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On the Uniqueness Theorem for Nonlinear

Singular Partial Differential Equations

By Hidetoshi TAHARA

Abstract. The paper proves a uniqueness theorem of the solution
of nonlinear singular partial differential equations

(t8/0t)u = F (t, 2, {(t0/0t)) (0/0x)*u} ; +|a|§m7j<m) .

If the characteristic exponents A1 (z),... , Ay (x) of the equation satisfy
the condition Re\;(0) < 0 for ¢ = 1,...,m, a uniqueness theorem
was proved in Tahara [6]. The present paper discusses the case where
Re Aj(z) < 0 holds in a neighborhood of x = 0 for i = 1,... ,m. The
result is applied to the problem of removable singularities of the solution.

1. Introduction

Notations: N ={0,1,2,...}, N*={1,2,...}, me N*, ne N*, t € R,
x = (x1,...,2,) € C", @ = (1,...,ap) € N, |a] = a1 + -+ + ap,
(0/0z)* = (0/0x1)™ - -+ (0/0xy)*, al = aq!- - ay! and

I, ={(j,a) e NxN"; j+|a| <m and j < m},
d(m) = the cardinal of I,,,
Z ={Z;jo} et € CU™.

Let T>0,r >0, R >0, and let F(t,z,Z) be a function on {(¢,z,7) €
RxC"x CU™ ;0 <t<T, |z <r and |Z] < R} which is continuous in
t and holomorphic in (z, 7). In this paper we will consider the following
nonlinear singular partial differential equation:

@ () e (e () () )
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478 Hidetoshi TAHARA

with an unknown function v = (¢, x).
For (E) we define the characteristic exponents A\i(x),... ,A\pn(z) by the
roots of the equation in A:

oOF ,
m i J—
A g S (0,2,0)M = 0.

j<m

A function u(t) on (0,T) is called a weight function if it satisfies the
following conditions 1) ~ ps):

1)

t2)
T

s3) /0 Mds<oo.

S

(t) € C°((0,T)),
)

W
p(t) > 0on (0,7) and p(t) is increasing in ¢ (in a weak sense),

It follows from ps) and ps) that p(t) — 0 (as t — +0). The following
functions are typical examples:

1 1
(—logt)®” (—logt)(log(—logt))e

pu(t) =%,

witha>0,b>1,¢c> 1.
Let us formulate the class of functions S, (e, 6; u(t)) or Sy(e,6; p(t)) in
which we want to prove the uniqueness of the solution of (E).

DEFINITION 1. Let € >0, 6 > 0 and let u(t) be a weight function.
(1) For a > 0, we denote by S,(e,d; u(t)) the set of functions wu(t,x)
satisfying the following conditions (i), (ii) and (iii):
(i) u(t,x) is a function on {(t,z) e Rx C"; 0 <t < e and |z| <6},
(ii) u(t,z) is of C™ class in ¢t and holomorphic in z,
(iii) for j =0,1,...,m — 1 we have

= 0(u(1)*) (ast — +0).

max
|z|<6

<t%)ju(t, x)
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(2) We define S, (g, 6; u(t)) by

Si(e,6;u(t)) = | Sale, 8 u(t))

a>0

DEFINITION 2. We say that the local uniqueness of the solution of (E)
is valid in S,(e, 6; u(t)) if the following condition is satisfied: if u;(¢,z) and
ua(t,x) are solutions of (E) belonging to S, (e, 6; u(t)) we have uq(t,z) =
ug(t,x) on {(t,) e Rx C"; 0 <t <ep and |z| < 6; } for some e; > 0 and
61> 0.

Then, about the local uniqueness of the solution of (E) we already know
the following results. Assume that F'(¢,z,Z) is a function on {(t,z,72) €
R x C*"x CU™) .0 <t<T, |z <r and |Z| < R} and assume:

(C1) F(t,z,Z) is continuous in ¢ and holomorphic in (z, Z);
(€2) max |F(t,,0)] = O(u())™) (as ¢ — +0);
z|<r

— t,x,O)‘ = O(u()) (as t — +0) for any

THEOREM 1. Assume (Cy), (C2) and (Cs). Then:
(1) (Gérard-Tahara [2]) In case u(t) = O(t°) (ast — +0) for some
c>0, if

(1.1) ReXi(0) <0 fori=1,...,m

the local uniqueness of the solution of (E) is valid in St (e, 6; u(t)).
(2) (Tahara [6]) In case pu(t) is a general weight function, if

(1.2) ReXi(0) <0 fori=1,...,m

the local uniqueness of the solution of (E) is valid in Si(g,6; p(t)).
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REMARK 1. In [6] we have assumed that the weight function pu(t) sat-
isfies p11), pi2), pi3) and

pa)  u(t) € CH(0,T)) and tccll—/:(t) = O0(p(t)) (ast — +0).

But, by the argument in this paper we can prove the result (2) in Theorem
1 without using the condition ).

In this paper we want to study the following case: pu(t) is a general
weight function and the characteristic exponents satisfy

(1.3) ReXi(z) <0 fori=1,...,m

in a neighborhood of z = 0.
The motivation comes from the following example:

Ezample 1. Let us consider

(1.4) (t%fu = 6u(%>

where (t,z) € C2. Then the characteristic exponents are A; = 0 and Ay = 0.
In this case we have:

1) u(t,z) = 0 is the unique holomorphic solution of (1.4) satisfying
u(0,2) = 0.

2) (1.4) has a family of non-trivial solutions

T+«

uh®) = E Tog )2

(o, C € C).

This implies that the local uniqueness of the solution of (1.4) is not valid
in 84 (g,6; p(t)) with p(t) = 1/(—logt)¢ for any ¢ > 1. Compare this with
the result (2) of Theorem 1.

3) More precisely, if 0 < a < 2 the local uniqueness is not valid in
Sale, 65 u(t)) for p(t) =1/(—logt) with 1 < ¢ < 2/a.

4) Nevertherless, the local uniqueness is valid in Sa(e, 8; u(t)) for any
weight function u(t).
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We want to generalize the result 4) in Example 1 to the general case.

The paper is organized as follows. In the next section 2 we state our
main results (Theorem 2 and Theorem 3). In sections 3~5 we prove our
results: in section 3 we present some preparatory discussions, in section 4
we prove Theorem 2 and in section 5 we prove Theorem 3. In the last
section 6 we give an application of our result to the problem of removable
singularities of the solution of (E).

2. Main results

The main results of this paper deal with the following case: for some p
with 0 < p < m the characteristic exponents of (E) satisfy

2.1) { ReXi(z) <0 for i=1,...,p,

ReXi(0) <0 fori=p+1,...,m

in a neighborhood of x =0 € C".
Let p be as in (2.1) and let p(t) be a weight function. Assume:

(C3)p The following 1) and 2) are valid:
1) for j=0,1,...,m —1 we have

2) for (j,«) € I, with |a| > 0 we have

oF
(. o>] = O(u(t)™lell) (as ¢ — +0).
7,

max
|z|<r

Note that (C3), with p = 0 is nothing but (Cs).
We have

THEOREM 2. Let p be an integer with 0 < p < m and let u(t) be a

weight function. Assume (2.1), (C1) and (C3),. Then the local uniqueness
of the solution of (E) is valid in Sy, (e, 0; u(t)).

This proves the result 4) in Example 1.
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In case 0 < p < m — 1 we can say more. Impose:

(Ca)p max |[F(t,z,0)| = O(u(t)™7) (as t — +0);

(C4)p There is an s > 0 such that for any (j, «) € I,, with |a| >0

we have
max |- (t,2,0)| = O(u(t)"+*) (as t —> +0).
|z|<r 8Z]a

THEOREM 3. Let p be an integer with 0 < p < m — 1 and let u(t) be
a weight function. Assume (2.1), (C1), (Ca)p, (C3)p and (Cy4)p. Then, if
a > p the local uniqueness of the solution of (E) is valid in S,(e, 6; u(t)).

Since (Cz)p is nothing but (Cz), (Cs)p is nothing but (Csz) and (Ca)o
follows from (Cs)g, the case p = 0 is already proved in Tahara [6]. Hence,
in the proof of Theorems 2 and 3 we may assume p > 1.

Ezample 2. Let us consider

(2.2) (t%)z < gt) (2u+x+1)<gz>

where (t,7) € C2. Then the characteristic exponents are A\; = 0 and
Ao = —1. In this case we have:
1) u(t,z) = 0 is the unique holomorphic solution of (2.2) satisfying
u(0,z) = 0.
2) By Theorem 3 we see that if a > 1 the local uniqueness of the solution
of (2.2) is valid in Su(e, 6; pu(t)) for any weight function u(t).
3) Note that (2.2) has a family of non-trivial solutions

r+1

© —logt) (CeC).

u(t,x) =

This implies that if 0 < a < 1 the local uniqueness is not valid in
Sa(g, 65 p(t)) for p(t) =1/(—logt)® with 1 < ¢ < 1/a.

We note the following:
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(1) Since (0F/0Z;)(0,z,0) is holomorphic on {z € C™; |z| < r}, it is
easy to see that we can find an 20 € C" sufficiently close to the origin such
that all the characteristic exponents A (z), ... , Ay () are holomorphic in a
neighborhood of z° € C™.

(2) Let wi(t,z) and wug(t, z) be solutions of (E) belonging to the class
Sa(g, 65 p(t)). If we prove uy(t,x) = ua(t,x) on {(t,z) e R x C"; 0 <t <
g1 and |z — 2% < 81} for some £1 > 0 and &; > 0, then by the analyticity
in the z-variable we get the conclusion that w;(¢,2) = ua(t,x) on {(t,x) €
RxC";0<t<e and |z| < 6}.

Thus, in the proof of Theorems 2 and 3 we may assume the following
condition:

(Cs) All the the characteristic exponents Aj(x), ..., Ay, (x) are
holomorphic in a neighborhood of z =0 € C".

Moreover we know that if a holomorphic function A(x) in a neighborhood
D of © = 0 satisfies ReA(0) = 0 and ReA(z) < 0 on D then we have
M) =+/—1p on D for some p € R.

Therefore, under (2.1) and (C5) we may assume without loss of generality
that in a neighborhood of z = 0 we have

Ni(e)=+—1p; for i=1,...,p,
(2.3) { (r) =v~=1p p

Re X;(0) <0 for i=p+1,...,m

for some p; e R (i =1,...,p).

Put
9 =1,
0, = (t% = X(0)),
(2.4) Oy = (t% . Ag(O)) (t% - >\1(O)>,
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The following fact will play an important role in the proof of Theorem 2:
under (2.3) we have

a\m OF 0 \J
(2.5) <t§) - aZJO(O @ 0)( m) =60 > a8
p<j<m—1
for some a;(x) (p < j < m — 1) holomorphic in a neighborhood of z = 0

and satisfying a; (0 ) =0(p<j<m-—1).
3. Some discussions

Before the proof of Theorems 2 and 3 let us present some preparatory
lemmas.
First, for a convergent power series

= falt)x

aeN”

with coefficients in C°((0, 7)) we define the norm || f(¢)||, by

1Ol = alt) .'a'

aceN”

(which is a convergent power series in p with coefficients in C°((0,7))). We
write S, arp® < 3, brp” if |ag| < by holds for all k£ € N.

LEMMA 1. For f(t,x) and g(t,z) we have:
W) NGO, < NF Do (19D -

of ) .
|22 0] < i, fori=t.n
Next, for (j, k) € N? with j +k < m — 1 we put

c(4, k) =max{j+ k—p+ 1,0},

where m and p are the ones in (2.1).
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LEMMA 2. Let m and p be integers with 0 < p < m. We have:

(1) c(4,k) (J+k <m-—1) satisfy 0 <c(j,k) <m—p,c(j+1,k—1)=
c(j, k) and
0 when j <p-—1,

c(7,0) =
(5,0) {j—p—i—l when j > p—1.

(2) q(4, k) J+k<m-—1) satisfy 0 < q(j,k) <m—1,q(j+1,k—1) =
q(4,k)+1 and

m+j—p whenj<p—1,

q(j,0) = {

m—1 when j > p— 1.

Let € > 0 and p(t) be a weight function on (0,7). Define
(3.1) ojx(t) = R 1y (£) 90K
The following result is a consequence of Lemma 2.

LEMMA 3. o0;,(t) (j +k < m — 1) satisfy the following conditions:
(1) ;%) > 0 on (0,T) and (1/0;x(t)) = O(u(t)~™V) (as t — +0).
(2) 0jk(t) is increasing in t (in a weak sense).

(3) For j=0,1,... ,m — 2 we have

oj+1,0() { p(t)  whenj+1<p-—1,
giot)  le when j+1 > p.
(4) For j > p—1 we have

ojot) 1
O'mfl,o(t) €m_j_1 '

(5) For j+k<m—1 and k > 0 we have

0j+1k-1(t)

ol fa(t).
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(6) For j+k <m — 1 we have

1 h 4+ k< 1
_— when —1,
oik(t) ) empp(tpi-1 JrE=P
om-1,0(1) 1

Lastly, let us recall some results in the elementary calculus. For a real-
valued function o(t) € CO((0,T)) we define

— = @t +h)—pt)
D =1
0 #(t) oo h ’
Df () = tim ZEFR =0
h—-+0 h

It is clear that EZF ¢(t) > D (t) holds on (0,T). Moreover we have:

LEMMA 4. (1) If o(t) € C1((0,T)) we have
D/ lt) = D olt) = 7 (0).

2) If p(t) is decreasing in t (in a weak sense), we have E:rgp(t) <0 on
(0,7).
(3) For f(t),g(t) € C°((0,T)) we have

D, (f9)(t) < (D] f(t)g(t) + f(t)(Dy g(t)).

(4) If ®(t,p) € C°((0,T) x [0,p0]) has a partial derivative in p with
(0®/0p)(t,p) € C°((0,T) x [0,p0]) and if p(t) € CH((0,T)) satisfies the
condition p((0,T")) C [0, pol, for the composite function ¢(t) = ®(t, p(t)) we
have

_ — 0P d
D o(t) = (D] ®)(t.p(0) + 5 (1. p(0) L.

(5) If p(t) € C°((0,T)) satisfies D p(t) <0 on (0,T), we have p(a) >

o(b) forany0<a<b<T.
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For details, see Hukuhara [4]. For the convenience of readers, I will give
a proof of (5).

PROOF OF (5) IN LEMMA 4. Assume that DS p(t) < 0 on (0,7). If
(a) < ¢(b) holds for some 0 < a < b < T, we can derive a contradiction
in the following way.

Choose £ so that p(a) < & < ¢(b) and set

§—»(a)
Y(t) = (t) — pla) — ﬁ(
a =inf{c € (0,b); ¥ (t) > 0 on (c,b]}.

t—a),

Since ¥ (a) = 0, 1(b) > 0 hold, we have a < a < b, ¥(a) = 0 and 9(t) > 0
on (a, b]. Hence, it is easy to see that

0 < D (o) = D pla) — 529,
that is

which contradicts the condition ﬁf ela) <0.0
4. Proof of Theorem 2

Let p be an integer with 1 < p < m and let u(t) be a weight function on
(0,T). Assume (2.1), (Cy), (C3)p and (Cs). Without loss of generality we
may assume that in a neighborhood of x = 0 we have

(4.1) { Ai(x)=+—1p; for i=1,...,p,
' Re X;(0) < —h fori=p+1,...,m
for some p; € R (i =1,...,p) and some h > 0. If we write
0 fore=1,...,p,
(1.2 =1 . ’
h fori=p+1,...,m,

by (4.1) we have

(4.3) ReX;i(0) < —h; for i=1,... ,m.
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Let wi(t,z) and ua(t,x) be two solutions of (E) belonging to the class
Sm(e, 6;u(t)). Put

(4.4) w(t, ) = ug(t,x) — uy(t, x).

We have w(t,z) € S;u(e, 6; u(t)) and by Cauchy’s inequalities we see

(15)  max (t%)j (%)aul(t,x)‘ — O(ut)™) (as t — +0),
(16)  max (t%)j(%)aw(t,x)‘ — O(u(t)™) (as t — +0)

for any (j,«) € I, and 0 < 61 < 8. Moreover, it is easy to see that w(t, x)
satisfies the following equation:

(o) w0 =r (1 { () () oot () () ) )
r (e { (g (@) )
= Y () ()

(j,oz)EIm

where

aj7a(t7 w)

1 / “ A "
[ A AR B o (), )

or
07;.0

t,z,0) +O(u(t)™) (ast — +0)
(by (4.5) and (4.6)). Hence, by using the condition (C3), we have

() 0= & oy 0.20(i5) s
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+ (t,2.0) + O(u(t)™)) (t%)j(%)aw

(d,a)€Im
v <o<u<t>m{p7'a“>>@%m%

|a|>0
(j,a)eIm

.]7

and by combining this with (2.5) we obtain

(4.7) Onw = Z a;(z)0;w

p<j<m—1

- O(M(t)max{p,\au)@j(ﬂ)“w_

, ox
(j,)eIm
Recall that a;(0) = 0 holds and therefore ||a;||, = O(p) (as p — +0).

From now, let us show Theorem 2 by proving that w(t,x) = 0 holds on
{(t,z); 0 <t <er and |z| < 61} for some £ > 0 and 6; > 0.
First, for (j,k) € N? with j + k < m — 1 we define ¢, x(¢, p) by

(48) ot N [E7
((t.p) g—:/ e (5) v, <

where hjyq is the constant in (4.2) and ©,4; is the operator in (2.4). By
(4.6) and (4.7) we easily see

9
Ox
for any j =0,1,... ,m — 1.

(4.9) €551 ( >aw(t)Hp — O(u(t)™) (as t — +0)

LEMMA 5. ¢;i(t,p) (j +k < m — 1) are well-defined and satisfy the
following conditions (1)~(5) on {(t,p); 0 <t < Ty and 0 < p < pg} for
some Ty > 0 and pg > 0.

(1) ¢kt p) is of C' class in t € (0,Tp] and analytic in p € [0, pol;
moreover we have

ml) x tM T, when j —
@10) gty =4 CHO /0 ar. when j=p=1
O(p(t)™), when j > p
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(as t — +0) uniformly for 0 < p < pp.
(2) For any (j, k) we have

Z H@j<%>aw(t)Hp <L @jr(t,p).
jal=k

(3) When k >0, we have

9 0
(ta + th)qu,k(t,p) < na—p¢j+1,k—1(tv p)-

(4) Whenk=0andj=0,1,---,m—2, we have

0
(tﬁ + hj+1>¢j,0(t,p) < ¢j+10(t: p).

(5) When k=0 and j = m — 1 there are constants C; > 0 and Cy > 0
such that

(t% + hm) dm-1.0(t, p)

0
SCipY bioltp) +Co ST (TR (1 )60 0)

jzp Jtk<m—1

PRrROOF. The former half of (1) is clear from the definition of ¢; i (%, p).
When hjy1 = 0 we have

[ G e [t v [ £

when hji 1 = h >0 we have

t T Jj+1 m AT t T m AT
J ) uern = [ (G) e

cuor [ G =

t T

Combining this with (4.2) and (4.9) we can get the latter half of (1).
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Note the following fact: if Re A < 0 and v(t) € C((0, Tp)]) satisfy v(t) =
o(1) (as t — +0) and (t0/0t — N)v = O(u(t)) (as t — +0), by solving
the equation (t0/0t — \)v = g with g = (t0/0t — X\)v we have

= [ () o
A N(CERBES

By applying this to ©;(0/0x)“w we see that

o) = [ () ou () wtr ¥

and hence by using (4.3) we have

Hej(a%)“w(t)\\p < /0 t G)hm

which implies the result (2).
When £ > 0 we have

(t% + hj+1)¢j,k(fyﬂ) = Z H@H(%)aw(t)H
k

oy (2w

p

< 3 Slo(2)(2) vl

p

Hence, by using (2) we obtain the result (3).
When k=0and j =0,1,--- ,m — 2, we have

(t% + hj+1>¢j,o = H91+1w(t)Hp < Pj+1.0

which implies the result (4).
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When k£ =0 and j = m — 1, by (4.7) we have

0
( py +h )Qbmfl,O = [[Omw(t),
< Y ol l05w),

p<j<m—1
0\«
> o<u<f>m“{p"a”>H@j(a) u(v),
(J,)EIm
= Y O Ie;w®)l,+ > o)) 10w,
p<j<m—1 j<m

Ly iow(wm"{p"ﬁ“”H@j<ai><a%)ﬂw<“u

jHBI<m-1 i=1

< Z O(p ¢]O+ZO P) 0

p<j<m—1 j<m

maX a
+ >, 0 k) n 8—p¢j,k

Jjt+k<m-—1

p

which implies the result (5). O

Next, let A > 0 be the one in (4.2) and Cy > 0 be the constant in (5) of
Lemma 5. Choose € > 0 so that

(4.11) £< —

and then choose p; > 0 so that

(4.12) <

C h
101 Bl for p<j<m-—1.

gm—j—l

By using this € we define o 1(t) (j +k < m — 1) by (3.1) and put

(4.13) O(t,p)= Y.

J+k<m-—1 J’k()

¢j k( )

Then we have
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LEMMA 6. (1) ®(t,p) = o(1) (as t — +0) uniformly for 0 < p < p;.
(2) There is a constant C > 0 such that

(4.14) Dy ®(t, p) < Cpu(t) (1 n %)@(t, 0)

on {(t,p); 0 <t <Ty and 0 < p < p;}.

PrOOF. By (4.10) we know

$in(t,p) = o(u(®)™™)  (as t — +0)

and therefore by using the condition (1) of Lemma 3 we obtain the result

(1).
Since (1/01(t)) is decreasing in ¢ we have 5:_(1/0]-,;@@)) <O0on (0,7)
and therefore from (4.13) we have

(4.15)  tD®(t,p)< Y <tﬁt (UJ )¢jk+ ¢jk>

j+k<m-—1

< Y 1ta¢>

. ot
J+Hk<m— 1 Jrk

By using (4.2) and Lemma 5 we get from (4.15) that

(4.16) tﬁf@g Z 1 <8+h3+1>¢jk—hz—¢go

o ot
Jjt+k<m—1 gk J>p 30

< Z 1 ¢J+1k 1+ Z —¢g+10

o
j+k<m-—1 J’k j<m—2 75,0

k>0
<Cl p Z ®5,0

Jjzp

b S o (14 o)

Jt+k<m-—1

—hZ;%

Jjzp

Um 1,0
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Recall that the conditions (3) ~ (6) of Lemma 3 imply the following:
1) if k>0, (1/ojk) = (u(t)/oj41,6-1);
2)ifj+1<p—1, (1/g50) = (u(t)/0j+10);
3)if j+12>p, (1/050) = (e/0j+10);
4)ifj>p—1, 1/om1p0) = (1/e™ 7 o;0);
5) (u(t)m Pk o, 0) = O(u(t) /ojx) (as t — +0).
Hence, applying these to (4.16) we obtain

@i Des S aon g (o dn)

j+k<m—1 Oj+1,k—1
k>0
0 1
+ C&j+;g%_lcxu(ﬂ)(1+-5;)(5;;¢%k)
1
+ j+§;_1 u(t) (Uj+1,0 ¢j+170>
+ Z (8 - gf—ljp—l - h) (L ¢j,0>
j>p J

Since (4.11) and (4.12) are assumed, we see that
Cip

em—j—1

(4.18) e+ ~h<0

for any 0 < p < py. Thus, by (4.17) and (4.18) we obtain

tD; @ < C p(t) (1 0 1

for some C' > 0. This completes the proof of (2) of Lemma 6. O]

COMPLETION OF THE PROOF OF THEOREM 2. Since [w(t)|, <
®0,0(t, p) holds (by (2) of Lemma 5), to complete the proof of Theorem 2 it
is sufficient to prove that ®(¢,p) = 0on {(t,p); 0 <t <egg and 0 < p < §p}
for some ¢ > 0 and 6y > 0. Let us show this now.

Let p1 > 0 and C > 0 be the same as in Lemma 6 and choose T7 > 0 so

that T7 < Ty and
T
C/ i) ds < p1.
0

S



Uniqueness Theorem for Nonlinear Singular PDE 495

Set

S

T

p(t):C’/ M) gs 0<t<y,
t

p(t) = eVo(t, p(t), 0<t<T.

Then we have p(e) = O(1) (as ¢ — +0) and by using the condition (1) of
Lemma 6 we see that ¢(¢) = o(1) (as € — +0). Since t(dp/dt) = —Cpu(t),
by (4) of Lemma 4 and (4.14) we have for ¢t > 0

_ o
tDip < tDZergep()<tfl—<I>+tD @+g—t%>

=p(t)

i)

= er®) <—C,u(t)¢’ +tD; & — Cpu(t)

|3
S—

p=p(t)
<0

)

that is
Df () <0 on (0,T).

Thus, by applying (5) of Lemma 4 we have ¢(t) < ¢(e) forany 0 < e <t <
T1 and therefore by letting ¢ — +0 we obtain

e(t) <0 for 0 <t <Ty.

Since ¢(t) > 0 is trivial, we have p(t) = 0 for 0 < t < T} and therefore
D(t,p(t)) =0for 0 <t <Tj. Since ®(¢, p) (> 0) is increasing in p we obtain
D(t,p) =0on {(t,p); 0 <t <Ty and 0 < p < p(t)}. This completes the
proof of Theorem 2. [J

5. Proof of Theorem 3
Theorem 3 follows from Theorem 2 and the following proposition.

ProprosITION 1. Let € > 0, § > 0 be sufficiently small, let p be an
integer with 1 < p < m — 1 and let u(t) be a weight function. Assume
(2.1), (Cy), (C2)p, (C3)p-1), and (Cy)p. Then, if u(t,z) is a solution of (E)
belonging to Sq(g,6; u(t)) and if a > p we have u(t,x) € Sy (e, 615 u(t)) for
any 0 < 61 < 0.
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Let us show this from now. By (2.1) we may assume that

ReXi(x) <0 on D for i=1,...,p,
(5.1) { (x) 5 p

ReXi(x) < —h on Ds for i=p+1,...,m
for some h > 0, where Dg = {z € C"; |z| < 6}.

DEFINITION 3. Let k € N, e > 0, 6 > 0 and let u(t) be a weight
function.
(1) For a > 0, we denote by X¥(e,8; u(t)) the set of functions u(t, x)
satisfying the following conditions (i), (ii) and (iii):
(i) wu(t,z) is a function on (0,¢) x Ds,
(ii) u(t, ) is of C* class in ¢t and continuous in z,
(iii) for j =0,1,...,k we have

(t%)ju(t, x)

(2) We define X¥ (e, 8; u(t)) by

max
|z|<6

=O0(u(t)*) (ast — +0).

X{(e, 6 u(t) = | Xk (e, 8 pult))-
a>0

First we note:

LEMMA 7. Let MN(z) € C%(Ds) and let us consider

(5.2) (t% - )\(x))u —f on(0,) x Ds.

(1) Assume that ReX(z) < 0 on Ds. Then, for any f € X2(e,6; u(t))
with a > 1 the equation (5.2) has a unique solution u € X} (e, 6;u(t)). If
f satisfies |f(t,x)| < Cu(t)* on (0,e) x Ds we have the estimate

lu(t, z)| < Cu(t)* ! x /0 @dT on (0,¢) x Ds.

Moreover, the uniqueness of the solution of (5.2) is valid in X1 (e, 5; u(t)).
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(2) Assume that ReX(x) < —h on Ds for some h > 0. Then, for
any f € X0(e,8; u(t)) with a > 0 the equation (5.2) has a unique solution
u € Xl(e,6;u(t)). If f satisfies |f(t,z)] < Cu(t)® on (0,€) x Ds we have
the estimate o

u(t,2)] < (@) on (0,€) x D,

Moreover, the uniqueness of the solution of (5.2) is valid in X3 (g, 8; pu(t)).

PROOF. It is easy to see that in both cases (1) and (2) the unique
solution of the equation (5.2) is given by

u(t,z) = /Ot (Z)_/\(x)f(T, x) d?T

The estimate of the solution is verified as follows: if Re A(z) < 0 on Ds
and |f(t,x)] < Cu(t)® on (0,e) x Ds for some a > 1 we have

t 7\ —ReA(z) dr
< - a 20
el < [(5) e

< C/O u(ry L < Cu(t)“l/o M) 4.

T T

if ReA(z) < —h < 0on Dg and |f(t,z)| < Cu(t)® on (0,e) x Ds for some
a > 0 we have

t 7\ —ReA(z) dr
< - aZl
)l < [ (F) 7 oner

t
tor\hdr 1
< @ -] —= ¢ —. 0O
<cuty [ (5)"F = cutr 5
Put
F
CAz)=\"— BaZ- (0,z,0) M
j<m 3,0

= (A =An(@)) - (A= Aa(2)) (A = Au ()
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and let us consider

(5.3) C(t%,x)u = f.

Applying Lemma 7 m-times to (5.3) we obtain

LEMMA 8. Assume 1 < p < m, (5.1) and (Cy). Then, for any f €
X0(e,6; u(t)) with a > p the equation (5.3) has a unique solution wu €
Xt (e, 65 u(t)). If f satisfies |f(t,x)| < Cu(t)® on (0,e) x Ds we have the
estimates

©ju(t,@)| < Cu(t)™™ x p(t) on (0,) x Dy
forj=0,1,... m—1

where ©; (j =0,1,... ,m — 1) are the operators in (2.4) and

o(l) = 1;%%_;,{ Mglti)l” u}f:?:}l (/Ot M(TT)dT>z }

1<i<p

Moreover, the uniqueness of the solution of (5.3) is valid in X{* (e, 6; u(t)).

Next, put
L(t,x,t%) —( %)m ma%io(t,x,O) (t(g)]
and let us consider
(5.4) L(t,x,t%)u — /.

LEMMA 9. Assume 1 < p <m, (5.1), (C1) and (C3z)p-1). Let u(t) be
a weight function and let eg > 0 be a sufficiently small number (depending
on u(t) and the equation). Then, for any f € XO(eo,6; u(t)) with a > p
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the equation (5.4) has a unique solution u € X" (0,065 u(t)). If f satisfies

|f(t,x)] < Cu(t)® on (0,e0) X Ds we have the estimates

©;u(t, )] < Cu(t)* P x 2¢(t) on (0,e0) X Ds
forj=0,1,... m—1.

Moreover, the uniqueness of the solution of (5.4) is valid in X" (eo, 6; u(t)).

PROOF. Put

) OF OF a\J
K(t,x,zﬁ) - %(m(t,x,m - 87%0((),90,())) (ta)
= S owre,
j<m

Then the equation (5.4) is expressed in the form

C(t%,x)u = K(t,w,t%)u—i— f

and therefore to solve (5.4) we can use the method of successive approxi-

mations:
0
C’(t&,x)uo =f,
0 0
C’(ta, m)ul = K(t, %tE)Um
0 0
C’(ta,x%m = K(t,x,t§>u1,
It is easy to see that ug, u1,us,... are well-defined and they satisfy the
estimates
(5.5) |©jur| < Cut)*™? x (Mep(t)"o(t)

forj=0,1,..., m—1land k=0,1,2,...
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for some M > 0.

Since p > 1 is assumed, by the definition of ¢(t) we have ¢(t) = o(1)
(as t — +0) and therefore we can choose g9 > 0 so that Mp(gp) < 1/2.
Then, by (5.5) we have

o0

D 10 uk] < Cu(t)* P x 2p(t) on (0,0) x Ds
k=0
for j=0,1,... ,m— 1.

Thus, we can easily conclude that the sum u = ) 7 uy is a solution of
(5.4) in A" (€0, 65 u(t)).
The uniqueness may be proved in the same way. [

COROLLARY TO LEMMA 9. Assume 1l < p <m, (5.1), (C1) and (C3),-
1). If u(t,x) belongs to Si(e,8;u(t)) and satisfies L(t,x,t0/0t)u(t,x) =
O(u(t)*) (ast — +0) uniformly on Ds for some a > p, then we have
u(t,z) € Sq—p(e, 6; pu(t)).

Now, we write
At = ({1 () ) - E s 0 (7)o

The equation (E) is then written as

(5.6) L(t,x,t%)u — R[u].

The following lemma is a consequence of our assumptions (C;), (Cz), and

(Ca)yp:

LEMMA 10. Assume (Ci), (Ca2)p, (Ca)p and let s > 0 be the one in
(C4)p. Then, if u(t,z) belongs to S,(e,6;u(t)) for some a > 0 we have
R[u](t,z) = O(u(t)®) (as t — +0) uniformly on Ds, for any b satisfying

0 <b<min{2a,a+p+s,m+p}

and any 61 with 0 < 01 < 6.
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PrOOF. Let u(t,z) € Su(e,6; u(t)) for some a > 0. Then we have

(5.7) max (t%)j (a%)au(t,x)] — O(u(t)?) (as t — +0)

lz[<61

for any (j,a) € I, and any 0 < 67 < 6.
By the Taylor expansion in Z we see

R[u] = F(t,z,0) + Z (Z—F(t,x,o)(t%y(%)au
See

#3of() (G) v () (5)'),

(7,0),(k,8)Elm

Thus, by applying (Ca)p, (C4)p and (5.7) we obtain
Ru] = O(u(t)™P) + O(u(t)PT*)O(u(t)®) + O(u(t)® x p(t)®)
which leads us to the conclusion of Lemma 10. (O

Finally, let us give a proof of Proposition 1 by using Corollary to Lemma
9 and Lemma 10.

PROOF OF PROPOSITION 1. Let u(t, x) be a solution of (E) belonging
to Sa(e, 0;u(t)) for some a > p. Let s > 0 be the one in (Cy),. Take a
sequence ag, a1, ... ,ay which satisfies the following;:
i) p<a=ap<a; <---<an=m;
ii) ait1+p <min{2a4,a; +p+s,m+p} (i=0,1,..., N—1).
Since ap = a, we have u € S, (g,0;(t)). Therefore, by Lemma 10
and the above condition ii) we have R[u] = O(u(t)**?) (as t — +0)
uniformly on Ds, for any 0 < §; < é. Since u is a solution of (5.6) we
see L(t,z,t0/0t)u = R[u] = O(u(t)"*?) (as t — +0) and therefore by
Corollary to Lemma 9 we obtain u € S, (g, 61; u(t)) for any 0 < 61 < 6.
By using Lemma 10 again to u € S, (¢, 61; u(t)) we have L(t,x,t0/0t)u
= R[u] = O(u(t)*>*?) (as t — 40) and hence by Corollary to Lemma 9
we obtain u € S,, (g, 61; u(t)) for any 0 < 61 < 6.
Thus, by repeating the same argument N-times we can conclude that
u(t,x) € Say(g,061;u(t)) holds for any 0 < 6; < é. Since ay = m, this
completes the proof of Proposition 1. [J
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6. Application

Lastly, let us apply Theorem 2 to the problem of removable singularities
of solutions of (E) (see also Tahara [5]).

Let t € C, 2 = (v1,...,20) € C", Z = {Zja}a)er, € CU™, let
F(t,x,Z) be a function in (¢, z,Z) and let us consider the following equa-
tion:

60 )= (05 () )

In this section we impose the following conditions on F(¢,z, Z):

(A1) F(t,z,Z) is a holomorphic function in a neighborhood of
(t,z,Z)=(0,0,0);
(A2) F(0,2,0) =0 near x = 0;
OF

(As) %(O,x,O) = 0 near z = 0, if |a| > 0.
Denote by Ai(z), ..., An(z) the roots of the equation in A:
oF ,
AT — ——(0,2,0)M =0.

j<m
For 6 > 0 we set
N(Xi;0) ={z € C"; |z| < and Re\;(z) < 0},

m
N, Ami8) = [ N(Ai; 6)
=1

and denote by NY(Aq,..., \y;6) the interior of N(Aq,. .., Am;d). Set:
(B) NO(A1,...,Am;68) # 0 holds for any sufficiently small § > 0.

Denote by R(C \ {0}) the universal covering space of C\ {0} and set:
Sp = {t € R(C\ {0}); |argt| < 0}, So(e) = {t € Sp; |t| < €}, and D, =
{z € C"; || < r}. For a weight function u(t) satisfying 1), p2), ps) we
impose another condition
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w*)  p(t+ct) =0(u(t)) (as t — +0) for some ¢ > 0.

THEOREM 4. Assume (Ay), (Az), (As) and (B). Then, if u(t,x) is a
solution of (6.1) holomorphic on Sy(e) x D, for some § >0, >0, r >0
and satisfying

(6.2) max |u(t,z)| = O (u(|t])™) (ast — 0 in Sp)

|z|<r

for some weight function p(t) with p*), u(t,z) is holomorphic in a full
neighborhood of (0,0) € C x C™.

REMARK 2. (1) Note that the condition (B) implies
(6.3) ReXi(0) <0 fori=1,...,m.

But, the converse is not true for m > 2 in general.

(2) When m = 1, (6.3) implies (B); in this case Theorem 4 is already
proved in Gérard-Tahara [1].

(3) The author believes that Theorem 4 is valid even if we replace
the condition (B) by (6.3). But, at present, he has no idea to prove this
conjecture in the case m > 2.

PROOF OF THEOREM 4. Assume (A;), (Az), (As) and (B). Then we
have (6.3) and therefore we know by [2] that the equation (6.1) has a unique
holomorphic solution ug (¢, ) in a neighborhood of (0,0) € Cx C™ satisfying
uo(0,z) = 0. Note that t'/™ is a weight function and that

(6.4) uo(t, z) € Sp(er, 15t"™)
for some €1 > 0 and 6; > 0.

Let u(t,z) be a holomorphic solution of (6.1) on Sy(e) x Ds for some
0>0,e>0,06>0, and assume

(6.5) lu(t,z)| < Ap(|t))™ on Sy(e) x Ds

for some constant A > 0 and some weight function p(t) with x*). Our aim is
to prove that u(t, z) is holomorphic in a full neighborhood of (0,0) € CxC".
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We may assume 0 < 6 < 7/2, let ¢ > 0 be the constant in p*), take
r > 0 sufficiently small so that » < min{sin6, ¢}, and put Tp = /(1 + r).
Then, for any real number ¢t € (0,7y) we have {T € C; |1 —t| = rt} C Sy(e)
and by Cauchy’s integral formula we see that

oFu k! u(T, )
—(t,x) = —_—
otk 217/ =1 Jjr—tj=pe (7 — )R F

for any k € N. Hence, by (6.5) and (6.6) we obtain

dr

(6.6)

!

oF k!
- < S Ap(t+ 1) = O(u(t)™) (as t — +0);

this implies
(6.7) u(t,z) € Sp(e, 65 u(t)).

Now, put
polt) = 147+ p(0);

then po(t) is a weight function. It is easy to see that the equation (6.1) sat-
isfies (C1) and (Cs), with p =m and pu(t) = po(t). Moreover, by (6.4) and
(6.7) we know that ug(t,z) and u(t, z) belong to the class Sy, (g0, do; o (t))
for some g9 > 0 and 69 > 0. Thus, if the condition (2.1) is valid we can
apply Theorem 2 to this case.

By the condition (B) we can take 2* € N°(\y, -+, Am;60). Then, in a
neighborhood of z* we have

ReXi(z) <0 fori=1,...,m

and hence by applying Theorem 2 we obtain the result that uy(¢, z) = u(t, x)
on {(t,x) e RxC";0<t<T) and |x —z*| < 71} for some 77 > 0 and
r1 > 0. Since ug(t,z) is a holomorphic function in a full neighborhood
of (0,0) € C x C™, by the unique continuation property of holomorphic
functions we can conclude that u(t, x) is holomorphic in a full neighborhood
of (0,0) € C x C". This completes the proof of Theorem 4. [J

The following lemma gives a sufficient condition for the condition p*).
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LEMMA 11. If a weight function pu(t) satisfies u(t) € C1((0,7T)) and
(tdu/dt)(t) = O(u(t)) (ast — +0), then u(t) satisfies the condition p*).

PROOF. By the condition tu,(t) = O(u(t)) (ast — +0) we have
tuy(t) < Ap(t) for some A > 0. Then, if we take a ¢ > 0 such that
cA < 1 holds, the condition p*) is verified in the following way.

For t > 0 and 0 < 0 < ¢ we have

py(t+t0) t < (tpy)(t+t0) < Ap(t +t0) < Ap(t + ct)

and therefore
w(t + ct) = p(t) +/ wi(t + )t do
0

< pu(t) + /OC Ap(t 4+ ct)do

= u(t) + cAu(t + ct).

Since cA < 1 is assumed we obtain

1
t t) < t).
pt+et) < ——u(t)
This implies the condition p*). OJ
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