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Uniqueness of Weak Solutions to

the Phase-Field Model with Memory

By Pierluigi Colli and Philippe Laurençot

Abstract. The paper deals with a phase-field model based on the
Gurtin-Pipkin heat flux law. A Volterra integrodifferential equation
is coupled with a nonlinear parabolic equation in the resulting sys-
tem, associated with a set of initial and Neumann boundary conditions.
Uniqueness of the solution is proved when the convolution kernel is just
supposed to be of positive type. Some regularity results are also derived.

1. Introduction

This note is concerned with a general version of the standard phase-field

model for diffusive phase transitions (see e.g. [4, 10, 11]) in presence of

memory effects for the heat flux. The related system of partial differen-

tial equations has been already discussed and investigated in some recent

papers, among which we refer at once to [1] and [6] for a more detailed

presentation of the physical model.

Letting ϑ denote the temperature and χ stand for a non-conserved or-

der parameter, in this approach the classical Fourier law q = −k0 ∇ϑ (k0

constant) is replaced by the following nonlocal condition

(1.1) q(x, t) = −
∫ t

−∞
k(t− s) ∇ϑ(x, s) ds,

for a kernel k : (0,+∞) → R of positive type. Then, assuming that the

past evolution of ϑ is a known function ϑP up to t = 0,

(1.2) ϑ = ϑP in Ω × (−∞, 0),
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the initial and boundary value problem under consideration reads

χt − ∆χ+ β(χ) � −σ′(χ) + λ′(χ)ϑ in Q := Ω × (0,+∞),(1.3)

(ϑ+ λ(χ))t − ∆(k ∗ ϑ) = g in Q,(1.4)

∂χ

∂n
=
∂(k ∗ ϑ)

∂n
= 0 on Σ := Γ × (0,+∞),(1.5)

χ(0) = χ0, ϑ(0) = ϑ0 in Ω,(1.6)

where ∗ defines the usual convolution product with respect to time over

(0, t),

(k ∗ ϑ)(x, t) =

∫ t

0
k(t− s) ϑ(x, s) ds, (x, t) ∈ Q,

and ∂/∂n represents the outward normal derivative.

From the previous analyses (cf. [1,5–9]) it remained unsolved the ques-

tion of uniqueness for weak solutions to (1.3)-(1.6). In fact, the issue was

only addressed and handled in special cases or under rather technical as-

sumptions on k. Closing the related gap is the aim of this paper. Moreover,

we provide a uniqueness proof which is very general since it also works for

any maximal monotone graph β : R → 2R and for quadratic nonlinearities

λ and σ. Thus, from the modelling viewpoint we cover not only the case of

solid-liquid phase transitions but we deal with ferromagnetic transforma-

tions [11] as well.

Now, let us specify the setting for (1.3)-(1.6). Here, Ω is a bounded

and connected open subset of R
3 with smooth boundary Γ and the data

β, σ, λ, k, χ0, ϑ0, g are supposed to fulfil the following requirements.

(1.7)




β is a maximal monotone graph in R
2 with domain

D(β) such that int(D(β)) is nonempty and 0 ∈ β(0).

We denote by β̂ a proper convex lower semicontinuous

function such that β = ∂β̂.

(1.8) σ , λ ∈ C2(R) with σ′′ , λ′′ ∈ L∞(R).

(1.9) The function β̂ + σ is nonnegative.
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(1.10)



k ∈ L1(0, T ) for each T ∈ (0,+∞) and

k is of positive type, i.e.∫ T

0
(v(t), (k ∗ v)(t)) dt ≥ 0, ∀ v ∈ L2(0, T ), ∀ T ∈ (0,+∞).

(1.11) χ0 ∈ H1(Ω), β̂(χ0) ∈ L1(Ω), ϑ0 ∈ L2(Ω).

(1.12) g ∈ L1(0, T ;L2(Ω)) for each T ∈ (0,+∞).

Concerning g, we point out that the right hand side g of (1.4) collects the

two contributions of the heat supply and of the past history of ϑ (up to

t = 0) via the term (cf. (1.2))

∫ 0

−∞
k(t− s) ∆ϑP (x, s) ds, (x, t) ∈ Ω × (0,+∞).

In fact, equation (1.4) reflects the balance of internal energy, where the heat

flux is taken as in (1.1) following the linearized version of the Gurtin-Pipkin

constitutive assumption (for a comparative discussion on heat flux laws we

refer to the full review done in [12] and [13]). On the other hand, the

inclusion in (1.3) describes the phase dynamics according to the Ginzburg-

Landau theory of phase transitions. Actually, (1.3) is derived from the free

energy expression, whose volumetric part reads

− ϑ log ϑ+ ϑβ̂(χ) + ϑσ(χ) + λ(χ),

by invoking the second law of thermodynamics and making a first order

approximation around a critical temperature.

As far as we know, the first existence result for (1.3)-(1.6) has been

reported in [1]. Making use of semigroup techniques, the authors of [1]

treated the particular situation when (β + σ′)(χ) = χ3 − χ and λ′ is a con-

stant function, dealing with Dirichlet boundary conditions in place of (1.5).

Uniqueness results are also obtained in [1] under the additional restriction

that k is a nonnegative, decreasing, and convex function. On the other

hand, in the case when the kernel k is smooth, strong and weak solutions
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to (1.3)-(1.6) are shown to exist and depend continuously on the data in

[6] and [7], provided the function λ is either Lipschitz continuous or linear

(i.e., λ′ =const.). Finally, letting k just be of positive type, existence of

weak solutions to (1.3)-(1.6) is proved in [9] for the general framework fixed

by (1.7)-(1.12).

The purpose of this paper is to supplement the abovementioned exis-

tence theory with some further regularity and uniqueness properties of the

solution (χ, ϑ) to (1.3)-(1.6) (see Theorem 2.2 below). The class of non-

linearities {β, σ, λ} allowed is thus wider than the one considered in [1],

and, since λ may have quadratic growth, our results also extend those of [6]

and [7] along the direction of kernels of positive type. Moreover, we believe

that a variation of our argument can be applied to the case of zero time

relaxation (that is, when the term χt is missing in (1.3)) under suitable as-

sumption on the function λ. In this regard, the possible open investigation

would complement the result of [5] and [8].

The note is structured as follows. Next section is spent in giving the

notation, notion of weak solution, and statement of our uniqueness result.

In Section 3 we comment on the actual regularity of solutions in the frame-

work of a bounded initial datum χ0. Finally, Section 4 is devoted to the

uniqueness proof.

2. Main result

We first set some notation and specify the definition of weak solutions

to (1.3)-(1.6) used hereafter. We put

H = L2(Ω), V = H1(Ω), W =

{
v ∈ H2(Ω),

∂v

∂n
= 0 on Γ

}
,

identify H with its dual space H ′, and observe that W ⊂ V ⊂ H ⊂ V ′ ⊂W ′

with dense and compact injections. Also, we denote by � · , · � the duality

pairing between W ′ and W and by < · , · > the duality pairing between V ′

and V . Moreover, ( · , ·) stands for the usual scalar product in H.

Definition 2.1. A solution to (1.3)-(1.6) is a set of functions (χ, ξ, ϑ)
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such that, for each T ∈ (0,+∞),

χ ∈W 1,2(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W 2,3/2(Ω)),(2.1)

ϑ ∈ C([0, T ];W ′) ∩ L∞(0, T ;H)
(
⊂ C([0, T ];V ′)

)
,(2.2)

ϑt − g ∈ L2(0, T ;W ′), k ∗ ϑ ∈ C([0, T ];H),(2.3)

ξ ∈ L2(0, T ;L3/2(Ω)),(2.4)

and

(2.5) χt − ∆χ+ ξ + σ′(χ) = λ′(χ) ϑ a.e. in Ω × (0, T ),

(2.6) � (ϑ+ λ(χ))t (t), v � −
∫

Ω
(k ∗ ϑ)(t) ∆v dx =

∫
Ω
g(t) v dx,

for all v ∈W and almost every t ∈ (0, T ),

(2.7) ξ ∈ β(χ) a.e. in Ω × (0, T ),

(2.8)
∂χ

∂n
= 0 a.e. on Γ × (0, T ),

(2.9) χ(0) = χ0 in H, ϑ(0) = ϑ0 in W ′.

We may now state our result.

Theorem 2.2. Assume that (1.7)-(1.12) are fulfilled and that

(2.10) χ0 ∈ L∞(Ω).

Then there is a unique solution (χ, ξ, ϑ) to (1.3)-(1.6) (in the sense of

Definition 2.1). In addition, for each T ∈ (0,+∞) there holds

χ ∈ L∞(Ω × (0, T )) ∩ L2(0, T ;W ), ξ ∈ L2(0, T ;H),(2.11)

ϑ ∈ C([0, T ];H).(2.12)
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Under the only assumptions (1.7)-(1.12), existence of triplets (χ, ξ, ϑ)

solving (2.1)-(2.9) is provided by [9, Theorem 2.3 (i)]. In Section 3, we

prove that all these solutions to (1.3)-(1.6) enjoy the regularity properties

(2.11)-(2.12) as soon as χ0 satisfies (2.10). In the final section we verify

that the solutions are at most one.

Remark 2.3. Let us point out that condition (2.10) is ensured by

(1.11) and (1.7) whenever D(β) is bounded. Actually, the boundedness of

D(β) occurs in some typical examples for phase-field models. For instance,

one can think of β coinciding with the subdifferential of the indicator func-

tion of the interval [0, 1],

β(χ) =




(−∞, 0] if χ = 0

0 if 0 < χ < 1

[0,+∞) if χ = 1

∅ otherwise

,

if χ represents a phase fraction in a two-phase system, or one may consider

the case of the logarithmic potential β̂(χ) = χ logχ+ (1 − χ) log(1 − χ) as

in the Ising model for (solid-solid) martensitic phase transitions.

From now on, we assume that (β, σ, λ, k) are fixed and fulfil (1.7)-(1.10).

We also put

(2.13) K(t) =

∫ t

0
k(s) ds, t ∈ [0,+∞),

and note that K ∈W 1,1(0, T ) for each T > 0, with K ′ = k of positive type.

Let A denote the operator

(2.14) < Av1, v2 >:=

∫
Ω
∇v1 · ∇v2 dx, v1, v2 ∈ V,

which extends −∆ with homogeneous Neumann boundary conditions to

elements of V . One easily sees that A is linear, densely defined and un-

bounded from V ′ to V ′ (and from H to H as well) with D(A) = V (resp.
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D(A) = W ), being selfadjoint and positive semidefinite too. Then, owing

to [15, Corollary 1.2], we infer that the scalar Volterra equation

(2.15) y(t) +A(K ∗ y)(t) = z(t), t ∈ (0,+∞),

with datum z ∈ C([0,+∞);V ′) and solution y ∈ C([0,+∞);V ′), admits a

resolvent S(t) in V ′ according to [15, Definition 1.3]. That is, there exists

a family {S(t)}t≥0 ⊂ L(V ′) of bounded linear operators on V ′ such that

S(t) is continuous on [0,+∞), S(0) = I, S(t)D(A) ⊂ D(A) and AS(t)x =

S(t)Ax for all x ∈ D(A) and any t ≥ 0, and finally ‖S(t)‖L(V ′) ≤ 1.

In the sequel, we let C denote a positive constant that may depend on

Ω and vary from line to line. In carrying out the proof, we use the fol-

lowing Gagliardo-Nirenberg inequality (recall that Ω is a three-dimensional

domain)

|v|Lp(Ω) ≤ C |v|ηH |v|1−η
V ∀ v ∈ V,(2.16)

for p ∈ [2, 6] and
1

p
=
η

2
+

1 − η

6
,

and the Young theorem

|a ∗ b|Lr(0,T ;X) ≤ |a|Lp(0,T ) |b|Lq(0,T ;X)(2.17)

∀ a ∈ Lp(0, T ), ∀ b ∈ Lq(0, T ;X),

where 1 ≤ p, q, r ≤ ∞, r−1 = p−1 +q−1−1, and X is a real Banach space.

Besides, we notice that the same symbol | · |X is employed for the norm in

the space of scalar functions and for the norm in the space of corresponding

vectors in X3.

3. Improved regularity

Let (χ, ξ, ϑ) be a solution to (1.3)-(1.6) in the sense of Definition 2.1.

Assuming that (1.11) and (2.10) hold throughout the Section, we start by

proving that χ is uniformly bounded in Ω × (0, T ) for any T > 0.

Lemma 3.1. For each T > 0, there holds

(3.1) χ ∈ L∞(Ω × (0, T )).
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Proof. Let T > 0 and put F = χ− σ′(χ) + λ′(χ)ϑ. In view of (2.1),

(2.2), (1.8), and of the continuous embedding V ⊂ L6(Ω), it is not difficult

to check that

(3.2) F ∈ L∞(0, T ;L3/2(Ω)).

Now, the first step consists in adding χ to both sides of (2.5), multiplying

by χ7, and integrating by parts over Ω. Obviously, in the framework of (2.1)

this is only a formal computation, but it can be made rigorous by taking a

sequence of bounded real functions approximating r �→ r7, for instance. Let

us proceed formally. Note that ξχ7 ≥ 0 due to (2.7) and 0 ∈ β(0). Hence,

the Hölder inequality and (2.16) enable us to obtain

1

8

d

dt

∣∣χ4(t)
∣∣2
H

+
7

16

∣∣χ4(t)
∣∣2
V
≤ C |F (t)|L3/2(Ω)

∣∣χ4(t)
∣∣1/8
H

∣∣χ4(t)
∣∣13/8

V

and consequently, by the Young inequality,

d

dt

∣∣χ4(t)
∣∣2
H

≤ C |F (t)|16/3

L3/2(Ω)

∣∣χ4(t)
∣∣2/3
H

≤
∣∣χ4(t)

∣∣2
H

+ C |F (t)|8L3/2(Ω)

for a.a. t ∈ (0, T ). Then, we integrate from 0 to some t ∈ (0, T ), observing

that χ0 ∈ L8(Ω) because of (2.10). On account of (3.2), an application

of the Gronwall lemma yields χ ∈ L∞(0, T ;L8(Ω)), whence we are able to

improve the regularity of F up to

(3.3) F ∈ L∞(0, T ;L8/5(Ω)).

Summing up, from (2.5) and (2.7)-(2.9) it follows that χ solves the problem

χt + χ− ∆χ+ β(χ) � F a.e. in Ω × (0, T ),

∂χ

∂n
= 0 a.e. on Γ × (0, T ),

χ(0) = χ0 a.e. in Ω,

with χ0 ∈ L∞(Ω), χ ∈ L∞(0, T ;L1(Ω)) and F ∈ L∞(0, T ;L8/5(Ω)) (cf.

(2.10), (2.1) and (3.3)). At this point, to achieve (3.1) it suffices to exploit

the lemma stated just below. �
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Lemma 3.2. Let Ω be a bounded domain of R
3 with smooth boundary Γ

and let γ be a maximal monotone graph in R
2 such that 0 ∈ γ(0). Consider

z0 ∈ L∞(Ω), f ∈ L∞(0, T ;Lq(Ω)), q ∈ [1,∞] and denote by z the solution

to
zt − ∆z + z + γ(z) � f a.e. in Ω × (0, T ),

∂z

∂n
= 0 a.e. on Γ × (0, T ),

z(0) = z0 a.e. in Ω.

If z ∈ L∞(0, T ;L1(Ω)) and q > 3/2, then z ∈ L∞(Ω × (0, T )).

Proof. It relies on a Moser iteration technique and can be adapted

from that of [14, Part I, Lemma 6.6] with minor changes. �

As a consequence of (3.1), we obtain some more regularity properties for
χ and λ(χ) (the latter will play an important role in the proof of (2.12)).

Lemma 3.3. For each T > 0, there holds

(3.4) χ ∈ L2(0, T ;W ), ξ ∈ L2(0, T ;H),

(3.5) λ(χ) ∈ C([0, T ];H) ∩ L∞(0, T ;V ) ∩ L1(0, T ;W ).

Proof. Let T > 0. For almost any t ∈ (0, T ), χ(t) is a solution to

χ(t) − ∆χ(t) + ξ(t) = F(t) a.e. in Ω,(3.6)

∂χ

∂n
(t) = 0 a.e. on Γ,(3.7)

where F(t) = χ(t)−σ′(χ(t))+λ′(χ(t))ϑ(t)−χt(t), due to (2.5) and (2.8). On

the one hand, thanks to (2.7) and (1.7), the use of a standard monotonicity

argument (see e.g. [3]) in (3.6)-(3.7) leads to the bound

(3.8) |ξ(t)|H ≤ |F(t)|H for a.a. t ∈ (0, T ),
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which in turn entails, together with (3.6)-(3.7) and classical elliptic esti-

mates,

(3.9) |χ(t)|W ≤ C |F(t)|H for a.a. t ∈ (0, T ).

On the other hand, from (2.1)-(2.2), (1.8), and (3.1) we infer that

(3.10) F ∈ L2(0, T ;H).

We then deduce (3.4) from (3.8)-(3.10). Finally, (3.5) is a consequence of

(2.1), (1.8), (3.1), (3.4), and of the continuous embedding W ⊂W 1,4(Ω). �

We are now ready to prove (2.12).

Lemma 3.4. There holds

(3.11) ϑ ∈ C([0,+∞);H).

Proof. Let T > 0. We put

G(x, t) =

∫ t

0
g(x, s) ds, (x, t) ∈ Ω × (0, T ),

and u = ϑ+λ(χ). Owing to (3.5), (2.2), (1.10) and the continuity of K (cf.

(1.10) and (2.13)), u enjoys the properties

(3.12) u ∈ C([0, T ];V ′) ∩ L∞(0, T ;H), K ∗ u ∈ C([0, T ];H).

For t ∈ [0, T ] and v ∈W, an integration of (2.6) over (0, t) yields∫
Ω
u(t)v dx =

∫
Ω
(K ∗ u)(t) ∆v dx(3.13)

+

∫
Ω

((u0 +G(t)) v − (K ∗ λ(χ)) (t) ∆v) dx,

where u0 := ϑ0 +λ(χ0). Observe that (3.13) holds for any t ∈ [0, T ], since u

is weakly continuous from [0, T ] to H. As K ∈ C([0, T ]), (3.5) ensures that

(3.14) K ∗ λ(χ) ∈ C([0, T ];W ).
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Setting G = (K ∗ u) + u0 + G − u − ∆ (K ∗ λ(χ)), with the help of (1.8),

(1.11)-(1.12), (3.12), and (3.14) we deduce that G belongs to L∞(0, T ;H).

In addition, for each t ∈ [0, T ] we have that (K ∗ u)(t) ∈ H and, by virtue

of (3.13),

∫
Ω
(K ∗ u)(t) (v − ∆v) dx =

∫
Ω
G(t) v dx ∀ v ∈W.

Consequently, one recovers K ∗ u ∈ L∞(0, T ;W ), and this and (3.12) yield

(3.15) K ∗ u ∈ C([0, T ];V ) ∩ L∞(0, T ;W ).

Thus, recalling (3.12) and (3.14)-(3.15), we may rewrite (3.13) as

(3.16) u(t) +A(K ∗ u)(t) = u0 +G(t) +A (K ∗ λ(χ)) (t)

in V ′, for each t ∈ [0, T ]. Being u ∈ C([0, T ];V ′) and K ∗ u ∈ C([0, T ];V ), it

turns out that u is a mild solution in V ′ of the Volterra equation (3.16), in

the sense of [15, Definition 1.1]. However, concerning the right hand side of

(3.16), on account of (1.8), (1.10)-(1.12), (2.17), (3.5), and (3.14) we realize

that

u0 +G+A (K ∗ λ(χ)) ∈ C([0, T ];H),

(u0 +G+A (K ∗ λ(χ)))t = g +A (k ∗ λ(χ)) ∈ L1(0, T ;H),

whence u0 +G+ A (K ∗ λ(χ)) ∈ W 1,1(0, T ;H). We then infer from (1.10)

and [15, Proposition 1.2 & Corollary 1.2] that (3.16) has a mild solution

ũ in H, which is also a mild solution to (3.16) in V ′. Uniqueness of mild

solutions (see [15, Proposition 1.2]) now implies that ũ = u. Therefore, we

conclude that u ∈ C([0, T ];H) and, in view of (3.5) too, we obtain (3.11). �

4. Uniqueness

Actually, we show a continuous dependence result. Let (χi, ξi, ϑi), i =

1, 2, be two solutions to (1.3)-(1.6) corresponding to the data (χ0i, ϑ0i, gi),

i = 1, 2. We put ui = ϑi + λ(χi), i = 1, 2, and

X = χ1 − χ2, Θ = ϑ1 − ϑ2, U = u1 − u2, h = g1 − g2.
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For a fixed T > 0, henceforth we denote by Ri, i ∈ N, positive constants

(possibly varying from line to line and) depending only on Ω, T , σ, λ,

|k|L1(0,T ), |χ01|L∞(Ω), |χ02|L∞(Ω), |χ1|L∞(Ω×(0,T )), |χ2|L∞(Ω×(0,T )),

|χ1|L2(0,T ;W ), |χ2|L2(0,T ;W ), |ϑ1|L∞(0,T ;H) and |ϑ2|L∞(0,T ;H). Observe that

all these quantities are finite thanks to (3.1), (3.4) and (2.2). We finally set

B(t) = |χ1(t)|2W for a.a. t ∈ (0, T ),

and note that B ∈ L1(0, T ) by (3.4).

From the previous section (cf. (3.16)) we already know that both u1 and

u2 are mild solutions in V ′ to the Volterra equation (2.15) with

z(t) = ui(0) +

∫ t

0
gi(s) ds+A (K ∗ λ(χi)) (t), t ∈ (0, T ),

for i = 1 and i = 2, respectively. We take the difference and exploit

the formula of variation of constants for Volterra equations (see e.g. [15,

Proposition 1.2]) in order to derive the equality

U(t) = S(t)U(0) +

∫ t

0
S(t− s) (h+A (k ∗ (λ(χ1) − λ(χ2)))) (s) ds

for all t ∈ [0, T ], where S(t) is the resolvent associated with A and discussed

below (2.15). Since ‖S(s)‖L(V ′) ≤ 1 for any s ∈ [0,+∞), for t ∈ (0, T ) we

deduce

|U(t)|V ′ ≤ |U(0)|V ′(4.1)

+

∫ t

0
(|h(s)|V ′ + |A (k ∗ (λ(χ1) − λ(χ2))) (s)|V ′) ds.

We may estimate the last term of the right hand side of (4.1) as follows. Us-

ing (2.16)-(2.17) and the continuous embedding W ⊂W 1,6(Ω) it is straight-
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forward to verify that

∫ t

0
|A (k ∗ (λ(χ1) − λ(χ2))) (s)|V ′ ds

≤ |k|L1(0,t)

∫ t

0
|∇(λ(χ1) − λ(χ2))(s)|H ds

≤ R1

∫ t

0

(
|∇χ1(s)|L6(Ω) |X (s)|L3(Ω) + |λ′(χ2)(s)|L∞(Ω) |∇X (s)|H

)
ds

≤ R1

∫ t

0

(
B(s)1/2 |X (s)|1/2H |X (s)|1/2V + |X (s)|V

)
ds

≤ R1

∫ t

0
(|X (s)|V +B(s) |X (s)|H) ds.

Hence, we have

|U(t)|V ′ ≤ |U(0)|V ′ +R1

∫ t

0
(|h(s)|V ′ + |X (s)|V +B(s) |X (s)|H) ds

and, thanks to (3.4) and the Hölder inequality,

|U(t)|2V ′ ≤ 2 |U(0)|2V ′ +R1 |h|2L1(0,t;V ′)

+R1

(∫ t

0
|X (s)|2V ds+ |B|L1(0,T )

∫ t

0
B(s) |X (s)|2H ds

)
,

that is,

|U(t)|2V ′ ≤ 2 |U(0)|2V ′(4.2)

+R2

(
|h|2L1(0,t;V ′) +

∫ t

0

(
|X (s)|2V +B(s) |X (s)|2H

)
ds

)
.

Next, subtract the equations (2.5) satisfied by χ1 and χ2 and take the

scalar product in L2(Ω × (0, t)) of the resulting identity with X . Due to

(1.7), (1.8), and (2.7), we easily obtain

|X (t)|2H +

∫ t

0
|∇X (s)|2H ds ≤ |X (0)|2H +R3

∫ t

0
|X (s)|2H ds(4.3)

+ I1(t) + I2(t),
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where

I1(t) :=

∫ t

0

∫
Ω

∣∣λ′(χ1) (ϑ1 − ϑ2)X
∣∣ dxds,

I2(t) :=

∫ t

0

∫
Ω

∣∣ϑ2

(
λ′(χ1) − λ′(χ2)

)
X
∣∣ dxds,

for all t ∈ [0, T ]. To handle I1, note that (1.8), (2.16), (3.1), the continuous

embedding W ⊂W 1,6(Ω), and the Young inequality allow us to achieve

I1(t) ≤
∫ t

0
|Θ(s)|V ′

∣∣(λ′(χ1)X )(s)
∣∣
V
ds

≤ R4

∫ t

0
|Θ(s)|V ′

(
|λ′(χ1)(s)|L∞(Ω) |X (s)|V

+|(λ′′(χ1)X ∇χ1)(s)|H
)
ds

≤ R4

∫ t

0
|Θ(s)|V ′

(
|X (s)|V + |λ′′|L∞(R) |∇χ1(s)|L6(Ω) |X (s)|L3(Ω)

)
ds

≤ R4

∫ t

0
|Θ(s)|V ′

(
|X (s)|V +B(s)1/2 |X (s)|1/2H |X (s)|1/2V

)
ds

≤ R4

(∫ t

0
|Θ(s)|V ′ |X (s)|V ds

+

∫ t

0
B(s) |Θ(s)|2V ′ ds+

∫ t

0
|X (s)|H |X (s)|V ds

)

≤ 1

4

∫ t

0
|∇X (s)|2H ds

+R5

∫ t

0

(
|Θ(s)|2V ′ +B(s) |Θ(s)|2V ′ + |X (s)|2H

)
ds.

Thus, in virtue of the simple remark

(4.4) |Θ(s)|V ′ ≤ |U(s)|V ′ +R6 |X (s)|H ∀ s ∈ [0, T ],

it turns out that

I1(t) ≤
1

4

∫ t

0
|∇X (s)|2H ds(4.5)

+R7

∫ t

0
(1 +B(s))

(
|U(s)|2V ′ + |X (s)|2H

)
ds.
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Concerning I2, from (1.8), (2.2), (2.16), and the Young inequality we infer

that

I2(t) ≤ R8

∫ t

0
|ϑ2(s)|H |X (s)|2L4(Ω) ds(4.6)

≤ R8

∫ t

0
|X (s)|1/2H |X (s)|3/2V ds

≤ 1

4

∫ t

0
|∇X (s)|2H ds+R9

∫ t

0
|X (s)|2H ds.

Combining (4.3) and (4.5)-(4.6) yields

|X (t)|2H +
1

2

∫ t

0
|∇X (s)|2H ds(4.7)

≤ |X (0)|2H +R10

∫ t

0
(1 +B(s))

(
|U(s)|2V ′ + |X (s)|2H

)
ds.

We now multiply (4.2) by 1/(4R2) and add the result to (4.7). Setting

Ψ(t) = |X (t)|2H +
1

4R2
|U(t)|2V ′ +

1

4

∫ t

0
|∇X (s)|2H ds,

we obtain

Ψ(t) ≤ R11

(
Ψ(0) + |h|2L1(0,t;V ′) +

∫ t

0
(1 +B(s)) Ψ(s) ds

)
∀ t ∈ [0, T ].

Since B ∈ L1(0, T ), the Gronwall lemma and (3.4) entail

Ψ(t) ≤ R12

(
Ψ(0) + |h|2L1(0,t;V ′)

)
∀ t ∈ [0, T ].

Therefore, recalling (4.4) and noting that

Ψ(0) ≤ R13

(
|Θ(0)|2V ′ + |X (0)|2H

)
,

we have deduced the following result.
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Proposition 4.1. Assume that (1.7)-(1.10) are satisfied and let

{χ0i, ϑ0i, gi}, i = 1, 2, be two sets of data fulfilling (1.11)-(1.12) and (2.10).

Denote by (χi, ξi, ϑi), i = 1, 2, two corresponding solutions to (1.3)-(1.6)

(in the sense of Definition 2.1). Then, for each T > 0, there is a constant

R0(T ) depending only on Ω, T , σ, λ, |k|L1(0,T ), |χ01|L∞(Ω), |χ02|L∞(Ω),

|χ1|L∞(Ω×(0,T )), |χ2|L∞(Ω×(0,T )), |χ1|L2(0,T ;W ), |χ2|L2(0,T ;W ), |ϑ1|L∞(0,T ;H)

and |ϑ2|L∞(0,T ;H) such that

|ϑ1 − ϑ2|C([0,T ];V ′) + |χ1 − χ2|C([0,T ];H) + |χ1 − χ2|L2(0,T ;V )(4.8)

≤ R0(T )
(
|ϑ01 − ϑ02|V ′ + |χ01 − χ02|H + |g1 − g2|L1(0,T ;V ′)

)
.

The uniqueness statement in Theorem 2.2 is then a straightforward con-

sequence of Proposition 4.1.

Remark 4.2. One can easily check that Theorem 2.2 and Proposi-

tion 4.1 still hold for one-dimensional and bi-dimensional domains Ω, with

minor efforts. In this case, the Gagliardo-Nirenberg inequality (2.16) must

be adapted to the dimension of the space. However, computations are easier

and, for instance, if Ω ⊂ R then (2.10) is ensured by (1.11).

Remark 4.3. In the case when the function λ is Lipschitz continuous

(which includes various physically interesting examples), the arguments of

this paper can be reproduced almost exactly without using the assumption

(2.10). In particular, the conclusions of Theorem 2.2 are still valid pro-

vided (2.11) is replaced by (3.4), and the constant R0(T ) in (4.8) depends

only on Ω, T , σ, λ, |k|L1(0,T ), |χ1|L2(0,T ;W ), |χ2|L2(0,T ;W ), |ϑ1|L∞(0,T ;H) and

|ϑ2|L∞(0,T ;H). In this respect, the above proofs complemented with those

of [9] (in which the existence part of Theorem 2.2 is proved) turn out to

provide an actual improvement of the results of [6] and [7].
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