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On the Discrepancy of the β-Adic van der Corput

Sequence

By Syoiti Ninomiya

Abstract. The β-adic van der Corput sequence is constructed.
When β satisfies some conditions, the order of discrepancy of the se-
quence become O(logM/M) or O((logM)2/M).

1. Introduction

It is well known that low-discrepancy sequences and their discrepancy

play essential roles in quasi-Monte Carlo methods [6]. The author con-

structed a new class of low-discrepancy sequences Nβ [7] by using the β-adic

transformation [9][11]. Here, β is a real number greater than 1; when β is an

integer greater than or equal to 2, Nβ becomes the classical van der Corput

sequence in base β. Therefore, the class Nβ can be regarded as a generaliza-

tion of the van der Corput sequence. Nβ also contains a new construction

by Barat and Grabner [1] [7]. The principle of the construction of Nβ is that

we can consider the van der Corput sequence to be a Kakutani adding ma-

chine [10]. Pagès [8] and Hellekalek [4] also considered the van der Corput

sequence from this point of view. In [7], it is shown that when β satisfies

the following two conditions:

• Markov condition: β is Markov, that is to say, for this β, the β-adic

transformation becomes Markov,

• Pisot-Vijayaraghavan condition: All conjugates of β with respect to

its characteristic equation belong to {z ∈ C | |z| < 1},
the discrepancy of Nβ decreases in the fastest order O(N−1 logN). In this

paper, we consider the case in which β is not necessarily Markov. We

introduce the function φβ(z) from Ito and Takahashi [5]. It is shown that

when β satisfies the following condition (PV):
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(PV) All zeroes of 1 − φβ(z) except for z = 1 belong to {z ∈ C | |z| > β},

which is a generalization of the above Pisot-Vijayaraghavan condition, the

discrepancy of Nβ decreases in the order O(N−1(logN)2). We also remark

that the condition (PV) is considered to be a condition for the second eigen-

value of the Perron-Frobenius operator associated with the β-adic transfor-

mation.

2. Low-discrepancy sequence

First, we recall the notions of a uniformly distributed sequence and the

discrepancy of points [6]. A sequence x1, x2, . . . in the s-dimensional unit

cube Is =
∏s

i=1[0, 1) is said to be uniformly distributed in Is when

lim
N→∞

1

N

N∑
n=1

cJ(xn) = λs(J)

holds for all subintervals J ⊂ Is, where cJ is the characteristic function of

J and λs is the s-dimensional Lebesgue measure. If x1, x2, . . . ∈ Is is a

uniformly distributed sequence, the formula

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫
Is

f(x) dx(2.1)

holds for any Riemann integrable function on Is. The discrepancy of the

point set P = {x1, x2, . . . , xN} in Is is defined as follows:

DN (B;P ) = sup
B∈B

∣∣∣∣A(B;P )

N
− λs(B)

∣∣∣∣(2.2)

where B ⊂ ℘(Is) is a non-empty family of Lebesgue measurable subsets

and A(B;P ) is the counting function that indicates the number of n, where

1 ≤ n ≤ N , for which xn ∈ B. When J ∗ = {∏s
i=1[0, ui), 0 ≤ ui < 1},

the star discrepancy D∗
N (P ) is defined by D∗

N (P ) = DN (J∗;P ). When

S = {x1, x2, . . .} is a sequence in Is, we define D∗
N (S) as D∗

N (SN ), where

SN is the point set {x1, x2, . . . , xN}. Let S be a sequence in Is. It is known

that the following two conditions are equivalent:

1. S is uniformly distributed in Is;
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2. limN→∞ D∗
N (S) = 0.

The following classical theorem shows the importance of the notion of

discrepancy:

Theorem 2.1 (Koksma-Hlawka [6]). If f has bounded variation

V (f) on Īs in the sense of Hardy and Krause, then for any x1, x2, . . . , xN ∈
Is, we have∣∣∣∣∣ 1

N

N∑
n=1

f(xn) −
∫
Is

f(x) dx

∣∣∣∣∣ ≤ V (f)D∗
N (x1, . . . , xN ).

Schmidt [12] showed that, when s = 1 or 2, there exists a positive

constant C that depends only on s, and the following inequality holds for

an arbitrary point set P consisting of N elements:

D∗
N (P ) ≥ C

(logN)s−1

N
.(2.3)

If (2.3) holds, then there exists a positive constant C that depends only on

s, and any sequence S ⊂ Is satisfies

D∗
N (S) ≥ C

(logN)s

N
(2.4)

for infinitely many N . Taking account of (2.3) and (2.4), we define a low-

discrepancy sequence for the one-dimensional case as follows:

Definition 2.1. Let S be an one-dimensional sequence in [0, 1). If

D∗
N (S) satisfies

D∗
N (S) = O(N−1 logN)

then S is called a low-discrepancy sequence.

Hereafter we consider only the case where s = 1. We now introduce the

classical van der Corput sequence [2] [6].

Definition 2.2. Let p ≥ 2 be an integer. Every integer n ≥ 0 has a

unique digit expansion

n =
∞∑
j=0

aj(n)pj , aj(n) ∈ {0, 1, . . . , p− 1} for all j ≥ 0,
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in base p. Let τ = {τj}j≥0 be a set of permutations τj of {0, 1, . . . , p − 1}.
Then the radical-inverse function φτ

p is defined by

φτ
p(n) =

∞∑
j=0

τj(aj(n))p−j−1 for all integers n ≥ 0.

The van der Corput sequence in base p with digit permutations τ is the

sequence {φτ
p(n)}∞n=0 ⊂ [0, 1).

Theorem 2.2 ([2][6]). For an arbitrary integer p ≥ 2, the van der

Corput sequence in base p is a low-discrepancy sequence.

3. β-adic transformation

In this section we define the fibred system and the β-adic transformation,

following [5] [13].

C, R, Z, and N are the sets of all complex numbers, all real numbers,

all integers, and all natural numbers, respectively. We also set

R>a = {r ∈ R | r > a}
Z≥n = {i ∈ Z | i ≥ n}

...

and so on. For x ∈ R, [x] denotes the integer part of x.

Definition 3.1. Let B be a set and T : B → B be a map. The pair

(B, T ) is called a fibred system if the following conditions are satisfied:

1. There is a finite countable set A.

2. There is a map k : B → A, and the sets

B(i) = k−1({i}) = {x ∈ B : k(x) = i}

form a partition of B.

3. For an arbitrary i ∈ A, T |B(i) is injective.
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Definition 3.2. Let Ω = AN and σ : Ω → Ω be the one-sided shift

operator. Let kj(x) = k(T j−1x). We derive a canonical map ϕ : B → Ω

from

ϕ(x) = {kj(x)}∞n=1.

ϕ is called the representation map.

We have the following commutative diagram:

B
T−−−→ B�ϕ �ϕ

Ω
σ−−−→ Ω

Definition 3.3. If a representation map ϕ is injective, ϕ is called a

valid representation.

Definition 3.4. Let ω ∈ Ω. If ω ∈ Im(ϕ), ω is called an admissible

sequence.

Definition 3.5. The cylinder of rank n defined by a1, a2, . . . , an ∈ A

is the set

B(a1, a2, . . . , an) = B(a1) ∩ T−1B(a2) ∩ . . . ∩ T−n+1B(an).

We define B to be a cylinder of rank 0.

For a sequence a ∈ Ω, we write the i-th element of a as a(i), that is,

a = (a(0), a(1), a(2), . . .).

Definition 3.6. Let β > 1 and β ∈ R. Let fβ : [0, 1) → [0, 1) be the

function defined by

fβ(x) = βx− [βx].

Let A = Z ∩ [0, β). Then we have the following fibred system ([0, 1), fβ):

[0, 1)
fβ−−−→ [0, 1)�ϕ �ϕ

Ω
σ−−−→ Ω

(3.1)
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The representation map ϕ of this fibred system is defined as follows:

ϕ(x)(n) = k, if
k

β
≤ fn

β (x) <
(k + 1)

β

where f0
β(x) = x, and fn+1

β (x) = fβ(fn
β (x)). Let Xβ be the closure of Im(ϕ)

in the product space Ω with the product topology. The lexicographical order

≺ (resp. �) is defined in Ω as follows: ω ≺ ω′ (resp. ω � ω′) if and only if

there exists an integer n such that ω(k) = ω′(k) for k < n and ω(n) < ω′(n)

(resp. ω(n) > ω′(n)). We also define � (resp. �) as ≺ (resp. �) or equal.

In this situation, we set

fn
β (1) = lim

x↗1
fn
β (x),

ζβ = max{Xβ} = ϕ(1),

and

ρβ(a) =
∞∑
n=0

a(n)β−n−1.

We have the following diagram:

[0, 1]
fβ−−−→ [0, 1]�ϕ �ρβ �ϕ �ρβ

Xβ
σ−−−→ Xβ

(3.2)

This diagram is called a β-adic transformation.

We use the following notation for periodic sequences:

(a1, a2, . . . , ȧn, . . . ȧn+m) = (a1, a2, . . . , an, an+1, . . . , an+m,

an, an+1, . . . , an+m,
...

an, an+1, . . . , an+m,

. . .)

We introduce the following proposition from Ito and Takahashi [5].

Proposition 3.1. For an arbitrary β ∈ R>1 the following statements

hold in (3.2).
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1. σ ◦ ϕ = ϕ ◦ fβ on [0, 1).

2. ϕ : [0, 1] → Xβ is an injection and is strictly order-preserving, i.e.,

t < s implies that ϕ(t) ≺ ϕ(s).

3. ρβ ◦ ϕ = id on [0, 1].

4. ρβ ◦ σ = fβ ◦ ρβ on Im(ϕ).

5. ρβ : Xβ → [0, 1] is a continuous surjection and is order-preserving,

i.e., ω ≺ ω′ implies that ρβ(ω) ≤ ρβ(ω′).

6. For an arbitrary t ∈ [0, 1], ρ−1
β (t) consists either of a one point ϕ(t)

or of two points ϕ(t) and sup{ϕ(s) | s < t}. The latter case occurs

only when fn
β (t) = (0̇) for some n > 0.

We also remark that the following proposition holds:

Proposition 3.2.

Xβ = {ω ∈ Ω | σnω � ζβ, for all n ≥ 0}

Definition 3.7. Let u ∈ Xβ. If there exist n ∈ Z≥1 which satisfies

u(i) = u(i + n) for any i ∈ Z, u is called a periodic sequence. When

u ∈ Xβ is periodic, we define the period of u as min{n ∈ Z≥1 | u(i) =

u(i + n) for any i ∈ Z}.

The following definition is from Parry [9].

Definition 3.8. If ζβ has periodic tail whose period is m, that is, σlζβ
is periodic for some non-negative integer l and the period of σlζβ is m, then

β and β-adic transformation (3.2) are called Markov. In this case, β is the

unique z > 1 solution of the following equation:

zm+l −
m+l∑
i=1

ai−1z
m+l−i = zl −

l∑
i=1

ai−1z
l−i(3.3)

where

ζβ = (a0, a1, . . . , al−1, ȧl, al+1, . . . , ˙al+m−1)
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and

l = min{l ∈ Z≥0 | σlζβ is periodic}.

This equation is called the characteristic equation of β. When l = 0, β is

called simple. When β is Markov, p(β) denotes the length of the period of

ζβ’s periodic tail.

When β is not necessarily Markov, the notion of the characteristic equa-

tion is generalized as follows. This function was first studied in Takahashi

[14][15] and Ito and Takahashi [5].

Definition 3.9.

φβ(z) =
∑
n≥0

ζβ(n)

(
z

β

)n+1

We also have the following proposition from Ito and Takahashi [5].

Proposition 3.3. φβ(z) converges in a neighborhood of the unit disk

{z ∈ C | |z| ≤ 1} and the equation 1 − φβ(z) = 0 has only one simple root

at z = 1 in a neighborhood of the unit disk.

Remark 3.1. When β is Markov, 1 − φβ(β/z) = 0 becomes the char-

acteristic equation of β.

4. Constructing the sequence

In this section, a sequence Nβ ⊂ [0, 1) is defined by the use of β-adic

transformation, following [7]. Let β ∈ R>1 and let ([0, 1], fβ, Xβ, σ, ϕ, ρβ)

be a β-adic transformation (3.2). Let B = [0, 1), and A,Ω, ζβ, B(a1, . . . , an)

be the same as in the previous section.

Definition 4.1. Let n ∈ Z≥0. Define

Xβ(n) =

{
{(0̇)}, n = 0

{ω ∈ Xβ | σn−1ω �= (0̇) and σnω = (0̇)}, n �= 0
,

Yβ(n) = {(ω(0), . . . , ω(n− 1)) | ω ∈ Xβ},
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and

Y 0
β (n) = {(a0, . . . , an−1) | (a0, . . . , an−2, an−1 + 1) ∈ Yβ(n)}.

Let k ∈ Z≥0, u ∈ Yβ(k), and v ∈ Yβ(l). Define Yβ(u;n), Y 0
β (u;n),

Yβ(u;n; v), Y 0
β (u;n; v), Gβ(n), Gβ(u;n), G0

β(n), G0
β(u;n), and G0

β(u;n; v)

as follows:

Yβ(u;n) = {u · ω | u · ω ∈ Yβ(k + n)}
Y 0
β (u;n) = {u · ω | u · ω ∈ Y 0

β (k + n)}
Yβ(u;n; v) = {u · ω · v | u · ω · v ∈ Yβ(k + n + l)}
Y 0
β (u;n; v) = {u · ω · v | u · ω · v ∈ Y 0

β (k + n + l)}
Gβ(n) = 2Yβ(n)

G0
β(n) = 2Y 0

β (n)

Gβ(u;n) = 2Yβ(u;n)

G0
β(u;n) = 2Y 0

β (u;n)

Gβ(u;n; v) = 2Yβ(u;n; v)

G0
β(u;n; v) = 2Y 0

β (u;n; v)

where u · v means the concatenation of u and v, that is to say,

u · v = (u(0), . . . , u(n− 1), v(0), v(1), . . .).

Finally we set Yβ(0) = Y 0
β (0) = {ε} where ε is the empty word and satisfies

ε · u = u · ε = u for any u ∈ Yβ(n).

Definition 4.2. Define the right-to-left lexicographical order
r−l≺ in⊔∞

n=0 Xβ(n) as follows: ω
r−l≺ ω′ if and only if (ω(n−1), . . . , ω(0)) ≺ (ω′(m−

1), . . . , ω′(0)) where ω ∈ Xβ(n) and ω′ ∈ Xβ(m).

Definition 4.3 (Nβ [7]). Define Lβ = {ωi}∞i=0 as
⊔∞

n=0 Xβ(n) ordered

in right-to-left lexicographical order, that is, Lβ is
⊔∞

n=0 Xβ(n) as a set and

ωi
r−l≺ ωj holds for all i < j. Then, the sequence Nβ is defined as follows:

Nβ = {ρβ(ωi)}∞i=0 .
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Example 4.1. If β = 1+
√

5
2 , then ζβ = (1̇, 0̇) and elements of Nβ are

calculated as follows:

Nβ(0) = ρβ(0) = 0

Nβ(1) = ρβ(1) = 0.618033988749895 . . .

Nβ(2) = ρβ(01) = 0.381966011250106 . . .

Nβ(3) = ρβ(001) = 0.23606797749979 . . .

Nβ(4) = ρβ(101) = 0.854101966249686 . . .

Nβ(5) = ρβ(0001) = 0.145898033750316 . . .

Nβ(6) = ρβ(1001) = 0.763932022500212 . . .

Nβ(7) = ρβ(0101) = 0.527864045000422 . . .

Nβ(8) = ρβ(00001) = 0.0901699437494747 . . .

Nβ(9) = ρβ(10001) = 0.70820393249937 . . .

Nβ(10) = ρβ(01001) = 0.472135954999581 . . .

Nβ(11) = ρβ(00101) = 0.326237921249265 . . .

Nβ(12) = ρβ(10101) = 0.944271909999161 . . .

Nβ(13) = ρβ(000001) = 0.0557280900008416 . . .

Nβ(15) = ρβ(100001) = 0.673762078750737 . . .

Nβ(16) = ρβ(010001) = 0.437694101250947 . . .

...

From this definition, we immediately have the following proposition:

Proposition 4.1. If β is an integer greater than or equal to 2 then Nβ

is the van der Corput sequence in base β with all digit permutations τj = id.

From Theorem 2.2 and Proposition 4.1, we see that if β ∈ Z≥2 then

Nβ is a low-discrepancy sequence, that is to say, D∗
M (Nβ) = O(M−1 logM)

holds for all β ∈ Z≥2. We also have the following theorem:

Theorem 4.1. Let β be a real number greater than 1, and let the fol-

lowing condition (PV) hold:
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(PV) All zeroes of 1 − φβ(z) except for z = 1 belong to {z ∈ C | |z| > β}.

Then,

D∗
M (Nβ) = O

(
(logM)2

M

)

holds. Moreover, if β is Markov, then

D∗
M (Nβ) = O

(
logM

M

)

holds.

Remark 4.1. When β is Markov, the condition (PV) is equivalent

to the condition that all conjugates of β with respect to its characteristic

equation (3.3) belong to {z ∈ C | |z| < 1}.

Remark 4.2. In [7], the case in which β is Markov is proved.

To prove this theorem, we provide lemmas and definitions. We use the

following notations:

ω[i, j) =

{
(ω(i), . . . , ω(j − 1)), i < j

ε, i = j
,

where ω ∈ Xβ and i, j ∈ Z≥0. Rβ(u) = λ(B(u)) where, λ is the one-

dimensional Lebesgue measure, u ∈ Xβ(n), and B(u) is the cylinder (3.5).

For a sequence S, S[N ] denotes the point set consisting of the first N ele-

ments of S, and S[N ;M ] = S[N + M ] \ S[N ].

Definition 4.4. For any k ≥ 0 and u ∈ Yβ(k), define

e(u) = {i ∈ Z≥0 | ζβ[0, i + 1) · u /∈ Yβ(k + i + 1)}.

Lemma 4.1 ([5]). For an arbitrary k ≥ 0 and u ∈ Yβ(k), we have the

following partitioning of Yβ(u;n):

Yβ(u;n) =
n⊔

j=1

Y 0
β (u; j) · ζβ[0, n− j)

⊔
max{Yβ(u;n)}
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Proof. It is trivial to show that the left-hand side includes the right-

hand side.

If v = (a1, . . . , an+k) ∈ Yβ(u;n) \ Y 0
β (u;n) and v �= max{Yβ(u;n)}, then

there exists an integer l that satisfies

k + 1 ≤ l ≤ n + k

and

min{w ∈ Yβ(u;n) | w � v} = (a1, . . . , al + 1, 0, . . . , 0).

This means that

(al+1, . . . , an+k) = ζβ[0, n + k − l)

and

(a1, . . . , al−1, al + 1) ∈ Y 0
β (u; l − k)

hold. �

Taking account of Lemma 4.1, we give the following definition:

Definition 4.5. For an arbitrary u ∈ Yβ(n), define an integer d(u) as

follows: d(u) = k if

u ∈ Y 0
β (k) · ζβ[0, n− k)

holds. Remark that max{Yβ(n)} = ζβ[0, n).

From Lemma 4.1, Definition 4.4, and Definition4.5 we have the following

lemma:

Lemma 4.2. For any k, l, n ≥ 0, u ∈ Yβ(k), and v ∈ Yβ(l), we have the

following partitioning of Yβ(u;n; v):

Yβ(u;n; v)

∼=




⊔
1≤j≤n

n−j−1/∈e(v)

Y 0
β (u; j) · ζβ[0, n− j),

if n + k − d(max{Yβ(u;n)}) − 1 ∈ e(v)⊔
1≤j≤n

n−j−1/∈e(v)

Y 0
β (u; j) · ζβ[0, n− j)

⊔
max{Yβ(u;n)}, otherwise.



β-Adic van der Corput Sequence 357

Lemma 4.3. For any n ≥ 0 and u ∈ Yβ(n),

Rβ(u) =
1

βd(u)


1 −

n−d(u)−1∑
i=0

ζβ(i)

βi+1




holds.

Proof. Let u = u0 · ζβ[0, n − d(u)) where u0 ∈ Y 0
β (d(u)). From Defi-

nition 3.6,

Rβ(u0) = ρβ((u0(0), . . . , u0(d(u) − 1) + 1)

− ρβ((u0(0), . . . , u0(d(u) − 1)) =
1

βd(u)

and

Rβ(ζβ[0, n− d(u))) = 1 −
n−d(u)−1∑

i=0

1

βi+1
.

When v · w ∈ Yβ(m), it follows that Rβ(v · w) = Rβ(v)Rβ(w). Then, the

lemma holds. �

Remark 4.3. From Definition 3.6, it follows that

fn
β (x) = βn

(
x−

n−1∑
i=0

ϕ(x)(i)

βi+1

)

for any x ∈ [0, 1] and n ≥ 0. Then, we have

Rβ(u) =
1

βn
f
n−d(u)
β (1)

for any u ∈ Yβ(n) and n ≥ 0, from Lemma 4.3.

Lemma 4.4 ([5]). Let r be the absolute value of the second smallest

zero of 1−φβ(z), that is, r = min{|z| | z ∈ C, z �= 1, 1−φβ(z) = 0}. Then

for any small ε > 0, there exists a constant Cε > 0 and∣∣∣∣∣G0
β(u;n) − βn+kRβ(u)

φ′
β(1)

∣∣∣∣∣ ≤ Cε

n

(
β

r − ε

)n
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holds for any n ≥ 0, k ≥ 0 and u ∈ Yβ(k).

Proof. Let k ≥ 0 and u ∈ Yβ(k). Remark that

Rβ(u) =
∑

u·v∈Yβ(u;n)

Rβ(u · v)(4.1)

holds. From (4.1), Lemma 4.1, and Remark 4.3, we have

βn+kRβ(u) =
n−1∑
j=0

f j
β(1)G0

β(u;n− j) + fn+l
β (1)(4.2)

where l = k − d(max{Yβ(u;n)}) ≥ 0. Remark that the formal power series

∑
n≥1

zn
n−1∑
j=0

f j
β(1)G0

β(u;n− j)β−(n+k)

converges for |z| < 1. We have the following equality from (4.2):

βk
∑
n≥1

znRβ(u) =
∑
n≥1

(
z

β

)n n−1∑
j=0

f j
β(1)G0

β(u;n− j)(4.3)

+
∑
n≥1

(
z

β

)n

fn+l
β (1)

We also have

∑
n≥1

(
z

β

)n n−1∑
j=0

f j
β(1)G0

β(u;n− j)

=
∑
j≥1

∑
n≥j

f j−1
β (1)G0

β(u;n− j + 1)

(
z

β

)n

=
∑
j≥0

f j
β(1)

(
z

β

)j ∑
n≥1

G0
β(u;n)

(
z

β

)n

and, from Remark 4.3,

(1 − z)
∑
n≥0

fn
β (1)

(
z

β

)n
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= (1 − z) + (1 − z)
∑
n≥1

(
1 −

n−1∑
i=0

ζβ(i)

βi+1

)
zn

= 1 −
∑
n≥0

ζβ(n)

(
z

β

)n+1

= 1 − φβ(z).

By using these two equalities, we obtain from (4.3) that

∑
n≥1

G0
β(u;n)

(
z

β

)n

=
zβkRβ(u)

1 − φβ(z)
−

(1 − z)
∑

n≥1 fn+l
β (1)(z/β)n

1 − φβ(z)
.(4.4)

Consider the function

hu(z) =
∑
n≥1

(
G0

β(u;n)

(
z

β

)n

− βkRβ(u)

φ′
β(1)

zn
)

(4.5)

=
zβkRβ(u)

1 − φβ(z)
−

(1 − z)
∑

n≥1 fn+l
β (1)(z/β)n

1 − φβ(z)

− zβkRβ(u)

(1 − z)φ′
β(1)

.

The second equality comes from (4.4). From Proposition 3.3, we see that

hu(z) is analytic in a neighborhood of {z ∈ C | |z| ≤ r − ε, z �= 1}. We

also see from (4.5) that limz→1(1 − z)hu(z) = 0. Considering the fact that

βkRβ(u) ≤ 1 for any u ∈ Yβ(k), k ≥ 1 and that the second term of the

right-hand side of (4.4) and its derivative are bounded uniformly in l, we

see that there exists a constant Cε and

sup
k≥1, u∈Yβ(k)

|z|=r−ε

∣∣h′
u(z)

∣∣ < Cε(4.6)

holds. Then we have

n!

∣∣∣∣∣
G0

β(u;n)

βn
− βkRβ(u)

φ′
β(1)

∣∣∣∣∣ =
∣∣∣h(n)

u (0)
∣∣∣

=

∣∣∣∣∣d
n−1h′

u

dzn−1
(0)

∣∣∣∣∣
=

∣∣∣∣∣ (n− 1)!

2π(r − ε)n

∫
|z|=r−ε

h′
u(z) dz

∣∣∣∣∣
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≤ (n− 1)!
Cε

(r − ε)n

and the lemma follows. �

Lemma 4.5. If β ∈ R>1 is Markov and ζβ = (a0, . . . , al−1, ȧl, . . . ,

˙al+m−1), where m = p(β) and l = min{l ∈ Z≥0 | σlζβ is periodic}, then

we have the following statements:

1. For an arbitrary v ∈ Xβ, {G0
β(n)}∞n=0 and {Gβ(n)}∞n=0 satisfy the

following linear recurrent equation:

Gβ(ε;n + m + l; v) −
m+l−1∑
i=0

aiGβ(ε;n + m + l − i− 1; v)(4.7)

= Gβ(ε;n + l; v) −
l−1∑
i=0

aiGβ(ε;n + l − i− 1; v)

= Gβ(ζβ[0, l);n; v).

2. For arbitrary u ∈ Yβ(k), k ≥ m+l and v ∈ Xβ, the following equations

hold for any n ≥ m + l − k + d:

Gβ(u;n; v) =




m+l−k+d∑
i=1

ak−d−1+iGβ(ζβ[0, l);n− i; v)

when d > k −m− l

Gβ(ζβ[0, l);n; v)

when d = k −m− l

(4.8)

Gβ(ζβ[0, l);n; v) =
m∑
i=1

al+i−1Gβ(ε;n− i; v)(4.9)

+ Gβ(ζβ[0, l);n−m; v)

where d = d(u[k −m− l, k)) + k −m− l.

Proof. First, we remark that u = u[0, d) · ζβ[0, k− d). From Proposi-

tion 3.2, we have the following partitioning:

Yβ(ε;n + l; v) \
l−1⊔
j=0

aj−1⊔
i=0

ζβ[0, j) · i · Yβ(ε;n + l − j − 1; v)
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= Yβ(ζβ[0, l);n; v)

= Yβ(ε;n + m + l; v) \
m+l−1⊔
j=0

aj−1⊔
i=0

ζβ[0, j) · i · Yβ(ε;n + m + l − j − 1; v).

Then, (4.7) holds. When d = k − m − l, it is trivial to obtain (4.8) from

Proposition 3.2. When d > k −m− l, we obtain the following partitioning:

Yβ(u;n; v) =

m+l−(k−d)⊔
j=1

ak−d+j−1−1⊔
i=0

u[0, d) · ζβ[0, k − d + j) · i · w · v

where ζβ[0, l) · w · v ∈ Yβ(ζβ[0, l);n− j; v). We also have

Yβ(ζβ[0, l);n; v) =
m⊔
j=1

al+j−1−1⊔
i=0

ζβ[0, l) · ζβ[l, l + j − 1) · i · Yβ(ε;n− j; v)

⊔
ζβ[0, l + m) · Yβ(ζβ[0, l);n−m; v).

The lemma follows from these partitionings. �

Proof of Theorem 4.1. Let k > 0, u ∈ Yβ(k). Let M ∈ N and

b = (b0, b1, . . . , bm−1) = Lβ(M). We assume M to satisfy m > k. Define

∆(I;P ) = A(I;P ) −Mλ(I),

where I is an interval in [0, 1) and P = {x1, x2, . . . , xM} ⊂ [0, 1). For any

finite sets of points P, P ′ in [0, 1) and any intervals I, I ′ ⊂ [0, 1), I ∩ I ′ = ∅,

∆(I;P � P ′) = ∆(I;P ) + ∆(I;P ′)
∆(I � I ′;P ) = ∆(I;P ) + ∆(I ′;P )

(4.10)

hold. Here, P � P ′ is the disjoint union of P and P ′ or the union of P and

P ′ with multiplicity. From Definition 4.3 and (4.10), we have

∆(B(u);Nβ[M ]) = ∆(B(u);
m−1⊔
j=0

bj−1⊔
i=0

Yβ(ε; j; vij))(4.11)

=
m−1∑
j=0

bj−1∑
i=0

∆(B(u);Yβ(ε; j; vij))
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where vij = i · b[j + 1,m). Consider the 0 ≤ j ≤ k part of the right hand

side of (4.11).

k∑
j=0

bj−1∑
i=0

|∆(B(u);Yβ(ε; j; vij))| ≤
k∑

j=0

([β] + 1)Gβ(j)Rβ(u)(4.12)

holds from the definition of ∆. From Lemma 4.1 and Lemma 4.4, there

exists a constant C ′ and Gβ(j) ≤ C ′βj holds for any j. From this and

Rβ(u) ≤ β−k, there exists a constant C0, and

k∑
j=0

([β] + 1)Gβ(j)Rβ(u) < C0

is satisfied for any k. Then, from (4.11) and (4.12), we have

∆(B(u);Nβ[M ]) ≤ C0 +
m−1∑
j=k+1

bj−1∑
i=0

|∆(B(u);Yβ(ε; j; vij))| .(4.13)

Define

δ(u;n) = G0
β(u;n) − βn+kRβ(u)

φ′
β(1)

δ(n) = G0
β(n) − βn

φ′
β(1)

for u ∈ Yβ(k) and k, n ≥ 0. From this definition,

|∆(B(u);Y 0
β (n))| = |G0

β(u;n) −Rβ(u)G0
β(k + n)|(4.14)

= |δ(u;n) −Rβ(u)δ(k + n)|
holds. Then, from Lemma 4.2 we have

m−1∑
j=k+1

bj−1∑
i=0

|∆(B(u);Yβ(ε; j; vij))|(4.15)

≤
m−1∑
j=k+1

bj−1∑
i=0




∑
l=1,...,j

j−l−1/∈e(vij)

∣∣∣∆(B(u);Y 0
β (l) · ζβ[0, j − l))

∣∣∣+ 1




≤
m−1∑
j=k+1

bj−1∑
i=0


 j∑

l=1

∣∣∣∆(B(u);Y 0
β (l))

∣∣∣+ 1


 .
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From the (PV) condition and Lemma 4.4, there exist r > β and a constant

Cr that satisfy

|δ(u;n)| ≤ Cr

n

(
β

r

)n

(4.16)

for any n, k > 0 and u ∈ Yβ(k). From (4.13), (4.14), (4.15), (4.16), and

r > β, we see that

∆(B(u);Nβ[M ])(4.17)

≤ C0 + Cr([β] + 1)

·
m−1∑
j=k+1


 j∑

l=1

(
1

l

(
β

r

)l

+
1

k + l

(
β

r

)k+l

Rβ(u)

)
+ 1




= O(m) = O(logM)

holds.

Choose an arbitrary t ∈ [0, 1). Let M ∈ N and Lβ(M) = (b0, . . . , bm−1).

Let B(t0, . . . , tm−1) be a cylinder of rank m that satisfies t ∈ B(t0, . . . ,

tm−1). Then we have

[0, t) = Bs1 �Bs2 � . . . �Bsk �R,

where 0 ≤ s1 < s2 < . . . < sk = m−1, Bsi is a disjoint union of up to [β]+1

cylinders of rank si and λ(R) < β−m+1. Then from (4.10) and (4.17), we

have

|∆([0, t);Nβ[M ])| = O((logM)2),

and therefore

D∗
M (Nβ) = O

(
(logM)2

M

)
.

In the following part, we consider the case in which β is Markov. Let

ζβ = (a0, . . . , al′−1, ȧl′ , . . . , ˙al−1) and l − l′ = p(β). Then, β is the unique

z > 1 solution of

zl −
l−1∑
i=0

aiz
l−1−i = zl

′ −
l′−1∑
i=0

aiz
l′−1−i.(4.18)

Let α1, . . . , αq be the conjugates of β with respect to the equation (4.18),

that is,

zl −
l−1∑
i=0

aiz
l−1−i − zl

′
+

l′−1∑
i=0

aiz
l′−1−i = (z − β)

q∏
i=1

(z − αi)
li
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where li ≥ 1, αi �= αj for all i �= j and
∑q

i=1 li = l − 1. We also have

|αi| < 1, for all i ∈ {1, . . . , q}(4.19)

from the (PV) condition. Let v ∈ Xβ. From Lemma 4.5, there exist

complex numbers c, cij (i = 1, . . . , q, j = 0, . . . li − 1) that satisfy the

following equation:

Gβ(ε;n; v) = cβn +
r∑

i=1

li−1∑
j=0

cijn
jαn

i for all n ∈ N.(4.20)

From Lemma 4.3, Lemma 4.5, and (4.20), we have

∆(B(u);Nβ[Gβ(ε; k + n; v)])(4.21)

=




q∑
h=1

lh−1∑
j=0

chj

(
njαn

h − 1

βk
(k + n)jαk+n

h

)
,

when d = k − l
l−1∑

i=k−d

ai

q∑
h=1

lh−1∑
j=0

chj

·
(
(k + n− d)jαk+n−d−i

h − 1
βd+i (k + n)jαk+n

h

)
,

when d > k − l

where u ∈ Yβ(k), n ∈ N, and d = d(u[max{0, k − l + 1}, k + 1)) + k − l.

From (4.10), (4.13), (4.15), (4.19), and (4.21), there exists a constant C that

satisfies the following inequality (4.22) for any cylinder B(u) of any rank k

and M > Gβ(l + d).

|∆(B(u);Nβ[M ])| < C(4.22)

Then, we obtain

D∗
M (Nβ) = O

(
logM

M

)

by the above reasoning. �
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