆ ∪ E), where ∆ denotes the disjoint union of all crossing balls.

We say an unknotting tunnel t is contained in a regeion R of E if t has

a projection without crossings which is contained in R and meets ∂R in

only its endpoints. See Figure 1.2. We remark that after a slight isotopy

an unknotting tunnel in Conjecture is contained in a region of a reduced

alternating diagram.

Note that tunnel number one composite alternating links do not admit

unknotting tunnels satisfying the condition in the above conjecture. K.

Morimoto showed that a composite tunnel number one link is the connected

sum of the Hopf link and a 2-bridge knot and characterized its unknotting

tunnels in [11]. This link is alternating and its unknotting tunnel is not

isotopic to the polar axis of a crossing ball of a reduced alternating diagram

but contained in a region.
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Fig. 1.2

Let L be a knot or link in S3. Hereafter we consider a knot is a link

with one component. Let E(L) denote the exterior of L, i.e. S3−intN(L),

where N(·) denotes the regular neighborhood. A set {t1, · · ·, tn} of mutually

disjoint properly embedded arcs in E(L) is called an unknotting tunnel

system for L if E(L)−intN(t1 ∪ · · · ∪ tn) is a genus n+ 1 handlebody. The

tunnel number of L, denoted by t(L), is the minimal number of arcs among

all unknotting tunnel systems for L. In case t(L) = 1, the arc is called an

unknotting tunnel for L.

Note that the tunnel number of every 2-bridge link is one. There are

six tunnels for 2-bridge knots as in Figure 1.3(1) (See [5]). The tunnel

τ1(resp. τ2) is called an upper tunnel (resp. a lower tunnel) and ρ1 and

ρ′1(resp. ρ2 and ρ′2) dual tunnels of τ1 (resp. τ2) (See [12]). In the trivial

tangles of the 2-bridge decomposition, these six tunnels are as in Figure

1.3(2). Recently T. Kobayashi proved that an unknotting tunnel for a 2-

bridge knot is isotopic to one of these six in [6]. Unknotting tunnels for

2-component 2-bridge links are classified independently by Adams and A.

Reid in [3] and M. Kuhn in [7].

From a dual tunnel, say t, of an upper or a lower tunnel for a 2-bridge

knot, we can obtain an unknotting tunnel, say t′, for the connected sum

of the Hopf link and the 2-bridge knot as in Figure 1.4. In this case, we
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Fig. 1.3(1)

Fig. 1.3(2)

say t′ is obtained from t. Morimoto showed that each unknotting tunnel for

the connected sum of the Hopf link and a 2-bridge knot is isotopic to one

obtained from a dual tunnel of an upper or a lower tunnel for the 2-bridge

knot in [11].

A link diagram is reduced if it has no nugatory crossings as in Figure

1.5. A diagram is trivial if it contains no crossings.

Let M(b; (α1, β1), · · · , (αr, βr)) stand for a Montesinos link in S3 with b

half twists and r rational tangles of slopes β1

α1
, · · · , βr

αr
, where b, r, αi and βi

are integers such that r ≥ 2, αi ≥ 2 and g.c.d.(αi, βi) = 1. See [4, Chapter

12].

Let (B, T ) be the trivial 2-string tangle. An embedded arc τ in B is the

core of (B, T ) if τ ∩ T = ∂τ , τ connects two strings of T and there is a disc

properly embedded in B which contains T ∪ τ . Upper and lower tunnels

of a 2-bridge link is the cores of the two rational tangles of the 2-bridge
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Fig. 1.4

Fig. 1.5

decomposition. A rational tangle is the trivial tangle with a chart on the

boundary of the 3-ball.

Theorem 1.1. Let L be a tunnel number one alternating link. Suppose

an unknotting tunnel for L is contained in a region of a reduced alternating

diagram E of L. Then one of the following holds,

(1) L is a 2-bridge link and t is an upper or a lower tunnel or their dual

tunnel, or

(2) after operating flypes if necessary, E is exemplified as in Figure 1.6,

where Ea and Eb are non-trivial diagrams of rational tangles. L is

a Montesinos link M(b; (α1, β1), (α2, β3), (α3, β3)), where α1 = 2 up

to cyclic permutation of the indices and t is the core of a rational

tangle of slope β2

α2
or β3

α3
, or

(3) E and t are exemplified as in Figure 1.7. L is the connected sum

of the Hopf link and a 2-bridge knot and t is obtained from a dual

tunnel of an upper or a lower tunnel for the 2-bridge knot.
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Fig. 1.6

Fig. 1.7

Note that in the case (3), by [9], there is a decomposing sphere meeting

S2 in a simple closed curve, where a decomposing sphere is a 2-sphere

meeting L in two points and not bounding a pair consisting of the 3-ball

and a trivial arc.

Now we consider a special case of Theorem 1.1, where a link has an

unknotting tunnel isotopic to the polar axis of a crossing ball.

Corollary 1.2. Let L be a tunnel number one alternating link. Sup-

pose an unknotting tunnel for L is isotopic to the polar axis of a crossing

ball of a reduced alternating diagram E of L. Then either

(1) L is a 2-bridge link and t is an upper or a lower tunnel or their dual

tunnel, or

(2) after operating flypes if necessary, E is exemplified as in Figure 1.6,

where Ea and Eb are non-trivial diagrams of rational tangles and L
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is a Montesinos link M(b; (α1, β1), (α2, β3), (α3, β3)), where α1 = 2

up to cyclic permutation of the indices and t is the core of a rational

tangle of slope β2

α2
or β3

α3
.

Morimoto, Sakuma and Y. Yokota determined tunnel number one Mon-

tesinos knots and show that either it is 2-bridged or has at most three

branches. For details, see Theorem 2.2 and Added in Proof in [13]. Y.

Nakagawa studied tunnel number one 2-component Montesinos links and

proved that it is either 2-bridged or M(b; (α1, β1), (α2, β2), (α3, β3)) where

α1 = 2 in [15].

We can show similar results to Corollary 1.2 for a tunnel number one

link admitting a locally trivial almost alternating diagram which has an

unknotting tunnel isotopic to the polar axis of the crossing ball at the

dealternator, i.e. the crossing which makes the diagram non-alternating.

See [2] for the definition of almost alternating links.

§2. Proof

We prove Theorem 1.1 by using a result of [19] on ∂-reducibility of

alternating tangles.

First we give definitions. A 2-string tangle, or a tangle in brief, is a pair

(B, T ), where B is a 3-ball and T is a union of two properly embedded arcs.

If there is no ambiguity, we write T instead of (B, T ) for short. The trivial

tangle is a tangle homeomorphic as pair to (D × I, {x1, x2} × I), where D

is the disc and xi’s are points lying in the interior of D. We draw a tangle

diagram E of T on an equatorial disc D of B. An alternating tangle is a

tangle which admits an alternating tangle diagram. Alternating tangles are

studied in [8], [20], [18] and [19].

A tangle diagram E on a disc D ⊂ B is connected if each properly

embedded arc in D disjoint from E cobounds a subdisc which does not

meet E together with a subarc of ∂D and any properly embedded circle

in D disjoint from E bounds a disc which does not meet E. Otherwise we

say E is disconnected . A link diagram is connected if there is no circle as

above. A tangle diagram is reduced if it has no nugatory crossings as in

Figure 2.1. The left diagram in Figure 2.1 has an arc properly embedded

in D meeting the diagram only at the nugatory crossing. A tangle diagram
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Fig. 2.1

E is locally trivial if each circle in D disjoint from crossings and meeting E

in two points bounds a pair of a subdisc and a trivial arc.

Next we define tangle sums [21]. A marked tangle is a triple (B, T,∆),

where (B, T ) is a tangle, and ∆ is a disc on ∂B containing two endpoints

of T . We call ∆ a gluing disc. Given two marked tangles (B1, T1,∆1) and

(B2, T2,∆2), we can obtain a new tangle (B, T ) as follows. Take a map

φ : ∆1 → ∆2 with φ(∆∩T1) = ∆∩T2, and use it to glue two tangles to get

(B, T ). This operation is called tangle sum and we write T = T1 + T2. A

tangle sum is non-trivial if neither (Bi, Ti,∆i) is M [0] nor M [∞] (See [21]).

A marked tangle diagram is a triple (D,E, α), where E is a tangle di-

agram on a disc D and α a subarc in ∂D which contains two endpoints

of E. The arc α is called a gluing arc. Given two marked tangle dia-

grams (D1, E1, α1) and (D2, E2, α2), we can obtain a new tangle diagram

E on D = D1 ∪D2 as follows. Take a homeomorphism f : α1 → α2 with

f(α1 ∩ E1) = α2 ∩ E2. Then we glue two tangle diagrams using f and get

a new tangle diagram E. This operation is called the partial sum. See [8].

A partial sum is non-trivial if both E1 and E2 are connected and contain

crossings.

Let E(T ) = B−int N(T ) be the exterior of T . A tangle is ∂-reducible

if ∂E(T ) is compressible in E(T ). Otherwise it is ∂-irreducible. In case an

alternating diagram E of T is a partial sum of two tangle diagrams E1 and

E2, let T1 and T2 denote the subtangles of T whose diagrams are E1 and E2

respectively. The author showed the following result in [19]. There, more

general cases are dealt with. Terminologies used below can be found in [21].
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Proposition 2.1. [19] Suppose a 2-string tangle T is ∂-reducible and

has a reduced connected locally trivial alternating diagram E. Then E is a

non-trivial partial sum of two alternating tangle diagrams E1 and E2 and T1

is a 2-twist tangle and T2 is a rational tangle. (See Figure 2.2.) Moreover

E(T ) is a handlebody.

Fig. 2.2

Here we will examine E1. An n-twist marked tangle diagram is a marked

tangle diagram of an n-twist tangle with n half twists. For example, a

2-twist marked tangle diagram is as in Figure 2.3. The dotted line in the

figure is the gluing arc.

Addendum 2.2 to Proposition 2.1. E1 is 2 or −2-twist marked

tangle diagram.

Proof. By Theorem 3.1 in [20], E has the minimal crossing number

among all diagrams of E. Suppose, for a contradiction, that E1 is not a

2 or −2-twist marked tangle diagram. Then, by replacing E1 with a 2-

twist marked tangle diagram, we have a diagram of T with a fewer crossing

number, which is a contradiction. �

Proof of Theorem 1.1. Note that E is connected. Let t be an

unknotting tunnel for L which is contained in a region of E. Let B2 = N(t),
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Fig. 2.3

B1 = S3−intB2 and Ti = L ∩ Bi, where i = 1 or 2. See Figure 2.4. Then

L is decomposed into two 2-string tangles (B1, T1) and (B2, T2), where T2

is the trivial tangle, and t is the core of T2. Note that S3−intN(L ∪ t) is

isotopic to E(T1). Since t is an unknotting tunnel, E(T1) is a handlebody.

Hence it is ∂-reducible. For i = 1 and 2, let Ei be the tangle diagram of

Ti, which is a subdiagram of E, such that E2 contains no crossing and E1

is the alternating tangle diagram E − E2.

Suppose, for a contradiction, that E1 is disconnected. That is, there is

an arc α on the disc on which we draw E1 such that α misses and separates

E1. Then there is a circle β on S2 meeing E in two points which contains

α and the projection of t. Then either (a)β bounds a pair consisting of a

disc and the trivial arc or (b)β does not bound such a pair. In the case

(a), t can be isotoped into ∂E(L). Hence L is the trivial knot, which is a

contradiction. In the case (b), since alternating knots are non-trivial, L is

composite and the decomposing sphere meets S2 in β. Then, by [16], L is

a 2-component link. Let K1 and K2 be the components of L. Since t is an

unknotting tunnel, one point of E∩ t = E∩β is contained in the projection

of K1 and the other in that of K2. It follows that each of K1 and K2 meets

the decomposing sphere just once, which is a contradiction. Hence E1 is

connected.

Suppose, for a contradiction, that E1 is not locally trivial. Then L is

composite. By [16], L is a 2-component link. In this case, we can isotope
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Fig. 2.4

the decomposing sphere into B1. It follows that t does not meet the decom-

posing sphere, which contradicts Lemma 3.1 in [11]. Hence E1 is locally

trivial.

Suppose E1 is reduced. Then, by Proposition 2.1 and Addendum 2.2, it

follows either (a)E is a diagram of the connected sum of the Hopf link and

a 2-bridge knot as in Figure 1.7, or (b)E is a diagram of 2-bridge link as in

Figure 2.5. In the case (a), t is obtained from a dual tunnel of an upper or

a lower tunnel for the 2-bridge knot. In the case (b), L is a 2-bridge knot

and t is a dual tunnel of an upper or a lower tunnel.

If E1 is not reduced, we operate flypes to E so as to eliminate nugatory

crossings in E1. Let E′ be the resultant link diagram. Then E1 becomes

either (a)the trivial diagram or (b)a reduced alternating diagram E′
1. In

the case (a), L is a 2-bridge link and t is the core of T2. Hence t is an

upper or a lower tunnel. In the case (b), E′
1 is the partial sum of the 2 or

−2-twist marked tangle diagram and an alternating diagram of a rational

tangle and E′
2 is an alternating diagram of a rational tangle, where E′

2 =

E′ − E′
1. There are two cases. If the partial sum of T2 and the rational

tangle in T1 is not a rational tangle (i.e. T2 is a non-integral tangle), then

L = M(b; (α1, β1), (α2, β2), (α3, β3)), where α1 = 2, and t is the core of a

rational tangle of slope β2

α2
or β3

α3
. Hence (2) holds. If the partial sum of
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Fig. 2.5

Fig. 2.6

T2 and the rational tangle in T1 is a rational tangle (i.e. T2 is an integral

tangle), then L is a 2-bridge link and t is a dual tunnel of an upper or a

lower tunnel. See Figure 2.6. This completes the proof. �

Proof of Corollary 1.2. We repeat the argument in the proof of

Theorem 1.1. In this case, E1 always has the nugatory crossing. Hence, by

the argument in the fifth paragraph in the proof of Theorem 1.1, Corollary

1.2 follows. �
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