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Actions of Loop Groups on the Space of Harmonic

Maps into Reductive Homogeneous Spaces

By Masanori Higaki

Abstract. In this paper we study special affine harmonic maps
into reductive homogeneous spaces and prove that there exist loop group
actions on such harmonic maps.

Introduction

M. A. Guest and Y. Ohnita [5] clearly described the loop group ac-

tions on harmonic maps from Riemann surfaces into compact Lie groups.

Later J. Dorfmeister, F. Pedit and H. Wu [4] generalized their result to

harmonic maps into symmetric spaces of compact type. F. E. Burstall and

F. Pedit [1],[2] still generalized this to the special harmonic maps into k-

symmetric space, the so-called primitive maps from Riemann surfaces into a

k-symmetric space G/K. They proved that any primitive map is harmonic

with respect to the metric induced from a positive definite Ad(G)-invariant

quadratic form on the Lie algebra g of G. They defined twisted loop group

actions on the space of primitive maps.

Generalizing the harmonic map equation between Riemannian mani-

folds, we define the affine harmonic map φ from a Riemannian manifold

(M,h) into an affine manifold (N,∇) by

Trh∇dφ = 0.

As a special case, we define the ∇-harmonic map φ from a Riemann surface

into an affine manifold (N,∇) by

∇′′∂φ = 0.

In this paper we study particularly the case where the target manifold is

a reductive homogeneous space G/H with the canonical connection ∇can.
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402 Masanori Higaki

We prove that any ∇can-harmonic map is harmonic with respect to the

invariant metric. Moreover we prove that there exist twisted loop group

actions on the space of special ∇can-harmonic maps from Riemann sur-

faces into reductive homogeneous spaces of compact type, generalizing the

primitive maps due to F. E. Burstall and F. Pedit.

In §1 we review the canonical connection ∇can on reductive homogeneous

spaces. In §2 we define the equation of ∇-harmonic map which is a special

class of maps from a Riemann surface Σ into an affine manifold (N,∇). In §3
we express the equation of ∇can-harmonic maps to a reductive homogeneous

space (G/H,∇can) in terms of a framing which is a map from Σ into G. In

§4 we define special ∇can-harmonic maps and reformulate the equation by

using the loop algebra. In §5 we prove the factorization theorem of loop

groups. In §6 we define the action of loop groups on the space of special

∇can-harmonic maps by using the factorization theorem in §5. In §7 we

give some examples.

Acknowledgements. The author would like to thank Prof. Takushiro

Ochiai for his useful suggestions and continuous encouragement. He is also

thankful to Dr. Fujioka and Dr. H. Hashiguchi for valuable discussions.

§1. Canonical connection on reductive homogeneous spaces

Let G be a Lie group and H a closed subgroup of G. Let g be the Lie

algebra of G, h the Lie algebra of H, and m an Ad(H)−invariant summand.

We define the G-invariant distribution Q(m) on G by the left translation

Lg, namely by

Q(m)g = (dLg)(m).

In the sequel we write Q for Q(m) for short.

The distribution Q(m) defines a G-invariant connection in the principal

bundle

π : G −→ G/H.

We identify the tangent space at x0 = eH of N = G/H with g/h by

[ξ] �−→ d

dt

∣∣∣∣
t=0

exp tξ · x0.
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This provides an isomorphism of the associated bundle G×H g/h with TN

by

[g, ξ] �−→ g∗

(
d

dt

∣∣∣∣
t=0

exp tξ · x0

)
=
d

dt

∣∣∣∣
t=0

exp tAdg ξ · x

where x = π(g). Since the homogeneous space N is reductive we can

identify G ×H g/h with G ×H m. On the other hand we have a natural

inclusion

G×H m −→ G×H g.

Moreover the associated bundle G ×H g is canonically identified with the

trivial bundle N × g via

[g, ξ] �−→ (π(g),Adg ξ).

Thus we have an identification of TN with a subbundle of N × g, which we

denote by

β : TN ↪→ N × g.

In particular we may view β as a g -valued 1-form on N .

If Xx = g∗
(

d
dt

∣∣
t=0

exp tξ · x0

)
(ξ ∈ m, π(g) = x) then we have

(1.1) βx(X) = Adg ξ

Using the covariant derivative in the associated bundle G×H m induced

by the connection Q in the principal bundle π : G −→ N , we define the

covariant derivative ∇ in the tangent bundle TN. The following lemma was

proved in Burstall and Rawnslay [3].

Lemma 1.1 [3].

β(∇XY ) = Xβ(Y ) − [β(X), β(Y )] X,Y ∈ Γ(TN)

Invariant connections on reductive homogeneous spaces was studied by

K. Nomizu [7].

Theorem 1.2 [7]. There exists a one-to-one correspondence between

the set of all invariant connections on a reductive homogeneous space G/H
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and the set of all bilinear functions γ on m×m with values in m which are

invariant by Ad(H). The correspondence is given by

γ(X,Y ) = (∇
X̃
Ỹ )x0

where

X̃x =
d

dt

∣∣∣∣
t=0

exp tAdg X · x,

Ỹx =
d

dt

∣∣∣∣
t=0

exp tAdg Y · x (X,Y ∈ m, π(g) = x).

Definition 1.3 [7]. The invariant connection defined by the zero func-

tion on m × m is called the canonical affine connection of the second kind

on a reductive homogeneous space G/H with respect to a fixed reductive

decomposition of the Lie algebra g = h ⊕ m.

Now we state the relationship between our connection and the canonical

connection of the second kind.

Proposition 1.4. The invariant connection defined by the distribution

Q(m) is the canonical affine connection of the second kind with respect to

the decomposition g = h ⊕ m.

Proof. We have

β(∇
X̃
Ỹ ) = X̃β(Ỹ ) − [β(X̃), β(Ỹ )]

by Lemma 1.1.

First we calculate the left-hand side at x0 ∈ N . By the definition of β

and γ

βx0(∇X̃
Ỹ ) = (∇

X̃
Ỹ )x0 = γ(X,Y ).
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Next, by the definition of our connection and (1.1), we have

(X̃β(Ỹ ))x0 = (π∗X̃
∗)x0β(Ỹ )

= X̃∗
g (β(Ỹ ) ◦ π)

= X̃∗
g (Adg Y )

=
d

dt

∣∣∣∣
t=0

{
(exp tAdg X)g · Y · g−1(exp(−tAdg X)

}
= (Adg X)g · Y · g−1 + g · Y · g−1(−Adg X)

= Adg[X,Y ]

and

[βx0(X̃), βx0(Ỹ )] = Adg[X,Y ].

So we have

(X̃β(Ỹ ))x0 − [βx0(X̃), βx0(Ỹ )] = 0. �

Let ∇ be the invariant connection on G/H determined by a bilinear

function α on m × m. Since the torsion tensor of ∇ is invariant by G, it is

determined by its value at x0 ∈ N , where the torsion tensor is given by

T (X̃, Ỹ ) = ∇
X̃
Ỹ −∇

Ỹ
X̃ − [X̃, Ỹ ].

Evaluating at x0, we obtain (1.2).

(1.2) T (X,Y ) = α(X,Y ) − α(Y,X) − [X,Y ]m (X,Y ∈ m)

Lemma 1.5. The torsion tensor of the canonical connection is given by

T (X,Y ) = −[X,Y ]m (X,Y ∈ m)

Now we give the formula for the Levi-Civita connection on G/H.

Definition 1.6 [7]. The invariant connection defined by the function

γ on m × m given by

γ(X,Y ) =
1

2
[X,Y ]m X,Y ∈ m,
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is called the canonical affine connection of the first kind on a reductive

homogeneous space G/H with respect to a fixed reductive decomposition

of the Lie algebra g = h ⊕ m.

Remark. From (1.2) the canonical affine connection of the first kind

is torsion free.

Theorem 1.7 [7]. Let G be a compact connected Lie group and H a

closed subgroup. Let B be a positive definite Ad(G)-invariant quadratic form

on the Lie algebra g and m be the subspace orthogonal to the subalgebra h

of H with respect to this form. Let g be the Riemannian metric on G/H

determined by the restriction of B to m×m. Then the Levi-Civita connection

∇g coincides with the canonical affine connection of the first kind.

From Definition 1.6 and Theorem 1.7 we immediately obtain the follow-

ing:

Corollary 1.8. Let g be as in Theorem 1.7. Then the Levi-Civita

connection ∇g is given by

β(∇g
XY ) = Xβ(Y ) − [β(X), β(Y )] +

1

2
P [β(X), β(Y )] X,Y ∈ Γ(TN)

where P denotes the projection onto the tangent bundle

P : N × g −→ G/H ×H m.

§2. Harmonic maps into reductive homogeneous spaces

A map φ : M −→ N between Riemannian manifolds is harmonic if it

extremizes the energy functional

E(φ) =

∫
D
|dφ|2 dvg

on all compact sub-domain D ⊂ M . The Euler-Lagrange equation of the

energy functional is given by

τ(φ) = Trace∇Ldφ



Actions of Loop Groups on the Space of Harmonic Maps 407

where ∇L is the connection in the vector bundle T ∗M ⊗ φ−1TN which is

induced by the Levi-Civita connection of M and N .

We generalize this equation for a map from a Riemannian manifold into

an affine manifold.

Definition 2.1. Let φ : (Mn, h) −→ (N,∇N ) be a smooth map from

a Riemannian manifold (Mn, h) into an affine manifold (N,∇N ). We call

φ an affine harmonic map if

n∑
i=1

∇dφ(ei, ei) = 0

where {ei}i=1,··· ,n is an orthonormal frame of TM .

Remark. This definition is independent of the choice of the framings.

Now we study the case where the domain manifold is a Riemannian

surface Σ and the target manifold is an affine manifold (N,∇N ). Let z =

x+ iy be an isothermal coordinate in the Riemannian surface Σ. Then by

the definition of the induced connection in T ∗M ⊗ φ−1TN

∇dφ
(
∂

∂z̄
,
∂

∂z

)
= ∇ ∂

∂z̄
dφ

(
∂

∂z

)
− dφ

(
∇Σ

∂
∂z̄

∂

∂z

)

= ∇ ∂
∂z̄
dφ

(
∂

∂z

)

where ∇Σ is the Levi-Civita connection of Σ and ∇ the induced connection

by ∇Σ and ∇N .

The equation

∇ ∂
∂z̄
dφ

(
∂

∂z

)
= 0

is well-defined. We express this equation by

∇′′∂φ = 0.

Definition 2.2. Let φ : Σ −→ N be a smooth map from a Riemannian

surface Σ into an affine manifold (N,∇N ). We call φ a ∇N -harmonic map

if

(2.1) ∇′′∂φ = 0
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Remark. Any ∇N -harmonic map is an affine harmonic map.

If the connection in the target space ∇N is torsion free then ∇dφ is

symmetric. So we have the following remark.

Remark. Let N be a Riemannian manifold and ∇L be the Levi-Civita

connection. Then φ is a ∇L-harmonic map if and only if φ is a harmonic

map.

In connection with this remark, we study the case where the target

manifold is a reductive homogeneous space.

Proposition 2.3. Let ∇can be the canonical connection on a reductive

homogeneous space G/H and g a Riemannian metric on G/H induced from

an invariant metric on the Lie algebra g. Then any ∇can-harmonic map

φ : Σ −→ G/H is a harmonic map into (G/H, g).

Proof. From Corollary 1.8 we have

β(Tr∇gdφ) = β(Tr∇candφ). �

§3. Framings of ∇can-harmonic maps into reductive

homogeneous spaces

Now we study a smooth map φ : Σ −→ G/H from a Riemannian surface

into a reductive homogeneous space G/H, associated with the reductive

decomposition

(3.1) g = h ⊕ m

A framing of φ is a map F : Σ −→ G satisfying π ◦ F = φ where π : G −→
G/H is the coset projection, which exists on a contractible domain. Now

we set

α = F−1dF,

and decompose it into

α = αh + αm

according to (3.1).
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Let θ : TG −→ g be the left Maurer-Cartan form of G. Then with

respect to (3.1) we can decompose θ as

θ = θh + θm.

We have defined g-valued 1-form β on a reductive homogeneous space N in

§1. The m-valued 1-form θm on G is related to β by

(3.2) (π∗β)g = Adg(θm)g.

From this we have the relation between the 1-forms α and β

(3.3) φ∗β = AdFαm.

Proposition 3.1. Let φ : Σ −→ (G/H,∇can) be a smooth map and

F : Σ −→ G a framing of φ. Set α = F−1dF . A map φ satisfies

(∇can)′′∂φ = 0

if and only if

(3.4) ∂̄α′
m + [αh ∧ α′

m] = 0

where α′
m is the (1,0)-part of αm.

Proof. By Lemma 1.1, we have

β((∇can)′′∂φ) = ∂̄β(∂φ) − [(φ∗β)′′ ∧ β(∂φ)].

By (3.3), we have

β(∂φ) = (φ∗β)′ = AdFα′
m,

and hence

∂̄β(∂φ) = ∂̄(AdFα′
m)

= AdF{∂̄α′
m + [α′′ ∧ α′

m]}
= AdF{∂̄α′

m + [α′′
h ∧ α′

m] + [α′′
m ∧ α′

m]}
= AdF{∂̄α′

m + [αh ∧ α′
m] + [α′′

m ∧ α′
m]}.
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Moreover we have

[(φ∗β)′′ ∧ β(∂φ)] = [(AdFα′′
m) ∧ (AdFα′

m)]

= AdF [α′′
m ∧ α′

m].

Consequently

β((∇can)′′∂φ) = AdF{∂̄α′
m + [αh ∧ α′

m]}. �

On the other hand, we have the Maurer-Cartan equation

dα+
1

2
[α ∧ α] = 0

which is the integrable condition of α. Namely if a g-valued 1-form α on

a Riemannian surface Σ satisfies the above equation and Σ is contractible,

then there exists uniquely a map

F : Σ −→ G

up to the left G-transformations such that

α = F−1dF.

Moreover if α satisfies the equation (3.4) then

φ = π ◦ F : Σ −→ G/H

is a ∇can-harmonic map.
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§4. ω-maps and extended framings

Let G be a compact semisimple Lie group and g the Lie algebra of G.

Let τ be an automorphism of the Lie group G. The differential of τ , which

we denote by the same notation τ , induces a direct sum decomposition of

the complex Lie algebra gC

g
C =

∑
ω:eigenvalue of τ

g
(ω)

where g(ω) is the ω-eigenspace of τ . Since the Lie algebra automorphism τ

preserves the Killing form of g, the eigenvalues of τ are elements of S1 =

{z ∈ C; |z| = 1}. Then we have

(4.1) g(ω) = g
(ω).

We define the subalgebra h of g by

h
C = g

(1)

and m ⊂ g by

m
C =

∑
ω:eigenvalue of τ, ω �=1

g
(ω).

Then we have a reductive decomposition

g = h ⊕ m.

Letting H be the Lie group corresponding to the Lie algebra h, we have a

reductive homogeneous space

G/H.

Next we define an ω-map φ : Σ −→ G/H where Σ is a Riemannian

surface. Let F be a framing of φ. Setting α = F−1dF , we decompose α

into h and m-part

α = αh + αm

and αm into (1,0) and (0,1)-form

αm = α′
m + α′′

m.
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Definition 4.1. Let ω be a non-real eigenvalue of τ . A map φ : Σ −→
G/H is defined to be an ω-map if α′′

m is g(ω)-valued.

Remark. The above definition is independent of the choice of the

framings.

Now let us fix any ω-map φ : Σ −→ G/H, and take a framing F and let

α = F−1dF as above. Since α′′
m is a g(ω)-valued 1-form, α′

m is a g(ω)-valued

1-form by (4.1). So [α′
m ∧ α′′

m] is h-valued. Namely

[α′
m ∧ α′′

m]m = 0.

We decompose the integrability condition

dα+
1

2
[α ∧ α] = 0

into g(ω), g(ω) and h-parts

∂̄α′
m + [αh ∧ α′

m] = 0(4.2)

∂α′′
m + [αh ∧ α′′

m] = 0

dαh +
1

2
[αh ∧ αh] + [α′

m ∧ α′′
m] = 0.

Thus we obtain the following lemma from (4.2) and (3.4).

Lemma 4.2. Any ω-map is a ∇can-harmonic map.

Now we define a family of gC-valued 1-form on the Riemannian surface

Σ by

αλ = λ−1α′
m + αh + λα′′

m (λ ∈ C∗).

We observe that (4.2) is equivalent to

dαλ +
1

2
[αλ ∧ αλ] = 0 for any λ ∈ C∗.

We obtain the unique map

Fλ : Σ −→ GC
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satisfying

F−1
λ dFλ = αλ, Fλ(p0) = e

where p0 is a point of Σ fixed once and for all. Since α′
m is g(ω)-valued, αλ

satisfies

ταλ = αωλ for any λ ∈ C∗

and

αλ = α1/λ̄ for any λ ∈ C∗.

Then by the uniqueness, we have

τFλ = Fωλ for any λ ∈ C∗

and

Fλ = F1/λ̄ for any λ ∈ C∗

where conjugation is the Cartan involution of GC fixing G. Moreover for

each p ∈ Σ,

λ �−→ Fλ(p)

is holomorphic on C∗. So we have defined a map

F̃ : Σ −→ ΛholGτ,ω

where

ΛholGτ,ω

=
{
g : C∗ −→ GC; g is holomorphic, τg(λ) = g(ωλ), g(λ) = g(1/λ̄)

}
.

Definition 4.3. A map F̃ : Σ −→ ΛholGτ,ω is called an extended

framing if

F̃−1dF̃ = λ−1α′
−1 + αo + λα′′

1

where α′
−1 is a 1-form of type (1,0) on Σ.

Remark. The above definition is equivalent to the following condition

λF̃−1∂F̃ is holomorphic with respect to λ at λ = 0.

Thus we observe that for any ω-map φ, we have an extended framing Fλ

such that F1 is a framing of φ.
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§5. Factorization of loop groups

Let G be a compact semisimple Lie group, τ an automorphism of G and

H the fixed point set of τ . We fix an Iwasawa decomposition of the complex

Lie group HC

HC = H ·B

where B is a solvable subgroup of HC. In particular any element h ∈ HC

can be uniquely written as

h = hH · hB
where hH ∈ H and hB ∈ B. We fix a positive real number ε such that

0 < ε < 1. Let Cε and C1/ε denote the circles of radius ε and 1/ε about

0 ∈ C in the Riemann sphere P1 = C∪{∞}. We define open sets in P1 by

I = {λ ∈ P1; |λ| < ε or |λ| > 1/ε}
E = {λ ∈ P1; ε < |λ| < 1/ε}

and set C(ε) = Cε ∪ C1/ε. Let

GC = G · B̃

be an Iwasawa decomposition of GC. We define a smooth loop group ΛεG

by

ΛεG = {g : C(ε) −→ GC; g(λ) = g(1/λ) for all λ ∈ C(ε)}

and subgroups of ΛεG by

Λε
EG = {g ∈ ΛεG; g extends holomorphically to E}

Λε
I,B̃
G = {g ∈ ΛεG; g extends holomorphically to I and g(0) ∈ B̃}.

For any g ∈ ΛεG, set g1 = g|Cε
, g2 = g|C1/ε

. Sometimes we write g =

(g1, g2) for g. The following theorem is given in [2].

Theorem 5.1 [2].

ΛεG = Λε
EG · Λε

I,B̃
G, Λε

EG ∩ Λε
I,B̃
G = {e}.
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Let ω be an eigen value of the automorphism τ : gC −→ gC. We define

subgroups of the loop group ΛεG as follows

ΛεGτ,ω = {g ∈ ΛεG; τg(λ) = g(ωλ)}
Λε
EGτ,ω = {g ∈ ΛεGτ,ω; g extends holomorphically to E}

Λε
I,BGτ,ω

= {g ∈ ΛεGτ,ω; g extends holomorphically to I and g(0) ∈ B}.

Let

Λε
g = {ξ : C(ε) −→ g

C; ξ(λ) = ξ(1/λ) for all λ ∈ C(ε)}

be the loop algebra of the loop group ΛεG. Let

Λε
gτ,ω = {ξ ∈ Λε

g; τξ(λ) = ξ(ωλ)}
Λε
Egτ,ω = {ξ ∈ Λε

gτ,ω; ξ extends holomorphically to E}
Λε
I,b̃

gτ,ω = {ξ ∈ Λε
gτ,ω; ξ extends holomorphically to I and ξ(0) ∈ b̃}

be the corresponding loop algebras of the loop groups ΛεGτ,ω, Λε
EGτ,ω and

Λε
I,B̃
Gτ,ω.

Corollary 5.4.

ΛεGτ,ω = Λε
EGτ,ω · Λε

I,BGτ,ω, Λε
EGτ,ω ∩ Λε

I,BGτ,ω = {e}.

Proof. We only have to show that the above factorization is possible.

Take any element g of ΛεGτ,ω and factorize g as

g = gE · gI

by Theorem 5.1. Then we have

g(ωλ) = gE(ωλ) · gI(ωλ)
τg(λ) = τgE(λ) · τgI(λ).
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We prove

gE ∈ Λε
EGτ,ω and gI ∈ Λε

I,B̃
Gτ,ω.

By the uniqueness of the factorization in Theorem 5.1, it is sufficient to

prove

τgE ∈ Λε
EG and τgI ∈ Λε

I,B̃
G.

These are shown easily since

τ : Λε
gτ,ω −→ Λε

gτ,ω

preserves Λε
Egτ,ω and Λε

I,b̃
gτ,ω, hence τ preserves Λε

EGτ,ω and Λε
I,B̃
Gτ,ω.

Put

c = gI(0) ∈ HC

and decompose c as

c = cH · cB
where cH ∈ H and cB ∈ B. If we set

g̃E = gE · cH
g̃I = c−1

H · gI

then

g̃E ∈ Λε
EGτ,ω, g̃I ∈ Λε

I,BGτ,ω

and

g = g̃E · g̃I .

So the above factorization is possible. �

§6. Actions of loop groups

By Corollary 5.4 the loop group Λε
I,BGτ,ω acts on Λε

EGτ,ω as follows.

For g ∈ Λε
I,BGτ,ω and h ∈ Λε

EGτ,ω we define g5h ∈ Λε
EGτ,ω by

g5h = (g · h)E ,

where (g · h)E is the Λε
EGτ,ω-component of g · h with respect to the decom-

position of Corollary 5.4.
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For g ∈ Λε
I,BGτ,ω and an extended framing F̃ : Σ −→ ΛholGτ,ω we define

g5F̃ : Σ −→ ΛholGτ,ω by

(g5F̃ )(p) = g5F̃ (p) for p ∈ Σ.

Proposition 6.1. g5F̃ is an extended framing.

Proof. We decompose g · F̃ by Corollary 5.4 as

g · F̃ = a · b

where a = g5F̃ : Σ −→ Λε
EGτ,ω and b : Σ −→ Λε

I,BGτ,ω. Then we have

a−1da = Adb(F̃−1dF̃ − b−1db).

So we have

λa−1∂a = Adb(λF̃−1∂F̃ − λb−1∂b).

By the definition of an extended framing, λF̃−1∂F̃ is holomorphic with

respect to λ at λ = 0. Since b is Λε
I,BGτ,ω-valued, λb−1∂b is also holomorphic

with respect to λ at λ = 0. Consequently λa−1∂a is holomorphic at λ = 0.

This implies that g5F̃ is an extended framing. �

Proposition 6.2. The action of Λε
I,BGτ,ω on Λε

EGτ,ω induces the ac-

tion on Λε
EGτ,ω/H.

Proof. First we prove that the action preserves H. Let g be any

element of Λε
I,BGτ,ω and k any element of H. Putting g0 = g(0) ∈ B, we

apply the Iwasawa decomposition to g0 · k as

g0 · k = (g0 · k)H · (g0 · k)B

where (g0 · k)H ∈ H and (g0 · k)B ∈ B. Then we have

g · k = (g0 · k)H · {(g0 · k)−1
H gk}

where (g0 · k)−1
H gk ∈ Λε

I,BGτ,ω. Consequently we obtain

g5k = (g0 · k)H ∈ H.
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Let h be any element of Λε
EGτ,ω. Then we have

g5(hk) = (ghk)E

= {(gh)E · (gh)Ik}E (where (gh)I ∈ Λε
I,BGτ,ω)

= (gh)E · {(gh)Ik}E
= (g5h) · {(gh)I5k}

where (gh)I5k = {(gh)I(0) · k}H ∈ H. �

Now we fix a point p0 of Σ. Let ω be an eigenvalue of the induced

automorphism τ : gc −→ gc. Let

Hω = {φ : Σ −→ G/H; ω-map , φ(p0) = e ·H}

be the space of based ω-maps,

Eω = {F : Σ −→ ΛholGτ,ω; extended framing , F (p0) ∈ H}

the space of based extended framings, and

K = C∞(Σ, H)

the space of smooth functions from Σ to H. Then the group K acts on

Eω by point-wise multiplication on the right. Moreover we have a bijective

correspondence

Hω
∼= Eω/K.

From Proposition6.1 and Proposition6.2, we see that the group Λε
I,BGτ,ω

acts on Eω/K. Consequently we have the following theorem.

Theorem 6.3. The group Λε
I,BGτ,ω acts on Hω.
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§7. Examples

Let G = SO(5) and g be the Lie algebra of G. Let H1 and H2 be the

elements of g given by

H1 =




0 1 0 0 0

−1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


 and H2 =




0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 −1 0 0

0 0 0 0 0




For any a, b ∈ R, we define the automorphism τa,b of G as

τa,b = ead(aH1+bH2).

Then fixed point set of generic τa,b is H = SO(2)×SO(2). The group H is

a subgroup of G

H = SO(2) × SO(2) � (A,B) �−→


A B

1


 ∈ SO(5).

We define a subspace m of g by

m =







0 0 a13 a14 a15

0 0 a23 a24 a25

−a13 −a23 0 0 a35

−a14 −a24 0 0 a45

−a15 −a25 −a35 −a45 0


 ; a13, a14, · · · a45 ∈ R




Then we have

g = h ⊕ m

where h is the Lie algebra of H

h =







0 a12 0 0 0

−a12 0 0 0 0

0 0 0 a34 0

0 0 −a34 0 0

0 0 0 0 0


 ; a12, a34 ∈ R



.
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and G/H is a reductive homogeneous space but not a symmetric space.

The automorphism τa,b : G −→ G induces the Lie algebra automorphism

τa,b : g
C −→ g

C.

The eigenvalues of τa,b are

1 , e±ai , e±bi , e±(a+b)i , e±(a−b)i.

Now we remark that Λεg � ξ = Σkλ
kξk is an element of Λεgτ,ω if and

only if any ξk is an element of ωk-eigenspace of τa,b.

We take a = 2
3π and b = 1 then the eigenvalues of τ 2

3
π,1 are

1 , e±
2
3
πi , e±i , e±( 2

3
π+1)i , e±( 2

3
π−1)i.

Set ω = e
2
3
πi, the eigenvalues are

ω , ω2 , ω3 = 1 , e±i , ω · e±i , ω2 · e±i.

Then the infinite dimensional loop group Λε
I,BGτ,ω acts on the space of

ω-maps.

We take a =
√

2 and b = 1 then the eigenvalues of τ√2,1 are

1 , e±
√

2i , e±i , e±(
√

2+1)i , e±(
√

2−1)i.

Set ω = e
√

2i, then the finite dimensional loop group Λε
I,BGτ,ω acts on the

space of ω-maps. There is a similar example of a reductive homogeneous

space SP (2)/U(1) × U(1).
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