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The Spaces of Hilbert Cusp Forms for Totally Real

Cubic Fields and Representations of SL2(Fq)

By Yoshinori Hamahata

Abstract. Let S2m(Γ(p)) be the space of Hilbert modular cusp
forms for the principal congruence subgroup with level p of SL2(OK)
(here OK is the ring of integers ofK, and p is a prime ideal ofOK). Then
we have the action of SL2(Fq) on S2m(Γ(p)), where q = Np. When q
is a power of an odd prime, for each SL2(Fq) we have two irreducible
characters which have conjugate values mutually. In the case where K
is the field of rationals, M. Eichler gives a formula for the difference
of multiplicites of these characters in the trace of the representation of
SL2(Fq) on S2m(Γ(p)). In the case where K is a real quadratic field, H.
Saito gives a formula analogous to that of Eichler for the difference. The
purpose of this paper is to give a formula analogous to that of Eichler
in the case where K is a totally real cubic field.

1. Introduction

In this paper, we consider the action of SL2(Fq) (Fq : a finite field

consisting of q elements) on the space of Hilbert modular cusp forms. First,

let us explain the motivation for the present paper.

Let K be a totally real number field of degree n, OK the ring of integers

of K, and p a prime ideal of OK . Let Γ(p) be the principal congruence

subgroup of SL2(OK), and S2m(Γ(p)) the space of Hilbert cusp forms of

weight 2m with respect to Γ(p). Since SL2(OK) acts on S2m(Γ(p)) and Γ(p)

acts trivially on it, SL2(Fq) ∼= SL2(OK)/Γ(p) acts on S2m(Γ(p)) (we put

q := #(OK/p)). Let π be the representation of SL2(Fq) on S2m(Γ(p)). For

a fixed power q of an odd prime number, there are two irreducible characters
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368 Yoshinori Hamahata

χ1, χ2 of SL2(Fq), whose values are conjugates mutually. Let yi (i = 1, 2)

be the multiplicity of χi in the character tr π of π. We are interested in the

difference y1 − y2.
There are two ways of considering the difference y1 − y2. The first way

is to express it as the sum of the relative class numbers.

In the case where n = 1, m = 1, and p = (p), Hecke [8] studied the

action π of SL2(Fp) on S2(Γ(p)). He determined how tr π decomposes into

irreducible characters. Above all, he showed that the difference y1 − y2 is

expressed as y1 − y2 = −1
p

∑p−1
i=1 i

(
i
p

)
, where

(
p

)
is the quadratic residue

symbol mod p. Using the formula of Dirichlet on the class number of an

imaginary quadratic field, he showed that

(1) y1 − y2 =

{
0 (p ≡ 1 (mod 4))

hQ(
√−p) (p ≡ 3 (mod 4))

,

where hQ(
√−p) denotes the class number of Q(

√−p). S. Nakajima inter-

preted this result as that of Galois coverings of modular curves, and gener-

alized it to the case of Galois coverings of algebraic curves.

In the case n ≥ 2, H. Saito and H. Yoshida proved the following inde-

pendently by using the Selberg trace formula: if m ≥ 2, then we have

|y1 − y2| = 2n−1
∑
Kj

hKj

hK
,

where Kj runs over totally imaginary quadratic extensions of K with the

relative discriminant p, and hKj and hK are the class numbers of Kj and

K, respectively. This result is a generalization of Hecke’s.

In the case n = 2,m ≥ 1, W. Meyer and R. Sczech [10] got

y1 − y2 = −2
∑
Kj

hKj

hK
,

which is a refinement of the result of Saito-Yoshida in the case n = 2. They

showed it by using the holomorphic Lefschetz formula. In his book [7], van

der Geer generalized their result to the general Hilbert modular group.

Concerning this direction, T. Yamazaki, R. Tsushima, and K. Hashimoto

studied the action of Sp2(Fp) on the space of Siegel cusp forms of degree 2



Hilbert Cusp Forms 369

with respect to Γ(p). More precisely, R. Tsushima corrected the error in the

result of T. Yamazaki, and presented a conjecture for the multiplicities of

certain four irreducible representations of Sp2(Fp). Finally, K. Hashimoto

solved the conjecture by using the Selberg trace formula.

The second way is to write y1−y2 by using the quadratic residue symbol

and the intersection numbers of irreducuble divisors obtained from the cusp

resolution.

In the case n = 1 and m ≥ 1, by using his trace formula, Eichler [3]

proved that

(2) y1 − y2 =
1√

(−1)(p−1)/2p

p−1∑
i=1

(
i

p

)
ν(i),

where we put

ν(i) :=
e
[
i
p

]
1− e

[
i
p

] , e[x] := exp
(
2π
√
−1x

)
.

He showed that the right hand side of this equation is equal to

−1
p

∑p−1
i=1 i

(
i
p

)
, the Dirichlet expression for hQ(

√−p). In this case, the cusps

of Γ(p) are not singulariites of the modular curve X(p) with level p. As a

result, the intersection numbers do not appear in ν(i).

In the case where n = 2, hK = 1,m = 1, and p = (µ) (µ is a totally

positive element of OK), H. Saito [11] obtained the following, which is

similar to the formula (2) of Eichler:

(3) y1 − y2 =
1√

(−1)(q−1)/2q
· 2

[U : U(p)]

∑
α mod p

(
α

p

)
ν(α),

where
(

p

)
is the quadratic residue symbol modulo p, and ν(α) is expressed

as e[ ] and the self-intersection numbers of irreducible divisors obtained

from the cusp resolution. He showed it by using the holomorphic Lefschetz

formula.

The purpose of this paper is to gain a formula (see Theorem 4.4) similar

to Eichler’s formula for y1−y2 in the case where n = 3, hK = 1 and p = (µ)
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(µ is a totally positive element of OK). We shall show it with the use of

the holomorphic Lefschetz formula.

Let us explain the significance of our result. In the process of the proof

of Saito-Yoshida’s result, the difference y1 − y2 is expressed as a sum of

values at 1 of some certain L-functions, and is proven to be equal to a sum

of relative class numbers. Hence y1−y2 can be written as an “infinite sum”

by using the Selberg trace formula. On the other hand, Hecke and Eichler

wrote y1−y2 as a “finite sum” in the case n = 1. In the case n = 2, from this

point of view Saito wrote y1−y2 as a “finite sum” by some method, i.e., the

holomorphic Lefschetz formula other than the Selberg trace formula. Our

motivation to prove Theorem 4.4 arises from this point of view. Our result

implies that in the case of n = 3 the difference y1 − y2 can be represented

as a “finite sum”.

The contents of this paper is as follows. In Section 2, we assemble some

facts about Hilbert modular forms for the principal congruence subgroups.

In Section 3, we review some facts about 3-dimensional Hilbert modular

varieties. In Section 4, the statement of our main result is given. In Sec-

tion 5, we shall prove it. First, Theorem 4.4 will be proven in the case

where m = 1. And then the theorem will be proven for the general m. In

Section 6, we give an example to our result.

Acknowledgement . The author expresses his sincere gratitude to Pro-

fessor Hiroshi Saito, who suggested this problem and gave encouragement.

He would also like to thank Professor Ryuji Tsushima sincerely for his help-

ful advice. Special thanks are also due to Professors Akira Fujiki, Hirotada

Naito, and Hiroshi Saito for their helpful correspondence. He also thanks

Professor Takayuki Oda for his interest and encouragement.

Notation. By #(S), we mean the cardinality of the set S. Put e[x] :=

exp(2π
√
−1x). Let C,R, and Q be the field of complex, real, and rational

numbers, respectively, and Fq the finite field consisting of q-elements.

2. Fundamental facts

1. Hilbert modular form

2.1. Let K be a totally real number field of degree n, OK the ring of

integers of K. Set H := {z ∈ C | Im(z) > 0}. Let σ1, · · · , σn be embeddings
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of K into R. In particular, let σ1 be a trivial embedding: σ1(x) = x for all

x ∈ K. The group SL2(OK) acts on Hn, the n-fold product of H as follows:

for γ =

(
a b

c d

)
∈ SL2(OK) and (z1, · · · , zn) ∈ Hn, we define

(4) γ · (z1, · · · , zn) =

(
σ1(a)z1 + σ1(b)

σ1(c)z1 + σ1(d)
, · · · , σn(a)zn + σn(b)

σn(c)zn + σn(d)

)
.

Let a be an integral ideal of OK . We set

Γ(a) :=

{(
a b

c d

)
∈ SL2(OK) |

(
a b

c d

)
≡
(

1 0

0 1

)
(mod a)

}
.

It is called the principal congruence subgroup with level a of SL2(OK). The

group Γ(a) acts on K ∪ {∞} by the linear fractional transformation. The

orbits for the action are called the cusps for Γ(a).

An additive subgroup M of K which is a free group of rank n is called

a complete Z-module of K. We denote by U+
M the group of units u of K

which are totally positive and satisfy uM = M . The group U+
M is a free

group of rank n− 1. For a subgroup V with rank n− 1 of U+
M , define

G(M,V ) :=

{(
u α

0 1

)
| u ∈ V, α ∈M

}
.

For each cusp x of Γ(a), let Γ(a)x be the stabilizer of x in Γ(a). Then there

exists an element ρ of PGL+
2 (R)n such that ρ(x) = ∞ and ρΓ(a)xρ

−1 =

G(M,V ). Then the cusp x is called of type (M,V ). We say two complete Z-

modules M1,M2 strictly equivalent if there exists a totally positive element

of u of K such that uM1 = M2. Then we have U+
M1

= U+
M2

. The strictly

equivalence class of M and the group V are completely determined by the

cusp x and do not depend upon the choice of ρ.

Lemma 2.2. Let λ = α/β be a cusp of Γ(a) such that OKα + OKβ =

b. Then the stabilizer Γ(a)λ of λ in Γ(a) is isomorphic to

{(
e m

0 e−1

)
|

e ∈ U(a), m ∈ ab−2

}
, where U(a) is the group of units of K congruent to

1 modulo a.
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Proof. Since the proof is essentially the same as that of Lemma 2 in

Saito [11], we omit it. �

2.3. Let m be a positive integer. For any γ =

(
a b

c d

)
∈ SL2(OK)

and z = (z1, · · · , zn) ∈ Hn, put

J2m(γ, z) :=
n∏

i=1

(σi(c)zi + σi(d))
−2m .

A Hilbert cusp form f of weight 2m with respect to Γ(a) is a holomorphic

function on Hn satisfying

a) f(γz)J2m(γ, z) = f(z) for any γ ∈ Γ(a),

b) f(z) is holomorphic at every cusp of Γ(a) (This condition automati-

cally holds if n ≥ 2).

c) f(z) vanishes at every cusp of Γ(a).

We denote by S2m(Γ(a)) the space of Hilbert cusp forms of weight 2m

for Γ(a). For γ ∈ SL2(OK) and f ∈ S2m(Γ(a)), we have f |[γ]2m :=

f(γz)J2m(γ, z) ∈ S2m(Γ(a)). Hence by the map γ → [γ]2m, we obtain a

representation π of SL2(OK)/Γ(a) on S2m(Γ(a)). In particular, if a is a

prime ideal p and #(OK/a) = q, then we have SL2(OK)/Γ(a) ∼= SL2(Fq).

We thus have the representation π of SL2(Fq) on S2m(Γ(p)).

2.4. An element γ of SL2(OK) is called elliptic if it satisfies tr(σi(γ))
2−

4 · det(σi(γ)) < 0 (i = 1, · · · , n). A point z ∈ Hn which is a fixed point of

an elliptic element of Γ(a) is called elliptic fixed point of Γ(a).

Lemma 2.5. Let a be an integral ideal of K such that a is prime to

6 · dK (here dK is the discriminant of K). Then Γ(a) has no elliptic fixed

points.

Proof. Since the proof is essentially the same as that of Remark 1 in

Saito [11], we omit it. See also Yoshida [17], page 11. �

2. Representations of SL2(Fq)

2.6. Let q be a power of an odd prime. There are two pairs of irre-

ducible characters whose values are conjugate mutually. We give a list of
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values at ε =

(
1 1

0 1

)
, ε′ =

(
1 η

0 1

)
(η is a nonsquare element of F∗

q) of

such pairs (W ′,W ′′) and (X ′, X ′′) as follows:

ε ε′

W ′ 1+
√
q

2
1−√

q
2

W ′′ 1−√
q

2
1+

√
q

2

X ′ −1+
√−q
2

−1−√−q
2

X ′′ −1−√−q
2

−1+
√−q
2

If q ≡ 1 (mod 4), then X ′ and X ′′ do not appear. If q ≡ 3 (mod 4), then

W ′ and W ′′ do not appear. Let us consider a representation π of SL2(Fq)

on S2m(Γ(p)), which is treated in 2.3. Let y1 be a multiplicity of W ′ (resp.

X ′) in tr π when q ≡ 1 (mod 4) (resp. q ≡ 3 (mod 4)), and y2 a multiplicity

of W ′′ (resp. X ′′) in tr π when q ≡ 1 (mod 4) (resp. q ≡ 3 (mod 4)). Since

the values at ε and ε′ of irreducible characters of SL2(Fq) other than these

characters are equal, we have

tr π(ε)− tr π(ε′) =
√

(−1)(q−1)/2q(y1 − y2).

Hence we obtain

y1 − y2 =
1√

(−1)(q−1)/2q

(
tr π(ε)− tr π(ε′)

)
.

3. Holomorphic Lefschetz formula

2.7. Let X be a compact complex manifold, V a holomorphic vector

bundle over X, and G a finite group of automorphisms of the pair (X,V).

For an element g of G, we denote by Xg the fixed subvariety of g in X. Let

Xg =
∑

αX
g
α be the irreducible decomposition of Xg, and N g

α =
∑

θN
g
α(θ)

the decomposed normal bundle of Xg
α corresponding to the eigenvalues

exp(
√
−1θ) of g. If the Chern class of N g

α(θ) is c (N g
α(θ)) =

∏
β(1 + xβ),

then put

Uθ (N g
α(θ)) =

∏
β

(
1− exp(−xβ −

√
−1θ)

1− exp(−
√
−1θ)

)−1

.
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Let T (Xg
α) be the Todd class of Xg

α, and ch(V|Xg
α)(g) the Chern character

of V|Xg
α with g-action. Put

τ (g,Xg
α) =

{
ch(V|Xg

α)(g) ·
∏

θ Uθ(N g
α(θ)) · T (Xg

α)

det(1− g|(N g
α)∗)

}
[Xg

α] ,

where [Xg
α] denotes the fundamental class of Xg

α. Moreover, put τ(g) =∑
α τ (g,Xg

α).

Theorem 2.8 (Holomorphic Lefschetz formula [1]). Notation being as

above, we have

τ(g) =
∑
i≥0

(−1)itr(g|H i(X,O(V)).

3. Hilbert modular 3-folds

In this section, we remember some facts on Hilbert modular 3-folds. We

refer to Ehlers [4], van der Geer [7], and Hirzebruch [9] for details. From

now on, all totally real number fields we consider are totally real cubic

fields.

3.1. Let K be a totally real cubic number field, OK the ring of integers

of K, and a an integral ideal of OK . Since Γ(a) acts on H3, we have the

quotient space Γ(a) \ H3 of H3 by Γ(a). The space Γ(a) \ H3 can be com-

pactified by adding all cusps of Γ(a). We denote by Γ(a) \ H3 the resulting

space. The space Γ(a) \ H3 is a normal compact space with a finite number

of isolated singularities, i.e., quotient singularities arising from elliptic fixed

points of Γ(a) and cusp singularities arising from cusps of Γ(a). By Hi-

ronaka’s general theory, there exists a proper morphism X(a) → Γ(a) \ H3

resolving the singularities. The space X(a) is a 3-dimensional nonsingular

projective variety. We call it Hilbert modular 3-fold obtained from Γ(a).

3.2. Let γ be an element of SL2(OK). Since Γ(a) is a normal subgroup

of SL2(OK), γ induces an automorphism of Γ(a) \ H3 given by

(z1, z2, z3) → (σ1(γ)z1, σ2(γ)z2, σ3(γ)z3),
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and moreover this automorphism can be extended to that of Γ(a) \ H3.

Take any element a of OK , and let fγ be the automorphism of Γ(a) \ H3

defined by γ =

(
1 a

0 1

)
. By the same argument as the proof of Lemma

2.5, we can easily see that fγ has no fixed points in Γ(a) \ H3 under the

same assumption as that of Lemma 2.5.

Lemma 3.3. Let fε, fε′ be automorphisms of Γ(a) \ H3 defined by ε, ε′

given in 2.6, respectively. Suppose that hK = 1 and a is a prime ideal p

generated by µ. Then the fixed points of fε are the cusps which are Γ(p)-

equivalent to the cusps of the form α/µ, (α ∈ OK , OKα + OKµ = OK).

The same thing holds for fε′.

Proof. We refer to Remark 3 in Saito [11]. �

Lemma 3.4. Let the notation and the assumption be as in Lemma 3.3.

Let Ũ be the image of U in (OK/p)×. If {αi} is a complete system of the

representatives of (OK/p)× /Ũ , then {αi/µ} is the set of all fixed points of

fε (resp. fε′).

Proof. Since the proof is essentially the same as that of Lemma 1 in

Saito [11], we omit it. �

3.5. We assume that a is prime to 6 · dK . Then Γ(a) \ H3 has no

quotient singularities by Lemma 2.5. Hence it suffices to consider the cusp

resolution in this case. We shall describe the cusp resolution of Γ(a) \ H3

in the rest of this section.

3.6. Let W be a n-dimensional vector space over R, and M a rank n

free Z-module in W . Let v1, · · · , vr be linearly independent elements of M ,

and set

σ = 〈v1, · · · vr〉 :=

{
r∑

i=1

civi | ci ≥ 0

}
.

The set σ is called r-simplex if M/Zv1 + · · · + Zvr is torsion-free. For any

subset {vi1 , · · · , vik} of {v1, · · · , vr}, we call 〈vi1 , · · · , vik〉 the k-face of σ.

By abuse of notation, we may write w for a 1-simplex 〈w〉. We consider {0}
as a 0-simplex.
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A set Σ of simplices is called complex when it satisfies the following:

i) If σ, σ′ ∈ Σ, σ �= σ′, then we have
◦
σ ∩

◦
σ′ = φ and σ ∩ σ′ ∈ Σ, where

◦
σ

is the interior of σ. Take any element σ ∈ Σ. If τ is a face of σ, then τ ∈ Σ.

ii) For any element τ ∈ Σ, the set {σ ∈ Σ | τ is a face of σ} is finite.

iii) If τ ∈ Σ satisfies dim τ < n, then τ is a face of certain n-simplex in

Σ.

For each complex Σ, we obtain a n-dimensional complex manifold XΣ.

We call it a torus embedding associated to Σ (cf. [18]). There exists a

1-1 correspondence between the coordinate charts (Cn)σ of XΣ and the n-

simplices σ of Σ. Let Σ(k) be the set of k-simplices in Σ. Each element σ

of Σ(k) corresponds to a codimension k submanifold Fσ of XΣ. Set FΣ =

∪
σ∈Σ(1)

Fσ.

3.7. Let U+ be the group of totally positive units of K. Let M be a

rank 3 complete Z-module in K, and V a subgroup of rank 2 of U+ such

that V ·M =M . Set

G(M,V ) :=

{(
u m

0 1

)
| u ∈ V, m ∈M

}
.

The group G(M,V ) acts on H3 by the same way as (4) in Section 2. The

space H(M,V ) := G(M,V ) \ H3 ∪ {∞} is a normal space with an isolated

singularity at ∞, which is of type (M,V ). The space H(M,V ) has the

following properties:

(i) H(M,V ) is locally compact.

(ii) G(M,V ) \ H3 is open dense in H(M,V ).

(iii) For any positive real number c, set

Uc := {z ∈ H
3 | Im(z1) · Im(z2) · Im(z3) > c}.

Then G(M,V ) acts on Uc, and {G(M,V ) \ Uc ∪ {∞} | c > 0} forms a fun-

damental system of neighbourhoods of ∞.

Each cusp singularity x of Hilbert modular 3-fold Γ(a) \ H3 is analyti-

cally equivalent to ∞ on some H(M,V ).

Let M̂ be the dual Z-module of M , i.e.,

M̂ := {x ∈ K | tr(xy) ∈ Z, for all y ∈M}.
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Here we used the notation tr(xy) := σ1(xy) + σ2(xy) + σ3(xy). Let M̂+ be

the set of totally positive elements of M̂ . For a cusp ∞ of type (M,V ), let

O(M,V ) be the ring of holomorphic functions f at a neighbourhood of ∞
satisfying the following conditions:

(a) Each f ∈ O(M,V ) has the Fourier expansion

f(z) = a0 +
∑

x∈M̂+

axe[tr(xz)]

such that ax = aux for all u ∈ V (here we put tr(xz) := σ1(x)z1 +σ2(x)z2 +

σ3(x)z3).

(b) Each f ∈ O(M,V ) converges on Uc for some c > 0 depending on f .

3.8. In this subsection, we recall resolutions of cusp singularities of

Hilbert modular 3-folds. We here construct a cusp resolution of H(M,V ).

Let M be a rank 3 complete Z-module in K. The module M acts on

C3 by (z1, z2, z3) → (z1 + σ1(m), z2 + σ2(m), z3 + σ3(m)) (m ∈ M). The

quotient M \C3 is an algebraic torus. Let {u, v, w} be a basis of M . Then

there exists an isomorphism

ϕ(u, v, w) :M \ C3 → (C∗)3 , z mod M → (t1, t2, t3),

where t1, t2, t3 are determined by
2π
√
−1z1 ≡ σ1(u)log t1 + σ1(v)log t2 + σ1(w)log t3 (mod 2π

√
−1M)

2π
√
−1z2 ≡ σ2(u)log t1 + σ2(v)log t2 + σ2(w)log t3 (mod 2π

√
−1M)

2π
√
−1z3 ≡ σ3(u)log t1 + σ3(v)log t2 + σ3(w)log t3 (mod 2π

√
−1M).

Take another basis {u′, v′, w′} ofM . Then we have a commutative diagram:

M\C3 ϕ(u,v,w)→ (C∗)3

‖ ↓ ψ

M\C3 ϕ(u′,v′,w′)→ (C∗)3 ,

where we put ψ = ϕ(u′, v′, w′)◦ϕ(u, v, w)−1. If a matrix g = (gij) ∈ GL3(Z)

transforms (u, v, w) into (u′, v′, w′), then ψ is expressed as

ψ(t1, t2, t3) = (t1
g11t2

g12t3
g13 , t1

g21t2
g22t3

g23 , t1
g31t2

g32t3
g33).
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The quotient M \ C3 contains M \ H3 as an open subset. If

Im(z1)Im(z2)Im(z3) tends to ∞, then t1, t2, or t3 appeared in the above

isomorphism tends to 0. We consider the inclusion (C∗)3 ⊂ C3 for any

basis of M . Take any element σ = 〈u, v, w〉 of Σ(3). By the construction of

Σ, {u, v, w} is a basis of M . Let
(
C3
)
σ

be a copy of C3. We can glue these

copies
(
C3
)
σ

(σ ∈ Σ(3)) by using biholomorphic maps ψ appeared in the

above diagram. Then we obtains a three dimensional complex manifoldXΣ.

Let Φ :M \C3 ↪→ XΣ be an embedding defined by M \C3 → (C∗)3 ↪→ XΣ.

The map Φ is independent of a choice of a basis of M by the construc-

tion of XΣ. Put X := Φ
(
M \ H3

)
∪ FΣ, where FΣ := XΣ − Φ

(
M \ C3

)
.

Since there is an exact sequence 0 → M → G(M,V ) → V → 0, V acts on

M \H3. Take an element σ = 〈u, v, w〉 of Σ(3). From the construction of Σ,

σ′ := 〈eu, ev, ew〉 ∈ Σ(3) for any element e ∈ V . By sending a point with co-

ordinates u, v, w in
(
C3
)
σ

to the point with coordinates eu, ev, ew in
(
C3
)
σ′ ,

V acts on XΣ. The map Φ :M \ H3 → X is compatible with the action of

V . According to Ehlers, V acts on X freely and properly discontinuously

(Ehlers [4], section 2, Lemma 1, 2). The quotient Y (M,V ) := V \ X is

a three dimensional complex manifold, and Φ−1 induces a surjective mor-

phism p : Y (M,V ) → H(M,V ) satisfying p−1(∞) = V \ FΣ. The complex

3-fold Y (M,V ) is a resolution of the cusp ∞.

3.9. We keep the notation of 3.7. We consider a cusp of type (M,V ).

Let e be a unit element of K such that eM = M , and m an element of K

such that (e− 1)m ∈M for all e ∈ V . Then e and m define maps

(z1, z2, z3) → (σ1(e)
2z1, σ2(e)

2z2, σ3(e)
2z3),

(z1, z2, z3) → (z1 + σ1(m), z2 + σ2(m), z3 + σ3(m)),

respectively. The neighbourhoods Uc of ∞ are stable under these maps.

These maps define automorphisms ge, gm of H(M,V ), respectively. More-

over, we have two automorphisms g∗e , g
∗
m of O(M,V ) induced by ge, gm,

respectively:

g∗e : O(M,V ) → O(M,V ),

(e[z1], e[z2], e[z3]) → (e[e2z1], e[e2z2], e[e2z3]),

g∗m : O(M,V ) → O(M,V ),

(e[z1], e[z2], e[z3]) → (e[z1 + σ1(m)], e[z2 + σ2(m)], e[z3 + σ3(m)]).
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Proposition 3.10. The maps ge and gm can be extended to a cusp

resolution Y (M,V ) of H(M,V ).

Proof. We use the notation in 3.8. First, let us show the claim for ge.

Let g̃e : XΣ → XΣ be a map with the property that a point with coordinates

u, v, w in
(
C3
)
σ

is mapped to the point with coordinates u′, v′, w′ in
(
C3
)
σ′ .

Here we put u′ = eu, v′ = ev, w′ = ew, and σ′ = 〈u′, v′, w′〉. Put Wc :=

Φ(M \Uc)∪FΣ for any c > 0. The set Wc is open in X, and is stable under

the map g̃e for any element e ∈ V , and g̃e induces a map V \Wc → V \Wc.

Also, FΣ is stable under g̃e, and g̃e induces in O(M,V ) the map g∗e from

the relation

(5)


2π
√
−1z1 = σ1(u)log t1 + σ1(v)log t2 + σ1(w)log t3

2π
√
−1z2 = σ2(u)log t1 + σ2(v)log t2 + σ2(w)log t3

2π
√
−1z3 = σ3(u)log t1 + σ3(v)log t2 + σ3(w)log t3

between the coordinates of (C3)σ ∩X and those of H(M,V ). This proves

the claim for ge.

We next show the claim for gm. For any element σ = 〈u, v, w〉 ∈ Σ, we

define a map
(
C3
)
σ
→

(
C3
)
σ

by

(t1, t2, t3) →
(
e

[
d(m, v,w)

d(u, v, w)

]
t1, e

[
d(u,m,w)

d(u, v, w)

]
t2, e

[
d(u, v,m)

d(u, v, w)

]
t3

)
,

where we put

(6) d(a, b, c) :=

∣∣∣∣∣∣
σ1(a) σ1(b) σ1(c)

σ2(a) σ2(b) σ2(c)

σ3(a) σ3(b) σ3(c)

∣∣∣∣∣∣
for a, b, c ∈ K. For a 3-simplex 〈u, v, w〉, we may assume d(u, v, w) > 0 by

reordering u, v, w. Then we have d(u, v, w) =
√
dK . This map is compat-

ible with the glueing of
(
C3
)
σ

(σ ∈ Σ) by ψ’s, and therefore induces an

automorphism g̃m : XΣ → XΣ. By the construction of Wc, Wc is stable

under g̃m. Also, g̃m makes stable FΣ, and g̃m induces in O(M,V ) the map

g∗m by (5). This proves the claim for gm. �

3.11. We take an element γ of SL2(OK). Since Γ(a) is a normal sub-

group of SL2(OK), γ induces an automorphism of Γ(a) \ H3 defined by
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(z1, z2, z3) → (σ1(γ)z1, σ2(γ)z2, σ3(γ)z3). This automorphism can be ex-

tended to that of Γ(a) \ H3. We denote the resulting map by fγ . Then we

have the following:

Proposition 3.12. The map fγ can be extended to an automorphism

of X(a).

Proof. Let ψ : X(a) → Γ(a) \ H3 be a morphism resolving the sin-

gularities of Γ(a) \ H3. The morphism ψ induces an isomorphsm X(a) −
ψ−1(S) → Γ(a) \ H3. Here S denotes the set of cusp singularities of

Γ(a) \ H3. Thus fγ can be extended to X(a)−ψ−1(S) as an automorphism

of X(a) − ψ−1(S). Let λ be a cusp for Γ(a), and put γ(λ) = λ′. By our

assumption, λ and λ′ are of type (a, U(a)). There exist γλ, γλ′ ∈ SL2(OK)

such that γλ(∞) = λ, γλ′(∞) = λ′. The matrix γ−1
λ′ γγλ has the form(

e m

0 e−1

)
=

(
e 0

0 e−1

)(
1 e−1m

0 1

)
for some element e ∈ U and for

some element m ∈ OK . We see that e and e−1m satisfy the condition in

3.9. By Proposition 3.10, maps ge and ge−1m can be extended to X(a) as

automorphisms of X(a). Since γ−1
λ′ γγλ is expressed as ge · ge−1m, fγ can be

extended to X(a) as an automorphism of X(a). �

4. The main result

In this section, we present a formula for y1− y2, which is an analogue of

a formula of Eichler.

4.1. In this subsection, we prepare for some definitions and notations

needed in the next theorem. Let K be a totally real cubic field with hK = 1,

and p a prime ideal of K with the conditions that p is generated by a totally

positive element µ and that p is prime to 6 ·dK ( here dK is the discriminant

of K). Let Σ be a complex which describe the cusp resolution of a cusp

with type (OK , U(p)2). Take a 2-simplex 〈v, w〉 ∈ Σ(2). Let a(v, w) be

the selfintersection number of F〈v,w〉 on F〈v〉, and a(w, v) be that of F〈v,w〉
on F〈w〉. Take a 1-simplex 〈w〉 ∈ Σ(1). Let {σ1, · · · , σs} be the set of all

2-simplices in Σ with the property 〈σi, w〉 ∈ Σ(3). There exist elements

u1, · · · , us ∈ Σ(1) such that

σi = 〈ui, ui+1〉 (1 ≤ i ≤ s), us+1 = u1.
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Fig. 1

Then we have

ui+1 + ui−1 = ciw + diui (1 ≤ i ≤ s)

for certain integers ci, di ∈ Z (cf. Thomas-Vasquez [14], page 177). We

write the integers ci and di on the sides of w and ui as Fig. 1.

The numbers ci, di (1 ≤ i ≤ s) are three dimensional analogues of pe-

riodic continued fractions. It is known that −ci = a(ui, w), −di = a(w, ui)

(cf. Tsuchihashi [15], page 628). Then we put c(w) := −
∑s

i=1 ci. Let
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d(w) := F〈w〉
3 be the triple intersection number of F〈w〉. Using ci and di,

we define

A0 = 0, A1 = cs,

Ai+1 = ci + diAi −Ai−1, (1 ≤ i ≤ s− 3)

recursively. Then we have d(w) =
∑s−2

i=1 ciAi. For the definition of d(·, ·, ·),
see (6).

Definition 4.2. Let the notation be as above. For each element α of

OK , let fγα be the automorphism of X(p) for γα :=

(
1 α/µ

0 1

)
(cf. 3.9,

3.12). Then for each α ∈ OK , we define

ν(α) := −
∑
(1)

e
[
d(α/µ,v,w)
d(u,v,w)

]
· e

[
d(u,α/µ,w)
d(u,v,w)

]
· e

[
d(u,v,α/µ)
d(u,v,w)

]
(
1− e

[
d(α/µ,v,w)
d(u,v,w)

])(
1− e

[
d(u,α/µ,w)
d(u,v,w)

])(
1− e

[
d(u,v,α/µ)
d(u,v,w)

])
+
∑
(2)

e
[
d(u,α/µ,w)
d(u,v,w)

]
· e

[
d(u,v,α/µ)
d(u,v,w)

]
(
1− e

[
−d(u,α/µ,w)

d(u,v,w)

])(
1− e

[
−d(u,v,α/µ)

d(u,v,w)

])
×

−1− a(v, w)

1− e
[
−d(u,α/µ,w)

d(u,v,w)

] − a(w, v)

1− e
[
−d(u,v,α/µ)

d(u,v,w)

]


+
∑
(3)

e
[
d(u,v,α/µ)
d(u,v,w)

]
1− e

[
−d(u,v,α/µ)

d(u,v,w)

] ·
1− c(w) + d(w)

1− e
[
d(u,v,α/µ)
d(u,v,w)

]
 ,

where the sum
∑
(1)

runs over the elements 〈u, v, w〉 of
∑(3) corresponding

to the components of 0-dimensional fixed subvariety of fγα , the sum
∑
(2)

runs over the elements 〈v, w〉 of
∑(2) corresponding to the components of

1-dimensional fixed subvariety of fγα (then take an element u of
∑(1) such

that 〈u, v, w〉 ∈
∑(3)), and the sum

∑
(3)

runs over the elements w of
∑(1)

corresponding to the components of 2-dimensional fixed subvariety of fγα
(then take an element 〈u, v〉 of

∑(2) such that 〈u, v, w〉 ∈
∑(3)).
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Remark 4.3. (1) As one sees in Definition 4.2, a 3-simplex 〈u, v, w〉 ∈
Σ(3) is chosen for an element w ∈ Σ(1) corresponding to a component of

2-dimensional fixed subvariety of fγα . The value of e
[
d(u,v,α/µ)
d(u,v,w)

]
is inde-

pendent of a choice of such 3-simplices. Indeed, let {σ1, · · · , σs} be the set

of all 2-simplices in Σ with the property 〈σi, w〉 ∈ Σ(3). There exist elements

u1, · · · , us ∈ Σ(1) such that

σi = 〈ui, ui+1〉 (1 ≤ i ≤ s), us+1 = u1.

Then we have

ui+1 + ui−1 = ciw + diui (1 ≤ i ≤ s)

for certain integers ci, di ∈ Z. Using it,

d(ui, ui+1, α/µ) = −ci · d(w, ui, α/µ) + d(ui−1, ui, α/µ),

d(ui, ui+1, w) = d(ui−1, ui, w).

Since e
[
d(uj ,α/µ,w)
d(uj ,uj+1,w)

]
= 1 (1 ≤ j ≤ s) (cf. 5.4.), we have

e

[
d(ui, ui+1, α/µ)

d(ui, ui+1, w)

]
= e

[
d(ui,−ui−1, α/µ)

d(ui, ui+1, w)

]
· e

[
d(ui, w, α/µ)

d(ui, ui+1, w)

]ci
= e

[
d(ui−1, ui, α/µ)

d(ui, ui+1, w)

]
= e

[
d(ui−1, ui, α/µ)

d(ui−1, ui, w)

]
.

This proves the claim. Also, in Definition 4.2, for any element 〈v, w〉 ∈ Σ(2)

corresponding to a component of 1-dimensional fixed subvariety of fγα ,

an element u ∈ Σ(1) such that 〈u, v, w〉 ∈ Σ(3) is chosen. The values of

e
[
d(u,α/µ,w)
d(u,v,w)

]
and e

[
d(u,v,α/µ)
d(u,v,w)

]
are independent of choice of u. Indeed, let

u′ be another 1-simplex such that 〈u′, v, w〉 ∈ Σ(3). There exist c, d ∈ Z
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such that u+u′ = cv+dw as above. Hence, d(u′, v, w) = −d(u, v, w) holds.

Since e
[
d(α/µ,v,w)
d(u,v,w)

]
= 1 (cf. 5.4.), we have

e

[
d(u′, v, α/µ)

d(u′, v, w)

]
= e

[
d(u, v, α/µ)

d(u, v, w)

]
· e

[
d(w, v, α/µ)

d(u, v, w)

]−d

= e

[
d(u, v, α/µ)

d(u, v, w)

]
.

This proves the second claim.

(2) If α ≡ β (mod p) for α, β ∈ OK , then ν(α) = ν(β). Indeed,

α − β ∈ (µ) implies that (α − β)/µ is a linear combination of u, v, w over

Z. Hence, d((α − β)/µ, v, w)/d(u, v, w), d(u, (α − β)/µ,w)/d(u, v, w), and

d(u, v, (α− β)/µ)/d(u, v, w) are rational integers.

(3) Though in our case we define ν(α) with the use of the cubic de-

terminant, Saito [11] defines ν(α) without the use of the determinant in

the real quadratic field case. However, one can easily see that ν(α) in

Saito [11] is rewritten with the use of the quadratic determinant d(a, b) =∣∣∣∣σ1(a) σ1(b)

σ2(a) σ2(b)

∣∣∣∣.
We now state the main theorem:

Theorem 4.4. Let K be a totally real cubic field whose class number

is 1, and p a prime ideal of K, which lies over an odd prime number,

generated by a totally positive element µ, and is prime to 6 · dK . On the

space S2m(Γ(p)), we have

y1 − y2 =
1√

(−1)(q−1)/2q
· 2

[U : U(p)]

∑
α∈(OK/p)×

(
α

p

)
ν(α),

Here we explain the notation appeared above. Let q = #(OK/p). Let U be

the unit group for K, and U(p) the group of elements of U congruent to 1

modulo p. The sum
∑

runs over a complete system of the representatives

of (OK/p)×. Let
(

p

)
be the quadratic residue symbol modulo p.

5. Proof of Theorem 4.4

In this section we prove Theorem 4.4. From 5.1 till 5.6, we are engaged

in the proof in the case m = 1. In 5.7, we prove in the case m ≥ 2.
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5.1. From now on, we assume that the norm N(p) of a prime ideal p

is a power of some odd prime. Let π be the representation of SL2(Fq) ∼=
SL2(OK)/Γ(p) on the space S2(Γ(p)). Take an element η of OK such that(
η
p

)
= −1 (here

(
p

)
is the quadratic residue symbol modulo p). Put

ε =

(
1 1

0 1

)
and ε′ =

(
1 η

0 1

)
. Then the difference y1 − y2 (cf. Section 2)

of multiplicities of two irreducible characters in tr π was expressed as

(7) y1 − y2 =
1√

(−1)(q−1)/2q
(tr π(ε)− tr π(ε′)).

Hence we shall compute tr π(ε) and tr π(ε′) in order to study y1 − y2.

The matrix ε (resp. ε′) induces the automorphism fε (resp. fε′) of

Γ(p) \ H3. By Proposition 3.12, we can extend the automorphism fε (resp.

fε′) to the biholomorphic automorphism f̃ε (resp. f̃ε′) of X(p), respec-

tively. Let Ω3 be the sheaf of germs of holomorphic 3-forms on X(p).

It is known that the space S2(Γ(p)) is isomorphic to H0(X(p),Ω3). Let

tr(f̃ε|H0(X(p),Ω3)) (resp. tr(f̃ε′ |H0(X(p),Ω3))) be the trace of the linear

transformation of H0(X(p),Ω3) induced by f̃ε (resp. f̃ε′). Then we see

that tr π(ε) (resp. tr π(ε′)) is equal to tr(f̃ε|H0(X(p),Ω3)) (resp.

tr(f̃ε′ |H0(X(p),Ω3))).

5.2. By the holomorphic Lefschetz formula (Theorem 2.8), we have

3∑
i=0

(−1)itr(f̃ε|H i(X(p),Ω3)) = τ(ε),

3∑
i=0

(−1)itr(f̃ε′ |H i(X(p),Ω3)) = τ(ε′).

Let OX(p) be the structure sheaf of X(p). By the Serre duality theorem, we

have

H i(X(p),Ω3) = H3−i(X(p),OX(p)) (i = 1, 2, 3).

We know that H0(X(p),OX(p)) = C. By Theorem 7.1 in Freitag [5], we

have H1(X(p),OX(p)) = H2(X(p),OX(p)) = 0. Therefore, we conclude that

tr(f̃ε|H0(X(p),Ω3))− tr(f̃ε′ |H0(X(p),Ω3)) = τ(ε)− τ(ε′).
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By (7), the difference y1 − y2 is expressed as

(8) y1 − y2 =
1√

(−1)(q−1)/2q

(
τ(ε)− τ(ε′)

)
.

5.3. By Lemma 3.3, the fixed subvariety of f̃ε is contained in the sur-

faces arising from the resolution of the cusps which are Γ(p)-equivalent to

the cusps of the form α/µ (α ∈ OK , OKα+OKµ = OK). The same thing

holds for f̃ε′ .

Take a fixed point λ = α/µ of fε (resp. fε′). Then the stabilizer Γ(p)λ

of λ in Γ(p) is isomorphic to

{(
e m

0 e−1

)
| e ∈ U(p), m ∈ p

}
by Lemma

2.2. Hence λ is of type (p, U(p)2) (here we set U(p)2 = {u2 | u ∈ U(p) }).
Hence O(λ) is isomorphic to O(p, U(p)2) (here O(λ) denotes the ring of

holomorphic functions at a neighborhood of λ). Then the automorphism of

O(λ) given by f̃ε (resp. f̃ε′) is transformed to that of O(p, U(p)2)) given by

(e[z1], e[z2], e[z3]) →(
e

[
z1 + σ1

((
1

α2

))]
, e

[
z2 + σ2

((
1

α2

))]
, e

[
z3 + σ3

((
1

α2

))])

(resp.

(e[z1], e[z2], e[z3]) →(
e
[
z1 + σ1

(( η
α2

))]
, e
[
z2 + σ2

(( η
α2

))]
, e
[
z3 + σ3

(( η
α2

))])
).

Here
(

1
α2

)
(resp.

( η
α2

)
) is an element of OK such that α2

(
1
α2

)
≡ 1 (mod p)

(resp. α2
( η
α2

)
≡ η (mod p)). By the isomorphism O(p, U(p)2)→̃

O(OK , U(p)2) induced by

(e[z1], e[z2], e[z3]) →
(
e

[
z1
σ1(µ)

]
, e

[
z2
σ2(µ)

]
, e

[
z3
σ3(µ)

])
,
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the automorphisms of O(p, U(p)2) described above are transformed to those

of O(OK , U(p)2) given by

(e[z1], e[z2], e[z3]) →(
e

[
z1 + σ1

(
1

µ

(
1

α2

))]
, e

[
z2 + σ2

(
1

µ

(
1

α2

))]
,

e

[
z3 + σ3

(
1

µ

(
1

α2

))])
(resp.

(e[z1], e[z2], e[z3]) →(
e

[
z1 + σ1

(
1

µ

( η
α2

))]
, e

[
z2 + σ2

(
1

µ

( η
α2

))]
,

e

[
z3 + σ3

(
1

µ

( η
α2

))])
.

5.4. Let m be an element of K such that (e − 1)m ∈ OK for any

element e of U(p)2. For example, 1
µ

(
1
α2

)
and 1

µ

( η
α2

)
have such property.

By the proof of Proposition 3.10, the extended automorphism g̃m of gm to

the cusp resolution is given by

g̃m : (t1, t2, t3) →
(
e

[
d(m, v,w)

d(u, v, w)

]
t1, e

[
d(u,m,w)

d(u, v, w)

]
t2, e

[
d(u, v,m)

d(u, v, w)

]
t3

)
using coordinates t1, t2, t3 in (C3)σ (σ = 〈u, v, w〉 ∈ Σ(3)). We here con-

sider the fixed subvariety of g̃m form = 1
µ

(
1
α2

)
, 1

µ

( η
α2

)
. Put ε = g̃1, ε

′ = g̃η.

For simplicity, put

e1 := e

[
d( 1

µ

(
1
α2

)
, v, w)

d(u, v, w)

]
, e2 := e

[
d(u, 1

µ

(
1
α2

)
, w)

d(u, v, w)

]
,

e3 := e

[
d(u, v, 1

µ

(
1
α2

)
)

d(u, v, w)

]
.

If e1 �= 1, e2 �= 1, and e3 �= 1, then ε has only a fixed point (0, 0, 0) in

(C3)σ. If exactly one of e1, e2, e3 equals to 1, then ε has a 1-dimensional
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fixed subvariety in (C3)σ. If exactly two of e1, e2, e3 equal to 1, then ε has

a 2-dimensional fixed subvariety in (C3)σ. The map ε has no 3-dimensional

fixed subvariety because of the relation (5) in the proof of Proposition 3.10.

Put

e′1 := e

[
d( 1

µ

( η
α2

)
, v, w)

d(u, v, w)

]
, e′2 := e

[
d(u, 1

µ

( η
α2

)
, w)

d(u, v, w)

]
,

e′3 := e

[
d(u, v, 1

µ

( η
α2

)
)

d(u, v, w)

]
.

Then the same thing holds for ε′.

5.5. In this subsection, we compute the contribution τ(ε,Xε
α) from

the fixed subvariety Xε
α of ε. The same thing holds for ε′. We suppose

Xε
α ∩ (C3)σ �= φ, and use the notation in the preceding subsection. Let

KX(p) be the canonical bundle of X(p). Let c1(•) (resp. c2(•)) be the first

(resp. second) Chern class of •.
(i) The case of dim Xε

α = 0.

In this case, we have e1 �= 1, e2 �= 1, and e3 �= 1. We find that Xε
α =

{(0, 0, 0)}. Since KX(p)|Xε
α and NXε

α
are trivial, we have

ch(KX(p)|Xε
α)(ε) = 1,∏

θ

Uθ(N ε
α(θ)) = T (Xε

α) = 1,

det(1− ε|(N ε
α)∗) = (1− e−1

1 )(1− e−1
2 )(1− e−1

3 ).

Therefore, we obtain

τ(ε,Xε
α) = − e1e2e3

(1− e1)(1− e2)(1− e3)
.

(ii) The case of dim Xε
α = 1.

Assume e1 �= 1, e2 �= 1, and e3 = 1. Then Xε
α is t3-axis. We find that

Xε
α = F〈u,v〉. Put d = c1(N ε

α) = d1 + d2, di = c1(N ε
α(θi)) (i = 1, 2), and

c1 = c1(X
ε
α). Here we put

θ1 = 2π ·
d( 1

µ( 1
α2 ), v, w)

d(u, v, w)
, θ2 = 2π ·

d(u, 1
µ( 1

α2 ), w)

d(u, v, w)
.
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Then we have

ch(KX(p)|Xε
α)(ε) = e1e2(1− c1 − d),

Uθ1(N ε
α(θ1)) =

1− e−1
1

1− e−1
1 exp(−d1)

,

Uθ2(N ε
α(θ2)) =

1− e−1
2

1− e−1
2 exp(−d2)

,

T (Xε
α) = 1 +

c1
2
,

det(1− ε|(N ε
α)∗) = (1− e−1

1 )(1− e−1
2 ).

Hence we obtain

τ(ε,Xε
α)

=
e1e2(1− c1 − d)

(1− e−1
1 )(1− e−1

2 )

(
1− e−1

1

1− e−1
1 exp(−d1)

)
·
(

1− e−1
2

1− e−1
2 exp(−d2)

)(
1 +
c1
2

)
[Xε

α]

=
e1e2(1− c1 − d)

(
1 + c1

2

)
(1− e−1

1 (1− d1))(1− e−1
2 (1− d2))

[Xε
α]

=
e1e2

(1− e−1
1 )(1− e−1

2 )

 (1− c1 − d)
(
1 + c1

2

)(
1 +

e−1
1

1−e−1
1

d1

)(
1 +

e−1
2

1−e−1
2

d2

)
 [Xε

α]

=
e1e2

(1− e−1
1 )(1− e−1

2 )

{(
1− c1 − d+

c1
2

)(
1− e−1

1

1− e−1
1

d1

)
·
(

1− e−1
2

1− e−1
2

d1

)}
[Xε

α]

=
e1e2

(1− e−1
1 )(1− e−1

2 )

(
−c1

2
− 1

1− e−1
1

d1 −
1

1− e−1
2

d2

)
[Xε

α]

=
e1e2

(1− e−1
1 )(1− e−1

2 )

(
−c1

2
[Xε

α]− 1

1− e−1
1

d1[X
ε
α]− 1

1− e−1
2

d2[X
ε
α]

)
.

Here c1[X
ε
α] = 2− g(Xε

α) (g(Xε
α) is the genus of Xε

α). Since Xε
α is rational,

g(Xε
α) = 0. By Tsushima [16], section 2, we have d1[X

ε
α] = F〈u〉 ·F〈v〉2, and

d2[X
ε
α] = F〈u〉

2 · F〈v〉.
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(iii) The case of dim Xε
α = 2.

Assume e1 �= 1, and e2 = e3 = 1. Then Xε
α is a plane defined by t1 = 0.

We find that Xε
α = F〈u〉. Put c1 = c1(X

ε
α), c2 = c2(X

ε
α), and d = c1(N ε

α).

Then we have

ch(KX(p)|Xε
α)(ε) = e1(1− c1 − d),∏

θ

Uθ(N ε
α(θ)) = 1− e−1

1 d

1− e−1
1

,

T (Xε
α) = 1 +

1

12
c2 + c21,

det(1− ε|(N ε
α)∗) = 1− e−1

1 .

Therefore we obtain

τ(ε,Xε
α)

=
e1

1− e−1
1

{
(1− c1 − d)

(
1 +

1

12
c2 +

1

12
c21

)(
1− e−1

1 d

1− e−1
1

)}
[Xε

α]

=
e1

1− e−1
1

(
1− c1 − d−

e−1
1 d

1− e−1
1

+
e−1
1

1− e−1
1

c1d

+
e−1
1

1− e−1
1

d2 +
1

12
c2 +

1

12
c21

)
[Xε

α]

=
e1

1− e−1
1

(
e−1
1

1− e−1
1

c1d+
e−1
1

1− e−1
1

d2 +
1

12
c2 +

1

12
c21

)
[Xε

α]

=
e1

1− e−1
1

(
−c1d[X

ε
α] + d2[Xε

α]

1− e1
+

1

12

(
c2[X

ε
α] + c21[X

ε
α]
))
.

Since Xε
α is rational, we have c2[X

ε
α] + c21[X

ε
α] = 12 by the formula of

Noether. We find that d2[Xε
α] = (Xε

α)3 = d(u) by Tsushima [16], section 2.

Let {Di}i∈I be the set of all irreducible divisors arising from the cusp res-

olutions of Γ(p) \ H3. Then the total Chern class c(Xε
α) of Xε

α is expressed

as

c(Xε
α) =

∏
Di �=Xε

α

(1 +Di|Xε
α)

(cf. Satake [12], Tsushima [16]). From this, c1(X
ε
α) =

∑
Di �=Xε

α
Di|Xε

α.

Hence we have c1d[X
ε
α] = c(u).
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5.6. We return to the equation (8). Now let us calculate the difference

τ(ε)− τ(ε′). For any element x ∈ OK , let ν(x) be as in Definition 4.2. The

contribution to τ(ε) (resp. τ(ε′)) from the fixed subvarieties in the resolution

of the cusp α/µ is ν((1/α2)) (resp. ν((η/α2))) by 5.4 and 5.5. By Lemma

3.4, we have

τ(ε) =
∑

α∈(OK/p)×/Ũ

ν

((
1

α2

))

=
1

[U : U(p)]

∑
α∈(OK/p)×

ν

((
1

α2

))

=
1

[U : U(p)]

∑
α∈(OK/p)×

(
1 +

(
α

p

))
ν(α),

τ(ε′) =
∑

α∈(OK/p)×/Ũ

ν
(( η
α2

))
=

1

[U : U(p)]

∑
α∈(OK/p)×

ν
(( η
α2

))
=

1

[U : U(p)]

∑
α∈(OK/p)×

(
1−

(
α

p

))
ν(α).

We thus get the formula in Theorem 4.4. for the case m = 1.

5.7. Let m ≥ 2. Put D := X(p) − Γ(p) \ H3. We denote by L :=

Ω3(log D) be the sheaf of germs of 3-forms with logarithmic poles along

D on X(p). Then we have S2m(Γ(p)) = H0(X(p),L⊗(m−1) ⊗ Ω3) for any

positive integer m. If tr(f̃ε|H0(X(p),L⊗(m−1)⊗Ω3) is the trace of the linear

transformation of H0(X(p),L⊗(m−1) ⊗ Ω3) induced by f̃ε, then tr π(ε) =

tr(f̃ε|H0(X(p),L⊗(m−1) ⊗ Ω3)). The same thing holds for tr π(ε′). Since

L⊗(m−1) is the pull-back of an ample sheaf under the morphism X(p) →
Γ(p) \ H3, we have

H i(X(p),L⊗(m−1) ⊗ Ω3) = 0 (i ≥ 1)
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by the Kodaira vanishing theorem. Hence we have

tr π(ε)− tr π(ε′)

=
3∑

i=0

(−1)itr(f̃ε|H i(X(p),L⊗(m−1) ⊗ Ω3)

−
3∑

i=0

(−1)itr(f̃ε′ |H i(X(p),L⊗(m−1) ⊗ Ω3).

Since L⊗(m−1) is trivial around D by Lemma 5.8 below, ch((L⊗(m−1) ⊗
Ω3)|Xε

α)(ε) = ch(Ω3|Xε
α)(ε) holds in 2.7. The same thing holds for ε′. Thus

we have

tr π(ε)− tr π(ε′) = τ(ε)− τ(ε′)

by using τ(ε), τ(ε′) in 5.2 and the holomorphic Lefschetz formula. We get

the equation (8) on S2m(Γ(p)). In other words, the case m ≥ 2 is reduced

to the case m = 1. �

Lemma 5.8. The notation being as in 5.7, L is trivial around D.

Proof. It suffices to prove the claim for Y (M,V ) in Proposition 3.10.

In the coordinate system (t1, t2, t3) of the resolution Y (M,V ), we have

(2π
√
−1)3dz1 ∧ dz2 ∧ dz3 = d(u, v, w) · dt1 ∧ dt2 ∧ dt3

t1t2t3
.

Hence the holomorphic 3-form dz1 ∧ dz2 ∧ dz3 on G(M,V ) \ H3 extends

to a nowhere vanishing section of ΩY (M,V )
3(log D). Here we put D :=

Y (M,V )−G(M,V ) \ H3. This proves the Lemma. �

6. An example

In this section, we give an example to Theorem 4.4.

6.1. Let K be the field Q(w) defined by

w3 + 2w2 − w − 1 = 0.
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Fig. 2

The discriminant of this equation is 72, and K is a totally real Galois cubic

field with class number 1. It is known that OK = Z + Zw+ Zw2. Thomas-

Vasquez [13] shows that U/{±1} is freely generated by w−1 and (1+w)w−1,

and that U+ is freely generated by u := w2 and v := (w + 1)2. Moreover,

they shows that 〈1, u, u/v〉 and 〈1, u, v〉 form a fundamental domain for the

action of U+ on R3
+, where R+ := {r ∈ R | r > 0}. Put J := 1 + w + w2.

Then each of the triples (1, u, u/v), (1, u, J), (1, v, J), and (u, v, J) is a

basis of OK . Therefore, the diagram in Fig. 2 gives a cusp resolution for

the cusp of type (OK , U
+) :
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One can see that 13 is completely decomposed in K. We may assume

that w = σ1(w) > σ2(w) > σ3(w). We have

−3 < σ3(w) < −2, −1 < σ2(w) < −1/2, 0 < w < 1.

Hence if we put µ = 2−w, then µ is totally positive. We find that p := (µ)

is a prime ideal of K lying over 13. A simple computation shows that

U+/U(p)2 is a cyclic group with order 6 generated by the image of u.

Hence if we denote by Σ the complex consisting of

〈ui, ui+1, ui+1/v〉, 〈ui, ui+1, uiJ〉, 〈ui, uiv, uiJ〉, 〈ui+1, uiv, uiJ〉
(0 ≤ i ≤ 5),

and their faces, then Σ describe the cusp resolution for the cusp of type

(OK , U(p)2). We shall compute y1 − y2 for this prime ideal p below.

6.2. Let Σ be the complex as above. Let m be any positive integer

such that 1 ≤ m ≤ 12. For any element 〈u′, v′, w′〉 ∈ Σ(3), we have

e

[
d(m/µ, v′, w′)

d(u′, v′, w′)

]
�= 1, e

[
d(u′,m/µ,w′)

d(u′, v′, w′)

]
�= 1, e

[
d(u′, v′,m/µ)

d(u′, v′, w′)

]
�= 1.

Hence the fixed subvariety is 0-dimensional. Put

ν(m; 〈u′, v′, w′〉) :=
e
[
d(m/µ,v′,w′)
d(u′,v′,w′)

]
1− e

[
d(m/µ,v′,w′)
d(u′,v′,w′)

] · e
[
d(u′,m/µ,w′)
d(u′,v′,w′)

]
1− e

[
d(u′,m/µ,w′)
d(u′,v′,w′)

]
·

e
[
d(u′,v′,m/µ)
d(u′,v′,w′)

]
1− e

[
d(u′,v′,m/µ)
d(u′,v′,w′)

] .
Then we get

ν(m) = −
∑

σ∈Σ(3)

ν(m;σ).
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We put ζ := exp(2πi/13). The values of ν(m;σ) (σ ∈ Σ(3)) are as

follows :

ν(m; 〈1, u, u/v〉) =
ζm

(1− ζm)(1− ζ2m)(1− ζ4m)
,

ν(m; 〈u, u2, u2/v〉) =
ζ6m

(1− ζm)(1− ζ3m)(1− ζ6m)
,

ν(m; 〈u2, u3, u3/v〉) =
−ζ11m

(1− ζ3m)(1− ζ4m)(1− ζ8m)
,

ν(m; 〈u3, u4, u4/v〉) =
−ζ6m

(1− ζm)(1− ζ2m)(1− ζ4m)
,

ν(m; 〈u4, u5, u5/v〉) =
−ζ4m

(1− ζm)(1− ζ3m)(1− ζ6m)
,

ν(m; 〈u5, u6, u6/v〉) =
ζ4m

(1− ζ3m)(1− ζ4m)(1− ζ8m)
,

ν(m; 〈1, u, J〉) =
−ζ7m

(1− ζ3m)2(1− ζ4m)
,

ν(m; 〈u, u2, uJ〉) =
−ζ5m

(1− ζ4m)2(1− ζm)
,

ν(m; 〈u2, u3, u2J〉) =
ζm

(1− ζm)2(1− ζ3m)
,

ν(m; 〈u3, u4, u3J〉) =
ζ3m

(1− ζ3m)2(1− ζ4m)
,

ν(m; 〈u4, u5, u4J〉) =
ζ4m

(1− ζ4m)2(1− ζm)
,

ν(m; 〈u5, u6, u5J〉) =
−ζ4m

(1− ζm)2(1− ζ3m)
,

ν(m; 〈1, v, J〉) =
−ζ9m

(1− ζ2m)(1− ζ3m)(1− ζ6m)
,

ν(m; 〈u, uv, uJ〉) =
ζ5m

(1− ζ4m)(1− ζ6m)(1− ζ8m)
,
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ν(m; 〈u2, u2v, u2J〉) =
ζ11m

(1− ζm)(1− ζ2m)(1− ζ8m)
,

ν(m; 〈u3, u3v, u3J〉) =
ζ2m

(1− ζ2m)(1− ζ3m)(1− ζ6m)
,

ν(m; 〈u4, u4v, u4J〉) =
−1

(1− ζ4m)(1− ζ6m)(1− ζ8m)
,

ν(m; 〈u5, u5v, u5J〉) =
−1

(1− ζm)(1− ζ2m)(1− ζ8m)
,

ν(m; 〈u, v, J〉) =
−1

(1− ζ3m)2(1− ζ6m)
,

ν(m; 〈u2, uv, uJ〉) =
−1

(1− ζ4m)2(1− ζ8m)
,

ν(m; 〈u3, u2v, u2J〉) =
−1

(1− ζm)2(1− ζ2m)
,

ν(m; 〈u4, u3v, u3J〉) =
ζ12m

(1− ζ3m)2(1− ζ6m)
,

ν(m; 〈u5, u4v, u4J〉) =
ζ3m

(1− ζ4m)2(1− ζ8m)
,

ν(m; 〈u6, u5v, u5J〉) =
ζ4m

(1− ζm)2(1− ζ2m)
.

A simple calculation shows that

5∑
i=0

{
ν(m; 〈ui, ui+1, ui+1/v〉) + ν(m; 〈ui, ui+1, uiJ〉)

+ν(m; 〈ui+1, ui+1, uiJ〉)
}

=
5∑

i=0

ν(m; 〈ui, uiv, uiJ〉) = 0.

Thus we have ν(m) = 0 (1 ≤ m ≤ 12). Using these, we obtain

y1 − y2 =
1√
13
· 2

[U : U(p)]
·

12∑
m=1

(
m

p

)
ν(m)

= 0.
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Remark 6.3. The above result agrees with the fact that there does

not exist a totally imaginary quadratic extension of K with the relative

discriminant p. One can verify this fact as follows: {w−1, w−1 + 1} is

a fundamental system of units for K (cf. 6.1). One can see that −1 is

quadratic residue, but w−1 and w−1 + 1 are quadratic nonresidue modulo

p. Consequently, the above fact is verified by the following Lemma.

Lemma 6.4 (Naito). Let K be as above, and p a prime ideal of K.

We assume that the prime p which divided by p is odd and that p is totally

decomposed in K. Moreover, we suppose that −1 is quadratic residue, and

w−1 is quadratic nonresidue modulo p. Then there does not exist a totally

imaginary quadratic extension of K with the relative discriminant p.

Proof. Let∞i be the real infinite prime ofK corresponding to σi (i =

1, 2, 3). Put f = p∞1∞2∞3. Let Hf be the ideal class group for f. Since we

here consider quadratic extensions, it suffices to study Hf/Hf
2. Let U be

the unit group of K, and U the image of U by the map U → (OK/p)× ×
{±1}3, u → (u mod p, sgn σ1(u), sgn σ2(u), sgn σ3(u)). Here sgn σi(u) de-

notes the signature of σi(u). Then we have Hf
∼=
(
(OK/p)× × {±1}3

)
/U .

Since we deal with Hf/Hf
2, it suffices to consider the image of U in(

(OK/p)×/(OK/p)×2
)
× {±1}3. Let Û be its image, and û ∈ Û the image

of u ∈ U .

As we saw in 6.1, we have w−1 > 0, σ2(w
−1) < 0, and σ3(w

−1) < 0. Since

w−1σ2(w
−1)σ3(w

−1) = 1, σ2(w
−1) or σ3(w

−1) is quadratic residue modulo

p. We may assume that σ2(w
−1) is quadratic residue modulo p by exchange

σ2 for σ3 if necessary. We denote the image of u ∈ U in (OK/p)×/(OK/p)×2

by
(
u
p

)
. Then we have

ŵ−1 = (−1, 1,−1,−1),

̂σ2(w−1) = (1,−1,−1, 1),(9)

−̂1 = (1,−1,−1,−1).

Hence the rank of Û is 3. Thus the elementary 2-extension for f is a qua-

dratic extension. However, if we put f′ = p∞1∞3, then the elementary
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2-extension for f′is a quadratic extension by (9). Hence the former ex-

tension agrees with the latter one. Therefore this extension is not totally

imaginary. �
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