On the Discrepancy of the β-Adic van der Corput Sequence

By Syoiti Ninomiya

Abstract

The β-adic van der Corput sequence is constructed. When β satisfies some conditions, the order of discrepancy of the sequence become $O(\log M / M)$ or $O\left((\log M)^{2} / M\right)$.

1. Introduction

It is well known that low-discrepancy sequences and their discrepancy play essential roles in quasi-Monte Carlo methods [6]. The author constructed a new class of low-discrepancy sequences $N_{\beta}[7]$ by using the β-adic transformation [9][11]. Here, β is a real number greater than 1 ; when β is an integer greater than or equal to $2, N_{\beta}$ becomes the classical van der Corput sequence in base β. Therefore, the class N_{β} can be regarded as a generalization of the van der Corput sequence. N_{β} also contains a new construction by Barat and Grabner [1] [7]. The principle of the construction of N_{β} is that we can consider the van der Corput sequence to be a Kakutani adding machine [10]. Pagès [8] and Hellekalek [4] also considered the van der Corput sequence from this point of view. In [7], it is shown that when β satisfies the following two conditions:

- Markov condition: β is Markov, that is to say, for this β, the β-adic transformation becomes Markov,
- Pisot-Vijayaraghavan condition: All conjugates of β with respect to its characteristic equation belong to $\{z \in \mathbf{C}||z|<1\}$,
the discrepancy of N_{β} decreases in the fastest order $O\left(N^{-1} \log N\right)$. In this paper, we consider the case in which β is not necessarily Markov. We introduce the function $\phi_{\beta}(z)$ from Ito and Takahashi [5]. It is shown that when β satisfies the following condition (PV):

[^0](PV) All zeroes of $1-\phi_{\beta}(z)$ except for $z=1$ belong to $\{z \in \mathbf{C}||z|>\beta\}$, which is a generalization of the above Pisot-Vijayaraghavan condition, the discrepancy of N_{β} decreases in the order $O\left(N^{-1}(\log N)^{2}\right)$. We also remark that the condition ($\mathbf{P V}$) is considered to be a condition for the second eigenvalue of the Perron-Frobenius operator associated with the β-adic transformation.

2. Low-discrepancy sequence

First, we recall the notions of a uniformly distributed sequence and the discrepancy of points [6]. A sequence x_{1}, x_{2}, \ldots in the s-dimensional unit cube $I^{s}=\prod_{i=1}^{s}[0,1)$ is said to be uniformly distributed in I^{s} when

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} c_{J}\left(x_{n}\right)=\lambda_{s}(J)
$$

holds for all subintervals $J \subset I^{s}$, where c_{J} is the characteristic function of J and λ_{s} is the s-dimensional Lebesgue measure. If $x_{1}, x_{2}, \ldots \in I^{s}$ is a uniformly distributed sequence, the formula

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right)=\int_{I^{s}} f(x) d x \tag{2.1}
\end{equation*}
$$

holds for any Riemann integrable function on I^{s}. The discrepancy of the point set $P=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ in I^{s} is defined as follows:

$$
\begin{equation*}
D_{N}(\mathcal{B} ; P)=\sup _{B \in \mathcal{B}}\left|\frac{A(B ; P)}{N}-\lambda_{s}(B)\right| \tag{2.2}
\end{equation*}
$$

where $\mathcal{B} \subset \wp\left(I^{s}\right)$ is a non-empty family of Lebesgue measurable subsets and $A(B ; P)$ is the counting function that indicates the number of n, where $1 \leq n \leq N$, for which $x_{n} \in B$. When $\mathcal{J}^{*}=\left\{\prod_{i=1}^{s}\left[0, u_{i}\right), 0 \leq u_{i}<1\right\}$, the star discrepancy $D_{N}^{*}(P)$ is defined by $D_{N}^{*}(P)=D_{N}\left(J^{*} ; P\right)$. When $S=\left\{x_{1}, x_{2}, \ldots\right\}$ is a sequence in I^{s}, we define $D_{N}^{*}(S)$ as $D_{N}^{*}\left(S_{N}\right)$, where S_{N} is the point set $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$. Let S be a sequence in I^{s}. It is known that the following two conditions are equivalent:

1. S is uniformly distributed in I^{s};
2. $\lim _{N \rightarrow \infty} D_{N}^{*}(S)=0$.

The following classical theorem shows the importance of the notion of discrepancy:

Theorem 2.1 (Koksma-Hlawka [6]). If f has bounded variation $V(f)$ on \bar{I}^{s} in the sense of Hardy and Krause, then for any $x_{1}, x_{2}, \ldots, x_{N} \in$ I^{s}, we have

$$
\left|\frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right)-\int_{I^{s}} f(x) d x\right| \leq V(f) D_{N}^{*}\left(x_{1}, \ldots, x_{N}\right)
$$

Schmidt [12] showed that, when $s=1$ or 2 , there exists a positive constant C that depends only on s, and the following inequality holds for an arbitrary point set P consisting of N elements:

$$
\begin{equation*}
D_{N}^{*}(P) \geq C \frac{(\log N)^{s-1}}{N} \tag{2.3}
\end{equation*}
$$

If (2.3) holds, then there exists a positive constant C that depends only on s, and any sequence $S \subset I^{s}$ satisfies

$$
\begin{equation*}
D_{N}^{*}(S) \geq C \frac{(\log N)^{s}}{N} \tag{2.4}
\end{equation*}
$$

for infinitely many N. Taking account of (2.3) and (2.4), we define a lowdiscrepancy sequence for the one-dimensional case as follows:

Definition 2.1. Let S be an one-dimensional sequence in $[0,1)$. If $D_{N}^{*}(S)$ satisfies

$$
D_{N}^{*}(S)=O\left(N^{-1} \log N\right)
$$

then S is called a low-discrepancy sequence.
Hereafter we consider only the case where $s=1$. We now introduce the classical van der Corput sequence [2] [6].

Definition 2.2. Let $p \geq 2$ be an integer. Every integer $n \geq 0$ has a unique digit expansion

$$
n=\sum_{j=0}^{\infty} a_{j}(n) p^{j}, \quad a_{j}(n) \in\{0,1, \ldots, p-1\} \text { for all } j \geq 0
$$

in base p. Let $\tau=\left\{\tau_{j}\right\}_{j \geq 0}$ be a set of permutations τ_{j} of $\{0,1, \ldots, p-1\}$. Then the radical-inverse function ϕ_{p}^{τ} is defined by

$$
\phi_{p}^{\tau}(n)=\sum_{j=0}^{\infty} \tau_{j}\left(a_{j}(n)\right) p^{-j-1} \quad \text { for all integers } \quad n \geq 0
$$

The van der Corput sequence in base p with digit permutations τ is the sequence $\left\{\phi_{p}^{\tau}(n)\right\}_{n=0}^{\infty} \subset[0,1)$.

Theorem 2.2 ([2][6]). For an arbitrary integer $p \geq 2$, the van der Corput sequence in base p is a low-discrepancy sequence.

3. β-adic transformation

In this section we define the fibred system and the β-adic transformation, following [5] [13].
$\mathbf{C}, \mathbf{R}, \mathbf{Z}$, and \mathbf{N} are the sets of all complex numbers, all real numbers, all integers, and all natural numbers, respectively. We also set

$$
\begin{aligned}
\mathbf{R}_{>a} & =\{r \in \mathbf{R} \mid r>a\} \\
\mathbf{Z}_{\geq n} & =\{i \in \mathbf{Z} \mid i \geq n\}
\end{aligned}
$$

and so on. For $x \in \mathbf{R},[x]$ denotes the integer part of x.

Definition 3.1. Let B be a set and $T: B \rightarrow B$ be a map. The pair (B, T) is called a fibred system if the following conditions are satisfied:

1. There is a finite countable set A.
2. There is a map $k: B \rightarrow A$, and the sets

$$
B(i)=k^{-1}(\{i\})=\{x \in B: k(x)=i\}
$$

form a partition of B.
3. For an arbitrary $i \in A,\left.T\right|_{B(i)}$ is injective.

Definition 3.2. Let $\Omega=A^{\mathbf{N}}$ and $\sigma: \Omega \rightarrow \Omega$ be the one-sided shift operator. Let $k_{j}(x)=k\left(T^{j-1} x\right)$. We derive a canonical map $\varphi: B \rightarrow \Omega$ from

$$
\varphi(x)=\left\{k_{j}(x)\right\}_{n=1}^{\infty}
$$

φ is called the representation map.
We have the following commutative diagram:

Definition 3.3. If a representation map φ is injective, φ is called a valid representation.

Definition 3.4. Let $\omega \in \Omega$. If $\omega \in \operatorname{Im}(\varphi), \omega$ is called an admissible sequence.

Definition 3.5. The cylinder of rank n defined by $a_{1}, a_{2}, \ldots, a_{n} \in A$ is the set

$$
B\left(a_{1}, a_{2}, \ldots, a_{n}\right)=B\left(a_{1}\right) \cap T^{-1} B\left(a_{2}\right) \cap \ldots \cap T^{-n+1} B\left(a_{n}\right)
$$

We define B to be a cylinder of rank 0 .
For a sequence $a \in \Omega$, we write the i-th element of a as $a(i)$, that is, $a=(a(0), a(1), a(2), \ldots)$.

Definition 3.6. Let $\beta>1$ and $\beta \in \mathbf{R}$. Let $f_{\beta}:[0,1) \rightarrow[0,1)$ be the function defined by

$$
f_{\beta}(x)=\beta x-[\beta x] .
$$

Let $A=\mathbf{Z} \cap[0, \beta)$. Then we have the following fibred system $\left([0,1), f_{\beta}\right)$:

The representation map φ of this fibred system is defined as follows:

$$
\varphi(x)(n)=k, \quad \text { if } \quad \frac{k}{\beta} \leq f_{\beta}^{n}(x)<\frac{(k+1)}{\beta}
$$

where $f_{\beta}^{0}(x)=x$, and $f_{\beta}^{n+1}(x)=f_{\beta}\left(f_{\beta}^{n}(x)\right)$. Let X_{β} be the closure of $\operatorname{Im}(\varphi)$ in the product space Ω with the product topology. The lexicographical order $\prec\left(\right.$ resp. \succ) is defined in Ω as follows: $\omega \prec \omega^{\prime}$ (resp. $\omega \succ \omega^{\prime}$) if and only if there exists an integer n such that $\omega(k)=\omega^{\prime}(k)$ for $k<n$ and $\omega(n)<\omega^{\prime}(n)$ (resp. $\omega(n)>\omega^{\prime}(n)$). We also define $\preceq($ resp. $\succeq)$ as $\prec($ resp. \succ) or equal. In this situation, we set

$$
\begin{gathered}
f_{\beta}^{n}(1)=\lim _{x \nearrow 1} f_{\beta}^{n}(x), \\
\zeta_{\beta}=\max \left\{X_{\beta}\right\}=\varphi(1),
\end{gathered}
$$

and

$$
\rho_{\beta}(a)=\sum_{n=0}^{\infty} a(n) \beta^{-n-1} .
$$

We have the following diagram:

This diagram is called a β-adic transformation.
We use the following notation for periodic sequences:

$$
\begin{aligned}
\left(a_{1}, a_{2}, \ldots, \dot{a}_{n}, \ldots \dot{a}_{n+m}\right)=\left(a_{1}, a_{2}, \ldots,\right. & a_{n}, a_{n+1}, \ldots, a_{n+m} \\
& a_{n}, a_{n+1}, \ldots, a_{n+m} \\
& \vdots \\
& a_{n}, a_{n+1}, \ldots, a_{n+m} \\
& \ldots)
\end{aligned}
$$

We introduce the following proposition from Ito and Takahashi [5].
Proposition 3.1. For an arbitrary $\beta \in \mathbf{R}_{>1}$ the following statements hold in (3.2).

1. $\sigma \circ \varphi=\varphi \circ f_{\beta}$ on $[0,1)$.
2. $\varphi:[0,1] \rightarrow X_{\beta}$ is an injection and is strictly order-preserving, i.e., $t<s$ implies that $\varphi(t) \prec \varphi(s)$.
3. $\rho_{\beta} \circ \varphi=\mathrm{id}$ on $[0,1]$.
4. $\rho_{\beta} \circ \sigma=f_{\beta} \circ \rho_{\beta}$ on $\operatorname{Im}(\varphi)$.
5. $\rho_{\beta}: X_{\beta} \rightarrow[0,1]$ is a continuous surjection and is order-preserving, i.e., $\omega \prec \omega^{\prime}$ implies that $\rho_{\beta}(\omega) \leq \rho_{\beta}\left(\omega^{\prime}\right)$.
6. For an arbitrary $t \in[0,1], \rho_{\beta}^{-1}(t)$ consists either of a one point $\varphi(t)$ or of two points $\varphi(t)$ and $\sup \{\varphi(s) \mid s<t\}$. The latter case occurs only when $f_{\beta}^{n}(t)=(\dot{0})$ for some $n>0$.

We also remark that the following proposition holds:
Proposition 3.2.

$$
X_{\beta}=\left\{\omega \in \Omega \mid \sigma^{n} \omega \preceq \zeta_{\beta}, \quad \text { for all } \quad n \geq 0\right\}
$$

Definition 3.7. Let $u \in X_{\beta}$. If there exist $n \in \mathbf{Z}_{\geq 1}$ which satisfies $u(i)=u(i+n)$ for any $i \in \mathbf{Z}, u$ is called a periodic sequence. When $u \in X_{\beta}$ is periodic, we define the period of u as $\min \left\{n \in \mathbf{Z}_{\geq 1} \mid u(i)=\right.$ $u(i+n)$ for any $i \in \mathbf{Z}\}$.

The following definition is from Parry [9].
Definition 3.8. If ζ_{β} has periodic tail whose period is m, that is, $\sigma^{l} \zeta_{\beta}$ is periodic for some non-negative integer l and the period of $\sigma^{l} \zeta_{\beta}$ is m, then β and β-adic transformation (3.2) are called Markov. In this case, β is the unique $z>1$ solution of the following equation:

$$
\begin{equation*}
z^{m+l}-\sum_{i=1}^{m+l} a_{i-1} z^{m+l-i}=z^{l}-\sum_{i=1}^{l} a_{i-1} z^{l-i} \tag{3.3}
\end{equation*}
$$

where

$$
\zeta_{\beta}=\left(a_{0}, a_{1}, \ldots, a_{l-1}, \dot{a}_{l}, a_{l+1}, \ldots, a_{l+m-1}\right)
$$

and

$$
l=\min \left\{l \in \mathbf{Z}_{\geq 0} \mid \sigma^{l} \zeta_{\beta} \text { is periodic }\right\}
$$

This equation is called the characteristic equation of β. When $l=0, \beta$ is called simple. When β is Markov, $p(\beta)$ denotes the length of the period of ζ_{β} 's periodic tail.

When β is not necessarily Markov, the notion of the characteristic equation is generalized as follows. This function was first studied in Takahashi [14][15] and Ito and Takahashi [5].

Definition 3.9.

$$
\phi_{\beta}(z)=\sum_{n \geq 0} \zeta_{\beta}(n)\left(\frac{z}{\beta}\right)^{n+1}
$$

We also have the following proposition from Ito and Takahashi [5].
Proposition 3.3. $\phi_{\beta}(z)$ converges in a neighborhood of the unit disk $\left\{z \in \mathbf{C}||z| \leq 1\}\right.$ and the equation $1-\phi_{\beta}(z)=0$ has only one simple root at $z=1$ in a neighborhood of the unit disk.

Remark 3.1. When β is Markov, $1-\phi_{\beta}(\beta / z)=0$ becomes the characteristic equation of β.

4. Constructing the sequence

In this section, a sequence $N_{\beta} \subset[0,1)$ is defined by the use of β-adic transformation, following [7]. Let $\beta \in \mathbf{R}_{>1}$ and let ($[0,1], f_{\beta}, X_{\beta}, \sigma, \varphi, \rho_{\beta}$) be a β-adic transformation (3.2). Let $B=[0,1)$, and $A, \Omega, \zeta_{\beta}, B\left(a_{1}, \ldots, a_{n}\right)$ be the same as in the previous section.

Definition 4.1. Let $n \in \mathbf{Z}_{\geq 0}$. Define

$$
\begin{aligned}
X_{\beta}(n) & =\left\{\begin{array}{cc}
\{(\dot{0})\}, & n=0 \\
\left\{\omega \in X_{\beta} \mid \sigma^{n-1} \omega \neq(\dot{0})\right.
\end{array} \text { and } \quad \sigma^{n} \omega=(\dot{0})\right\}, \\
Y_{\beta}(n) & =\left\{(\omega(0), \ldots, \omega(n-1)) \mid \omega \in X_{\beta}\right\},
\end{aligned}
$$

and

$$
Y_{\beta}^{0}(n)=\left\{\left(a_{0}, \ldots, a_{n-1}\right) \mid\left(a_{0}, \ldots, a_{n-2}, a_{n-1}+1\right) \in Y_{\beta}(n)\right\}
$$

Let $k \in \mathbf{Z}_{\geq 0}, u \in Y_{\beta}(k)$, and $v \in Y_{\beta}(l)$. Define $Y_{\beta}(u ; n), Y_{\beta}^{0}(u ; n)$, $Y_{\beta}(u ; n ; v), Y_{\beta}^{0}(u ; n ; v), G_{\beta}(n), G_{\beta}(u ; n), G_{\beta}^{0}(n), G_{\beta}^{0}(u ; n)$, and $G_{\beta}^{0}(u ; n ; v)$ as follows:

$$
\begin{aligned}
Y_{\beta}(u ; n) & =\left\{u \cdot \omega \mid u \cdot \omega \in Y_{\beta}(k+n)\right\} \\
Y_{\beta}^{0}(u ; n) & =\left\{u \cdot \omega \mid u \cdot \omega \in Y_{\beta}^{0}(k+n)\right\} \\
Y_{\beta}(u ; n ; v) & =\left\{u \cdot \omega \cdot v \mid u \cdot \omega \cdot v \in Y_{\beta}(k+n+l)\right\} \\
Y_{\beta}^{0}(u ; n ; v) & =\left\{u \cdot \omega \cdot v \mid u \cdot \omega \cdot v \in Y_{\beta}^{0}(k+n+l)\right\} \\
G_{\beta}(n) & =\sharp Y_{\beta}(n) \\
G_{\beta}^{0}(n) & =\sharp Y_{\beta}^{0}(n) \\
G_{\beta}(u ; n) & =\sharp Y_{\beta}(u ; n) \\
G_{\beta}^{0}(u ; n) & =\sharp Y_{\beta}^{0}(u ; n) \\
G_{\beta}(u ; n ; v) & =\sharp Y_{\beta}(u ; n ; v) \\
G_{\beta}^{0}(u ; n ; v) & =\sharp Y_{\beta}^{0}(u ; n ; v)
\end{aligned}
$$

where $u \cdot v$ means the concatenation of u and v, that is to say,

$$
u \cdot v=(u(0), \ldots, u(n-1), v(0), v(1), \ldots) .
$$

Finally we set $Y_{\beta}(0)=Y_{\beta}^{0}(0)=\{\epsilon\}$ where ϵ is the empty word and satisfies $\epsilon \cdot u=u \cdot \epsilon=u$ for any $u \in Y_{\beta}(n)$.

Definition 4.2. Define the right-to-left lexicographical order $\stackrel{r-l}{\prec}$ in $\bigsqcup_{n=0}^{\infty} X_{\beta}(n)$ as follows: $\omega \stackrel{r-l}{\prec} \omega^{\prime}$ if and only if $(\omega(n-1), \ldots, \omega(0)) \prec\left(\omega^{\prime}(m-\right.$ $\left.1), \ldots, \omega^{\prime}(0)\right)$ where $\omega \in X_{\beta}(n)$ and $\omega^{\prime} \in X_{\beta}(m)$.

Definition 4.3 ($\left.N_{\beta}[7]\right)$. Define $L_{\beta}=\left\{\omega_{i}\right\}_{i=0}^{\infty}$ as $\bigsqcup_{n=0}^{\infty} X_{\beta}(n)$ ordered in right-to-left lexicographical order, that is, L_{β} is $\bigsqcup_{n=0}^{\infty} X_{\beta}(n)$ as a set and $\omega_{i} \stackrel{r-l}{\prec} \omega_{j}$ holds for all $i<j$. Then, the sequence N_{β} is defined as follows:

$$
N_{\beta}=\left\{\rho_{\beta}\left(\omega_{i}\right)\right\}_{i=0}^{\infty}
$$

Example 4.1. If $\beta=\frac{1+\sqrt{5}}{2}$, then $\zeta_{\beta}=(\dot{1}, \dot{0})$ and elements of N_{β} are calculated as follows:

$$
\begin{aligned}
N_{\beta}(0) & =\rho_{\beta}(0)=0 \\
N_{\beta}(1) & =\rho_{\beta}(1)=0.618033988749895 \ldots \\
N_{\beta}(2) & =\rho_{\beta}(01)=0.381966011250106 \ldots \\
N_{\beta}(3) & =\rho_{\beta}(001)=0.23606797749979 \ldots \\
N_{\beta}(4) & =\rho_{\beta}(101)=0.854101966249686 \ldots \\
N_{\beta}(5) & =\rho_{\beta}(0001)=0.145898033750316 \ldots \\
N_{\beta}(6) & =\rho_{\beta}(1001)=0.763932022500212 \ldots \\
N_{\beta}(7) & =\rho_{\beta}(0101)=0.527864045000422 \ldots \\
N_{\beta}(8) & =\rho_{\beta}(00001)=0.0901699437494747 \ldots \\
N_{\beta}(9) & =\rho_{\beta}(10001)=0.70820393249937 \ldots \\
N_{\beta}(10) & =\rho_{\beta}(01001)=0.472135954999581 \ldots \\
N_{\beta}(11) & =\rho_{\beta}(00101)=0.326237921249265 \ldots \\
N_{\beta}(12) & =\rho_{\beta}(10101)=0.944271909999161 \ldots \\
N_{\beta}(13) & =\rho_{\beta}(000001)=0.0557280900008416 \ldots \\
N_{\beta}(15) & =\rho_{\beta}(100001)=0.673762078750737 \ldots \\
N_{\beta}(16) & =\rho_{\beta}(010001)=0.437694101250947 \ldots
\end{aligned}
$$

From this definition, we immediately have the following proposition:
Proposition 4.1. If β is an integer greater than or equal to 2 then N_{β} is the van der Corput sequence in base β with all digit permutations $\tau_{j}=\mathrm{id}$.

From Theorem 2.2 and Proposition 4.1, we see that if $\beta \in \mathbf{Z}_{\geq 2}$ then N_{β} is a low-discrepancy sequence, that is to say, $D_{M}^{*}\left(N_{\beta}\right)=O\left(M^{-1} \log M\right)$ holds for all $\beta \in \mathbf{Z}_{\geq 2}$. We also have the following theorem:

THEOREM 4.1. Let β be a real number greater than 1 , and let the following condition (PV) hold:
(PV) All zeroes of $1-\phi_{\beta}(z)$ except for $z=1$ belong to $\{z \in \mathbf{C}||z|>\beta\}$.
Then,

$$
D_{M}^{*}\left(N_{\beta}\right)=O\left(\frac{(\log M)^{2}}{M}\right)
$$

holds. Moreover, if β is Markov, then

$$
D_{M}^{*}\left(N_{\beta}\right)=O\left(\frac{\log M}{M}\right)
$$

holds.
Remark 4.1. When β is Markov, the condition ($\mathbf{P V}$) is equivalent to the condition that all conjugates of β with respect to its characteristic equation (3.3) belong to $\{z \in \mathbf{C}||z|<1\}$.

Remark 4.2. In [7], the case in which β is Markov is proved.
To prove this theorem, we provide lemmas and definitions. We use the following notations:

$$
\omega[i, j)=\left\{\begin{array}{cl}
(\omega(i), \ldots, \omega(j-1)), & i<j \\
\epsilon, & i=j
\end{array}\right.
$$

where $\omega \in X_{\beta}$ and $i, j \in \mathbf{Z}_{\geq 0} . \quad R_{\beta}(u)=\lambda(B(u))$ where, λ is the onedimensional Lebesgue measure, $u \in X_{\beta}(n)$, and $B(u)$ is the cylinder (3.5). For a sequence $S, S[N]$ denotes the point set consisting of the first N elements of S, and $S[N ; M]=S[N+M] \backslash S[N]$.

Definition 4.4. For any $k \geq 0$ and $u \in Y_{\beta}(k)$, define

$$
e(u)=\left\{i \in \mathbf{Z}_{\geq 0} \mid \zeta_{\beta}[0, i+1) \cdot u \notin Y_{\beta}(k+i+1)\right\} .
$$

Lemma 4.1 ([5]). For an arbitrary $k \geq 0$ and $u \in Y_{\beta}(k)$, we have the following partitioning of $Y_{\beta}(u ; n)$:

$$
Y_{\beta}(u ; n)=\bigsqcup_{j=1}^{n} Y_{\beta}^{0}(u ; j) \cdot \zeta_{\beta}[0, n-j) \bigsqcup \max \left\{Y_{\beta}(u ; n)\right\}
$$

Proof. It is trivial to show that the left-hand side includes the righthand side.

If $v=\left(a_{1}, \ldots, a_{n+k}\right) \in Y_{\beta}(u ; n) \backslash Y_{\beta}^{0}(u ; n)$ and $v \neq \max \left\{Y_{\beta}(u ; n)\right\}$, then there exists an integer l that satisfies

$$
k+1 \leq l \leq n+k
$$

and

$$
\min \left\{w \in Y_{\beta}(u ; n) \mid w \succ v\right\}=\left(a_{1}, \ldots, a_{l}+1,0, \ldots, 0\right)
$$

This means that

$$
\left(a_{l+1}, \ldots, a_{n+k}\right)=\zeta_{\beta}[0, n+k-l)
$$

and

$$
\left(a_{1}, \ldots, a_{l-1}, a_{l}+1\right) \in Y_{\beta}^{0}(u ; l-k)
$$

hold.
Taking account of Lemma 4.1, we give the following definition:
Definition 4.5. For an arbitrary $u \in Y_{\beta}(n)$, define an integer $d(u)$ as follows: $d(u)=k$ if

$$
u \in Y_{\beta}^{0}(k) \cdot \zeta_{\beta}[0, n-k)
$$

holds. Remark that $\max \left\{Y_{\beta}(n)\right\}=\zeta_{\beta}[0, n)$.
From Lemma 4.1, Definition 4.4, and Definition4.5 we have the following lemma:

Lemma 4.2. For any $k, l, n \geq 0, u \in Y_{\beta}(k)$, and $v \in Y_{\beta}(l)$, we have the following partitioning of $Y_{\beta}(u ; n ; v)$:

$$
\begin{aligned}
& Y_{\beta}(u ; n ; v)
\end{aligned}
$$

Lemma 4.3. For any $n \geq 0$ and $u \in Y_{\beta}(n)$,

$$
R_{\beta}(u)=\frac{1}{\beta^{d(u)}}\left(1-\sum_{i=0}^{n-d(u)-1} \frac{\zeta_{\beta}(i)}{\beta^{i+1}}\right)
$$

holds.
Proof. Let $u=u^{0} \cdot \zeta_{\beta}[0, n-d(u))$ where $u^{0} \in Y_{\beta}^{0}(d(u))$. From Definition 3.6,

$$
\begin{aligned}
R_{\beta}\left(u^{0}\right)= & \rho_{\beta}\left(\left(u^{0}(0), \ldots, u^{0}(d(u)-1)+1\right)\right. \\
& -\rho_{\beta}\left(\left(u^{0}(0), \ldots, u^{0}(d(u)-1)\right)=\frac{1}{\beta^{d(u)}}\right.
\end{aligned}
$$

and

$$
R_{\beta}\left(\zeta_{\beta}[0, n-d(u))\right)=1-\sum_{i=0}^{n-d(u)-1} \frac{1}{\beta^{i+1}}
$$

When $v \cdot w \in Y_{\beta}(m)$, it follows that $R_{\beta}(v \cdot w)=R_{\beta}(v) R_{\beta}(w)$. Then, the lemma holds.

Remark 4.3. From Definition 3.6, it follows that

$$
f_{\beta}^{n}(x)=\beta^{n}\left(x-\sum_{i=0}^{n-1} \frac{\varphi(x)(i)}{\beta^{i+1}}\right)
$$

for any $x \in[0,1]$ and $n \geq 0$. Then, we have

$$
R_{\beta}(u)=\frac{1}{\beta^{n}} f_{\beta}^{n-d(u)}(1)
$$

for any $u \in Y_{\beta}(n)$ and $n \geq 0$, from Lemma 4.3.
Lemma 4.4 ([5]). Let r be the absolute value of the second smallest zero of $1-\phi_{\beta}(z)$, that is, $r=\min \left\{|z| \mid z \in \mathbf{C}, z \neq 1,1-\phi_{\beta}(z)=0\right\}$. Then for any small $\varepsilon>0$, there exists a constant $C_{\varepsilon}>0$ and

$$
\left|G_{\beta}^{0}(u ; n)-\frac{\beta^{n+k} R_{\beta}(u)}{\phi_{\beta}^{\prime}(1)}\right| \leq \frac{C_{\varepsilon}}{n}\left(\frac{\beta}{r-\varepsilon}\right)^{n}
$$

holds for any $n \geq 0, k \geq 0$ and $u \in Y_{\beta}(k)$.
Proof. Let $k \geq 0$ and $u \in Y_{\beta}(k)$. Remark that

$$
\begin{equation*}
R_{\beta}(u)=\sum_{u \cdot v \in Y_{\beta}(u ; n)} R_{\beta}(u \cdot v) \tag{4.1}
\end{equation*}
$$

holds. From (4.1), Lemma 4.1, and Remark 4.3, we have

$$
\begin{equation*}
\beta^{n+k} R_{\beta}(u)=\sum_{j=0}^{n-1} f_{\beta}^{j}(1) G_{\beta}^{0}(u ; n-j)+f_{\beta}^{n+l}(1) \tag{4.2}
\end{equation*}
$$

where $l=k-d\left(\max \left\{Y_{\beta}(u ; n)\right\}\right) \geq 0$. Remark that the formal power series

$$
\sum_{n \geq 1} z^{n} \sum_{j=0}^{n-1} f_{\beta}^{j}(1) G_{\beta}^{0}(u ; n-j) \beta^{-(n+k)}
$$

converges for $|z|<1$. We have the following equality from (4.2):

$$
\begin{align*}
\beta^{k} \sum_{n \geq 1} z^{n} R_{\beta}(u)= & \sum_{n \geq 1}\left(\frac{z}{\beta}\right)^{n} \sum_{j=0}^{n-1} f_{\beta}^{j}(1) G_{\beta}^{0}(u ; n-j) \tag{4.3}\\
& +\sum_{n \geq 1}\left(\frac{z}{\beta}\right)^{n} f_{\beta}^{n+l}(1)
\end{align*}
$$

We also have

$$
\begin{aligned}
& \sum_{n \geq 1}\left(\frac{z}{\beta}\right)^{n} \sum_{j=0}^{n-1} f_{\beta}^{j}(1) G_{\beta}^{0}(u ; n-j) \\
& =\sum_{j \geq 1} \sum_{n \geq j} f_{\beta}^{j-1}(1) G_{\beta}^{0}(u ; n-j+1)\left(\frac{z}{\beta}\right)^{n} \\
& =\sum_{j \geq 0} f_{\beta}^{j}(1)\left(\frac{z}{\beta}\right)^{j} \sum_{n \geq 1} G_{\beta}^{0}(u ; n)\left(\frac{z}{\beta}\right)^{n}
\end{aligned}
$$

and, from Remark 4.3,

$$
(1-z) \sum_{n \geq 0} f_{\beta}^{n}(1)\left(\frac{z}{\beta}\right)^{n}
$$

$$
\begin{aligned}
& =(1-z)+(1-z) \sum_{n \geq 1}\left(1-\sum_{i=0}^{n-1} \frac{\zeta_{\beta}(i)}{\beta^{i+1}}\right) z^{n} \\
& =1-\sum_{n \geq 0} \zeta_{\beta}(n)\left(\frac{z}{\beta}\right)^{n+1}=1-\phi_{\beta}(z)
\end{aligned}
$$

By using these two equalities, we obtain from (4.3) that

$$
\begin{equation*}
\sum_{n \geq 1} G_{\beta}^{0}(u ; n)\left(\frac{z}{\beta}\right)^{n}=\frac{z \beta^{k} R_{\beta}(u)}{1-\phi_{\beta}(z)}-\frac{(1-z) \sum_{n \geq 1} f_{\beta}^{n+l}(1)(z / \beta)^{n}}{1-\phi_{\beta}(z)} . \tag{4.4}
\end{equation*}
$$

Consider the function

$$
\begin{align*}
h_{u}(z)= & \sum_{n \geq 1}\left(G_{\beta}^{0}(u ; n)\left(\frac{z}{\beta}\right)^{n}-\frac{\beta^{k} R_{\beta}(u)}{\phi_{\beta}^{\prime}(1)} z^{n}\right) \tag{4.5}\\
= & \frac{z \beta^{k} R_{\beta}(u)}{1-\phi_{\beta}(z)}-\frac{(1-z) \sum_{n \geq 1} f_{\beta}^{n+l}(1)(z / \beta)^{n}}{1-\phi_{\beta}(z)} \\
& -\frac{z \beta^{k} R_{\beta}(u)}{(1-z) \phi_{\beta}^{\prime}(1)} .
\end{align*}
$$

The second equality comes from (4.4). From Proposition 3.3, we see that $h_{u}(z)$ is analytic in a neighborhood of $\{z \in \mathbf{C}||z| \leq r-\varepsilon, z \neq 1\}$. We also see from (4.5) that $\lim _{z \rightarrow 1}(1-z) h_{u}(z)=0$. Considering the fact that $\beta^{k} R_{\beta}(u) \leq 1$ for any $u \in Y_{\beta}(k), k \geq 1$ and that the second term of the right-hand side of (4.4) and its derivative are bounded uniformly in l, we see that there exists a constant C_{ε} and

$$
\begin{equation*}
\sup _{\substack{k \geq 1, u \in Y_{\beta}(k) \\|z|=r-\varepsilon}}\left|h_{u}^{\prime}(z)\right|<C_{\varepsilon} \tag{4.6}
\end{equation*}
$$

holds. Then we have

$$
\begin{aligned}
n!\left|\frac{G_{\beta}^{0}(u ; n)}{\beta^{n}}-\frac{\beta^{k} R_{\beta}(u)}{\phi_{\beta}^{\prime}(1)}\right| & =\left|h_{u}^{(n)}(0)\right| \\
& =\left|\frac{d^{n-1} h_{u}^{\prime}}{d z^{n-1}}(0)\right| \\
& =\left|\frac{(n-1)!}{2 \pi(r-\varepsilon)^{n}} \int_{|z|=r-\varepsilon} h_{u}^{\prime}(z) d z\right|
\end{aligned}
$$

$$
\leq(n-1)!\frac{C_{\varepsilon}}{(r-\varepsilon)^{n}}
$$

and the lemma follows.
Lemma 4.5. If $\beta \in \mathbf{R}_{>1}$ is Markov and $\zeta_{\beta}=\left(a_{0}, \ldots, a_{l-1}, \dot{a}_{l}, \ldots\right.$, $\left.a_{l+m-1}\right)$, where $m=p(\beta)$ and $l=\min \left\{l \in \mathbf{Z}_{\geq 0} \mid \sigma^{l} \zeta_{\beta}\right.$ is periodic $\}$, then we have the following statements:

1. For an arbitrary $v \in X_{\beta},\left\{G_{\beta}^{0}(n)\right\}_{n=0}^{\infty}$ and $\left\{G_{\beta}(n)\right\}_{n=0}^{\infty}$ satisfy the following linear recurrent equation:

$$
\begin{align*}
& G_{\beta}(\epsilon ; n+m+l ; v)-\sum_{i=0}^{m+l-1} a_{i} G_{\beta}(\epsilon ; n+m+l-i-1 ; v) \tag{4.7}\\
& =G_{\beta}(\epsilon ; n+l ; v)-\sum_{i=0}^{l-1} a_{i} G_{\beta}(\epsilon ; n+l-i-1 ; v) \\
& =G_{\beta}\left(\zeta_{\beta}[0, l) ; n ; v\right) .
\end{align*}
$$

2. For arbitrary $u \in Y_{\beta}(k), k \geq m+l$ and $v \in X_{\beta}$, the following equations hold for any $n \geq m+l-k+d$:
(4.8) $G_{\beta}(u ; n ; v)=\left\{\begin{array}{r}\sum_{i=1}^{m+l-k+d} a_{k-d-1+i} G_{\beta}\left(\zeta_{\beta}[0, l) ; n-i ; v\right) \\ \text { when } d>k-m-l \\ G_{\beta}\left(\zeta_{\beta}[0, l) ; n ; v\right) \\ \text { when } d=k-m-l\end{array}\right.$

$$
\begin{align*}
G_{\beta}\left(\zeta_{\beta}[0, l) ; n ; v\right)= & \sum_{i=1}^{m} a_{l+i-1} G_{\beta}(\epsilon ; n-i ; v) \tag{4.9}\\
& +G_{\beta}\left(\zeta_{\beta}[0, l) ; n-m ; v\right)
\end{align*}
$$

where $d=d(u[k-m-l, k))+k-m-l$.
Proof. First, we remark that $u=u[0, d) \cdot \zeta_{\beta}[0, k-d)$. From Proposition 3.2, we have the following partitioning:

$$
Y_{\beta}(\epsilon ; n+l ; v) \backslash \bigsqcup_{j=0}^{l-1} \bigsqcup_{i=0}^{a_{j}-1} \zeta_{\beta}[0, j) \cdot i \cdot Y_{\beta}(\epsilon ; n+l-j-1 ; v)
$$

$$
\begin{aligned}
& =Y_{\beta}\left(\zeta_{\beta}[0, l) ; n ; v\right) \\
& =Y_{\beta}(\epsilon ; n+m+l ; v) \backslash \bigsqcup_{j=0}^{m+l-1} \bigsqcup_{i=0}^{a_{j}-1} \zeta_{\beta}[0, j) \cdot i \cdot Y_{\beta}(\epsilon ; n+m+l-j-1 ; v)
\end{aligned}
$$

Then, (4.7) holds. When $d=k-m-l$, it is trivial to obtain (4.8) from Proposition 3.2. When $d>k-m-l$, we obtain the following partitioning:

$$
Y_{\beta}(u ; n ; v)=\bigsqcup_{j=1}^{m+l-(k-d)} \bigsqcup_{i=0}^{a_{k-d+j-1}-1} u[0, d) \cdot \zeta_{\beta}[0, k-d+j) \cdot i \cdot w \cdot v
$$

where $\zeta_{\beta}[0, l) \cdot w \cdot v \in Y_{\beta}\left(\zeta_{\beta}[0, l) ; n-j ; v\right)$. We also have

$$
\begin{aligned}
Y_{\beta}\left(\zeta_{\beta}[0, l) ; n ; v\right)= & \bigsqcup_{j=1}^{m} \bigsqcup_{i=0}^{a_{l+j-1}-1} \zeta_{\beta}[0, l) \cdot \zeta_{\beta}[l, l+j-1) \cdot i \cdot Y_{\beta}(\epsilon ; n-j ; v) \\
& \bigsqcup \zeta_{\beta}[0, l+m) \cdot Y_{\beta}\left(\zeta_{\beta}[0, l) ; n-m ; v\right)
\end{aligned}
$$

The lemma follows from these partitionings.
Proof of Theorem 4.1. Let $k>0, u \in Y_{\beta}(k)$. Let $M \in \mathbf{N}$ and $b=\left(b_{0}, b_{1}, \ldots, b_{m-1}\right)=L_{\beta}(M)$. We assume M to satisfy $m>k$. Define

$$
\Delta(I ; P)=A(I ; P)-M \lambda(I)
$$

where I is an interval in $[0,1)$ and $P=\left\{x_{1}, x_{2}, \ldots, x_{M}\right\} \subset[0,1)$. For any finite sets of points P, P^{\prime} in $[0,1)$ and any intervals $I, I^{\prime} \subset[0,1), I \cap I^{\prime}=\emptyset$,

$$
\begin{align*}
\Delta\left(I ; P \sqcup P^{\prime}\right) & =\Delta(I ; P)+\Delta\left(I ; P^{\prime}\right) \\
\Delta\left(I \sqcup I^{\prime} ; P\right) & =\Delta(I ; P)+\Delta\left(I^{\prime} ; P\right) \tag{4.10}
\end{align*}
$$

hold. Here, $P \sqcup P^{\prime}$ is the disjoint union of P and P^{\prime} or the union of P and P^{\prime} with multiplicity. From Definition 4.3 and (4.10), we have

$$
\begin{align*}
\Delta\left(B(u) ; N_{\beta}[M]\right) & =\Delta\left(B(u) ; \bigsqcup_{j=0}^{m-1} \bigsqcup_{i=0}^{b_{j}-1} Y_{\beta}\left(\epsilon ; j ; v_{i j}\right)\right) \tag{4.11}\\
& =\sum_{j=0}^{m-1} \sum_{i=0}^{b_{j}-1} \Delta\left(B(u) ; Y_{\beta}\left(\epsilon ; j ; v_{i j}\right)\right)
\end{align*}
$$

where $v_{i j}=i \cdot b[j+1, m)$. Consider the $0 \leq j \leq k$ part of the right hand side of (4.11).

$$
\begin{equation*}
\sum_{j=0}^{k} \sum_{i=0}^{b_{j}-1}\left|\Delta\left(B(u) ; Y_{\beta}\left(\epsilon ; j ; v_{i j}\right)\right)\right| \leq \sum_{j=0}^{k}([\beta]+1) G_{\beta}(j) R_{\beta}(u) \tag{4.12}
\end{equation*}
$$

holds from the definition of Δ. From Lemma 4.1 and Lemma 4.4, there exists a constant C^{\prime} and $G_{\beta}(j) \leq C^{\prime} \beta^{j}$ holds for any j. From this and $R_{\beta}(u) \leq \beta^{-k}$, there exists a constant C_{0}, and

$$
\sum_{j=0}^{k}([\beta]+1) G_{\beta}(j) R_{\beta}(u)<C_{0}
$$

is satisfied for any k. Then, from (4.11) and (4.12), we have

$$
\begin{equation*}
\Delta\left(B(u) ; N_{\beta}[M]\right) \leq C_{0}+\sum_{j=k+1}^{m-1} \sum_{i=0}^{b_{j}-1}\left|\Delta\left(B(u) ; Y_{\beta}\left(\epsilon ; j ; v_{i j}\right)\right)\right| \tag{4.13}
\end{equation*}
$$

Define

$$
\begin{aligned}
\delta(u ; n) & =G_{\beta}^{0}(u ; n)-\frac{\beta^{n+k} R_{\beta}(u)}{\phi_{\beta}^{\prime}(1)} \\
\delta(n) & =G_{\beta}^{0}(n)-\frac{\beta^{n}}{\phi_{\beta}^{\prime}(1)}
\end{aligned}
$$

for $u \in Y_{\beta}(k)$ and $k, n \geq 0$. From this definition,

$$
\begin{align*}
\left|\Delta\left(B(u) ; Y_{\beta}^{0}(n)\right)\right| & =\left|G_{\beta}^{0}(u ; n)-R_{\beta}(u) G_{\beta}^{0}(k+n)\right| \tag{4.14}\\
& =\left|\delta(u ; n)-R_{\beta}(u) \delta(k+n)\right|
\end{align*}
$$

holds. Then, from Lemma 4.2 we have
(4.15) $\sum_{j=k+1}^{m-1} \sum_{i=0}^{b_{j}-1}\left|\Delta\left(B(u) ; Y_{\beta}\left(\epsilon ; j ; v_{i j}\right)\right)\right|$

$$
\begin{aligned}
& \leq \sum_{j=k+1}^{m-1} \sum_{i=0}^{b_{j}-1}\left(\sum_{\substack{l=1, \ldots, j \\
j-l-1 \notin e\left(v_{i j}\right)}}\left|\Delta\left(B(u) ; Y_{\beta}^{0}(l) \cdot \zeta_{\beta}[0, j-l)\right)\right|+1\right) \\
& \leq \sum_{j=k+1}^{m-1} \sum_{i=0}^{b_{j}-1}\left(\sum_{l=1}^{j}\left|\Delta\left(B(u) ; Y_{\beta}^{0}(l)\right)\right|+1\right)
\end{aligned}
$$

From the (PV) condition and Lemma 4.4, there exist $r>\beta$ and a constant C_{r} that satisfy

$$
\begin{equation*}
|\delta(u ; n)| \leq \frac{C_{r}}{n}\left(\frac{\beta}{r}\right)^{n} \tag{4.16}
\end{equation*}
$$

for any $n, k>0$ and $u \in Y_{\beta}(k)$. From (4.13), (4.14), (4.15), (4.16), and $r>\beta$, we see that

$$
\begin{align*}
& \Delta\left(B(u) ; N_{\beta}[M]\right) \tag{4.17}\\
& \leq C_{0}+C_{r}([\beta]+1) \\
& \quad \cdot \sum_{j=k+1}^{m-1}\left(\sum_{l=1}^{j}\left(\frac{1}{l}\left(\frac{\beta}{r}\right)^{l}+\frac{1}{k+l}\left(\frac{\beta}{r}\right)^{k+l} R_{\beta}(u)\right)+1\right) \\
& =O(m)=O(\log M)
\end{align*}
$$

holds.
Choose an arbitrary $t \in[0,1)$. Let $M \in \mathbf{N}$ and $L_{\beta}(M)=\left(b_{0}, \ldots, b_{m-1}\right)$. Let $B\left(t_{0}, \ldots, t_{m-1}\right)$ be a cylinder of rank m that satisfies $t \in B\left(t_{0}, \ldots\right.$, $\left.t_{m-1}\right)$. Then we have

$$
[0, t)=B_{s_{1}} \sqcup B_{s_{2}} \sqcup \ldots \sqcup B_{s_{k}} \sqcup R
$$

where $0 \leq s_{1}<s_{2}<\ldots<s_{k}=m-1, B_{s_{i}}$ is a disjoint union of up to $[\beta]+1$ cylinders of rank s_{i} and $\lambda(R)<\beta^{-m+1}$. Then from (4.10) and (4.17), we have

$$
\left|\Delta\left([0, t) ; N_{\beta}[M]\right)\right|=O\left((\log M)^{2}\right)
$$

and therefore

$$
D_{M}^{*}\left(N_{\beta}\right)=O\left(\frac{(\log M)^{2}}{M}\right)
$$

In the following part, we consider the case in which β is Markov. Let $\zeta_{\beta}=\left(a_{0}, \ldots, a_{l^{\prime}-1}, \dot{a_{l^{\prime}}}, \ldots, a_{l_{-1}}\right)$ and $l-l^{\prime}=p(\beta)$. Then, β is the unique $z>1$ solution of

$$
\begin{equation*}
z^{l}-\sum_{i=0}^{l-1} a_{i} z^{l-1-i}=z^{l^{\prime}}-\sum_{i=0}^{l^{\prime}-1} a_{i} z^{l^{\prime}-1-i} \tag{4.18}
\end{equation*}
$$

Let $\alpha_{1}, \ldots, \alpha_{q}$ be the conjugates of β with respect to the equation (4.18), that is,

$$
z^{l}-\sum_{i=0}^{l-1} a_{i} z^{l-1-i}-z^{l^{\prime}}+\sum_{i=0}^{l^{\prime}-1} a_{i} z^{l^{\prime}-1-i}=(z-\beta) \prod_{i=1}^{q}\left(z-\alpha_{i}\right)^{l_{i}}
$$

where $l_{i} \geq 1, \alpha_{i} \neq \alpha_{j}$ for all $i \neq j$ and $\sum_{i=1}^{q} l_{i}=l-1$. We also have

$$
\begin{equation*}
\left|\alpha_{i}\right|<1, \quad \text { for all } i \in\{1, \ldots, q\} \tag{4.19}
\end{equation*}
$$

from the ($\mathbf{P V}$) condition. Let $v \in X_{\beta}$. From Lemma 4.5, there exist complex numbers $c, c_{i j}\left(i=1, \ldots, q, j=0, \ldots l_{i}-1\right)$ that satisfy the following equation:

$$
\begin{equation*}
G_{\beta}(\epsilon ; n ; v)=c \beta^{n}+\sum_{i=1}^{r} \sum_{j=0}^{l_{i}-1} c_{i j} n^{j} \alpha_{i}^{n} \quad \text { for all } \quad n \in \mathbf{N} . \tag{4.20}
\end{equation*}
$$

From Lemma 4.3, Lemma 4.5, and (4.20), we have

$$
\begin{align*}
& \Delta\left(B(u) ; N_{\beta}\left[G_{\beta}(\epsilon ; k+n ; v)\right]\right) \tag{4.21}\\
& =\left\{\begin{array}{c}
\sum_{h=1}^{q} \sum_{j=0}^{l_{h}-1} c_{h j}\left(n^{j} \alpha_{h}^{n}-\frac{1}{\beta^{k}}(k+n)^{j} \alpha_{h}^{k+n}\right) \\
\text { when } d=k-l \\
\sum_{i=k-d}^{l-1} a_{i} \sum_{h=1}^{q} \sum_{j=0}^{l_{h}-1} c_{h j} \\
\cdot\left((k+n-d)^{j} \alpha_{h}^{k+n-d-i}-\frac{1}{\beta^{d+i}}(k+n)^{j} \alpha_{h}^{k+n}\right. \\
\text { when } d>k-l
\end{array}\right.
\end{align*}
$$

where $u \in Y_{\beta}(k), n \in \mathbf{N}$, and $d=d(u[\max \{0, k-l+1\}, k+1))+k-l$. From (4.10), (4.13), (4.15), (4.19), and (4.21), there exists a constant C that satisfies the following inequality (4.22) for any cylinder $B(u)$ of any rank k and $M>G_{\beta}(l+d)$.

$$
\begin{equation*}
\left|\Delta\left(B(u) ; N_{\beta}[M]\right)\right|<C \tag{4.22}
\end{equation*}
$$

Then, we obtain

$$
D_{M}^{*}\left(N_{\beta}\right)=O\left(\frac{\log M}{M}\right)
$$

by the above reasoning.
Acknowledgments. The author expresses his sincere thanks to Dr. Shu Tezuka, Professors Takahiko Fujita, Shunji Ito, Shigeo Kusuoka, and Makoto Mori for their kind advice.

References

[1] Barat, G. and P. J. Grabner, Distribution properties of G-additive functions, Journal of Number Theory 60 (1996 Sept.), 103-123.
[2] Faure, H., Discrépances de suite associée à un systèm de numération (en dimension un), Bull. Soc. Math. France 109 (1981), 143-182.
[3] Faure, H., Good permutations for extreme discrepancy, Journal of Number Theory 42 (1992), 47-56.
[4] Hellekalek, P., Ergodicity of a class of cylinder flows related to irregularities of distribution, Compositio Mathematica 61 (1987), 129-136.
[5] Ito, S. and Y. Takahashi, Markov subshifts and realization of β-expansions, Journal of the Mathematical Society of Japan 26 (1974), 33-55.
[6] Niederreiter, H., Random Number Generation and Quasi-Monte Carlo Methods, CBMF-NSF Regional Conference Series in Applied Mathematics, SIAM, 1992.
[7] Ninomiya, S., Constructing a new class of low-discrepancy sequences by using the β-adic transformation, Mathematics and Computers in Simulation (to appear).
[8] Pagès, G., Van der Corput sequences, Kakutani transforms and one-dimensional numerical integration, Journal of Computational and Applied Mathematics 44 (1992), 21-39.
[9] Parry, W., On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416.
[10] Petersen, K., Ergodic Theory, Cambridge University Press, 1983.
[11] Rényi, A., Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493.
[12] Schmidt, W. M., Irregularities of distribution VII, Acta Arith. 21 (1972), 45-50.
[13] Schweiger, F., Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford Science Publications, 1995.
[14] Takahashi, Y., β-transformations and symbolic dynamics, Proc. Second Japan-USSR Symbosium on Probability Theory, Lecture Notes in Mathematics 330, Springer, (1973), 454-464.
[15] Takahashi, Y., Shift with orbit basis and realization of one-dimensional maps, Osaka Math. J. 20 (1983), 599-629 (Correction: 21 (1985), 637).
(Received October 29, 1997)
IBM Research, Tokyo Research Laboratory 1623-14 Shimotsuruma
Yamato-shi, Kanagawa-ken 242
Japan
E-mail: ninomiya@trl.ibm.co.jp

Graduate School of Mathematical Sciences The University of Tokyo
3-8-1 Komaba Meguro-ku, Tokyo 153
Japan

[^0]: 1991 Mathematics Subject Classification. 11K36, 11K38, 11K48.
 Key words: β-adic transformation, ergodic theory, low-discrepancy sequence, numerical integration, quasi-Monte Carlo method.

