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The First Eigenvalue of the Laplacian on p-Forms

and Metric Deformations

By Junya Takahashi

Abstract. We prove that the limits of the first eigenvalues of
functions and 1-forms for modified Gentile-Pagliara’s metric deforma-
tion are both 0. It essentially means that this deformation is not a
counter example of Berger’s problem for 1-forms.

1. Introduction

Let (M, g) be an m-dimensional connected compact oriented Rieman-

nian manifold without boundary. The spectrum of the Laplacian ∆ =

dδ + δd acting on p-forms on M consists of only non-negative eigenvalues.

We denote the positive eigenvalues by

0 < λ
(p)
1 (M, g) ≤ λ

(p)
2 (M, g) ≤ · · · ≤ λ

(p)
i (M, g) ≤ · · · .

The existence of 0-eigenvalue on p-forms is determined only by the p-th

Betti number βp(M), independently of the metric g by the Hodge theory.

If 0-eigenvalue exists, we set λ
(p)
0 = 0. As usual for p = 0 i.e. for functions

we write λi = λ
(0)
i .

In 1970 J. Hersch [H-70] proved that for every Riemannian metric g on

2-sphere S2 with volume = 1, we have

λ1(S
2, g) ≤ 8π.

In 1980 P. Yang and S. T. Yau [YY-80] extended it for a connected closed

oriented surface S with genus γ. That is, for every Riemannian metric g on

S with volume = 1, we have

λ1(S, g) ≤ 8π(γ + 1).

1991 Mathematics Subject Classification. Primary 58G25; Secondary 35P15, 58E11,
53C20.

333



334 Junya Takahashi

In 1973 from Hersch’s inequality M.Berger ([Be-73] p. 138) rased the

question whether the following statement holds or not. That is,

“Does there exist a constant C(M) > 0 such that for every Riemannian

metric g on M with volume = 1, λ1(M, g) ≤ C(M) follows?”

After many negative examples were found between 1979 and 1983 (e.g.

[U-79], [T-79], [M-80], [MU-80], [BB-82], [Bl-83]), B.Colbois and J.Dodziuk

[CD-94], [D-94] proved that for m ≥ 3 there does not exist such constant

C(M) in 1994. Moreover, for 2 ≤ p ≤ m − 2, m ≥ 4 G. Gentile and

V. Pagliara [GP-95] also showed that the similar statement is false in 1995.

Namely, they constructed a metric deformation {ḡt}t≥1 with volume = 1

such that λ
(p)
1 (ḡt) → ∞ as t → ∞ for all p = 2, · · · ,m − 2. Their metric

deformation is as follows. We take a connected sum of a given manifold and

a sphere and lengthen the sphere part like a cylinder. Finally we regularize

the volume to be 1.

For 1-forms, however, we have not yet known whether the above state-

ment is affirmative or not. Notice that the Poincaré duality implies λ
(1)
1 =

λ
(m−1)
1 .

By modifying the above ḡt (cf. Sect. 2), we have

Theorem 1.1. Let M be an m-dimensional connected compact ori-

ented manifold without boundary. If m ≥ 2, there exists a metric deforma-

tion {ḡt}t≥1 such that vol(M, ḡt) ≡ 1 and

lim
t→∞

λ
(p)
1 (M, ḡt) =

{
0 (p = 0, 1,m− 1,m),

∞ (p = 2, 3, · · · ,m− 2, m ≥ 4).

We call the metric deformation ḡt in Theorem 1.1 modified Gentile-

Pagliara’s metric deformation. To construct it, the following is essential. We

take m,n-dimensional (m,n ≥ 1) connected compact oriented Riemannian

manifolds (M, g), (N,h) without boundaries. Then on the product manifold

L = M ×N set

Gt := t
1
m g ⊕ t−

1
nh (t > 0).

Theorem 1.2. We have vol(L,Gt) ≡constant for every t, and

lim
t→∞

λ
(p)
1 (L,Gt) =

{
∞ , if m < p < n, Hk(N ;R) = 0 (p−m ≤ k ≤ p),

0 , otherwise.
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Especially we remark that lim
t→∞

λ
(p)
1 (L,Gt) = 0 for p = 0, 1. And if we

take M = S1 and N = Sm−1, then we find that lim
t→∞

λ
(p)
1 (L,Gt) = ∞ for

p = 2, . . . ,m− 2, because of Hk(Sm−1;R) = 0 (1 ≤ k ≤ m− 2,m ≥ 4).

In Theorem 1.2 it is interested in treating eigenvalues for p-forms because

lim
t→∞

λ
(p)
1 (L,Gt) depends on the topological property Hk(N ;R) = 0 (p−m ≤

k ≤ p).
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2. Modified Gentile-Pagliara’s metric deformation

Let M be an m-dimensional connected compact oriented manifold with-

out boundary. First we prepare the cylinder C = [−1, 2] × Sm−1 and glue

the m-hemisphere H to the one side of the boundary ∂C. Next we remove

an m-disk from M and glue it to the other side of the boundary ∂C. We

denote by M̄ this new manifold which is diffeomorphic to the original M

(see Fig. 1).

Fig. 1. M̄
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We divide C into the three parts, Z1 = [−1, 0]×Sm−1, Z2 = [0, 1]×Sm−1

and Z3 = [1, 2]×Sm−1. We take any metric g on M̄ such that g = dr2⊕h on

Z2, where r is the canonical coordinate of [0, 1] and h the canonical metric

on Sm−1(1). Then we define the metric deformation gt of g by

gt :=

{
g on M̄\Z2,

ft(r)dr
2 ⊕ h on Z2.

Here for t ≥ 1, ft(r) is a C∞-function on [0, 1] such that 1 ≤ ft(r) ≤ t2 and

ft(r) =

{
1 (r = 0, 1),

t2 (1
3 ≤ r ≤ 2

3),

(see Fig. 2).

Fig. 2. ft(r)

Finaly, we set

ḡt := vol(M̄, gt)
− 2

m gt,

then vol(M̄, ḡt) ≡ 1.

Lemma 2.1. We have a+ b
3 t ≤ vol(M̄, gt) ≤ a+ bt for some constants

a, b > 0.
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Proof. From the definition of ft(r), we have vol(Sm−1, h) t
3 ≤

vol(Z2, gt) ≤ vol(Sm−1, h) t. Hence if we set a = vol(M̄\Z2, gt) and b =

vol(Sm−1, h), we obtain Lemma 2.1. �

Remark 2.2. We note that the difference between original Gentile-

Pagliara’s metric deformation and our modified Gentile-Pagliara’s one

comes from the choice of ft(r). Their ft(r) satisfies vol(M̄, gt) = a + bt

for some constants a, b > 0.

The next two lemmas are well-known.

Lemma 2.3. Let (M, g) be as above. For a constant a > 0,

(1)λ
(p)
1 (M,ag) = a−1λ

(p)
1 (M, g),

(2) vol(M,ag) = a
m
2 vol(M, g).

Lemma 2.4. Let (M, g), (N,h) be m,n-dimensional connected compact

oriented Riemannian manifolds. Then the spectrum of the product Riaman-

nian manifold (M ×N, g ⊕ h) is given as follows:

(a) for ∂M, ∂N = φ,

Spec(p)(M ×N, g ⊕ h) = {λ(r)
i (M, g) + λ

(s)
j (N,h) | r + s = p,

0 ≤ r ≤ m, 0 ≤ s ≤ n, i, j = (0), 1, 2, · · ·},

(b) for ∂M �= φ, ∂N = φ with the Dirichlet boundary condition,

SpecD(M ×N, g ⊕ h) = {µi(M, g) + λj(N,h) | i = 1, 2, · · · , j = 0, 1, · · ·},

where µi(M, g) is the i-th eigenvalue with the Dirichlet boundary condition.

3. Proof of Theorem 1.1

Lemma 3.1. Let (M, g) be a connected compact oriented Riemannian

manifold without boundary. Then,

λ
(1)
1 ≤ λ

(0)
1 .
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Proof. Let f be the first eigenfunction of (M, g). Since ∆ commutes

with d, we have ∆(df) = d(∆f) = λ
(0)
1 df . By df �= 0, λ

(0)
1 is a non-zero

eigenvalue of the Laplacian on 1-forms, hence λ
(1)
1 ≤ λ

(0)
1 . �

Remark 3.2. We note that for a 2-dimensional connected compact

oriented Riemannian manifold without boundary we have λ
(0)
1 = λ

(1)
1 =

λ
(2)
1 . This follows from λ

(1)
1 = min{λ(0)

1 , λ
(2)
1 } and the Poincaré duality

λ
(0)
1 = λ

(2)
1 .

Next, we estimate the k-th eigenvalue from above.

Lemma 3.3. Let (M, g) be a connected compact oriented Riemannian

manifold without boundary. We take k+1 disjoint domains U1, U2, · · · , Uk+1

with piece-wise C∞-boundaries. Then, we obtain

λk(M, g) ≤ max{µ1(U1), µ1(U2), · · · , µ1(Uk+1)}.

Here, each µ1(Ui) (i = 1, · · · , k + 1) is the first eigenvalue of the Laplacian

on (Ui, induced metric) with the Dirichlet boundary condition.

Proof. We use Cheng’s argument ([Ch-75], p. 292).

Let ϕi be an eigenfunction for µ1(Ui) (i = 1, · · · , k + 1). We set

ϕ̃i :=

{
ϕi on Ui ,

0 on M\Ui .

Because ϕi satisfies the Dirichlet boundary condition, ϕ̃i is C0 on M and

C∞ almost everywhere. Since ‖dϕi‖L2(Uj) < ∞, therefore ϕ̃i ∈ L2
1(M, g).

Now let u0, u1, · · · , uk−1 be orthonormal eigenfunctions on (M, g) for

λ0 = 0, λ1, · · · , λk−1, i.e. (ui, uj)L2(M,g) = δij (i �= j), ∆ui = λiui. Then

there are some constants a1, · · · , ak+1 (one of them is not zero) such that

(Φ, ui)L2(M,g) = 0 (i = 0, 1, · · · , k − 1), where Φ =
k+1∑
i=1

aiϕ̃i. In fact, as

supp(ϕ̃i)∩supp(ϕ̃j) = φ (i �= j), (ϕ̃i, ϕ̃j)L2 =

∫
M

ϕ̃iϕ̃j vg = 0. So the linear

spans V := 〈ϕ̃1, ϕ̃2, · · · , ϕ̃k+1〉R, W := 〈u0, u1, · · · , uk−1〉R are the k + 1, k-

dimensional linear subspaces of L2(M, g). We define that the linear operator
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P from V to W is P (ϕ) =
k−1∑
i=0

(ϕ, ui)L2ui (∀ϕ ∈ V ). Since dim Ker(P ) =

dim V − dim Im(P ) ≥ dim V − dim W = (k + 1) − k = 1, Ker(P ) �= 0.

Hence we can take a non-zero element Φ in Ker(P ).

Then using the above Φ as a test function of the min-max principle, we

obtain

λk(M, g) ≤ ‖dΦ‖2
L2

‖Φ‖2
L2

.

Now we estimate the right-hand side from above.

‖dΦ‖2
L2 =

∫
M
〈dΦ, dΦ〉 vg

=
k+1∑
i=1

a2
i

∫
M
〈dϕ̃i, dϕ̃i〉 vg

( by supp(ϕ̃i) ∩ supp(ϕ̃i) = φ (i �= j) )

=
k+1∑
i=1

a2
i

∫
Ui

∆ϕi · ϕi vg

( by Stokes’ theorem)

=
k+1∑
i=1

a2
iµ1(Ui)

∫
Ui

ϕ2
i vg

( as ϕi is an eigenfunction)

≤ max
i=1,···,k+1

{µ1(Ui)}
k+1∑
i=1

a2
i

∫
M

ϕ̃2
i vg

= max
i=1,···,k+1

{µ1(Ui)}
∫
M

Φ2 vg

( by supp(ϕ̃i) ∩ supp(ϕ̃j) = φ (i �= j)) .

Therefore we get λk(M, g) ≤ max
i=1,2,···,k+1

{µ1(Ui)}. �

Proof of Theorem 1.1. When p = 2, 3, · · · ,m− 2 and m ≥ 4, there

exists some constant C > 0 independent of t such that λ
(p)
1 (M̄, gt) ≥ C from

the proof of [G-P95] p. 3857. Hence from Lemma 2.1 and 2.3 we have

λ
(p)
1 (M̄, ḡt) = vol(M̄, gt)

2
mλ

(p)
1 (M̄, gt)
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≥ (a +
b

3
t)

2
mC.

Therefore λ
(p)
1 (M̄, ḡt) → ∞ as t → ∞.

Then we have only the cases p = 0, 1. We remark from Lemma 3.1

that we only have to prove the case p = 0, i.e. it is enough to prove that

λ1(M̄, ḡt) → 0 as t → ∞.

We take the two domains U1, U2 in Z2 = [0, 1] × Sm−1 as follows:

U1 ≡ (α1, β1) × Sm−1,

U2 ≡ (α2, β2) × Sm−1,(
1

3
< α1 < β1 < α2 < β2 <

2

3

)
.

By the choice of ft(r), the metric gt on Ui is t2dr2 ⊕ h. Hence by Lemma

2.4, we have for i = 1, 2

µ1(Ui, gt|Ui) = min
k≥1, l≥0

{µk( (αi, βi), t
2dr2) + λl(S

m−1, h)}

≤ min
k≥1

{ 1

t2
µk((αi, βi), dr

2)}

(by Lemma 2.3)

=
1

t2
µ1((αi, βi), dr

2).

We obtain

λ1(M̄, ḡt) = vol(M̄, gt)
2
mλ1(M̄, gt)

( by Lemma 2.3)

≤ (a + bt)
2
m max { 1

t2
µ1((α1, β1), dr

2),
1

t2
µ1((α2, β2), dr

2)}
( by Lemma 2.1, 3.3 and the above )

=
(a + bt)

2
m

t2
max { µ1((α1, β1), dr

2), µ1((α2, β2), dr
2) }.

Since m ≥ 2 and λ1(M̄, ḡt) ≥ 0, we have λ1(M̄, ḡt) → 0 as t → ∞. �
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4. Proof of Theorem 1.2

First we note that vol(L,Gt) is constant in t because of the construction

of Gt. We obtain by Lemma 2.3 and 2.4

λ
(p)
1 (L,Gt)

= min
i,j≥0, r,s≥0

{λ(r)
i (M, t

1
m g) + λ

(s)
j (N, t−

1
nh) | i2 + j2 �= 0, r + s = p }

= min
i,j≥0, r,s≥0

{t− 1
mλ

(r)
i (M, g) + t

1
nλ

(s)
j (N,h) | i2 + j2 �= 0, r + s = p }.

From the above we observe that lim
t→∞

λ
(p)
1 (L,Gt) apparently depends on the

existence of harmonic forms i.e. 0-eigenvalues on (M, g) and (N,h). So we

divide the proof into the following cases.

(I) m ≤ n;

(1) 0 ≤ p ≤ m,

(2) m < p < n,

(3) n ≤ p ≤ l = m + n,

(II) n < m;

(4) 0 ≤ p < n,

(5) n ≤ p ≤ l = m + n.

Case (1). (0 ≤ p ≤ m):

Because we can take the pair (r, s) = (p, 0) in the above formula, it

follows that

λ
(p)
1 (L,Gt) ≤ t−

1
mλ

(p)
1 (M, g) + t

1
nλ

(0)
0 (N,h)

= t−
1
mλ

(p)
1 (M, g)

→ 0 ( as t → ∞ ).

Case (2). (m < p < n):
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If there is a k0 (p − m ≤ k0 ≤ p) such that Hk0(N ;R) �= 0, we have

λ
(k0)
0 (N,h) = 0. Then, because we can take the pair (r, s) = (p− k0, k0) in

the above formula, it follows that

λ
(p)
1 (L,Gt) ≤ t−

1
mλ

(p−k0)
1 (M, g) + t

1
nλ

(k0)
0 (N,h)

= t−
1
mλ

(p−k0)
1 (M, g)

→ 0 ( as t → ∞ ).

On the other hand if Hk(N ;R) = 0 ( p − m ≤ k ≤ p ) there is no

harmonic k-form (p − m ≤ k ≤ p ). Because the possible pairs (r, s) are

(0, p), (1, p− 1), · · · and (m, p−m), it follows that

λ
(p)
1 (L,Gt) = min

p−m≤k≤p
{t− 1

mλ
(p−k)
i (M, g) + t

1
nλ

(k)
j (N,h) | i2 + j2 �= 0}

≥ t
1
n min

p−m≤k≤p
{λ(k)

1 (N,h)}

→ ∞ ( as t → ∞ ).

Case (3). (n ≤ p ≤ l = m + n):

Because we can take the pair (r, s) = (p− n, n) in the above formula, it

follows that

λ
(p)
1 (L,Gt) ≤ t−

1
mλ

(p−n)
1 (M, g) + t

1
nλ

(n)
0 (N,h)

= t−
1
mλ

(p−n)
1 (M, g)

→ 0 ( as t → ∞).

Case (4). (0 ≤ p < n < m):

Because we can take the pair (r, s) = (p, 0) in the above formula, it

follows that

λ
(p)
1 (L,Gt) ≤ t−

1
mλ

(p)
1 (M, g) + t

1
nλ

(0)
0 (N,h)

= t−
1
mλ

(p)
1 (M, g)

→ 0 ( as t → ∞).
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Case (5). (n ≤ p ≤ l = m + n):

Because we can take the pair (r, s) = (p− n, n) in the above formula, it

follows that

λ
(p)
1 (L,Gt) ≤ t−

1
mλ

(p−n)
1 (M, g) + t

1
nλ

(n)
0 (N,h)

= t−
1
mλ

(p−n)
1 (M, g)

→ 0 ( as t → ∞).

Therefore we have just finished the proof of Theorem 1.2. �
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