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On K3 Surfaces Admitting Finite

Non-Symplectic Group Actions

By Natsumi Machida and Keiji Oguiso

Abstract. For a pair (X,G) of a complex K3 surface X and its
finite automorphism group G, we call the value I(X,G) := | Im(G →
Aut(H2,0(X)))| the transcendental value and the Euler number
ϕ(I(X,G)) of I(X,G) the transcendental index. This paper classifies
the pairs (X,G) with the maximal transcendental index 20 and the pair
(X,G) with I(X,G) = 40 up to isomorphisms. We also determine the
set of transcendental values and apply this to determine the set of global
canonical indices of complex projective threefolds with only canonical
singularities and with numerically trivial canonical Weil divisor.

0. Introduction

Let X be a K3 surface, that is, a simply connected smooth projective

complex surface with a nowhere vanishing holomorphic two form. We de-

note by SX , TX and ωX the Néron Severi lattice, the transcendental lattice

and a nowhere vanishing holomorphic two form of X. We denote the multi-

plicative group of the I-th roots of unity, its specified generator exp(2π
√
−1

I )

and the cardinality of its generators by µI , ζI and ϕ(I).

Let G be a subgroup of Aut(X) and α : G → C× the character of the

natural representation of G on the space H2,0(X) = CωX . Then, there ex-

ists a positive integer I(X,G) which fits in with the following exact sequence

([Ni1, Theorem 0.1], [St, Lemma 2.1]):

1 → GN := Kerα→ G
α−→ µI(X,G) → 1.
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Table 1. The list of all the numbers I with ϕ(I) ≤ 21.

ϕ(I) 20 18 16 12 10 8 6 4 2 1
66 54 60 42 22 30 18 12 6 2

I 50 38 48 36 11 24 14 10 4 1
44 27 40 28 20 9 8 3
33 19 34 26 16 7 5
25 32 21 15

17 13

It is shown by Nikulin [Ni1, ibid.] that ϕ(I(X,G)) | rankTX ≤ 21 whence

the candidates of the values I(X,G) and ϕ(I(X,G)) lie in the Table 1.

We call I(X,G) the transcendental value and ϕ(I(X,G)) the transcen-

dental index of (X,G).

Nikulin and Mukai ([Ni1, Section 5], [Mu, Theorem 0.3]) classified the

finite groups G for which there exist K3 surfaces X with G ⊂ Aut(X) and

I(X,G) = 1.

In this paper we study a pair (X,G) of a K3 surface X and a finite group

G such that G ⊂ Aut(X) and that I(X,G) �= 1.

First we determine the pairs (X,G) with ϕ(I(X,G)) = 20, the max-

imal possible transcendental index up to isomorphism and calculate the

full automorphism groups of such K3 surfaces (Main Theorem 1). We also

determine the pairs (X,G) with I(X,G) = 40 up to isomorphism and cal-

culate the full automorphism groups of such K3 surfaces (Main Theorem 2),

which will answer for Kondo’s question to the second author.

Next we determine the set of transcendental values completely (Main

Theorem 3, see also Proposition 4). This is one of the important steps

towards the complete understanding of finite automorphism groups of K3

surfaces. Then we give some application for threefolds with numerically

trivial canonical divisor (Corollary 5).

Employing pairs (XI , < gI >) defined in Proposition 4, we can state our

main results as follows:

Main Theorem 1. Assume that I = I(X,G) is either 66, 33, 44, 50,

or 25. Then,

(1) (X,G) � (XI , < gI >) in the case where I is even and (X,G) �
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(X2I , < g2
2I >) in the case where I is odd, and

(2) Aut(X) = G � Z/I in the case where I is even and Aut(X) � Z/2I

in the case where I is odd.

This Theorem gives a complete classification of pairs (X,G) with the

maximal possible transcendental indices and show, in particular, that such

pairs are determined uniquely by their transcendental values.

Main Theorem 2. Assume that I(X,G) = 40. Then,

(1) (X,G) � (X40, < g40 >) and

(2) Aut(X) = G � Z/40.

Main Theorem 3. Set TVK3 := {I(X,G) | (X,G) is a pair of a K3

surface X and its finite automorphism group G}. Then, TVK3 = {I |
ϕ(I) ≤ 20} − {60}, or in other words, among the candidates in Table 1,

only 60 cannot be realised as transcendental values of any pairs (X,G).

Moreover, for each I ∈ TVK3, there exists a K3 surface XI admitting a

cyclic group action 〈gI〉 with 〈gI〉 � 〈α(gI)〉 = µI .

The main point is to show the nonexistence of pairs (X,G) with

I(X,G) = 60. The existence part will immediately follows from the Ta-

ble 1 and the next Proposition:

Proposition 4 (cf. [Ko, Section 7], [Og1, Proposition 2]).

The following pair (XI , 〈gI〉) of a K3 surface XI defined by the indicated

minimal Weierstrass equation (except for (14) and (15)) and its cyclic au-

tomorphism group 〈gI〉 satisfies 〈gI〉 � 〈α(gI)〉 = µI :

(1) ([Ko]) X66 : y2 = x3 + t(t11 − 1) and g∗66(x, y, t) = (ζ40
66x, ζ

27
66y, ζ

54
66 t);

(2) ([Ko]) X44 : y2 = x3 + x+ t11 and g∗44(x, y, t) = (ζ22
44x, ζ

11
44y, ζ

34
44 t);

(3) (cf. [Ko]) X54 : y2 = x3 + t(t9 − 1) and g∗54(x, y, t) = (ζ2
27x,−ζ3

27y,

ζ6
27t);

(4) (cf. [Ko]) X38 : y2 = x3+t7x+t and g∗38(x, y, t) = (ζ7
19x,−ζ19y, ζ

2
19t);

(5) X48 : y2 = x3 + t(t8 − 1) and g∗48(x, y, t) = (ζ2
48x, ζ

3
48y, ζ

6
48t);

(6) (cf. [Ko]) X34 : y2 = x3 + t7x + t2 and g∗34(x, y, t) = (ζ7
17x,−ζ2

17y,

ζ2
17t);
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(7) ([Og1]) X32 : y2 = x3 + t2x + t11 and g∗32(x, y, t) = (ζ18
32x,−ζ11

32y,

ζ2
32t);

(8) ([Ko]) X42 : y2 = x3 + t5(t7 − 1) and g∗42(x, y, t) = (ζ2
42x, ζ

3
42y, ζ

18
42 t);

(9) ([Ko]) X36 : y2 = x3 + t5(t6 − 1) and g∗36(x, y, t) = (ζ2
36x, ζ

3
36y, ζ

30
36 t);

(10) ([Ko]) X28 : y2 = x3 + tx+ t7 and g∗28(x, y, t) = (ζ14
28x, ζ

7
28y, ζ

2
28t);

(11) (cf. [Ko]) X26 : y2 = x3+t5x+t and g∗26(x, y, t) = (ζ5
13x,−ζ13y, ζ

2
13t);

(12) X30 : y2 = x3 + (t10 − 1) and g∗30(x, y, t) = (ζ10
30x, y, ζ

3
30t);

(13) X20 : y2 = x3 + (t5 − 1)x and g∗20(x, y, t) = (ζ10
20x, ζ

5
20y, ζ

4
20t);

(14) (cf. [Ko]) X50 := (z2 = x6
0 +x0x

5
1 +x1x

5
2) ⊂ P(1, 1, 1, 3) and g∗50[x0 :

x1 : x2 : z] = [x0 : ζ20
25x1 : ζ25x2 : −z];

(15) X40: the minimal resolution of the surface X40 := (z2 = x0(x
4
0x2 +

x5
1−x5

2)) ⊂ P(1, 1, 1, 3) having 5 ordinary double points [0 : 1 : ζi5 : 0]

(0 ≤ i ≤ 4) and g∗40[x0 : x1 : x2 : z] = [x0 : ζ20x1 : ζ4x2 : ζ8z].

This together with Beauville-Kawamata-Morrison’s arguments ([Bo,

Proposition 8],[Ka1, Theorem 3.2],[Mo, Theorems 1 and 2]) and with the

existence of crepant terminalisations of canonical threefolds ([Ka2, Corol-

lary 4.5], [Re, Main Theorem]) gives the following application for threefolds

with numerically trivial canonical divisor:

Corollary 5 (cf. [Og1, Main Theorem] also [Be, Proposition 8], [Ka1,

Theorem 3.2] and [Mo, Theorems 1 and 2]). Let X be a normal projec-

tive complex threefold with only canonical singularities and with KX ≡ 0.

Denote by I(X) the global canonical index of X; I(X) := min{n ∈ Z>0 |
OX(nKX) � OX}. Set:

Ican := {I(X) | X has only canonical singularities};
Iterm := {I(X) | X has only terminal singularities}; and

Ismooth := {I(X) | X is non-singular}.
Then, Ican = Iterm = Ismooth = {I | ϕ(I) ≤ 20} − {60}. In particular, the

so-called Beauville number B = 25 ·33 ·52 ·7 ·11 ·13 ·17 ·19 is the best possible

universal bound for the global canonical indices of canonical threefolds with

KX ≡ 0.

This Corollary gives an answer to Catanese’s question to the second

author at the Trento International Conference held in June 1994.

We close this paragraph by posing the following interesting open problem

related to Corollary 5:
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Problem.

(1) Determine the set of the global canonical indices of surfaces with

only klt singularities and with numerically trivial canonical Weil

divisor (cf. [Zh, Lemma 2.3], [Bl, Theorem C]).

(2) Determine the set of the global canonical indices of threefolds with

only klt singularities and with numerically trivial canonical Weil

divisor.

This paper is motivated by the following beautiful Theorem due to

Kondo:

Kondo’s Theorem ([Ko, Main Theorem and Section 3]). Let X be a

K3 surface admitting an automorphism g such that

(1) SX is unimodular,

(2) g∗ |SX
= id, and

(3) g∗ |TX
is of order 66 (resp. of order 44).

Then, X is isomorphic to X66 (resp. X44) in Proposition 4.

Besides this Theorem, our basic ingredients are lattice theory, especially,

the classification of even 2−elementary hyperbolic lattices [Ni2, Theorems

4.3.1, 4.3.2], theory of elliptic surfaces [Kd, Theorems 6.2, 9.1], the topolog-

ical Lefschetz fixed point formula (eg. [Ue, Lemma 1.6]), the holomorphic

Lefschetz fixed point formula ([AS1, Page 542] and [AS2, Page 567]) and

the following remarkable Theorem on arithemetic [MM, Main Theorem]:

Masley and Montgomery’s Theorem. The ring of cyclotomic in-

tegers Z[ζI ] is PID if and only if I belongs to the set {I | ϕ(I) ≤ 21} ∪
{35, 45, 70, 84, 90}.

Indeed, thanks to this Theorem, we can reinterpret Nikulin’s Theorem

in terms of cyclotomic integers, which will turn out to be very useful:

Lemma (1.1). Let X be a K3 surface and g an automorphism of X.

Set I(X, 〈g〉) = I, rankTX = r and regard TX as a Z[〈g〉]−module via

the natural action of g on TX . Let ΦI(x) ∈ Z[x] be the I−th cyclotomic

polymonial. Then,

(1) ([Ni1, Theorem 0.1]) the eigen values of g∗ | TX are the primitive

I−th roots of unity. In particular, ord(g∗ | TX) = I and I = 1 if

and only if g∗ | TX = id,
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(2) Ann(TX) = 〈ΦI(g)〉 and TX is then naturally a torsion free

Z[〈g〉]/〈ΦI(g)〉−module, and

(3) under the identification Z[〈g〉]/〈ΦI(g)〉 = Z[ζI ] through the cor-

respondence g(mod〈ΦI(g)〉) ↔ ζI , TX � Z[ζI ]
⊕(r/ϕ(I)) as Z[ζI ]−

modules.

It might be worth mentioning here that Masley and Montgomery’s The-

orem has been already effectively applied by the second author to deter-

mine canonical Calabi-Yau threefolds W with c2(W ) = 0 [Og2, Main The-

orem]. This article will provide another application of this Theorem and

the method here will be also fully applied in [OZ, Main Result].

Some results in this article have been obtained by the first author as

her master thesis at University of Tokyo 1996 [Ma]. This article may be

regarded as an extended version of her master thesis.

Important Remark. After finishing our preliminary version, Profes-

sor S. Kondo kindly informed us that Professor G. Xiao also proved in his

preprint, “Non-symplectic involutions of a K3 surface”, the uniqueness of

pairs (X,G) with I(X,G) = 66, 50, 44, 54 and 48 and the nonexistence of

pairs (X,G) with I(X,G) = 60. However, our method based on cohomo-

logical arguments is quite different from his method. Indeed, his method

of proof is based on Hurwitz type argument and theory of rational sur-

faces, especially Hirzebruch surfaces, via the study of appropriate quotients

X → X/G′ (G′ ⊂ G). An advantage of our method consists in its applica-

bility to not only even order cases but also odd order cases, which he did

not get in touch with, on an equal footing.

Acknowledgement . The both authors would like to express gratitude

to Professors Y. Kawamata, T. Katsura and D. Q. Zhang for their warm

encouragement during preparation of this article. Finally but not least at

all, the authors would like to express gratitude to Professors S. Kondo and

G. Xiao for their informations. The both authors would like to express

gratitude to the referee for his careful reading and valuable suggestions (cf.

Remark at the end of Section 4).

Notation. Besides standard notation in algebraic geometry, we employ

the following notation.
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We denote by π(C) the genus of a smooth complete curve C.

For a finite automorphism g (resp. a finite automorphism group G) of

a smooth surface X we write Xg = {x ∈ X | g(x) = x} (resp. X [G] =

∪g∈G,g �=idX
g). Note that Xg is a smooth algebraic set of X, while is not

irreducible in general. If P ∈ Xg and n = ord(g), then there exist local

coordinates (xP , yP ) around P such that g∗(xP , yP ) = (ζn1
n xP , ζ

n2
n yP ). In

this case, P ∈ Xg is called of type 1
n(n1, n2). Note that this P is an isolated

point of Xg if and only if ni �≡ 0(modn) for each i = 1, 2.

For a given lattice (L, 〈, 〉), we denote by L(m) the lattice (L,m · 〈, 〉).
By Al, Dm (m ≥ 4) and En (n = 6, 7, 8), we denote the negative definite

lattices corresponding to the Dynkin’s diagrams of the indicated types. By

U we denote the lattice defined by the Gram matrix

(
0 1

1 0

)
.

We also freely employ the notation and notion fixed in Introduction.

1. Preliminaries

In this section we observe some elementary facts which will be frequently

applied in this article.

Lemma (1.1). Let X be a K3 surface and g an automorphism of X.

Set I(X, 〈g〉) = I, rankTX = r and regard TX as a Z[〈g〉]−module via

the natural action of g on TX . Let ΦI(x) ∈ Z[x] be the I−th cyclotomic

polymonial. Then,

(1) ([Ni1, Theorem 0.1]) the eigen values of g∗ | TX are the primitive

I−th roots of unity. In particular, ord(g∗ | TX) = I and I = 1 if

and only if g∗ | TX = id,

(2) Ann(TX) = 〈ΦI(g)〉, and TX is then naturally a torsion free

Z[〈g〉]/〈ΦI(g)〉−module, and

(3) under the identification Z[〈g〉]/〈ΦI(g)〉 = Z[ζI ] through the cor-

respondence g(mod〈ΦI(g)〉) ↔ ζI , TX � Z[ζI ]
⊕(r/ϕ(I)) as Z[ζI ]−

modules.

Proof. The statement (1) is shown by Nukulin [Ni1, Section 3]. The

satement (2) is a simple reinterpretation of (1) in terms of group algebra.

Recall that torsion free modules are in fact free if the coefficient ring is PID.
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Now, combining (2) with Table 1 and Masley and Montgometry’s Theorem

in Introduction, we get the assertion (3). �

Lemma (1.2). Let X be a K3 surface and G a finite automorphism

group of X. Assume that rankTX ≥ 14. Then GN = {1}, or equivalently,

G � α(G).

Proof. Assume the contrary that GN contains an element g of prime

order p. Then, p is either 2, 3, 5 or 7 and |Xg| = 24/(p + 1) by [Ni1,

Section 5]. (See also [Mu, Proposition 1.2]). Note that g∗ | TX = id and

that g∗ | SX has an eigen value 1 corresponding to the pullback of the ample

class of X/〈g〉. Now writing r = rankTX and applying the topological

Lefschetz fixed point formula (eg. [Ue, Lemma 1.6]), we get the following

contradiction:

8 ≥ 24/(p + 1) = χtop(X
g) =

∑4
i=0(−1)i tr(g∗ | H i(X,Z)) = 2 + tr(g∗ |

SX)+tr(g∗ | TX) = 2+r+tr(g∗ | SX) ≥ 2+r+1− (22−r−1) = 2r−18 ≥
10. �

In what follows, set S∗
X = Hom(SX ,Z), T ∗

X = Hom(TX ,Z) and regard

SX ⊂ S∗ ⊂ SX ⊗ Q, TX ⊂ T ∗ ⊂ TX ⊗ Q. We denote by l(SX) the

minimal number of generators of the finite abelian group S∗
X/SX . We call

SX p−elementary if S∗
X/SX is a p−elementary abelian group (possibly {0}).

Recall that SX (resp. TX) is an even lattice of signature (1, rankSX −1)

(resp. of signature (2, rankTX − 2)) and rankSX + rankTX = 22.

Lemma (1.3) (cf. [Ni2, Theorem 10.1.2], [Ko, Theorem 6.1]). Let X

be a K3 surface. Assume that X admits an automorphism g such that

(1) g∗ | SX = id,

(2) I(〈g〉) has at least two distinct prime divisors.

Then, SX is isomorphic to either U , U ⊕ E8, or U ⊕ E⊕2
8 .

Proof. Choose distinct prime divisors pi and elements hi (i = 1, 2)

such that ord(hi) = pi. From the natural isomorphism S∗
X/SX �

H2(X,Z)/(SX⊕TX) � T ∗
X/TX which commutes with the action of Aut(X),

we get h∗i | T ∗
X/TX = id. Combining this with (

∑pi−1
k=0 (h∗i )

k) | TX = 0

(1.1)(2), we find that pix ≡ 0(modTX) if x ∈ T ∗
X . Thus, T ∗

X/TX is a

pi−elementary abelian group. Hence S∗
X/SX � T ∗

X/TX = {0}. This means
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that SX is unimodular. Now the result follows from [Se, Chapter 5, Theo-

rem 5]. �

Similarly, we get the following:

Lemma (1.4) (cf. [Ni2, ibid.], [Ko, ibid.]). Let X be a K3 surface. As-

sume that X admits an automorphism g such that

(1) g∗ | SX = id, and

(2) I(〈g〉) is a primary, that is, I(〈g〉) = pn for a prime p.

Then, SX is a p−elementary lattice.

Lemma (1.5) (cf. [PS], [Ko], [Se], [Ni3]). Let X be a K3 surface.

(1) If SX represents zero, then X admits an elliptic fibration. In par-

ticular, every K3 surface with ρ(X) ≥ 5 admits an elliptic fibration.

(2) If SX contains a sublattice isomorphic to U , then X admits a Jaco-

bian fibration. In particular, if rankSX ≥ 3+ l(SX), then X admits

a Jacobian fibration.

Proof. The first half part of the assertion (1) is shown by [PS, Sec-

tion 3, Corollary 3]. The remaining assertion in (1) now follows from [Se,

Page 43, Corollary 2]. The first half part of (2) is proved by [Ko, Lemma

2.1]. The last half is then a direct consequence of the so-called splitting

Theorem due to [Ni3, Corollary 1.13.5]. �

Remark. The last assertion of (2) will be fully applied in [OZ].

We close this section by noticing the following:

Lemma (1.6) (cf. [PS, Section 2, Proposition 2]). Let X be a K3 sur-

face and gi (i = 1, 2) automorphisms of X such that g∗1 | SX = g∗2 | SX and

that g∗1ωX = g∗2ωX . Then g1 = g2 in Aut(X).

Proof. It follows from the assumption and (1.1) that g∗1 | H2(X,Z) =

g∗1 | H2(X,Z). Now the result follows from the injectivity part of the global

Torelli Theorem for algebraic K3 surfaces ([PS, Section 2, Proposition 2],

[BPV, Chapter 8, Proposition 11.3]). �
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2. Uniqueness of pairs (X,G) with I(X,G) = 66, 33 and 44

Let (X,G) be a pair with I := I(X,G) = 66, 33 or 44. Note that

rankTX = 20, rankSX = 2 whence G � α(G) = µI (1.2). Let g be the

generator of G with g∗ωX = ζIωX . Set h = g2.

Lemma (2.1). h∗ | TX is of order I/2 (resp. I) in the case where I =

44, 66 (resp. I = 33).

Proof. This follows from (1.1)(1). �

Lemma (2.2). h∗ | SX = id.

Proof. Since g is of finite order, g∗ | SX has an eigen value 1 corre-

sponding to the pull back of an ample class of X/〈g〉. Combining this with

rankSX = 2, we readily get the result. �

Lemma (2.3). SX �
(

0 1

1 0

)
.

Proof. Since I(X, 〈h〉) is either 33 or 22, we may apply (1.3) for (X,h)

to get the result. �

Thus X admits a Jacobian fibration f : X → P1. Let C(� P1) be

a section and F a general fiber of f . Then, (C)2 = −2 and (F )2 = 0

whence the classes [C] and [F ] lie in the boundary of the effective cone

NE(X)(⊂ SX ⊗R) of X. (See [KMM, Section 0-1] for definition of several

cones and their relations.)

Lemma (2.4). ϕ∗ | SX = id for each ϕ ∈ Aut(X). In particular,

g∗ | SX = id.

Proof. The result follows from ∂NE(X) = R≥0[C] ∪ R≥0[F ]. �

Proof of Theorem 1 for pairs (X,G) with I(X,G) = 66, 33 and

44.

Assume first that I is either 66 or 44. Then, by (2.1), (2.3) and (2.4),

(X, g) satisfies the condition (1), (2) and (3) in Kondo’s Theorem quoted

in Introduction. Thus there exists a biregular map ϕI : X � XI for each I.
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Since (ϕ−1
I ◦gI ◦ϕI)

∗ωX = ζIωI = g∗ωX and (ϕ−1
I ◦gI ◦ϕI)

∗ | SX = id = g∗ |
SX , it follows from (1.6) that ϕ−1

I ◦ gI ◦ϕI = g. Thus (X, 〈g〉) � (XI , 〈gI〉).
We show that Aut(X) = G. Let a be an element of Aut(X) and set

I(X, 〈a〉) = J . Then I(X, 〈a, g〉) = LCM(J, I). Combining this with Ta-

ble 1, we readily see that J | I. Using this, we find an integer n such that

a∗ωX = (gn)∗ωX . Combining this with (2.4) and (1.6), we get a = gn. This

implies Aut(X) = G. Now we are done for the case where I = 66 and 44.

Next assume that I = 33. Let us regard C as a zero section of the

Jacobian fibration f : X → P1 and denote by ι the automorphism of X

induced by the inversion of the generic fiber Eη with respect to C. Then

I(X, 〈ι ◦ g〉) = 66, and 〈ι, g〉 is finite. Indeed ι ◦ g = g ◦ ι by (1.6) and (2.4).

This implies (X, 〈ι ◦ g〉) � (X66, 〈g66〉), whence (X, 〈g〉) � (X66, 〈g2
66〉).

Now we are done. �

3. Uniqueness of pairs (X,G) with I(X,G) = 50 and 25

In this section we prove Theorem 1 in the case where I(X,G) = 50 and

25. First we treat the case where I(X,G) = 25. The same argument as in

Section 2 shows the following:

Lemma (3.1). rankTX = 20, rankSX = 2, and there exists an elment

g ∈ G such that G = 〈g〉, g is of order 25 and that g∗ | SX = id.

The next Lemma is crucial to determine (X,G).

Lemma (3.2). SX �
(

2 1

1 −2

)
.

Proof. By (3.1) and (1.4), there exists a non-negative integer l with

S∗
X/SX � T ∗

X/TX � (Z/5)⊕l. First we determine the value l.

Claim (3.3). l �= 0.

Proof. Assume the contrary that SX is unimodular. Since g∗ | SX =

id, it follows from main Theorem of [Ko, Introduction] that ord(g) is a

divisor of either 66, 44, 42, 36, 28, or 12, a contradiction. �

Claim (3.4). l = 1.
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Proof. Note by (1.1) that TX � Z[ζ25] as Z[ζ25]−modules. Let bi
(1 ≤ i ≤ 20) be the Z−basis of TX corresponding to the Z−basis ζi−1

25 of

Z[ζ25] under this isomorphism. Translating the relations, ζ25 · ζi−1
25 = ζi25

(1 ≤ i ≤ 19) and ζ25 · ζ19
25 = ζ20

25 = −(1 + ζ5
25 + ζ10

25 + ζ15
25 ) in Z[ζ25] into

TX by the above isomorphism, we get g∗(bi) = bi+1 (1 ≤ i ≤ 19) and

g∗(b20) = −b1− b6− b11− b16. Let y ∈ T ∗
X(∈ TX ⊗Q) be any element. Then

there exist integers yi such that y = 1
5(
∑20

i=1 yibi). Since g∗ | T ∗
X/TX = id,

we calculate modulo TX that 0 ≡ g∗(y) − y = 1
5(
∑19

i=1 yibi+1 + y20(−b1 −
b6 − b11 − b16) −

∑20
i=1 yibi) = 1

5(−(y1 + y20)b1 + (y5 − y20 − y6)b6 + (y10 −
y20 − y11)b11 + (y15 − y20 − y16)b16 +

∑
i�=1,6,11,16(yi−1 − yi)bi). This readily

implies that yi = ky1(mod 5) (5k− 4 ≤ i ≤ 5k). Combining this with (3.3),

we get T ∗
X/TX = 〈1

5(
∑4

k=1 k(
∑5k

i=5k−4 bi))〉 � Z/5. �

We return back to the proof of (3.2).

Let ei (i = 1, 2) be Z−basis of SX and a, b, c integers with 〈e1, e1〉 = 2a,

〈e2, e2〉 = 2c, 〈e1, e2〉 = b. Then, 4ac − b2 = −5 by (3.3). Now we may

assume by the reduction theory of quadratic forms (eg. [BS, Chapter 2,

Section 7, Problem 12]) that a and b satisfy a > 0, b < 0 and −b + 51/2 >

2a > b+ 51/2 > 0. Thus a = 1, b = −1, c = −1. This completes the proof

of (3.2). �

We now translate (3.2) into more geometrical terms to determine X.

Let W (X) be the reflection group on SX ⊗ R generated by rb : x �→
x + (x · b)b where b ∈ SX satisfies b2 = −2. Since the nef and big cone is

a fundamental domain for this action on the closure of the positive cone

([PS, Section 7], [BPV, Chapter 8, Proposition 3.9]), we may assume that

e1 = [H] for a nef and big divisor H with (H)2 = 2. Set e2 = [C2] and

e1 − e2 = [C1]. Since (ei)
2 = −2 and (H.ei) = 1, Ci may be chosen

to be effective. Combining this with the semi-ampleness of H and with

the equality rankSX = 2, we easily find that Ci are then smooth rational

curves and ∂NE(X) = R≥0[C1]∪R≥0[C2]. In particular, X contains neither

smooth rational curves nor smooth ellptic curves other than Ci (i = 1, 2).

Lemma (3.5). H is ample and free.

Proof. Since (H.Ci) = 1, the ampleness of H follows from Kleiman’s

criterion. Applying the Riemann-Roch Theorem and the vanishing Theo-

rem, we calculate that h0(OX(H)) = 3, while h0(OX(H − Ci)) =
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h0(OX(C2−i)) = 1. Thus |H| has no fixed components whence a general

element C of |H| is an irreducible reduced curve with pa(C) = 2 (cf. [SD,

Proposition 2.6]). Since |KC | is free, the freeness of H now follows from

the exact sequence 0 → OX → OX(H) → OC(KC) → 0 and the equality

h1(OX) = 0 (cf. [SD, Section 3]). �

Let f : X → P2 be the finite double cover given by |H| and B ⊂ P2

the ramification curve. Note that B is a smooth sextic curve. Using the

last assertion in (3.1), we find an element h ∈ Aut(P2) such that f ◦ g =

h ◦ f . Note that h is of order 25 and satisfies h(B) = B. Let [x0 : x1 :

x2] be homogeneous coordinates of P2 under which the co-action of h is

diagonalized as h∗ = diag(a, b, c).

Claim (3.6). a, b, c are mutually distinct.

Proof. Using the topological Lefschetz formula and (1.1), (3.1), we

calculate that χtop(X
g) = 2 + tr(g∗ | SX) + tr(g∗ | TX) = 4. Assume the

contrary that a = b. Then, (P2)h = (x2 = 0)
∐
{[0 : 0 : 1]} and Xg =

f−1((x2 = 0))
∐
f−1([0 : 0 : 1]). Note that the smoothness of Xg implies

that f−1((x2 = 0)) is a smooth curve of genus 2. Now combining these

all together with |f−1([0 : 0 : 1])| ≤ 2, we get the following contradiction:

4 = χtop(X
g) = (2 − 2 × 2) + |f−1([0 : 0 : 1])| ≤ −2 + 2 = 0. �

Set P0 = [1 : 0 : 0], P1 = [0 : 1 : 0], P2 = [0 : 0 : 1]. By (3.6), we

have (P2)h = {P0}
∐
{P1}

∐
{P2} and Xg = f−1(P0)

∐
f−1(P1)

∐
f−1(P2).

Since χtop(X
g) = 4 and |f−1(Pi)| is either 1 or 2 for each i, the topological

Lefschetz formula shows that exactly two of Pi’s lie in B (and the other one

does not).

Claim (3.7). Eaxctly two of a5, b5 and c5 coincide.

Proof. Assume the contrary that the statement is false. Since h5

is of order 5, a5, b5 and c5 are then mutually distinct, whence Xg5
=

f−1((P2)h
5
) = f−1(P0)

∐
f−1(P1)

∐
f−1(P2). This gives χtop(X

g5
) = 4.

On the other hand, using the topological Lefschetz formula, we calculate

that χtop(X
g5

) = 2 + tr(g∗ | SX) + tr(g∗ | TX) = 2 + 2 + 5 × (−1) = −1, a

contradiction. �
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Now, adjusting the order of the coordinates and replacing g by an-

other generator of G if necessary, we may write the co-action of h as

h∗ = diag(1, ζn5 , ζ25), where n denotes some integer with 1 ≤ n ≤ 4. Set

L = (x2 = 0) in P2. Then (P2)h
5

= L
∐
{P2} and Xg5

= f−1(L)
∐
f−1(P2).

Using the fact that f−1(L) is a smooth curve of genus 2, and apply-

ing the topological Lefschetz formula, we calculate −1 = χtop(X
g5

) =

(2 − 2 × 2) + |f−1(P2)|, whence |f−1(P2)| = 1. This means P2 ∈ B.

Thus either P0 �∈ B or P1 �∈ B. Since h∗ = diag(ζ5−n
5 , 1, ζ

1+5(5−n)
25 ), there

exist integers l and m such that (l, 5) = (m, 5) = 1 and that (h∗)l =

diag(ζm5 , 1, ζ25), we may assume without loss of generality that P0 �∈ B. Let

F :=
∑

i+j+k=6 aijkx
i
0x

j
1x

k
2 be a defining polynomial of B. We determine F

and n. For simplicity of notation, we write xi0x
j
1x

k
2 ∈ F if aijk �= 0. Using

P0 �∈ B, we see that x6
0 ∈ F and h∗(F ) = F . This implies that xi0x

j
1x

k
2 ∈ F

only if either 1 ≤ n ≤ 3 and (i, j, k) ∈ {(6, 0, 0), (1, 5, 0)} or n = 4 and

(i, j, k) ∈ {(6, 0, 0), (1, 5, 0), (0, 1, 5)}. Combining this with the smoothness

of B, we readily see that n = 4 and F = αx6
0 + βx0x

5
1 + γx1x

5
2, where α,

β and γ denote some constant with αβγ �= 0. Now, multiplying each co-

ordinate xi by a suitable non-zero constant if necessary, we may normalise

the polynomial F as F = x6
0 + x0x

5
1 + x1x

5
2. This means that the defining

equation of X in P(1, 1, 1, 3) is z2 = x6
0 + x0x

5
1 + x1x

5
2 and the co-action

of g is g∗ = diag(1, ζ4
5 , ζ25, 1) under appropriate coordinates. This implies

(X,G) � (X50, 〈g2
50〉).

Lemma (3.8). Aut(X50) = 〈g50〉.

Proof. Let θ be an element of Aut(X50). Then I(X50, 〈θ, g50〉) = 50

by the Table 1. Thus, there exists an integer n such that (θ ◦ g−n
50 )∗ωX50 =

ωX50 . On the other hand, using the description of the effective cone, we

see that (θ ◦ g−n
50 )∗ | SX is at most of order 2. Then it follows from (1.6)

that (θ ◦ g−n
50 ) is of finite order. Combing this with (1.2) and (1.6), we get

(θ ◦ g−n
50 ) = id. This implies the result. �

This completes the proof of Theorem 1 in the case where I(X,G) = 25.

Next consider the case where I(X,G) = 50. Then G is of order 50

and there exists an element g of G with I(X, 〈g〉) = 25. Thus (X, 〈g〉) �
(X50, 〈g2

50〉) by the previous argument. Combining this with (3.8), we get

(X,G) � (X50, 〈g50〉). Now we are done.



K3 with Non-Symplectic Group Action 287

4. Uniqueness of pairs (X,G) with I(X,G) = 40

In this section, we show main Theorem 2. Let (X,G) be a pair with

I(X,G) = 40. Using (1.1) and (1.2), we readily find

Lemma (4.1).

(1) rankTX = 16 and rankSX = 6.

(2) There exists an element g ∈ G such that G = 〈g〉, ord(g) = 40 and

that g∗ωX = ζ40ωX .

Set h := g8 and f := g10.

Lemma (4.2).

(1) h∗ | SX ⊗ C is diagonalised as diag(1, 1, ζ5, ζ
2
5 , ζ

3
5 , ζ

4
5 ), and

(2) f∗ | SX = id.

Proof. The assertin (2) readily follows from (1). We show the asser-

tion (1). Assuming the contrary that h∗ | SX = id, we shall derive a con-

tradiction. Since rankSX = 6, X admits an elliptic fibration Φ : X → P1.

Since h∗ | SX = id, there exists h ∈ Aut(P1) such that Φ ◦ h = h ◦ Φ.

Using ord(h) = 5, h∗ωX = ζ5ωX , and the fact that no elliptic curve admits

complex multiplication of order 5, we find that h is also of order 5. Thus we

may choose an inhomogeneous coordinate t of P1 under which the co-action

of h is written as (h)∗t = ζa5 t where a is an integer with (a, 5) = 1. Then

(P1)h = {0,∞}. Since h∗ | SX = id, every singular fiber of Φ other than

X0 and X∞ must be irreducible, namely, either of type I1 or of type II. In

addition, if Xt (t �= 0,∞) is a singular fiber, then Xζn5 t (1 ≤ n ≤ 5) are also

the singular fibers of the same type as Xt. Indeed, they are permuted by h.

Claim (4.3). Xh is either

(1) {P1, P2, P3}
∐
{Q} or

(2) {P1, P2, P3}
∐
{Q}

∐
E,

where Pi ∈ Xh are of type 1
5(2, 4), Q ∈ Xh is of type 1

5(3, 3), and E is a

smooth fiber of Φ.

Proof. Since Xh = (X0)
h
∐

(X∞)h and h∗ωX = ζ5ωX , Xh consists of

l isolated points of type 1
5(2, 4), say, Pi (i = 1, . . . , l), m isolated points of
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type 1
5(3, 3), say, Qj (j = 1, . . . ,m), n smooth rational curves in X0 ∪X∞,

say, Ck (k = 1, . . . , n), and p smooth elliptic curves in X0 ∪ X∞, say, Eq

(q = 1, . . . , p), where l, m, n and p are some non-negative integers. Then

using the topological Lefschetz fixed point formula, we calculate l+m+2n =

χtop(X
h) = 2+ tr(h∗ | SX)+ tr(h∗ | TX) = 4. On the other hand, using the

holomorphic Lefschetz fixed point formula ([AS1, Page 542] and [AS2, Page

567]), we calculate 1 + ζ−1
5 =

∑2
i=0(−1)i tr(h∗ | H i(OX)) =

∑l
i=1 a(Pi) +∑m

j=1 a(Qj) +
∑n

k=1 b(Ck) +
∑p

q=1 b(Eq), where a(Pi) = 1/(1− ζ2
5 )(1− ζ4

5 ),

a(Qj) = 1/(1−ζ3
5 )(1−ζ3

5 ), b(Ck) = (1−π(Ck))/(1−ζ5)−ζ5(Ck)
2/(1−ζ5)2 =

(1+ ζ5)/(1− ζ5)2, and b(Eq) = (1−π(Eq))/(1− ζ5)− ζ5(Eq)
2/(1− ζ5)2 = 0.

From this, we readily get that (−2l+m+3n+5)ζ5 +(−l−2m+4n+5)ζ2
5 +

(−2l +m + 3n + 5)ζ3
5 = 0, whence l = 3 + 2n and m = 1 + n. Combining

this with l+m+ 2n = 4, we get n = 0, l = 3 and m = 1. This also implies

that p is at most one. Now we are done. �

Now the next two claims, which contradict each other, completes the

proof of (4.2)(1).

Claim (4.4). The case (2) in (4.3) does not occur.

Claim (4.5). The case (1) in (4.3) does not occur.

Proof of (4.4). Assuming the contrary that this occurs, we derive

a contradiction. Since g(Xh) = Xh, we get g(E) = E. Thus, there exists

g ∈ Aut(P1) such that Φ ◦ g = g ◦ Φ. We may adjust an inhomogeneous

coordinate t of P1 as E = X0 and g∗t = ζkI t where k is an integer. Let 5r

(resp. 5s) be the number of singular fibers of Φ of type I1 (resp. of type II)

lying over P1−{∞}. Note that r+s �= 0. Indeed, Φ has at least two singular

fibers by the monodromy reason. Using 24 = χtop(X) = 5r+10s+χtop(X∞),

we see that (r, s) is either (0, 1), (0, 2), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0) or

(4, 0). This with ord(g) = 40 implies g20 = id. Let ωE be a nowhere

vanishing holomorphic 1−form of E and set (g | E)∗ωE = αωE . Since

(g∗)20ωX = −ωX and g20 = id, we have (g20 | E)∗ωE = −ωE . Thus

α20 = −1, whence α �∈ µ4 ∪ µ6, a contradiction. �

Proof of (4.5). Assuming the contrary that this occurs, we derive

a contradiction. Set k = g4. Then k2 = h(= g8) and k is of order 10.
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Since g({P1, P2, P3}) = {P1, P2, P3} and g(Q) = Q, we see that k(Pi) = Pi

for each i and k(Q) = Q. Combining this with Xk ⊂ Xh, we get Xk =

{P1, P2, P3, Q}. Since k∗ωX = ζ10ωX , the type of a point P in Xk is of the

form 1
10(n1, 11 − n1). In addition if P = Pi then 1

5(n1, 11 − n1) is same as
1
5(2, 4) and if P = Q then 1

5(n1, 11 − n1) is same as 1
5(3, 3). This implies

that Pi ∈ Xk is either of type 1
10(2, 9) or of type 1

10(7, 4) and Q ∈ Xk is

of type 1
10(3, 8). Let a and b be the numbers of points Pi of type 1

10(2, 9)

and of type 1
10(7, 4). Then a + b = 3. On the other hand, by apply the

holomorphic Lefschetz fixed point formula for k, we get:

1 + ζ−1
10 =

2∑
i=0

(−1)i tr(f∗ | H i(OX))

= a/(1 − ζ2
10)(1 − ζ9

10) + b/(1 − ζ7
10)(1 − ζ4

10) + 1/(1 − ζ3
10)(−ζ8

10).

This equation is readily simplified as (2a − 4b − 2) − (a + 3b − 1)ζ2
5 −

(a+ 3b− 1)ζ3
5 = 0, whence b = 0 and a = 1. However, this contradicts the

previous equality a+ b = 3. This completes the proof of (4.5). �

Now we have completed the proof of (4.2). �

Lemma (4.6).

(1) SX � U(2) ⊕D4.

(2) Xg20
= R

∐
C, where R is a smooth rational curve and C is a

smooth curve with π(C) = 6. In particular, g(R) = R and g(C) =

C, and

(3) f | C �= id.

Proof. Since (g20)∗ | SX = id and (g20)∗ωX = −ωX by (4.2), it follows

from (1.4) that SX is 2−elementary. Now we may apply Nikulin’s classifica-

tion of even 2−elementary hyperbolic lattices ([Ni2, Theorems 4.3.1, 4.3.2],

see also [Ko, Section 6]) to find that SX is isomorphic to either (i) U ⊕A⊕4
1 ,

(ii) U(2) ⊕ A⊕4
1 , (iii) U ⊕ D4, or (iv) U(2) ⊕ D4. We eliminate the cases

(i), (ii) and (iii). In the cases (i) and (ii), X admits an elliptic fibration

α : X → P1 whose reducible singular fibers are a1I2 + a2III (a1 + a2 = 4)

([Ko, Lemma 2.2]). Since f∗ | SX = id, there exists f ∈ Aut(P1) such

that f ◦ α = α ◦ f . Again by f∗ | SX = id, each smooth rational curve
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on X is f−stable. Thus, we have f = id. Let E be any smooth fiber of α

and ωE �= 0 a holomorphic 1-form of E. Then ωE ∧ α∗dt gives a nowhere

vanishing holomorphic 2-form of X around E whence (g | E)∗ωE = ζ4ωE .

In particular, the J−invariant map J : P1 → P1 of α is constant, or more

pricisely, J ≡ j(C/Z + Zζ4). Thus, possible singular fibers of α are of Type

III, of Type III∗ or of Type I∗0 by Kodaira’s classification of singular fibers

([Kd, Theorem 9.1], [BPV, Page 159, Table 6]). In particular, these are all

reducible. Combining this with previous observation, we see that α has ei-

ther exactly 4 singular fibers of Type III. Then 24 = χtop(X) = 4×3 = 12,

a contradiction. This eliminates the cases (i) and (ii). Next we eliminate

the case (iii). In the case (iii), again by Nikulin’s classification of the fixed

locus of an involution ι with ι∗ | SX = id and with ι∗ωX = −ωX ([Ni2,

Theorem 4.2.2], see also [Ko, Section 6]) we see that Xg20
= C

∐
R1

∐
R2,

where C is a smooth curve of genus 7 and Ri are smooth rational curves.

Since g(Xg20
) = Xg20

, this implies h(C) = C, h(R1) = R1, and h(R2) = R2.

Since C, R1 and R2 are independent in SX , this contradicts dimSh∗
X = 2.

Thus we get the assertion (1). Then Xg20
= C

∐
R, where C is a smooth

curve of genus 6 and R is a smooth rational curve by Nikulin’s classification

quoted above. This readily implies the assertion (2). Finally we show (3).

Since SX � U(2) ⊕D4, X admits an elliptic fibration β : X → P1 having

exactly one reducible singular fiber of Type I∗0 . Since f∗ | SX = id, there

exists f ∈ Aut(P1) such that f ◦ β = β ◦ f . If f = id, then the same ar-

gument as before implies the J−invariant map of β takes a constant value

j(C/Z+Zζ4), whence β has exactly one singular fiber. However, this is im-

possible. Thus f �= id whence each irreducible component of Xf is either

a smooth elliptic curve, a smooth rational curve or an isolated point. This

implies C �⊂ Xf , that is, f | C �= id. �

Lemma (4.7). g∗ | SX ⊗ C is diagonalised as diag(1, 1, ζ5, ζ
2
5 , ζ

3
5 , ζ

4
5 ).

Proof. Using the fact that R and C are independant in Sg∗

X and

(4.2)(1), we see that g∗ | SX ⊗ C is diagonalised as either diag(1, 1, ζ5, ζ
2
5 ,

ζ3
5 , ζ

4
5 ) or diag(1, 1, ζ10, ζ

3
10, ζ

7
10, ζ

9
10). Suppose the last case occurs. Then

(g5)∗ | SX ⊗ C is diagonalised as diag(1, 1,−1,−1,−1,−1) whence

χtop(X
g5

) = 0 by the topological Lefschetz fixed point formula. On the

other hand, we have Xg5
= Cg5 ∐

Rg5
by Xg5 ⊂ Xg20

, whence by (4.6)(3),

χtop(X
g5

) = χtop(C
g5

) + 2 ≥ 2, a contradiction. Now we are done. �
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Lemma (4.8). Xg5
= R

∐
S where R is same as in (4.6)(2) and S is

a finte set of points.

Proof. Since SX � U(2) ⊕ D4, X admits an elliptic fibration Φ :=

Φ|E| : X → P1 whose reducible singular fibers are exactly one I∗0 , say

2C0 +
∑4

i=1Ci ([Ko, Lemma 2.2]). Since (g5)∗ | SX = id, there exists g5 ∈
Aut(P1) such that g5 ◦ Φ = Φ ◦ g5. Since each smooth rational curve on X

is g5−stable, g5 �= id by the same argument as in (4.6). Then Xg5
(⊂ Xg20

)

consists of one smooth rational curve C0 = R and a finite set of points. �

Lemma (4.9). detSg∗

X = −20 or −5.

Proof. Since the lattice M := 〈[R], [C]〉 is of finite index, say r, in

Sg∗

X , we have r2 = |detM |/|detSg∗

X |. Now the result follows from detM =

(R)2 · (C)2 = −20. �

Lemma (4.10). Xg8
= D

∐
{P}, where D is a smooth curve of genus

2. In particular, g(D) = D.

Proof. By (4.2) and the topological Lefschetz fixed point formula,

we have χtop(X
g8

) = −1 < 0. This means that Xg8
contains a smooth

curve D with π(D) ≥ 2. Since D is nef and big and the multiplicity of

the eigen value 1 of (g8)∗ | SX ⊗ C is 2, the remaining one-dimensional

component of Xg8
is a smooth rational curve, say E, if exists. Assuming

the contrary that this is the case, we set Xg8
= D

∐
E
∐
S1

∐
S2, where S1

(resp. S2) is a finite set of points of type 1
5(2, 4) (resp. of type 1

5(3, 3)). Then,

applying the holomorphic Lefschetz fixed point formula, we get 1 + ζ−1
5 =

(−(D)2/2 + 1)(1 + ζ5)/(1 − ζ5)
2 + |S1|/(1 − ζ2

5 )(1 − ζ4
5 ) + |S2|/(1 − ζ3

5 )2,

whence |S1| = 2(−(D)2/2 + 1) + 3 and |S2| = (−(D)2/2 + 1) + 1. On

the other hand, by the topological Lefschetz fixed point formula, we have

(−(D)2+2)+|S1|+|S2| = −1. Combining these all, we get (D)2 = 4, |S1| =

1 and |S2| = 0. This gives det(〈[D], [E]〉) = −8. However, since 〈[D], [E]〉 is

of finite index in Sg∗

X , this contradicts the fact that det〈[D], [E]〉/detSg∗

X is

an integer. Thus Xg8
= D

∐
S1

∐
S2. Now the same calculation as before

implies (D)2 = 2, |S1| = 1 and |S2| = 0. This completes the proof. �

Let us considr the generically 2 : 1−map ϕ := Φ|D| : X → P2 and take

the Stein factorisation X
ν−→ X

ϕ→ P2. Let B(⊂ P2) be a ramification curve
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of ϕ. Then B is a sextic curve. Note also that g descends to the action on

X and there exists g ∈ Aut(P2) such that ϕ ◦ g = g ◦ ϕ.

Lemma (4.11). (D.R) = 1 and ϕ∗(R) is a line in P2. Moreover Sg∗

X =

〈[D], [R]〉.

Proof. Since Xg8 ∩ Xg5
= Xg, Xg is a finite set of points by (4.8)

and (4.10). Combining this with the topological Lefschetz fixed point for-

mula, we find |Xg| = 3. Thus (0 ≤)m := |D ∩ R| ≤ 3. Assume that

mult(D,R;P ) ≥ 2 for some P ∈ D ∩R. Then TD,P = TR,P in TX,P . Since

(g8)∗ | TD,P = id and (g5)∗ | TR,P = id, this implies g∗ | TR,P = id whence

g | R = id, a contradiction. Thus m = (D · R) and then det(〈[D], [R]〉) =

−4−m2. Moreover, since 〈[D], [R]〉 is of finite index in Sg∗ , there exists an

integer r such that either r2 = (4 +m2)/20 or r2 = (4 +m2)/5. Combining

this with 0 ≤ m ≤ 3, we get m = 1, |detSg∗

X | = 5 and r = 1. Since D = ϕ∗l
for some line l in P2, we get from m = 1 that 1 = (D · R) = (l · ϕ∗(R)).

This means that ϕ∗(R) is a line in P2. �

Set R = ϕ∗(R).

Lemma (4.12). B = R ∪ B, where B is a smooth quintic curve inter-

secting R transversally (at 5 points).

Proof. Since (ϕ∗R · ϕ∗l) = 2 and (R · ϕ∗l) = 1 by (4.11), ϕ∗R =

R + ι(R) + E where E is an effective divisor supported in Exc(ν) and ι is

the covering involution of ϕ. Since ι◦ g = g ◦ ι, we have ι(R) ⊂ Xg5
whence

ι(R) = R by the description of Xg5
. Thus ϕ∗R = 2R+E, and B = R+B

for some quintic curve B. Now it is enough to show the next Lemma to

complete (4.12): �

Lemma (4.13). Exc(ν) consists of 5 disjoint smooth rational curves,

say, Ei (1 ≤ i ≤ 5) permuted by g. In particular Sing(X) consists of 5

ordinary double points.

Proof. Since (g5)∗ | SX = id, g5(R′) = R′ for each smooth rational

curve R′. Let Ei be a connected component of Exc(ν). If g(Ei) = Ei,

then Ei � P1, because χtop(X
g) = 3, χtop(D

g) ≥ 1 by (D · R) = 1, and

D ∩ Ei = φ. Then there exist integers a and b such that Ei = aD + bR
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in SX . Using (D · Ei) = 0 and (Ei)
2 = −2, we then get 2a + b = 0 and

2a2 + 2ab − 2b2 = −2 whence a2 = 1/5, a contradiction. Thus g(Ei) �= Ei

for each connected component of Exc(ν). In particular, Exc(ν) contains at

least 5 connected components. Combining this with rankSX = 6, we get

the assertion. �

Lemma (4.14). g ∈ Aut(P2) is of order 20.

Proof. By (4.6)(2), we have g20 | ϕ(C) = id. Since ϕ(C) is not a line,

this implies g20 = id. On the other hand, if gn = id for some n with n < 20,

then g2n = id, a contradiction. This implies the result. �

Proof of Theorem 2.

Since g(R) = R, we may take homogeneous coordinates [x0 : x1 : x2] of

P2 such that R = (x0 = 0) and that the co-action of g is diagonalised as

g∗ = diag(1, ζ20, ζ
4k+1
20 ) for some integer k with 0 ≤ k ≤ 4 (after replacing g

by appropriate generator of G if necessary). For the last statement, we use

g is of order 20 and g5 | R = id. Since g(B) = B and R∩B = {P1, . . . , P5}
are permuted by g, we may set Pi = [0 : 1 : ζi5] by changing x1 and x2

by their suitable constant multiples. Then the equation of B is of the

form F (x0, x1, x2) = x0f(x0, x1, x2) + (x5
1 − x5

2) = 0. Since g∗(x5
1 − x5

2) =

ζ4(x
5
1 − x5

2), we have g∗f = ζ4f . This readily implies that f = αx3
0x2 if

k = 1 and f = 0 if k �= 1. Combining this with the smoothness of B, we

get k = 1, α �= 0 and F (x0, x1, x2) = αx4
0x2 + x5

1 − x5
2. Now changing x0 by

its suitable constant multiple if necessary, we may normalise the equation

of B as x4
0x2 + x5

1 − x5
2 = 0. Thus X is isomorphic to the hypersurface

(z2 = x0(x
4
0x2 + x5

1 − x5
2)) in P(1, 1, 1, 3) and g∗ = diag(1, ζ20, ζ4, (−)ζ8)

under this identification. This implies (X,G) � (X40, 〈g40〉). Finally we

show that Aut(X) = G. Since (g20)∗ | SX = id and (g20)∗ωX = −ωX , we

see by (1.6) that g20 is in the center of Aut(X). Thus Aut(X) stabilises

C where C is a curve found in (4.6). Since C is big and semi-ample, this

implies that Aut(X) is finite. Now combining this with rank(TX) = 16 and

(1.2), we find that AutN (X) = id. Now Table 1 implies Aut(X) = G. �

Remark. The referee kindly indicated another proof of Theorem 2

based on (4.6), (g20)∗ | SX = id (cf. (4.7)) and the following observation:

Besides R, there exist exactly 5 smooth rational curves, namely Ci (i =



294 Natsumi Machida and Keiji Oguiso

1, 2, . . . , 5), on X and that they satisfy (Ci.Cj) = 0 (i �= j) and (Ci.R) =

(Ci.C) = 1, where R and C are the curves found in (4.6).

5. Determination of transendental values

In this section, we prove Theorem 3 and Corollary 5.

The core of this section is to show the following:

Theorem (5.1). 60 �∈ TVK3.

Proof. Assuming the contrary that there exists a pair (X,G) of a K3

surface and it finite automorphism group G with I = I(X,G) = 60, we

shall derive a contradiction.

First we notice the following:

Claim (5.2).

(1) rankTX = 16 and rankSX = 6.

(2) There exists an element g ∈ G such that G = 〈g〉, ord(g) = I and

that g∗ωX = ζIωX .

Proof. This follows from the same argument as in (4.1). �

Set h = g12. Note that h is of order 5.

Claim (5.3). h∗ | SX = id.

Proof. Assume the contrary that h∗ | SX �= id. Since h is of order 5,

h∗ | SX ⊗ C is then diagonalised as h∗ | SX ⊗ C = diag(1, 1, ζ5, ζ
2
5 , ζ

3
5 , ζ

4
5 ).

Combining this with the fact that g∗ | SX has at least one fixed element

(coming from an ample class of X/〈g〉) and considering the Euler function,

we readily get (g10)∗ | SX = id. Then g10 is of order 6 whence SX is

unimodular by (1.3). However, this is impossible, because rankSX = 6. �

Since rankSX = 6 and h∗ | SX = id, we get in the same manner as in

the proof of (4.2) that X admits an elliptic fibration Φ : X → P1 such that

there exists an element h ∈ Aut(P1) of order 5 with Φ ◦ h = h ◦ Φ. Again

as before, we may then choose an inhomogeneous coordinate t of P1 under

which the co-action of h is written as (h)∗t = ζa5 t where a is an integer with

(a, 5) = 1. Then again as before (P1)h = {0,∞} and every singular fiber
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of Φ other than X0 and X∞ must be of type I1 or of type II. In addition,

if Xt (t �= 0,∞) is a singular fiber, then Xζn5 t (1 ≤ n ≤ 5) are also the

singular fibers of the same type as Xt and are permuted by h. Then the

same argument as in (4.3) implies

Claim (5.4). Xh is either

(1) {P1, P2, P3}
∐
{Q} or

(2) {P1, P2, P3}
∐
{Q}

∐
E,

where Pi are of type 1
5(2, 4), Q is of type 1

5(3, 3), and E is a smooth fiber

of Φ.

Now again the next two claims completes the proof of (5.1). The verifi-

cations of these two claims are quite similar to those of (4.4) and (4.5) and

are then left to the readers.

Claim (5.5). The case (2) in (5.4) does not occur.

Claim (5.6). The case (1) in (5.5) does not occur.

Now we are done. �

Proof of Theorem 3 and Corollary 5.

Combining (5.1) together with Proposition 4 and Table 1 in Introduc-

tion, we get Theorem 3. Details for Proposition 4 are left to the readers as

an exercise.

We show Corollary 5 in Introduction. By the existence of crepant ter-

minalisation of canonical threefolds ([Ka2, Corollary 4.5], [Re, Main Theo-

rem]), we have Ican = Iterm. On the other hand by [Mo, Theorems 1 and 2]

based on the argument of [Ka1, Theorem 3.2], we see that I(X) lies cer-

tainly in {I | ϕ(I) ≤ 20} − {60} if X has only terminal singularities and

is not smooth. On the other hand it is shown by [Be, Proposition 8] that

Ismooth = TVK3. Now combining these together with Theorem 3, we get

Corollary 5. �
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