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Averages of Green Functions of Classical Groups

By Toshiaki Shoji and Bhama Srinivasan∗

Abstract. In this paper, we compare the Green functions of
Sp(2n, q) and SO(2n + 1, q) with those of GL(n, q2) and find an in-
teresting connection between them. Let G = Sp2n(F̄q) or SO2n+1(F̄q)
and Ḡ = GLn(F̄q) with Frobenuius map F . The Weyl group W of G is
written as W = DSn, where D is an elementary abelian 2-group and Sn
is the symmetric group of degree n, which is identified with the Weyl
group of Ḡ. Let QG

Tw
be a Green function of GF where Tw is an F -stable

maximal torus of G corresponding to w ∈ W . For w ∈ Sn, we define an
average of Green functions QG

w,D on GF by QG
w,D = |D|−1 ∑

x∈D QG
Twx

.

Then there exists a natural injection u0 �→ u from the set of unipotent
classes of Ḡ to the set of unipotent classes of G such that the function

QG
w,D(u) on GF coincides with the Green function QḠ

T̄w
(u0) on ḠF 2

.

0. Introduction

Let G be a connected reductive algebraic group defined over Fq, F :

G → G a Frobenius morphism and GF the finite group of F -fixed points

of G. Let T be an F -stable maximal torus of G. Let θ be a character of

T over Q̄l, where l is a prime not dividing q. Deligne and Lusztig have

defined a virtual character RG
T (θ) of GF . The character value of RG

T (θ) at

a unipotent element u ∈ GF is independent of θ and thus we can define a

Green function QG
T on the unipotent elements of GF by QG

T (u) = RG
T (θ)(u).

The Green functions form an important part of the character table of GF .

If G = GLn(F̄q) and GF = GL(n, q) then Green gave a combinatorial

method of computing the Green functions of GF . If GF = U(n, q) then
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the Green functions are obtained from those of GL(n, q) by the so-called

Ennola conjecture, by a simple recipe of changing q to −q. If GF is a

symplectic or orthogonal group the Green functions can be computed in

principle by an algorithm given originally in [Sh2] and later modified by

Lusztig. However, this is a cumbersome method which does not give any

insight into the structure of the Green functions.

In this paper we compare the Green functions of Sp(2n, q) and SO(2n+

1, q) (q : odd) with those of GL(n, q2) and find an interesting connection

between them. We first define a surjective map f from the set of unipotent

classes of G = Sp2n(F̄q) or SO2n+1(F̄q) onto the set of unipotent classes of

Ḡ = GLn(F̄q). (More precisely, we define this map for the corresponding

groups over C.) Let u be an F -stable unipotent element of G, and C(u) =

ZG(u)/Z0
G(u). We can assume that u is a distinguished element in the

sense of [Sh2], so that the classes in GF which are contained in the class

of u in G are parameterized by the elements of C(u). Furthermore, the

GF -conjugacy classes of maximal tori in G are parameterized by elements

of the Weyl group W , so that we can denote a set of representatives of

these classes by {Tw | w ∈ W}, where T1 is a maximally F -split torus of G.

We note that we can write W = DSn, where D is an elementary abelian

2-group and Sn, the symmetric group, is the Weyl group of Ḡ. We now fix

u ∈ GF as above and w ∈ Sn. We then consider the sum

|C(u)|−1|D|−1
∑
x∈D

∑
v

QG
Twx

(v)

where v runs over the F -stable unipotent elements in the conjugacy class

of u in G. In other words, we average the Green functions over the F -fixed

points of a unipotent class in G and over the tori Ty such that y maps to

a fixed element w ∈ Sn under the natural map W → Sn. We compare this

polynomial in q with the Green function QḠ
Tw

(f(u)), but considered as a

polynomial in q2, i.e. as a Green function on ḠF 2
= GL(n, q2). Our main

result is that for certain good unipotent elements u, these two polynomials

are equal. In general, the average Green function on GF is equal to the

Green function on ḠF 2
together with some extra terms (which are not

computed here). We also remark that in each coset wD of D in W as above,

exactly one corresponding torus Twx is anisotropic, and thus exactly one

QG
Twx

in our sum is cuspidal. Thus, in principle, assuming we know Harish-
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Chandra induction on Green functions, our averages give information on

cuspidal functions.

The result is proved by interpreting the Green function as arising from

the Springer representation of W on the cohomology of the variety of Borel

subgroups of G containing a unipotent element. In fact, we work with the

corresponding groups over C and the varieties of Borel subgroups whose Lie

algebras contain a fixed nilpotent element. Then the problem is reduced to

showing a connection between the D-fixed points of the cohomology groups

of such varieties for the groups Sp2n(C) or SO2n+1(C) and the cohomology

groups of corresponding varieties for GLn(C), where both are regarded as

Sn-modules (see Theorem 1.9 and Theorem 1.13).
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Lübeck for their help in computing examples of Green functions using

CHEVIE. The second author thanks the Science University of Tokyo for

hospitality during her visits in 1994 and 1995.

1. The Statement of the Results

1.1. Let G be a connected reductive algebraic group defined over C

with Lie algebra g. Let B be the variety of Borel subgroups of G, and for

each nilpotent element A ∈ g, let BA denote the subvariety of B consist-

ing of all Borel subgroups whose Lie algebra contains A. Let W be the

Weyl group of G. We consider the Springer representation of W on the

cohomology group H i(BA) = H i(BA, C), which was first constructed by

Springer [Sp1], [Sp2], by passing to the groups over Fq. Later Lusztig [L1]

gave a construction available for both of Fq and C by making use of the

intersection cohomology theory. Let C(A) = ZG(A)/Z0
G(A) be the com-

ponent group of A. Then C(A) acts naturally on H i(BA) and this action

of C(A) commutes with that of W . For each ϕ ∈ C(A)∧, we denote by

H i(BA)ϕ the ϕ-isotypic subspace of H i(BA). Put dA = dimBA. We denote

by ϕ ⊗ χA,ϕ the character of the C(A) ×W -module H2dA(BA)ϕ. Then by

the Springer correspondence the following holds: χA,ϕ is irreducible, and

any irreducible character χ of W is expressed as χ = χA,ϕ for a unique pair

(A,ϕ), where A runs over the nilpotent orbits in g, and ϕ ∈ C(A)∧ is such

that H2dA(BA)ϕ �= 0.

It is known that H i(BA) = 0 if i is odd. It is also known that H2i(BA)ϕ =

0 for any i ≥ 0 if H2dA(BA)ϕ = 0, (see for example, [Sh3]).
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1.2. From now on we assume that G = Sp2n or G = SO2n+1. Then

W is the Weyl group of type Cn, and is isomorphic to Sn � D, where Sn

is the symmetric group of degree n and D  (Z/2Z)n. Note that W = Wn

is realized as the group of signed permutations of n letters {1, 2, . . . , n}.
Let ri be the reflection of W which permutes i and −i and leaves the other

letters invariant. Then D is the subgroup of W generated by r1, . . . , rn. We

consider the subspace H i(BA)D of H i(BA) consisting of D-invariant vectors.

Then H i(BA)D has a structure of an Sn-module. We also consider the

subspace of H i(BA) consisting of C(A)-invariant vectors, which we denote

by H i(BA)1 as in 1.1. We put H i(BA)D1 = H i(BA)D ∩ H i(BA)1. Then

H i(BA)D1 also has a structure of an Sn-module.

Let W ′ = Wn−1 be the parabolic subgroup of W of type Cn−1. We write

W ′ = Sn−1 � D′, where D′ is the subgroup of D generated by r1, . . . , rn−1.

First we show the following lemma.

Lemma 1.3.

H2i(BA)D1 =

{
H2i(BA)D

′
1 if i : even,

0 if i : odd.

Proof. For each χ ∈ W∧, we define the parity p(χ) = ±1 by the

condition that p(χ) = 0 (resp. p(χ) = 1) if χ(−1) = χ(1) (resp. χ(−1) =

−χ(1)). For each χ ∈ W∧ and ϕ ∈ C(A)∧, we consider the ϕ ⊗ χ-isotypic

subspace H2i(BA)ϕ⊗χ of H2i(BA). Then by Spaltenstein [S1], the following

formula holds.

(1.3.1) Assume that H2i(BA)ϕ⊗χ �= 0. Then we have

i ≡ dA + p(χ) + p(χA,ϕ) (mod 2).

If we take ϕ = 1 ∈ C(A)∧ and χ = 1W ∈ W∧, then H0(BA)ϕ⊗χ �= 0 since

H0(BA)  C is the trivial C(A)×W -module. This implies, by (1.3.1), that

p(χA,1) ≡ dA (mod 2). Hence for any χ ∈ W∧ such that H2i(BA)1⊗χ �= 0,

we see that p(χ) ≡ i (mod 2). We now consider H2i(BA)1. First assume

that i is even. Then for any χ ∈ W∧ such that H2i(BA)1⊗χ �= 0, we

have p(χ) = 0 and so χ(1) = χ(−1). This means that the central element

−1 acts trivially on H2i(BA)1. Under the realization of W given in 1.2,
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−1 = r1r2 · · · rn ∈ D. Since r1r2 · · · rn−1 ∈ D′, we see that rn acts trivially

on H2i(BA)D
′

1 . This proves the first assertion of the lemma. Next assume

that i is odd. Then the similar argument as before shows that −1 acts as

a scalar multiplication by −1 on H2i(BA)1 if it is non zero. Since −1 ∈ D,

this implies that H2i(BA)D1 = 0. The lemma follows from this. �

1.4. Let Ḡ = GLn. We denote objects associated with Ḡ as B, g, etc.

For any nilpotent element A′ ∈ g, H i(BA′) has a structure of Sn-module.

In what follows, we shall compare the Sn-module structures for suitable

H4i(BA)D1 and H2i(BA′). We perform this by defining a map f : A �→ A′

from the set of nilpotent orbits of g to the set of nilpotent orbits in g.

Let Ng be the set of nilpotent orbits in g. We shall describe the set

Ng. First assume that G = Sp2n. Then via the Jordan normal form, Ng

is in bijection with the set P = P2n of partitions λ = (1m1 , 2m2 , . . . ) of

2n (i.e.,
∑

i ·mi = 2n) such that mi is even for odd i. Next assume that

G = SO2n+1. Then Ng is in bijection with the set P ′ = P ′
2n+1 of partitions

λ = (1m1 , 2m2 , . . . ) of 2n + 1 such that mi is even for even i. Finally, in

the case where Ḡ = GLn, the set Ng of nilpotent orbits in g is in bijective

correspondence with the set P = Pn of partitions λ of n.

1.5. By making use of the Springer correspondence, we define a map

f : Ng → Ng as follows. First note that the irreducible characters of W

are parameterized by the pairs of partitions (α;β), where α : α1 ≥ α2 ≥
· · · ≥ αr ≥ 0 and β : β1 ≥ β2 ≥ · · · ≥ βs ≥ 0 with

∑
αi +

∑
βj = n.

We denote this set by P� = P�
n. By adding 0 to the sequence α or β, we

may assume that r = s. Let us denote by χ(α;β) the irreducible character

of W corresponding to (α;β). Note that under this correspondence, (n;−)

corresponds to the unit character 1W and (−; 1n) corresponds to the sign

character ε of W .

Now the Springer correspondence gives an injective map Ng → W∧ by

A �→ χA,1. Then χA,1 is expressed as χ(α;β) for some (α;β) ∈ P�. We define

a sequence of integers λ1 ≥ λ2 ≥ · · · ≥ λr by λ1 = α1+β1, λ2 = α2+β2, . . . .

Then λ : λ1 ≥ λ2 ≥ · · · ≥ λr gives rise to a partition of n. We put f(A) = A′

where A′ ∈ Ng is the nilpotent orbit corresponding to the partition λ. Thus

the map f : Ng → Ng is defined. By abuse of notation, we regard the map

f as the corresponding map P → P or P ′ → P induced from f .
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We shall describe the map f more explicitly using the description of the

Springer correspondence for classical groups given in [Sh2], (see also [L2]).

(a) The case G = Sp2n.

Assume that λ = (1m1 , 2m2 , . . . ) ∈ P. We express the sequence λ in

the decreasing order as λ : λ1 ≥ λ2 ≥ · · · . Let us define a sequence

{a1, a2, . . . , } by the following rule. If λi = 2k, we put ai = k. If λi = 2k+1,

and if it is expressed as

λi−1 > λi = λi+1 = · · · = λi+2r−1 > λi+2r

for some r > 0, we put ai = ai+2 = · · · = ai+2r−2 = k and ai+1 = ai+3 =

· · · = ai+2r−1 = k + 1. Then we have a1 ≥ a3 ≥ · · · and a2 ≥ a4 ≥ · · · . We

now define a pair of partitions (α;β) ∈ P� by

α : a1 ≥ a3 ≥ · · · , β : a2 ≥ a4 ≥ · · · .

Then we have χA,1 = χ(α;β). Hence the partition f(λ) ∈ P is given by

f(λ) = (a1 + a2, a3 + a4, . . . ),

by adding 0 on the end of the sequence of ai, if necessary.

(b) The case G = SO2n+1.

As in the case (a), we express λ = (1m1 , 2m2 , . . . ) ∈ P ′ in the decreasing

order as λ : λ1 ≥ λ2 ≥ · · · . We define a sequence {a1, a2, . . . } by the

following rule. Assume that λi = 2k + 1 for some k ≥ 0. We put

ai =

{
k if i : odd,

k + 1 if i : even.

Assume that λi = 2k for some k ≥ 0, and that it is expressed as

λi−1 > λi = λi+1 = · · · = λi+2r−1 > λi+2r

for some r > 0. We put ai = ai+2 = · · · = ai+2r−2 = k − 1, and ai+1 =

ai+3 = · · · = ai+2r−1 = k+1 if i is odd, and put ai = ai+1 = · · · = ai+2r−1 =
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k if i is even. Then we have a1 ≥ a3 ≥ · · · , and a2 ≥ a4 ≥ · · · . We define

a pair of partitions (α;β) ∈ P� by

α : a1 ≥ a3 ≥ · · · , β : a2 ≥ a4 ≥ · · · .

Then we have χA,1 = χ(α:β). Hence the partition f(λ) ∈ P is given by

f(λ) = (a1 + a2, a3 + a4, . . . ).

1.6. We define subsets Pev ⊂ P and P ′
ev ⊂ P ′ as follows.

Pev = {λ = (1m1 , 2m2 , . . . ) ∈ P | mi : even for i ≥ 1},
P ′

ev = {λ = (1m1 , 2m2 , . . . ) ∈ P ′ | mi : even for i > 1}.

Note that m1 is always odd for λ ∈ P ′
ev. We denote by (Ng)ev the set of Ng

corresponding to Pev or P ′
ev, respectively. From the description of the map

f given in 1.5, it is then easy to see the following.

(1.6.1) For each λ = (1m1 , 2m2 , . . . ) ∈ Pev (resp. λ = (1m1+1, 2m2 , . . . ) ∈
P ′

ev), f(λ) ∈ P is given by f(λ) = (1m1/2, 2m2/2, . . . ). Hence the restriction

of the map f on (Ng)ev gives a bijection (Ng)ev  Ng. In particular, f :

Ng → Ng is surjective.

Here we give some examples of the map f for small rank cases. In the

following tables, the first column denotes the elements in Ng, where the

asterisk indicates the elements in (Ng)ev.

Table 1. G = Sp6, Ḡ = GL3.

A χA,1 f(A)
16 * (−; 13) 13

214 (13;−) 13

2212 * (1; 12) 21
412 (21;−) 21
23 (12; 1) 21
32 * (1; 2) 3
42 (2; 1) 3
6 (3;−) 3
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Table 2. G = SO7, Ḡ = GL3.

A χA,1 f(A)
17 * (−; 13) 13

2213 * (−; 21) 21
314 (1; 12) 21
322 (12; 1) 21
321 * (1; 2) 3
512 (2; 1) 3
7 (3;−) 3

1.7. We are interested in comparing the Sn-module structures of
H4i(BA)D1 and H2i(Bf(A)). Note that Hj(BA)D1 = 0 unless j ≡ 0 (mod 4)
by Lemma 1.3. First we consider the special case where A = 0, and
show that there exists a natural isomorphism of Sn-modules θ0 : H2i(B)∼−→
H4i(B)D. We consider a polynomial ring C[x1, . . . , xn] on which W acts as
w(xi) = ±xj if w(i) = ±j as a signed permutation of {1, 2, . . . , n}. Then we
have a surjective W -equivariant homomorphism α : C[x1, . . . , xn] → H∗(B)
where the kernel J is the ideal generated by non-constant homogeneous W -
invariant polynomials. We claim that the image of C[x2

1, . . . , x2
n] under the

map α coincides with H∗(B)D. In fact, let J0 = C[x2
1, . . . , x2

n] ∩ J . By
applying the average operator |D|−1

∑
w∈D w on J0, we see that J0 is the

ideal of C[x2
1, . . . , x2

n] generated by non-constant homogeneous Sn-invariant
polynomials. Hence we have

α(C[x2
1, . . . , x2

n])  C[x2
1, . . . , x2

n]/J0  H∗(B).

But since H∗(B) is a regular W -module, we see that dimH∗(B)D = |Sn| =
dimH∗(B). The claim follows from this.

We now consider a similar Sn-equivariant surjective map α : C[x1, . . . ,
xn] → H∗(B). Thanks to the above claim, one can construct an isomor-
phism θ0 : H∗(B)∼−→H∗(B)D such that the following diagram commutes.

(1.7.1)

C[x1, . . . , xn]
θ̃−−−→ C[x2

1, . . . , x2
n]

α

� �α

H∗(B)
θ0−−−→ H∗(B)D,
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where θ̃ is the isomorphism defined by xi �→ x2
i .

1.8. The natural inclusion BA ↪→ B induces a graded algebra homomor-
phism φ = φA : H∗(B) → H∗(BA). Clearly this map is C(A)-equivariant,
where C(A) acts trivially on H∗(B). Also it is known (e.g. Spaltenstein [S2,
Lemma 2.5]) that φ is W -equivariant. Hence φ induces an Sn-equivariant
map H i(B)D → H i(BA)D1 , which we denote by φD. We denote by φ the
similar map for Ḡ induced from the inclusion BA′ ↪→ B for A′ ∈ Ng. We
can now state our main result.

Theorem 1.9. Let G = Sp2n or SO2n+1, and put Ḡ = GLn. Let
f : Ng → Ng be the map defined in 1.5. Then for each A ∈ Ng, there

exists a unique Sn-equivariant map θ : H2i(Bf(A)) → H4i(BA)D1 such that
the following diagram commutes.

(1.9.1)

H2i(B)
θ0−−−→ H4i(B)D

φ

� �φD

H2i(Bf(A))
θ−−−→ H4i(BA)D1

Moreover, the map θ is injective. Hence, θ gives an isomorphism
H2i(Bf(A))∼−→ ImφD as Sn-modules.

The proof of the theorem will be given in Sections 2 and 3. The following
special case would be worth mentioning.

Corollary 1.10. Assume that A ∈ (Ng)ev. Then we have

H2i(BA)D 
{

H i(Bf(A)) if i : even,

0 if i : odd

as Sn-modules. Moreover, C(A) acts trivially on H4i(BA)D and the map
H4i(B)D → H4i(BA)D induced from φ is surjective.

Proof. Let θ be the map given in the theorem. We shall show that
Im θ coincides with H4i(BA)D. Since θ is injective, we have the following
inequalities, ∑

i≥0

dimH2i(Bf(A)) ≤
∑
i≥0

dimH4i(BA)D1(1.10.1)

≤
∑
j≥0

dimH2j(BA)D.
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Since A ∈ (Ng)ev, A is a regular nilpotent element in the Lie algebra of a
Levi subgroup L of a parabolic subgroup of G such that the corresponding
Weyl group WL is given as WL  Sλ1 × · · · × Sλk

, where λ = (λ1 ≥ λ2 ≥
· · · ≥ λk) is a partition of n corresponding to f(A) in Ng. Now by Alvis-
Lusztig [AL], we see that the cohomology algebra H∗(BA) is isomorphic to
IndWWL

1 as W -modules. Hence

dimH∗(BA)D = 〈IndWWL
1, IndWD 1〉W = |Sn|/|WL|.

But by [HS], we see also that H∗(Bf(A)) is isomorphic to IndSn
WL

1 as Sn-
modules. This implies that

dimH∗(BA)D = dimH∗(Bf(A)),

and so the inequalities in (1.10.1) are actually equalities. Hence we have
Im θ = H4i(BA)D as asserted.

The above argument also shows that H4i+2(BA)D = 0 and H4i(BA)D =
H4i(BA)D1 . The first statement of the lemma follows from this. Now it is

known by Spaltenstein (see [HS]) that the map φ is always surjective. The
second statement follows from this by using the theorem. �

Remark 1.11. As remarked in the proof of Corollary 1.10, the map
φ : H∗(B) → H∗(BA) is surjective for any A ∈ Ng in the case of GLn. Ac-
cording to de Concini-Procesi [CP] and Tanisaki [T], this map is interpreted
as follows; let O be the nilpotent orbit in g containing an element A∨ which
corresponds to the dual partition of A, and let O be its closure in g. We
consider the coordinate ring C[t ∩ O] of the scheme theoretic intersection
of O with a Cartan subalgebra t in g. Then C[t ∩ O] affords a structure
of graded Sn-module which is isomorphic to H∗(BA). Moreover, the map
φ coincides with the natural surjection C[t ∩ gnil] → C[t ∩ O], where gnil
denotes the nilpotent variety of g.

The similar construction of graded W -module C[t ∩ O] is also available
for other cases. In fact, Tanisaki [T] showed, in the case of Sp2n, that for
any A ∈ (Ng)ev, the W -module C[t ∩ O] is isomorphic to IndWWL

1. Here

t is a Cartan subalgebra in g and O is the closure of the nilpotent orbit
in g containing A∨, where A∨ is the element corresponding to the dual
partition of A (regarded as an element in gl2n). Note, for any A ∈ (Ng)ev,
that A∨ also belongs to Ng. WL is the parabolic subgroup of W as in
the proof of Corollary 1.10. We also have C[t ∩ gnil]  H∗(B) as graded
W -modules. (gnil denotes the nilpotent variety in g.) On the other hand,
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we have H∗(BA)  IndWWL
1 by [AL] as before. However, the natural map

H∗(B) → H∗(BA) is in general not surjective. In fact, the smallest example
is that of G = Sp12 and A = (42, 22) ∈ (Ng)ev. In this case, the W -
module H2dA(BA) is equal to χ(21;21) + χ(12;31), and the latter component
corresponds to a non-trivial character of C(A). Hence C(A) acts non-
trivially on H∗(BA). The corollary suggests, even in this case, that one will
recover a natural isomorphism C[t ∩ O]D  H∗(BA)D once we restrict to
the D-fixed point subspaces.

1.12. We now pass to the setting in the Introduction, namely we con-
sider the groups defined over a finite field Fq. We assume that q is odd.
Then the set NG of unipotent classes in G has the identical parameteri-
zation with NgC

, where gC is the corresponding Lie algebra over C. For
each unipotent class C ∈ NG, we fix a split representative u1 ∈ CF (see
[Sh2], where it is called a distinguished element). Then the representatives
in the GF -conjugacy classes in CF are in one to one correspondence with
C(u1)  C(A). (Here A is a nilpotent element corresponding to u1. Note
that C(A) is abelian in our case.) We denote by uc the representative cor-
responding to c ∈ C(A). For each w ∈ W , let Tw be an F -stable maximal
torus of G obtained from the split maximal torus T by twisting by w. We
consider the Green functions QG

Tw
associated to Tw. It is known by [L3],

[Sh3], that the values at uc of Green functions can be interpreted as

(1.12.1) QG
Tw

(uc) =
∑
i≥0

Tr((w, c), H2i(BA))qi,

where H2i(BA) is regarded as a W × C(A)-module.
We take A ∈ (Ng)ev and let C be the corresponding unipotent class in

G. For each u ∈ CF , we consider the average of Green functions over D as
follows; for each w ∈ Sn, let

QG
u,D(w) = |D|−1

∑
x∈D

QG
Twx

(u).

We fix u ∈ CF , and regard QG
u,D as a class function on Sn. Then by

Corollary 1.10, we have

QG
u,D(w) =

∑
i≥0

Tr(w,H4i(BA)D)q2i.
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In particular, QG
u,D does not depend on the choice of u ∈ CF . By this

formula QG
u,D may be regarded as a polynomial in q for each w ∈ Sn, which

we denote by QG
u,D(q)(w).

Let f(u) be a unipotent class in Ḡ corresponding to a nilpotent element
f(A) ∈ NgC

. The similar formula as (1.12.1) holds for the Green functions
of Ḡ, and one can write, for each w ∈ Sn,

QḠ
Tw

(f(u)) =
∑
i≥0

Tr(w,H2i(Bf(A)))q
i.

We regard QḠ
Tw

(f(u)) as a class function on Sn by fixing f(u), and denote

it as QḠ
f(u)(q)(w), as a polynomial in q. Then the following theorem is an

immediate consequence of Corollary 1.10.

Theorem 1.13. Assume that A ∈ (NgC)ev. Then we have

QG
u,D(q) = QḠ

f(u)(q
2).

2. The Construction of θ

In this section, we shall construct the map θ, i.e., we prove the following
proposition.

Proposition 2.1. Under the assumption of Theorem 1.9, there exists
a unique Sn-equivariant map θ : H2i(Bf(A)) → H4i(BA)D satisfying the
commutative diagram (1.9.1).

2.2. The injectivity of θ will be proved in Section 3. Note, since the
map φ is surjective, the uniqueness of the map θ will follow once we con-
struct θ. So the remaining part of this section is devoted to the construc-
tion of θ. As was discussed in Remark 1.11, de Concini-Procesi [CP] and
Tanisaki [T] showed that the cohomology ring H∗(BA′) is isomorphic to
C[t ∩ O] as graded Sn-modules in the case of Ḡ = GLn. The essential step
in their proof is to construct an Sn-equivariant map from C[t∩O] to H∗(BA′)
commuting with the isomorphism C[t∩gnil]  H∗(B). Our strategy is quite
similar to theirs, in particular, to that of [CP]. In our discussion, the role of
C[t ∩ O] is replaced by H∗(Bf(A)). Following [CP], we reduce the problem
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of the construction to the case where A is of special type. First we show
the following lemma.

Lemma 2.3. Let A,A′ ∈ Ng and assume that A is contained in the

closure OA′ of the G-orbit OA′ of A′. Then there exists a W -equivariant
map φA,A′ : H i(BA) → H i(BA′) such that the following diagram commutes.

Proof. We may assume that A and A′ are adjacent with respect to
the closure relations, i.e., there exists no A′′ such that OA � OA′′ � OA′ .
Let A− be a nilpotent element in g such that the triple {A,H,A−} satisfies
the relation [H,A] = 2A, [H,A−] = −2A− and [A,A−] = H. By Slodowy
[Slo], S = A+Zg(A

−) is a transversal slice in g to OA. Hence S∩OA′ is also

a transversal slice in OA′ to OA. Thus the natural map ϕ : G×(S∩OA′) →
OA′ is a smooth map. Since OA′ is irreducible, ϕ is dominant. Now assume
that S ∩ OA′ = ∅. Since any nilpotent element A′′ ∈ S has the property
that A ∈ OA′′ , our assumption implies that S∩OA = {A}. Then the image
of ϕ is contained in OA. But this contradicts the fact that ϕ is dominant.

Now we may assume that A′ ∈ S. We recall the construction of Springer
representations due to Lusztig [L1]. Consider the Grothendieck map ρ : g̃ →
g, where

g̃ = {(x, gB) ∈ g ×G/B | Ad(g−1)x ∈ LieB}, ρ(x, gB) = x.

Then the complex Rρ∗C is a perverse sheaf on g (up to shift) which admits
a W -action. Hence for each x ∈ g, the stalk at x of i-th cohomology
sheaf Hi

x(Rρ∗C), which is isomorphic to H i(Bx), turns out to be a W -
module. Now since Rρ∗C is W -equivariant, we have a commutative diagram
of hypercohomology,

(2.3.1)
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induced from the inclusions {A′} ⊂ S ⊂ g. Note that all the maps are
W -equivariant. On the one hand, we have

Hi(g, Rρ∗C)  H i(g̃, C)  H i(B)

as W -modules, since g̃ is a vector bundle over B. On the other hand, by
considering the Gm-action on S, we see that

Hi(S, Rρ∗C)  Hi
A(Rρ∗C)  H i(BA)

as W -modules (cf. Kazhdan-Lusztig [KL], Lemma 4.5). Now the lemma
is immediate from (2.3.1) if we notice that Hi({A′}, Rρ∗C)  H i(BA′) as
W -modules. �

For a given A0 ∈ Ng, we denote by A�
0 the unique element in (Ng)ev

such that f(A�
0) = A0. Hence if A0 = (1m1 , 2m2 , . . . ), A�

0 is given by

A�
0 = (12m1 , 22m2 , . . . ) (resp. A�

0 = (12m1+1, 22m2 , . . . )) in the case where
G = Sp2n (resp. G = SO2n+1), respectively. Then we have the following
lemma.

Lemma 2.4. For A ∈ Ng, put A0 = f(A). Then A�
0 ∈ OA. In other

words, O
A�

0
is the unique minimal orbit (with respect to the closure relations)

among the orbits contained in f−1(A0).

Proof. We consider the partition λ ∈ P or P ′ corresponding to A ∈
Ng, and denote it as λ : λ1 ≥ λ2 ≥ · · · . We also denote the partition η ∈ P
corresponding to A0 = f(A) by η : η1 ≥ η2 ≥ · · · . Then the following
formula is easily verified from the definition of the map f given in 1.5.

λ2i−1 + λ2i =




2ηi if λ2i−1 − λ2i : even,

2ηi + δ if λ2i−1 : even, λ2i : odd,

2ηi − δ if λ2i−1 : odd, λ2i : even,

for each i ≥ 1, where δ = 1 (resp. δ = −1) if G = Sp2n (resp. G = SO2n+1),
respectively. Now it is easy to see from the above formula that the Young

diagram corresponding to A�
0 is obtained from that of A by moving several

nodes in the edge to lower positions. Hence A�
0 is contained in OA, and the

lemma is proved. �
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2.5. Thanks to Lemma 2.3 and Lemma 2.4, the construction of θ is
reduced to the special case where A = f(A)�, i.e., A ∈ (Ng)ev. We now
assume that A ∈ (Ng)ev, and put A0 = f(A). Let us consider the ho-

momorphism φ : H∗(B) → H∗(BA0). The kernel Kerφ of the map φ is
described by the main result of de Concini-Procesi [CP], which is given
as follows; let Sh(x1, x2, . . . , xk) be the total symmetric function of degree
h with k variables, i.e., it is defined to be the sum of all monomials in
x1, x2, . . . , xk of degree h. Put

Sh,t,k(x1, . . . , xt) = Sh(x1, . . . , xt)(x1 · · ·xt)k.

Then it follows from Theorem 2.2 and Theorem 4.2 in [CP], that we have

Theorem 2.6 (de Concini-Procesi [CP]). The ideal Kerφ in H∗(B) is
generated by α(Sj,t,k(xi1 , . . . , xit)) for any i1, . . . , it ∈ [1, n], subject to the

condition that j + k = nk + 1, where nk is the rank of (A∨
0 )k (A∨

0 is the
element corresponding to the dual partition of A0. The map α is given in
1.7.)

2.7. In view of Theorem 2.6, together with (1.7.1), in order to prove the
proposition, we have only to show that the image of α(Sj,t,k(x

2
i1
, . . . , x2

it
))

vanishes on H∗(BA)D under the map φD for A ∈ (Ng)ev. Furthermore, since
φD is Sn-equivariant, it is enough to check this only for Sj,t,k(x

2
1, . . . , x2

t ).
We put Tj,t,k(x1, . . . , xt) = Sj,t,k(x

2
1, . . . , x2

t ). We shall show the vanishing
of φ◦α(Tj,t,k) by induction on the partial ordering with respect to the closure

relations of Ng. Let η ∈ P be the partition corresponding to A0, and let
η∨ be the dual partition of η. We write nk = nk(η

∨). In view of Lemma
2.3, if one can find σ ∈ P such that σ < η and that nk(η

∨) = nk(σ
∨),

then our assertion is satisfied. Then by further restriction as discussed in
[CP, p. 216–217], the proof of the proposition is reduced to verifying the
following statement.

(2.7.1) Let A0 ∈ Ng be of type η, where η = ((c + 1)d1 , cd2 , 1d3), with c ≥
2, d2 > 0, d3 > 0. (Hence A = A�

0 ∈ Ng of type ((c + 1)2d1 , c2d2 , 12d3) (resp.
((c+ 1)2d1 , c2d2 , 12d3+1) if G = Sp2n (resp. G = SO2n+1), respectively). Let
k be an integer such that j + t = nk + 1 satisfying one of the following
conditions;

(i) k = d2 + d3 with d1 = 0, c = 2,
(ii) k = d1 + d2 with d1 > 0 or c > 2.



180 Toshiaki Shoji and Bhama Srinivasan

Then φ◦α(Tj,t,k) vanishes on H∗(BA)D1 . (Note that in the case (i), we have

j + t = 1, and so Tj,t,k = x2k
1 , while in the case (ii), we have nk = d3.)

2.8. The case (i) will be discussed later in 2.21. First we concentrate on
the case (ii). Let V be a vector space with dimV = 2n (resp. dimV = 2n+
1) endowed with a non-degenerate symplectic form (resp. non-degenerate
symmetric bilinear form) ( , ) if G = Sp2n (resp. G = SO2n+1), respectively.
Let F(V ) be the set of total isotropic flags in V . We consider a nilpotent
element A ∈ (Ng)ev of the following type;

A =

{
((c + 1)2d1 , c2d2 , 12d3) if G = Sp2n,

((c + 1)2d1 , c2d2 , 12d3+1) if G = SO2n+1,

for some integers d2, d3 > 0, and c, d1 as in (ii) of (2.7.1). In the following,
we identify B with F(V ), and BA with the set FA(V ) of A-stable flags in
F(V ). Let

V0 = KerA,

V1 = KerA ∩ ImA,

V2 = KerA ∩ ImAc.

We have dimV1 = 2(d1 + d2) and dimV2 = 2d1. Put k = d1 + d2, and
g = 2k + d3. For a given A, there exists a basis of V on which A acts as
in the formula in IV 2.19 in Springer-Steinberg [SS]. In particular, we see
that V1 and V2 are isotropic subspaces in V . But V0 is not isotropic, nor
is the restriction to V0 of the form ( , ) non-degenerate. We now define a

subspace Ṽ0 of V as a smallest subspace containing V0 such that the form

is non-degenerate on Ṽ0. Hence dim Ṽ0 = 2g (resp. dim Ṽ0 = 2g + 1) if
G = Sp2n (resp. G = SO2n+1), respectively. For any integer i > 0, we

denote by Gi(V ) or Gi(Ṽ0) the isotropic Grassmann variety of V or Ṽ0 of
degree i, i.e., Gi(V ) is the set of isotropic subspaces of dimension i in V .

We have a natural map πi : F(V ) → Gi(V ). We may regard Gi(Ṽ0) as a
closed subset of Gi(V ).

Now we fix an integer t such that 1 ≤ t ≤ g, and define a closed subset X
of F(V ) by X = π−1

t (Gt(Ṽ0)). Furthermore, for each s such that 1 ≤ s < t
and that s ≤ d3, put

Ys = {Z ∈ Gs(Ṽ0) | Z ∈ KerA,dim(Z ∩ ImA) ≥ 1}.

Then Ys is a closed subset of Gs(Ṽ0), and we define a subset Xs of F(V ) by
Xs = π−1

s (Ys). We have the following lemma.



Green Functions 181

Lemma 2.9. Let X & = X ∪ (
⋃

1≤s<tXs). Then we have FA(V ) ⊂ X &.

Proof. The proof is similar to the arguments in p. 218 of [CP]. It
is enough to show that each irreducible component of FA(V )  BA is con-
tained in X &. Note that the irreducible components of BA are parameterized
by tableaux with 2n boxes, and this parameterization is compatible with
the locally trivial fibration of BA (see Remark 3.7 for a more precise dis-
cussion). We denote by FT the irreducible component corresponding to a
tableau T . But, note that the tableau T does not characterize the irre-
ducible components. In general, it happens that more than two irreducible
components correspond to the same tableau T . Anyway, we consider an
irreducible component FT of BA. Its open part F0

T is described completely

by locally trivial fibrations associated to FT . Since X & is a closed subset of
B, we have only to show that F0

T ⊂ X &.
Now assume that the last t numbers n, n− 1, . . . , n− t+1 appear in the

first column of the tableau T . Then any flag F ∈ F0
T has the form

F : Z1 ⊂ Z2 ⊂ · · · ⊂ Zn

with Zi ⊂ KerA for i = 1, . . . , t. (Here Zi is an isotropic subspace of V
of dimension i.) This implies that F0

T ⊂ X . So we may assume that not
all of the integers n, n − 1, . . . , n − t + 1 appear in the first column of T .
Let s be the smallest number such that n, n − 1, . . . , n − s + 1 appear in
the first column, but n− s does not. (This implies that s ≤ d3.) Then for
any F = (Zi) ∈ F0

T , we see that Z1, Z2, . . . , Zs−1 ∈ KerA. Furthermore,
we have Zs ∈ KerA and Zs ∩ ImA �= {0}. It follows that F0

T ⊂ Xs. This
proves the lemma. �

2.10. We fix a basis {e1, . . . , en, f1, . . . , fn} (resp. {e1, . . . , en, f1, . . . ,
fn, h} of V if G = Sp2n (resp. G = SO2n+1) as follows; for any i, j,

(ei, fj) = δij , (ei, ej) = (fi, fj) = 0

and (h, h) = 1, (h, ei) = (h, fj) = 0. We assume that the basis is chosen so
that {e1, . . . , eg, f1, . . . , fg} (resp. {e1, . . . , eg, f1, . . . , fg, h}) gives rise to a

basis of Ṽ0 if G = Sp2n (resp. G = SO2n+1), and

V2 = 〈e1, . . . , e2d1〉, V1 = 〈e1, . . . , e2k〉,

V0 =

{ 〈e1, . . . , eg, f2k+1, . . . , fg〉 if G = Sp2n,

〈e1, . . . , eg, f2k+1, . . . , fg, h〉 if G = SO2n+1.



182 Toshiaki Shoji and Bhama Srinivasan

Let B be the Borel subgroup of G defined as the stabilizer of the total flag

〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, . . . , en〉

in G. We define a maximal torus T of B by the condition that the opposite
Borel subgroup of B with respect to T is the stabilizer of the total flag

〈f1〉 ⊂ 〈f1, f2〉 ⊂ · · · ⊂ 〈f1, . . . , fn〉.

We identify W with NG(T )/T .

Let H = Sp(Ṽ0) or SO(Ṽ0) according to the case where G = Sp2n or
SO2n+1. We identify H with a subgroup of G consisting of elements which

fix any basis element outside of Ṽ0. We put BH = B ∩H and TH = T ∩H.
Then BH is a Borel subgroup of H which is the stabilizer of the total flag

〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, . . . , eg〉

in H, and TH is a maximal torus in H. Let WH = NH(TH)/TH . Then WH

is realized as the group of signed permutations of {1, . . . , g}.
We now consider the structure of the Grassmann variety Gs(Ṽ0). Let us

define a sequence

(2.10.1) U1 ⊂ U2 ⊂ · · · ⊂ Ug ⊂ Ug+1 ⊂ · · · ⊂ U2g = Ṽ0

of subspaces of Ṽ0 by Ui = 〈e1, . . . , ei〉 if 1 ≤ i ≤ g, and by Ug+i the

orthogonal complement of Ug−i in Ṽ0, for 1 ≤ i ≤ g. (Here we put U0 =
{0}.) Hence

Ug+i =

{ 〈e1, . . . , eg, fg, . . . , fg−i+1〉 if G = Sp2n

〈e1, . . . , eg, h, fg, . . . , fg−i+1〉 if G = SO2n+1.

We define a total order on the set {±1, . . . ,±g} by

1 ≺ 2 ≺ · · · ≺ g ≺ −g ≺ −g + 1 ≺ · · · ≺ −2 ≺ −1.

Assume that s ≤ g, and let Γ be the set of s-tuples γ = (γ1, . . . , γs) of
integers γi (−g ≤ γi ≤ g) such that γ1 ≺ γ2 ≺ · · · ≺ γs and that the
absolute values |γi| are all distinct. We define an ordering on Γ by γ ≥ γ′ if
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γi # γ′
i for i = 1, . . . , s. We put γi = γi if γi > 0 and γi = 2g + γi if γi < 0.

For each γ ∈ Γ , let us define subsets Yγ , Y γ in Gs(Ṽ0) by

(2.10.2)
Yγ = {Z ∈ Gs(Ṽ0) | dim(Z ∩ Uk) = i for γi ≤ k < γi+1},
Y γ = {Z ∈ Gs(Ṽ0) | dim(Z ∩ Uγi) ≥ i}.

Then we have the following lemma.

Lemma 2.11.

(i) Gs(Ṽ0) =
∐

γ∈Γ Yγ, and Yγ is a Schubert cell in Gs(Ṽ0).

(ii) Y γ is the closure of Yγ. Hence Y γ is a Schubert variety. Further-

more Y γ ⊂ Y β if and only if γ ≤ β.

Proof. Let Q(s) be the stabilizer of Us in H. Then Q(s) is the max-

imal parabolic subgroup of H containing BH . We denote by W
(s)
H the

corresponding Weyl subgroup of WH , which is isomorphic to Ss × Wg−s,
where Ss is the symmetric group on s letters {1, . . . , s} and Wg−s is the
Weyl group of type Cg−s with g − s letters {s + 1, . . . , g}. Then the set D
of distinguished representatives for WH/W

(s)
H is given as

D = {wγ =

(
1 2 · · · t t + 1 · · · g

γ1 γ2 · · · γt β1 · · · βg−t

) ∣∣ γ ∈ Γ}

where 0 < β1 < β2 < · · · < βg−t are the complement of {|γ1|, |γ2|, . . . , |γt|}
in {1, 2, . . . , g}. Now Gs(Ṽ0) is naturally identified with H/Q(s), and the

cell Yγ ⊂ Gs(Ṽ0) corresponding to γ ∈ Γ is given by

Yγ = {uwγ(Us) | u ∈ UH},

where UH is the maximal unipotent subgroup of BH . Since wγ(Us) =
〈g1, g2, . . . , gs〉, where gi = eγi if γi > 0 and gi = f−γi if γi < 0, it is easy
to see that Yγ has the form given in (2.10.2). This shows (i). The second
statement also follows easily from this. �

2.12. We now consider the variety X = π−1
t (Gt(Ṽ0)) as in 2.8. Let Qi

be the stabilizer in H of the flag

U1 ⊂ U2 ⊂ · · · ⊂ Ui
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for 1 ≤ i ≤ t. Put V ∗
i = U⊥

i /Ui for 1 ≤ i ≤ t, where U⊥
i is the orthogonal

complement of Ui in V . Then the form ( , ) induces a non-degenerate
symplectic or symmetric bilinear form on V ∗

i . We consider the flag variety
F(V ∗

i ). Then the group Qi acts naturally on F(V ∗
i ). The structure of the

variety X is given in the following lemma.

Lemma 2.13. X  H ×Qt F(V ∗
t ).

Proof. Put

X 1
t = {F = (Zi) ∈ F(V ) | Zi = Ui for i = 1, . . . , t}.

Then X 1
t is a closed subset of X which is isomorphic to F(V ∗

t ). On the other

hand, for each F = (Zi) ∈ X , we have Zt ∈ Ṽ0, and so Z1 ⊂ Z2 ⊂ · · · ⊂ Zt

is a partial flag in Ṽ0. Hence there exists g ∈ H such that

g−1F = (U1 ⊂ U2 ⊂ · · · ⊂ Ut ⊂ Z ′
t+1 ⊂ · · · ⊂ Z ′

n).

Hence g−1F ∈ X 1
t , and so we see that X = H · X 1

t . Now it is easy to see
that the map ρ : X → H/Qt, F = (Zi) �→ (Z1 ⊂ Z2 ⊂ · · · ⊂ Zt) gives
rise to a locally trivial fibration with fibre isomorphic to F(V ∗

t ). Hence the
lemma follows. �

Next, we consider the varieties Xs for 1 ≤ s < t. We define Qs, Vs,
etc. similar to Qt, Vt, etc. by replacing t by s. Then we have the following
lemma.

Lemma 2.14.

(i) Ys is a union of Schubert varieties Y γ in Gs(Ṽ0) of the form γ =
(γ1, γ2, . . . , γs) with γ1 = 2k, γs ≤ g + d3.

(ii) Let Q(s) ⊃ Qs be the maximal parabolic subgroup of H stabilizing

Us, and let fs : H/Qs → H/Q(s)  Gs(Ṽ0) be the natural projection.
Then we have

Xs  f−1
s (Ys)×Qs F(V ∗

s ),

where f−1
s (Ys)/Qs is a union of Schubert varieties in H/Qs.
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Proof. Under the notation in (2.10.1), we have V0 = Ug+d3 , V1 = U2k.

Hence, for a given Z ∈ Gs(Ṽ0), the condition that Z ∈ Ys is equivalent to the
condition that dim(Z ∩ U2k) ≥ 1 and dim(Z ∩ Ug+d3) ≥ s. In other words,

Z is contained in Y γ with γ1 = 2k and γs ≤ g + d3. Since 2k − 2g < −g,
we have γ1 = 2k. The statement (i) follows from this. Next we consider
(ii). It is clear from (i) that f−1

s (Ys)/Qs is a union of Schubert varieties in
H/Qs. Let X 1

s be the subvariety of F(V ) defined similar to X 1
t in the proof

of Lemma 2.12. Since Us ∈ Ys, X 1
s is contained in Xs, and we see easily

that Xs coincides with the translation f−1
s (Ys)X 1

s of X 1
s under the action

of f−1
s (Ys). On the other hand, the similar argument as in (i) shows that

HX 1
s is a locally trivial fibration H ×Qs X 1

s over H/Qs. Hence f−1
s (Ys)X 1

s

is also a locally trivial fibration over f−1
s (Ys)/Qs. This proves (ii), and the

lemma follows. �

Now we show the following.

Proposition 2.15. The natural map

H2i(X &) →
( t−1⊕
s=1

H2i(Xs)
)
⊕H2i(X )

induced from the closed immersions such as Xs ↪→ X & is injective for each
i.

Proof. We set X &
k =

⋃k
s=1Xs for k = 1, 2, . . . , t − 1. We show, by

induction on k, that the natural map

H2i(X &
k) →

k⊕
s=1

H2i(Xs)

is injective.
First we note that

(2.15.1) X &
k−1 ∩ Xk  Tk ×Qk F(V ∗

k ),

for a subset Tk of H stable under the right multiplication of Qk such that
Tk/Qk is a union of Schubert varieties in H/Qk.
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In fact, if s < k, we have π−1
k (Gk(Ṽ0) ⊂ π−1

s (Gs(Ṽ0)). The similar argu-

ment as in the proof of Lemma 2.13 shows that π−1
k (Gk(Ṽ0))  H×QkF(V ∗

k ).
Since Qk ⊂ Qs, the map fs factors through fk, and we have

π−1
k (Gk(Ṽ0)) ∩ Xs  f−1

s (Ys)×Qk F(V ∗
k ).

In particular, f−1
s (Ys)/Qk is a union of Schubert varieties in H/Qk. Now

using Lemma 2.14, we see that

Xs ∩ Xk  (f−1
s (Ys) ∩ f−1

k (Yk))×Qk F(V ∗
k ).

Here (f−1
s (Ys) ∩ f−1

k (Yk))/Qk is a union of Schubert varieties in H/Qk

since both are so. The variety X &
k−1 is also described in a similar way. The

assertion (2.15.1) now follows easily from this.
It follows from (2.15.1) that we have

(2.15.2) Xk −X &
k−1  T 0

k ×Qk F(V ∗
k ),

where T 0
k /Qk is a union of Schubert cell in H/Qk. Now (2.15.2) implies

that Xk − X &
k−1 has a pavement by affine spaces. In particular, we see

that Hodd
c (Xk − X &

k−1) = 0. We also have Hodd(Xk) = 0 by Lemma 2.14.

Hence, by using the cohomology long exact sequence for X &
k−1 ↪→ X &

k , and
by induction, we have

(2.15.3) Hodd(X &
k) = 0 for k = 1, 2, . . . , t− 1.

Then we have the following commutative diagram.

⊕k−1
s=1 H2i(Xs)

id−−−−−→
⊕k−1

s=1 H2i(Xs)

ϕ1

� ϕ3

�
0 −−−−−→ H2i

c (X �
k −X �

k−1) −−−−−→ H2i(X �
k) −−−−−→ H2i(X �

k−1) −−−−−→ 0

id

� ϕ2

� �
0 −−−−−→ H2i

c (Xk −X �
k−1)

ϕ4−−−−−→ H2i(Xk) −−−−−→ H2i(Xk ∩ X �
k−1) −−−−−→ 0

Here ϕ1, ϕ2 and ϕ3 are the natural maps induced from closed immersions

such as Xs ↪→ X &
k . Now the middle horizontal row is exact by (2.15.2) and

(2.15.3). The lower horizontal row is also exact by (2.15.1) and (2.15.2).
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Now assume that the image of x ∈ H2i(X &
k) is zero under the natural map

ϕ : H2i(X &
k) →

⊕k
s=1 H2i(Xs). Then ϕ1(x) = 0, ϕ2(x) = 0. Since ϕ3 is

injective by the assumption, x lies in H2i
c (X &

k −X
&
k−1). Since ϕ4 is injective,

this implies that x = 0. So we have shown that ϕ is injective.
The completely similar argument works also for the last step, i.e., for

X &
t−1 and X &. (In fact, the required property for Xs is that Ys is a union

of Schubert varieties. So it can be applied to X also.) This proves the
proposition. �

2.16. We now consider the polynomial Tj,t,k in the case (ii) of (2.7.1).
We shall show that the image of α(Tj,t,k) vanishes on H∗(BA). By Lemma

2.9, the map φA factors through the natural map H∗(B) → H∗(X &). So, in
view of Proposition 2.15, in order to show the statement (2.7.1) it is enough
to see that the image of α(Tj,t,k) vanishes under the maps H∗(B) → H∗(Xs)
for 1 ≤ s < t and under the map H∗(B) → H∗(X ). First we show

Lemma 2.17. The image of α(Tj,t,k) is zero on H∗(X ).

Proof. Let P (t) be the stabilizer of Ut in G, and Q(t) the stabilizer
of Ut in H. Hence P (t) (resp. Q(t)) is a maximal parabolic subgroup of
G (resp. H) and we have a natural isomorphism G/P (t)  Gt(V ) (resp.

H/Q(t)  Gt(Ṽ0)), respectively. We have a closed immersion H/Q(t) ↪→
G/P (t) corresponding to the inclusion Gt(Ṽ0) ↪→ Gt(V ). Let πt : B → G/P (t)

be the map as before. Since X = π−1
t (Gt(Ṽ0)), we have a commutative

diagram

H∗(G/P (t))
π∗
t−−−→ H∗(B)

ψ

� �
H∗(H/Q(t)) −−−→ H∗(X ).

Let W (t) be the Weyl subgroup of W corresponding to P (t). Hence W (t) 
St×Wn−t, where St is the symmetric group of t letters {1, . . . , t} and Wn−t

is the Weyl group of type Cn−t of n − t letters {t + 1, . . . , n}. Now it is

known that π∗
t is injective and its image coincides with H∗(B)W

(t)
, ([BGG,

5.5]. See also (3.7) in [LS]. This is the special case of Borho-MacPherson’s
theorem there). Note that α(Tj,t,k) is W (t)-invariant. It follows that we

may assume that α(Tj,t,k) lies in H∗(G/P (t)). Hence in order to show the
lemma, it is enough to see the following.

(2.17.1) The image of α(Tj,t,k) under the map ψ is zero on H∗(H/Q(t)).
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We show (2.17.1). First we note that the map α : C[x1, . . . , xn] →
H∗(B) is obtained by attaching λ ∈ X(T ) to the first Chern class in H2(B)
corresponding to the line bundle G ×B λ → G/B. Here X(T ) denotes
the character group of T and we identify C[x1, . . . , xn] with the symmetric
algebra on C ⊗ X(T ). The map αH : C[x1, . . . , xg] → H∗(BH) is defined

similarly, where BH = H/BH  F(Ṽ0). Then, by the property of Chern
classes we have a commutative diagram

C[x1, . . . , xn]
α−−−→ H∗(B)� �

C[x1, . . . , xg]
αH−−−→ H∗(BH),

where the right vertical map is the map induced from the natural map
BH → B, and the left vertical map is the projection on x1, . . . , xg variables,
which is obtained from the restriction X(T ) → X(TH).

Taking D-invariant part and DH -invariant part, we have

(2.17.2)

C[x2
1, . . . , x

2
n]

α−−−→ H∗(B)D� �
C[x2

1, . . . , x
2
g]

αH−−−→ H∗(BH)DH ,

where DH is the subgroup of WH corresponding to D in W .
Let G = GL(V ) and H = GL(V 0) for V =< e1, . . . , en > and V 0 =

< e1, . . . , eg >. Then a similar argument works also for G and H, i.e., we
have a commutative diagram

(2.17.3)

C[x1, . . . , xn]
α−−−→ H∗(B)� �

C[x1, . . . , xg]
αH−−−→ H∗(BH

).

Now (2.17.2) and (2.17.3) implies the following commutative diagram

(2.17.4)

H∗(B)
θ0−−−→ H∗(B)D� �

H∗(BH
)

θH0−−−→ H∗(BH)DH .
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Let P
(t)

(resp. Q
(t)

) be the maximal parabolic subgroup of G (resp. H),
which is the stabilizer of the subspace < e1, . . . , et > in G (resp. H), and

let W
(t)

(resp. W
(t)
H ) be the corresponding Weyl subgroup. Then W

(t) 
St × Sn−t, W

(t)
H  St × Sg−t. Since θ0 is Sn-equivariant and θH0 is Sg-

equivariant, we obtain the following commutative diagram, (using [BGG,
5.5] for G and H),

H∗(Ḡt(V ))
∼−−−→ H∗(G/P

(t)
)

∼−−−→ H∗(B)D·W (t)

� � �
H∗(Ḡt(V 0))

∼−−−→ H∗(H/Q
(t)

)
∼−−−→ H∗(BH)DHW

(t)
H ,

where Ḡt(V ) denotes the Grassmann variety of degree t for V .

Note, since D · W (t) ⊃ W (t), and DH · W (t)
H ⊃ W

(t)
H , that we have a

natural injection

H∗(B)D·W (t)

↪→ H∗(B)W
(t)  H∗(G/P (t))

and similarly for H∗(BH). It follows that we obtain

H∗(Ḡt(V )
∼−−−→ H∗(B)D·W (t)

−−−→ H∗(G/P (t))� � �ψ

H∗(Ḡt(V 0))
∼−−−→ H∗(BH)DH ·W (t)

H −−−→ H∗(H/Q(t)).

Note that α(Tj,t,k) is P (t)-invariant and D-invariant. Hence it is invariant

under D ·W (t)
. So we may assume that α(Tj,t,k) lies in H∗(B)D·W (t)

. On
the other hand, under the above isomorphism, α(Tj,t,k) is mapped to an

element ᾱ(Sj,t,k) ∈ H∗(Ḡt(V 0)). Now it is known, by Lemma 4.10 in [CP],

that the image of ᾱ(Sj,t,k) vanishes on H∗(Ḡt(V 0)). It follows that the

image of α(Tj,t,k) under the map ψ vanishes on H∗(H/Q(t)). This proves
(2.17.1), and so the lemma follows. �

Next we show

Lemma 2.18. The image of α(Tj,t,k) is zero on H∗(Xs) for each s,
(1 ≤ s < t).
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Proof. Put Rk,s(x1, . . . , xs) = (x1 · · ·xs)2k. Since Rk,s is a factor of
Tj,t,k, to prove the lemma it is enough to show that the image of α(Rk,s) is

zero on H∗(Xs) for each s. Let P (s) be the maximal parabolic subgroup of
G, which is the stabilizer of Us. As in the proof of Lemma 2.17, we have
the following commutative diagram

H∗(B)
π∗
s←−−− H∗(G/P (s))� ψ

�
H∗(Xs) ←−−− H∗(Ys).

Since α(Rk,s) is W (s)-invariant, we may assume that α(Rk,s) lies in

H∗(G/P (s)). So, in order to prove the lemma, it is enough to show that

(2.18.1) The image of α(Rk,s) under ψ is zero on H∗(Ys).
Now the map ψ factors as

ψ : H∗(G/P (s))
ψ1−−−→ H∗(H/Q(s))

ψ2−−−→ H∗(Ys),

where ψ1, ψ2 are natural maps induced from the closed immersions, Ys ↪→
H/Q(s) ↪→ G/P (s). But by the similar argument as in the proof of Lemma
2.17 (cf. (2.17.2)), we see that ψ1(α(Rk,s)) coincides with αH(Rk,s) under

the isomorphism H∗(BH)W
(s)
H  H∗(H/Q(s)).

Let Xw (w ∈ WH) be the basis of H∗(BH) dual to the basis of H∗(BH)
consisting of Schubert classes. Let D be the distinguished representatives

of WH/W
(s)
H as in the proof of Lemma 2.11. Then it is known by The-

orem 5.5 in Bernstein-Gelfand-Gelfand [BGG] that the set Xw (w ∈ D)

gives rise to a basis of H∗(BH)W
(s)
H , and that, under the isomorphism

H∗(H/Q(s))∼−→H∗(BH)W
(s)
H , the basis Xw (w ∈ D) coincides with the ba-

sis of H∗(H/Q(s)) dual to the basis of H∗(H/Q(s)) consisting of Schubert
classes.

Now since αH(Rk,s) is W
(s)
H -invariant, αH(Rk,s) can be written as a

linear combination of Xw with w ∈ D. As in the proof of Lemma 2.11, the
set D is described by the set Γ of s-tuples γ = (γ1, . . . , γs). We have the
following lemma.

Lemma 2.19. αH(Rk,s) = Xwβ
for β = (2k+1, 2k+2, . . . , 2k+s) ∈ Γ .

(Note that since s ≤ d3, we have 2k + s ≤ g.)
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Assuming Lemma 2.19, we continue the proof of Lemma 2.18. By
Lemma 2.14 (i), Ys is a union of Schubert varieties Y γ . So by the sim-
ilar argument as in Proposition 2.15, (2.18.1) is reduced to showing that
the image of Xwβ

is zero on H∗(Y γ) for each γ as in Lemma 2.14. But

such γ has the form γ = (2k, . . . ) and so Y β �⊂ Y γ since β = (2k + 1, . . . ).

This implies that the image of Xwβ
is zero on H∗(Y γ), and (2.18.1) holds.

Now Lemma 2.18 follows, and so (2.17.1) under the condition (ii) is verified,
modulo the proof of Lemma 2.19. �

2.20. We prove Lemma 2.19. Let S = {s1, . . . , sg} be the set of simple
reflections of WH , where si is a permutation xi ↔ xi+1 for i = 1, . . . , g− 1,
and sg is a sign change xg ↔ −xg. For each si ∈ S, we define an operator
∆i on C[x1, . . . , xg] by ∆i(f) = (f − si(f))/αi, where αi is a simple root
with respect to si, which is realized as a linear form on x1, . . . , xg. Then we
define an operator ∆w for each w ∈ WH by ∆w = ∆i1∆i2 · · ·∆ir according
to the reduced expression w = si1si2 · · · sir . Note that ∆w is independent
of the choice of a reduced expression of w. The operators ∆i satisfy the
following relations.

(2.20.1)

∆2
i = 0,

∆i∆j = ∆j∆i if |i− j| ≥ 2,

∆i∆i+1∆i = ∆i+1∆i∆i+1 for i = 1, . . . g − 2,

∆g−1∆g∆g−1∆g = ∆g∆g−1∆g∆g−1.

(The last relation is not used in the discussion below.)
Let R = Rk,s(x1, . . . , xs) = (x1 · · ·xs)2k. The following formula, which

describes the image of αH in terms of the basis Xw, was found independently
by Demazure [D] and Bernstein-Gelfand-Gelfand [BGG], (see also [H, IV]).
(Actually, the geometric identification of the Schubert basis with the basis
Xw in the formula is done by [BGG].)

(2.20.2) αH(R) =
∑

w∈WH

ε(∆w(R))Xw,

where ε denotes the evaluation at 0, ε(f) = f(0) for f ∈ C[x1, . . . , xg].
Now by (2.20.2), in order to prove Lemma 2.19 it is enough to show that

ε(∆w(R)) = 0 for w �= wβ and that ε(∆wβ
(R)) = 1.

First we note that ∆i(R) = 0 unless i = s since R is invariant under

W
(s)
H with s ≤ d3 < g. It is easy to see that

∆s(R) = S2k−1(xs, xs+1)(x1 · · ·xs−1)
2k,
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where S2k−1(xs, xs+1) is the total symmetric function as before.
For the next step, there are only two possibilities for ∆i such that

∆i∆s(R) �= 0, i.e., i = s − 1 or i = s + 1. In fact, this follows from
the first and second relation in (2.20.1). We note that

(2.20.3) In the expression of ∆w = ∆i1∆i2 · · ·∆ik such that ∆w(R) �= 0,
we may assume that the last two terms are ∆s+1∆s.

In fact, suppose the next term for ∆s is ∆s−1. So we consider
∆s−1∆s(R). Then the next non-zero possibility is one of ∆s−2,∆s or ∆s+1.
But if ∆s+1 appears, then

∆s+1∆s−1∆s(R) = ∆s−1∆s+1∆s(R)

and this is reduced to the case given in (2.20.3). If ∆s appears, then

∆s∆s−1∆s(R) = ∆s−1∆s∆s−1(R) = 0

by third relation in (2.20.1). So, the only remaining case is ∆s−2, and
we have to consider ∆s−2∆s−1∆s(R). The similar consideration works in
general, and we see that if ∆i1 · · ·∆ik is not equal to the expression in
(2.20.3), the possible choice for ∆i is given by

∆s−j · · ·∆s−2∆s−1∆s(R).

By repeating this procedure, we can finally reach

R′ = ∆1∆2 · · ·∆s−1∆s(R).

But since the degree of R is equal to 2ks > s, the degree of R′ is positive if
R′ �= 0. Hence we need to proceed to the next step. The next possibility is
then unique and it is given by ∆s+1. It follows that this case is also reduced
to the case in (2.20.3). Thus (2.20.3) is verified.

Now the similar consideration as (2.20.3) holds in general, and we may
assume that ∆i1 · · ·∆ir has the form ∆s+j · · ·∆s+2∆s+1∆s for the last j+1
terms. Using the formula

∆s+j(Sh(xs, xs+1, . . . , xs+j)) = Sh−1(xs, xs+1, . . . , xs+j+1),

we see easily that the above procedure continues until j = 2k− 1, and that

∆s+2k−1 · · ·∆s+1∆s(R) = (x1 · · ·xs−1)
2k.
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This implies, by induction on s, that the only non-zero possibility for ∆w =
∆i1 · · ·∆ir is given by

∆w = (∆2k · · ·∆2∆1) · · · (∆s+2k−2 · · ·∆s∆s−1)(∆s+2k−1 · · ·∆s+1∆s),

and in this case, ∆w(R) = 1. Then it is easy to check that

w =

(
1 2 · · · s · · ·

2k + 1 2k + 2 · · · 2k + s · · ·

)
.

Since w ∈ D, w is written as w = wβ with β = (2k + 1, 2k + 2, . . . , 2k + s).
This proves Lemma 2.19.

2.21. We now verify the statement (2.7.1) under the condition (i). In
this case, we have

A =

{
(22d2 , 12d3) if G = Sp2n,

(22d2 , 12d3+1) if G = SO2n+1,

and Tj,t,k(x1, . . . , xt) = x2k
1 with k = d2 + d3. Hence we have only to show

that

(2.21.1) φ ◦ α(x2k
1 ) vanishes on H∗(BA).

Let V0 = KerA. We consider the Grassmann varieties G1(V ) and G1(V0).
Note that G1(V ) is isomorphic to the variety P of parabolic subgroups of
G conjugate to P (1), where P (1) is the maxiaml parabolic subgroup of G as
given in the proof of Lemma 2.18 with s = 1. Then G1(V0) is isomorphic to
PA, the subvariety of P consisting of parabolic subgroups whose Lie algebra
contains A. We have the following commutative diagram.

H∗(B)
π∗
1←−−− H∗(P)� ψ

�
H∗(BA) ←−−− H∗(PA).

As discussed in the proof of Lemma 2.17, π∗
1 gives an isomorphism H∗(P)

and H∗(BW (1)
), where W (1) is the Weyl group of type Cn−1 with n−1 letters

{2, . . . , n}. Since α(x2k
1 ) is W (1)-invariant, we may assume that α(x2k

1 ) lies
in H∗(P). Hence, in order to prove (2.21.1), it is enough to show that
ψ ◦ α(x2k

1 ) vanishes on H∗(PA). Now, dimV0 = 2k (resp. 2k + 1), and
PA is isomorphic to the projective space P(V0) (resp. a quadric in P(V0) if
G = Sp2n (resp. G = SO2n+1), respectively. Hence dimPA = 2k − 1 for
both cases. But since α(x2k

1 ) ∈ H4k(P), we must have ψ ◦ α(x2k
1 ) = 0 on

H∗(PA). This proves (2.21.1) and so (2.7.1) is verified. This completes the
proof of Proposition 2.1.
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3. The Injectivity of θ

3.1. Let θ : H2i(Bf(A)) → H4i(BA)D1 be the map constructed in Propo-
sition 2.1. The aim of this section is to show that the map θ is injective,
and to complete the proof of Theorem 1.9. We shall prove the injectivity of
θ by passing to the situation where the groups are defined over a finite field
so that one can make use of the Frobenius action on the cohomologies. So,
we consider a finite field Fq with p = ch(Fq) large enough, and let G, Ḡ, g, g
be the similar objects as in Section 2, which are defined over Fq. Then the

l-adic cohomology group H∗(BA, Ql) = H∗(BA) together with the natural
map φA : H∗(B) → H∗(BA) has the identical W -module structure with the
corresponding cohomology in the complex case. This is true also for Ḡ, and
so by Proposition 2.1, one can construct a map θ in this setup. Since such
a θ is unique, if one could prove the injectivity of θ in the case of Fq, it
implies the injectivity in the case of C. Hence the following proposition will
imply the theorem.

Proposition 3.2. Let G, Ḡ be groups defined over Fq. Assume that θ
is the map satisfying the commutative diagram (1.9.1). Then θ is injective.

3.3. The remaining part of this section is devoted to the proof of Propo-
sition 3.2. We use the similar notation as in Section 2, but replacing C by
Fq, the algebraic closure of Fq. Let P = P (1) be the maximal parabolic
subgroup of G, with a Levi subgroup L of G such that the corresponding
Weyl group WL is of type Cn−1, and P the variety of parabolic subgroups
of G conjugate to P as in 2.21. For a nilpotent element A ∈ Ng, we have a

natural map π : BA → PA, which is the restriction of π(1) to BA under the
identification B  F(V ) and P  G1(V ). As given in §2 in [Sh2], the map
π has a locally trivial filtration. Each fibre of π is isomorphic to the variety
BL
A′ , where BL is the variety of Borel subgroups in L, and A′ is an element

in Nl (l is the Lie algebra of L), whose Young diagram is obtained from
that of A by removing two boxes according to the filtration as explained
below. In the following we shall show Proposition 3.2, by induction on the
rank of G, by making use of this filtration.

3.4. We describe the filtration more precisely following [loc. cit.]. Let
A ∈ Ng be of the type A = (1m1 , 2m2 , . . . , hmh), and put V (s) = KerA ∩
ImAs−1 for s = 1, . . . , h. We have a filtration of KerA by subspaces V (s)

with dimV (s)/V (s+1) = ms. Let Y (s) = P(V (s)) be the projective space of
V (s). Then we have a filtration

(3.4.1) P(KerA) = Y (1) ⊃ Y (2) ⊃ · · · ⊃ Y (h) ⊃ Y (h+1) = ∅.
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Assume that m = ms �= 0. As explained in §2 in [loc. cit.], one can consider
a non-degenerate bilinear form defined over Fq on V (s)/V (s+1), which is
symmetric in the case where G = Sp2n and s is even, or G = SO2n+1 and
s is odd, and symplectic in other cases. In the case where the form on
V (s)/V (s+1) is symmetric, we define a closed subvariety Q(s) of Y (s) as the
one associated to the subset of V (s) which is the pullback of the quadric
on V (s)/V (s+1) defined by its quadratic form. We put C(s) = Y (s) − Q(s).
It is known that PA is isomorphic to Y (1) (resp. Q(1)) in the case where
G = Sp2n (resp. G = SO2n+1). Moreover, in each step of the filtration, the
structure of π−1(x) for x ∈ PA is given according to the types of V (s) as
follows.

Type I (the symmetric case).
Note that s is even if G = Sp2n, or s is odd if G = SO2n+1. In this

case, for x ∈ Q(s) − Y (s+1), π−1(x)  BL
A′ , where the Young diagram of

A′ is obtained from that of A by replacing two rows of length s by two
rows of length s − 1. (Note if Q(s) �= Y (s+1), then m ≥ 2.) If x ∈ C(s),
π−1(x)  BL

A′′ , where the Young diagram of A′′ is obtained from that of A
by replacing one row of length s by one row of length s− 2.

Type II (the symplectic case).
In this case, for x ∈ Y (s) − Y (s+1), π−1(x) is isomorphic to BL

A′ , where
the Young diagram of A′ is obtained from that of A by replacing two rows
of length s by two rows of length s− 1.

Fixing an Fq-basis, we express the vector v ∈ V (s)/V (s+1) by v =

(x1, . . . , xm). Let us define a subspace Vj (0 ≤ j ≤ m) of V (s) contain-

ing V (s+1) by

Vj/V
(s+1) = {v = (xl) ∈ V (s)/V (s+1) | x1 = · · · = xj = 0}.

By putting Yj = P(Vj), we have a filtration of Y (s) by projective spaces Yj ,

(3.4.2) Y (s) = Y0 ⊃ Y1 ⊃ · · · ⊃ Ym = Y (s+1),

where Yj − Yj+1  Ab−j−1 with b = bs = dimV (s). In the case of type

I, we may assume that the quadratic form Q on V (s)/V (s+1) is given as
Q(v) = 2x1x2r +2x2x2r−1 + · · ·+2xrxr+1 if m = 2r and Q(v) = 2x1x2r+1 +
· · ·+ 2xrxr+2 + x2

r+1 if m = 2r + 1. We put Qj = Q(s) ∩ Yj . Thus we have
the following filtration.
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(3.4.3) If m = 2r, then

Q(s) = Q0 ⊃ Q1 ⊃ · · · ⊃ Qr−1 ⊃ Qr+1 ⊃ · · · ⊃ Q2r−1 ⊃ Q2r = Y (s+1).

(3.4.4) If m = 2r + 1, then

Q(s) = Q0 ⊃ Q1 ⊃ · · · ⊃ Qr ⊃ Qr+2 ⊃ · · · ⊃ Q2r ⊃ Q2r+1 = Y (s+1).

Note that Qj = Yj if j ≥ [(m− 1)/2] + 2 for both cases. It follows that

(3.4.5) Qj −Qj+1 
{

Ab−j−2 if 0 ≤ j ≤ [(m− 1)/2]− 1,

Ab−j−1 if [(m− 1)/2] + 2 ≤ j ≤ m− 1,

and that

(3.4.6) Qj −Qj+2 




Ab−j−2
∐

Ab−j−2

if j = [(m− 1)/2] and m = 2r,

Ab−j−2

if j = [(m− 1)/2] and m = 2r + 1.

We also consider the filtration of C(s) as follows. Let Cj = C(s) ∩ Yj for
j = 0, . . . , r. Then we have

C(s) = C0 ⊃ C1 ⊃ · · · ⊃ Cr−1 ⊃ · · ·

where Cj − Cj+1  Ab−j−1 − Ab−j−2 for j = 0, . . . , r − 2 if m = 2r and for
j = 0, . . . , r − 1 if m = 2r + 1. Moreover, if m = 2r, the last term Cr−1

is isomorphic to Ab−r − Ab−r−1, while if m = 2r + 1, the last term Cr is
isomorphic to Ab−r−1.

3.5. As described in [Sh2], the map π is locally trivial with respect
to the filtration of BA considered in 3.4. First assume that V (s) is of
type II. Then for Z = Yj − Yj+1, we have π−1(Z)  Z × BL

A′ , and so

Hk
c (π−1(Z))  Hk−2(b−j−1)(BL

A′). Note that H i
c(π

−1(Z)) has a natural
structure of WL-module, and this action is compatible with the action on
H i′(BL

A′). This fact, and the corresponding statement for Qj − Qj+1 or
Cj − Cj+1 were already shown in [Sh1]. But since the proof there is based
on Springer’s construction of Springer representations, we give in Appendix
(cf. Proposition A) a proof of this fact based on Lusztig’s construction, (in
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a more general form, by making use of Borho-MacPherson’s results [BM]).
Now each Z as above admits a natural action of AG(A), and the relation-
ship with the action of AL(A′) on BL

A′ is described in [Sh2]. It follows from
this that we have

(3.5.1) Hk
c (π−1(Z))D

′
1  Hk−2(b−j−1)(BL

A′)D
′

1

for Z = Yj − Yj+1.

Next consider the case where V (s) is of type I. Then again we have
π−1(Z)  Z × BL

A′ , for Z = Qj − Qj+1 or Z = Qj − Qj+2 according to

the cases (3.4.5), (3.4.6). Thus H i
c(π

−1(Z)) is isomorphic to H i′(BL
A′) or

a direct sum of copies of H i′(BL
A′). In this case also H i

c(π
−1(Z)) admits

an action of WL and of AG(A) as before. We now consider the Frobenius
map F : G → G. If X is an F -stable locally closed subvariety of B, the
map F induces an action F ∗ on H∗

c (X). We denote by H∗
c (X)ev the sum

of generalized eigenspaces of F ∗ corresponding to the eigenvalues q2j for
j ≥ 0. Note that H i(BL

A′)D
′

1 = 0 except when i ≡ 0 (mod 4) by Lemma 1.3.
Then the following formula is easily deduced from (3.4.5).

(3.5.2) Let Z = Qj −Qj+1. Then we have

Hk
c (π−1(Z))D

′
1,ev

=




Hk−2b+2j+4(BL
A′)D

′
1 if b− j : even

and 0 ≤ j ≤ [(m− 1)/2]− 1,

Hk−2b+2j+2(BL
A′)D

′
1 if b− j : odd

and [(m− 1)/2] + 2 ≤ j ≤ m− 1,

0 otherwise.

Also it follows from (3.4.6), we have

(3.5.3) Let Z = Qj −Qj+2 for j = [(m− 1)/2]. Then

Hk
c (π−1(Z))D

′
1,ev =

{
Hk−2b+2j+4(BL

A′)D
′

1 if b− j : even,

0 if b− j : odd.

In particular, we have

(3.5.4) Let Z = Qj−Qj+1 or Qj−Qj+2 as above. Then Hk
c (π−1(Z))D

′
1,ev = 0

except when k ≡ 0 (mod 4).
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Next we consider the filtration of C(s). Let Z = Cj−Cj+1 (0 ≤ j ≤ r−1).

Then by [Sh2], there exists a double covering Ẑ → Z such that

π−1(Z)×Z Ẑ  Ẑ × BL
A′′ .

Moreover, if m = 2r + 1 and Z = Cr, we have π−1(Z)  Z ×BL
A′′ . We now

assume that Z = Cj − Cj+1. Then by [loc. cit. §2], we have

H∗
c (Z)σ ⊗H∗(BL

A′′)D
′

1  H∗
c (π

−1(Z))D
′

1 ,

where σ is an automorphism on Z as defined in 2.2 in [loc. cit.], and H∗
c (Z)σ

denotes the σ-fixed subspace of H∗
c (Z) with respect to the induced action

of σ. It is easy to see that σ acts trivially on H∗
c (Z), and we have

Hk
c (π−1(Z))D

′
1  Hk−2d(BL

A′′)D
′

1 (−d)⊕Hk−2d+1(BL
A′′)D

′
1 (−d + 1)

where d = b− j − 1 and (·) is the Tate twist. It follows from this and from
Lemma 1.3 that

Hk
c (π−1(Z))D

′
1,ev 




Hk−2d(BL
A′′)D

′
1 if k ≡ 0 (4) and d is even,

Hk−2d+1(BL
A′′)D

′
1 if k ≡ 1 (4) and d is odd,

0 otherwise.

(3.5.5)

In particular, we have

(3.5.6) H4k−1
c (π−1(Z))D

′
1,ev = 0.

This implies the following lemma.

Lemma 3.6. For any j ≥ 0, we have

H4k−1
c (π−1(Cj))

D′
1,ev = 0.

Proof. In the case where m = 2r, H4k−1
c (π−1(Cr−1))

D′
1 = 0 by

(3.5.6). If m = 2r + 1, H i
c(π

−1(Cr))  H i−2(b−r−1)(BL
A′′) and so

H4k−1
c (π−1(Cr))

D′
1,ev = 0 also. Now taking the 1-part, ev-part and D′-

invariant part are exact functors and preserve the long exact sequence of
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cohomologies. Then the long exact sequence of cohomologies with respect
to Cj−1 ⊂ Cj combined with (3.5.6) implies the lemma. �

Remark 3.7. The irreducible components of BA are parameterized by
tableaux with 2n boxes, and with entries 1, 1, 2, 2, . . . , n, n. This param-
eterization is compatible with the locally trivial fibration in the follow-
ing sense. Suppose Z appears in the top part of the filtration, such as
Z = Y0−Y1, Q0−Q1, Q0−Q2 or C0−C1. Then Z is irreducible or a disjoint
union of two copies of irreducible subsets. Hence, if dimπ−1(Z) = dimBA,
it is possible to construct irreducible components of BA by making use of the
irreducible components of BL

A′ or BL
A′′ . For example, if π−1(Z)  Z × BL

A′ ,
and Z is irreducible, the closure of Z × I gives an irreducible component
of BA for each irreducible component I of BL

A′ . All the irreducible compo-
nents of BA are obtained in this way, and they were described precisely by
Spaltenstein in his unpublished paper [Sous groupes de Borel contenant un
unipotent donne], and were summarized in [S3]. In the following, we just
give a list of Z which produce irreducible components of BA, (see also [Sh1,
Prop. 2.6]).

(i) Type II. Z = Y0 − Y1 is irreducible.
(ii) Type I, ms > 2. Z = Q0 −Q1 is irreducible.
(iii) Type I, ms = 2. Z = Q0 − Q2 is a disjoint union of two copies of

irreducible components.
(iv) Type I, ms ≥ 1,ms−1 = 0. Z = C0 − C1 is irreducible.

In cases (i), (ii), suppose we know the tableau corresponding to an irre-
ducible component of BA′ . Then the corresponding irreducible component
of BA is obtained by adding a vertical strip of 2 boxes containing n. In the
case of (iii), we add a vertical strip in the same way as above but we get two
components of BA parameterized by the same tableau. In the case (iv), we
get a tableau corresponding to an irreducible component of BA by adding a
horizontal strip of two boxes containing n to a tableau which parameterizes
an irreducible component of BA′′ .

3.8. Let f(A) = A0 ∈ Ng. As in 2.17, we consider Ḡ = GL(V ). We

can write A0 as A0 = (1n1 , 2n2 , . . . ). Put V
(s)

= KerA0 ∩ ImAs−1
0 . We

have a filtration of KerA0 by subspaces V
(s)

with dimV
(s)

/V
(s+1)

= ns.

Let Y
(s)

= P(V
(s)

). Assume that ns �= 0. As in 3.4, we define subspaces V j

(0 ≤ j ≤ ns), and associated projective spaces Y j = P(V j). Hence we have
a filtration

Y
(s)

= Y 0 ⊃ Y 1 ⊃ · · · ⊃ Y ns = Y
(s+1)

.

Let P be the maximal parabolic subgroup of Ḡ with a Levi subgroup L
such that the corresponding Weyl group (which we denote by WL instead
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of WL) isomorphic to Sn−1. Let P be the variety of parabolic subgroups of

Ḡ conjugate to P . Then as in 3.3, we have a natural map π : BA0 → PA0 .

As in 3.3, each fibre of π is isomorphic to the variety BL
A′

0
, where BL

is

the variety of Borel subgroups in L, and A′
0 is a nilpotent element in l

obtained by removing one square from the Young diagram of A0. Note that

PA0  P(KerA0) = V
(1)

, and the map π is locally trivial with respect to the

above filtration, i.e., for each Z = Y j − Y j+1, we have π−1(Z)  Z × BL
A′

0
.

Here Z  Ab̄−j−1 with b̄ = b̄s = dimV
(s)

.
In what follows, we are interested in comparing the filtration of BA and

that of BA0 . For this, we will make the construction of A0 more transparent.

Remember that bs = dimV (s). We define a number δs for each s by

δs =

{
0 if bs : even,

1 if bs : odd.

Then the following statement is easily deduced from 1.5.

(3.8.1) Let A = (1m1 , . . . , sms , . . . ) and A0 = (1n1 , . . . , sns , . . . ). Then we
have

A0 =

{
(. . . , sδs1 , s[(ms−δs)/2], . . . ) if V (s) : type I,

(. . . , sδs1 , sms/2−δs , . . . ) if V (s) : type II,

for some integer s1 ≤ s. (Note that in the second case ms is even.) Assume
that bs is odd and let s′ < s be the largest number such that ms′ �= 0. If
s′ ≤ s − 2, then s′ < s1 < s. If s′ = s − 1, then s1 = s or s1 = s − 1, and
V (s1) is of type II in each case.

(3.8.1) means that the Young diagram of A0 is obtained from that of A by
replacing the rectangle consisting of rows of length s by a smaller rectangle
with rows the same length, and adding one row of length s1 below this
rectangle when bs is odd.

The following fact is also easily verified from the definition of f .

(3.8.2) Let A′ and A′′ be as in 3.4. We express f(A) = A0 as in (3.8.1).
Then the Young diagram of f(A′) is obtained from that of A0 by replacing
one row of length s by a row of length s − 1. In the case where V (s) is of
type I and bs is odd, the Young diagram of f(A′′) is obtained from that of
A0 by replacing one row of length s1 by a row of length s1 − 1.

3.9. We shall prove Proposition 3.2 using induction on the rank of W .
For n = 1, the proposition is true. So we assume that the proposition holds
for a group whose rank is smaller than n. In particular we assume, in the
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remainder of this section, that the proposition holds for L. We now consider
each step Y (s) ⊃ Y (s+1) of the filtration of PA in (3.4.1) separately. First
assume that V (s) is of type I. In the following discussion, we fix such s, and
put m = ms, b = bs, b̄ = b̄s and δ = δs, respectively. Along with Y (s) ⊂ PA,

we consider Y
(s) ⊂ PA0 . We shall construct maps ξj , which connects the

cohomologies of the refinements of these filtrations, as follows.

Lemma 3.10. Let V (s) be of type I. Then for each j such that 0 ≤ j <
[(m− δ)/2], there exist maps

ξj : H2k(π̄−1(Y j)) →




H4k(π−1(Q2j+δ))
D′
1,ev

if 0 ≤ 2j + δ ≤ [(m− 1)/2],

H4k(π−1(Q2j+1+δ))
D′
1,ev

if [(m− 1)/2] + 2 ≤ 2j + 1 + δ < m,

so that the following diagram commutes.
(3.10.1)
H2k(BA0

) −−−−→ H2k(π̄−1(Y 0)) −−−−→ H2k(π̄−1(Y 1)) −−−−→

θ

� �ξ0 �ξ1
H4k(BA)D1 −−−−→ H4k(π−1(Q0+δ))

D′
1,ev −−−−→ H4k(π−1(Q2+δ))

D′
1,ev −−−−→

where H4k(BA)D1 = H4k(BA)D
′

1,ev by Lemma 1.3, and the horizontal maps

are the natural maps induced from the closed immersions π−1(Q2+δ) ↪→
π−1(Q0+δ) ↪→ BA, etc.

Proof. Let x̄i ∈ H∗(BA0) be the image of xi under the map Q̄l[x1, x2,
. . . , xn] → H∗(BA0). Then according to [CP, Lemma 4.5], it is known
that the natural map H∗(BA0) → H∗(π̄−1(Y j)) is surjective, and that the

kernel of it is the principal ideal generated by x̄b̄−j
1 . (Although Lemma 4.5

is stated for the groups over C, it works also for the case of characteristic p
with l-adic cohomology.)

We have a diagram, for j = 0, 1, 2, . . .

H∗(B)
φ−−−→ H∗(BA0) −−−→ H∗(π̄−1(Y j))

θ0

� �θ

H∗(B)D
φD−−−→ H∗(BA)D1 −−−→ H∗(π−1(Q2j+δ))

D′
1,ev
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where H∗(π−1(Q2j+δ))
D′
1,ev is a subring of the cohomology ring

H∗(π−1(Q2j+δ)).

Note that, since 2b̄ = b−δ, we have θ(x̄b̄−j
1 ) = φD◦α(xb−δ−2j

1 ). Therefore,
in order to construct a map ξj , it is enough to show that the image of

α(x1)
b−δ−2j under the map H∗(B)D → H∗(π−1(Q2j+δ))

D′
1,ev vanishes. Here

we have a commutative diagram

(3.10.2)

H∗(B)ev −−−→ H∗(π−1(Y2j+δ))ev −−−→ H∗(π−1(Q2j+δ))ev� � �
H∗(P)ev −−−→ H∗(Y2j+δ)ev −−−→ H∗(Q2j+δ)ev.

Since H∗(P)∼−→H∗(B)WL , α(x1)
2 ∈ H∗(B)D

′
ev is in fact contained in H∗(P)ev.

Furthermore, since Y2j+δ = P((V2j+δ)), we see that H∗(Y2j+δ)ev 
Z[x2

1]/x
b−δ−2j
1 . Hence the image of α(x1)

b−δ−2j ∈ H∗(P)ev vanishes on

H∗(Y2j+δ)ev, so it is zero on H∗(π−1(Q2j+δ))
D′
ev . This shows the vanish-

ing of the image of α(x1)
b−δ−2j . The above argument covers the cases

Q2j+δ for 0 ≤ 2j + δ ≤ [(m − 1)/2]. Next consider Q2j+1+δ for j such
that [(m − 1)/2] + 2 ≤ 2j + 1 + δ < m. In this case, again we have

H∗(Y2j+1+δ)ev  Z[x2
1]/x

b−δ−2j
1 . So the image of α(x1)

b−δ−2j ∈ H∗(P)ev
vanishes on H∗(Y2j+1+δ)ev. Hence the similar diagram can be used to show

the vanishing of α(x1)
b−δ−2j on H∗(π−1(Q2j+1+δ))

D′
1,ev. This proves the

lemma. �

In view of (3.10.2), the above proof implies, in particular the following
statement.

Corollary 3.11. The map ξj : H∗(π̄−1(Y j)) → H∗(π−1(Q2j+δ))
D′
1,ev

factors through the map ξ′j : H∗(π̄−1(Y j)) → H∗(π−1(Y2j+δ))
D′
1,ev via the

natural map H∗(π−1(Y2j+δ))
D′
1,ev → H∗(π−1(Q2j+δ))

D′
1,ev.

We note that using the similar argument as in the proof of Lemma 3.10,
one can extend the definition of ξj for j = [(m − δ)/2] also, with a slight
modification, i.e., we have a map

ξj : H2k(π−1(Y
(s+1)

)) → H4k(π−1(Y (s+1)))D
′

1,ev

making the diagram (3.10.1) commutative, where Y
(s+1)

= Y j . We now
prove the following proposition.
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Proposition 3.12. Assume that the map ξj is injective for j = [(m−
δ)/2]. Then ξj is injective for any j such that 0 ≤ j ≤ [(m− δ)/2].

Proof. We prove the lemma by backward induction on j. First we
note that

H4k+1
c (π−1(Qj −Qi))

D′
1,ev = 0 for any j < i,

by (3.5.4). Also, we have

(3.12.1) H4k−1(π−1(Qj))
D′
1,ev = 0 for any j ≥ 0.

In fact, by using (3.5.4), this is reduced to showing that

H4k−1(π−1(Y (s+1)))D
′

1,ev = 0. But in general, if V (s) is of type II, the van-

ishing of H4k−1(π−1(Y (s)))D
′

1,ev is reduced to that of π−1(Y (s+1)) by 3.5. If

V (s) is of type I, by making use of Lemma 3.6, it is reduced to showing that
H4k−1(π−1(Q(s)))D

′
1,ev = 0 and so again reduced to the case π−1(Y (s+1)).

Hence (3.12.1) follows by backward induction on s.
Then we get an exact sequence,

0 → H4k
c (π−1(Zj))

D′
1,ev → H4k(π−1(Q2j+δ))

D′
1,ev → H4k(π−1(Q2j+2+δ))

D′
1,ev → 0,

where Zj = Q2j+δ − Q2j+2+δ, and a similar formula holds also for the
closed immersion Q2j+3+δ ↪→ Q2j+1+δ. We have another exact sequence,

for Zj = Y j − Y j+1,

0 → H2k
c (π̄−1(Zj)) → H2k(π̄−1(Y j)) → H2k(π̄−1(Y j+1)) → 0.

Combining these two sequences together, we have

(3.12.2) There exists a unique map

ξ∗j : H2k
c (π̄−1(Zj)) → H4k

c (π−1(Zj))
D′
1,ev

for any j such that 0 ≤ 2j + δ ≤ [(m− 1)/2]− 2, which makes the following
diagram commute.

0 → H2k
c (π̄−1(Zj)) → H2k(π̄−1(Y j)) → H2k(π̄−1(Y j+1)) → 0

ξ∗j
� ξj

� ξj+1

�
0 → H4k

c (π−1(Zj))
D′
1,ev → H4k(π−1(Q2j+δ))

D′
1,ev → H4k(π−1(Q2j+δ+2))D

′
1,ev → 0.
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The similar map ξ∗j is defined also for j such that [(m−1)/2]+2 ≤ 2j+1+δ ≤
m − 3 by using Q2j+3+δ ↪→ Q2j+1+δ, and for j such that 2j + δ ≤ [(m −
1)/2] < 2j + 2 + δ by using Q2j+3+δ ↪→ Q2j+δ instead of Q2j+δ+2 ↪→ Q2j+δ.

Now by induction hypothesis, we may assume that ξj+1 is injective.
Since both of horizontal maps are exact, in order to show the injectivity of
ξj it is enough to see that

(3.12.3) The map ξ∗j is injective.

We show (3.12.3). We consider the following three cases according to
the range of j;

(a) 0 ≤ 2j + δ ≤ [(m− 1)/2]− 2,
(b) [(m− 1)/2] + 2 ≤ 2j + 1 + δ ≤ m− 3,
(c) 2j + δ ≤ [(m− 1)/2] < 2j + 2 + δ.

First consider the case (a). We note that H4k
c (π−1(Q2j+1+δ −

Q2j+2+δ))
D′
1,ev = 0 by (3.5.2). It follows that, by (3.5.4), the map induced

from the closed immersion Q2j+δ+1−Q2j+δ+2 ↪→ Q2j+δ−Q2j+δ+2 gives rise
to an isomorphism

H4k
c (π−1(Q2j+δ −Q2j+δ+1))

D′
1,ev

∼−→ H4k
c (π−1(Zj))

D′
1,ev

and so again by (3.5.2), we get

(3.12.4) H4k
c (π−1(Zj))

D′
1,ev

∼−→ H4k−4a(BL
A′)D

′
1 ,

where a = (b− δ)/2− j− 1. Similar formulae as (3.12.4) hold, using (3.5.2)
and (3.5.3), by replacing Q2j+δ − Q2j+δ+2 by Q2j+1+δ − Q2j+3+δ (in the
case (b)) or Q2j+δ −Q2j+δ+3 (in the case (c)), respectively, where the right
hand side remains unchanged.

Moreover, since a = b̄− j − 1 we have a natural isomorphism

H2k
c (π̄−1(Zj)) ∼−→ H2k−2a(BL

f(A′)),

by (3.8.2). Therefore (3.12.3) is a consequence of the following statement.

(3.12.5) Under the above isomorphisms, the map ξ∗j coincides with

θL : H2k−2a(BL
f(A′)) → H4k−4a(BA′)D

′
1
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up to a non-zero scalar, where θL denotes the map corresponding to θ in
Theorem 1.9, defined by replacing G by L.

We shall prove (3.12.5). Let π̄0 : B → P be the natural map. Then
π̄−1(Y j) is a closed subset of π̄−1

0 (Y j). Moreover, we have

(3.12.6) π̄−1
0 (Zj)  (Zj)× B

L
.

We know already H2k
c (π−1(Zj))  H2k−2a(BL

f(A′)). We also identify

H2k
c (π̄−1

0 (Zj)) with H2k−2a(BL
) via (3.12.6). Since the inclusions

π̄−1(Zj) ↪→ π̄−1
0 (Zj) and BL

f(A′) ↪→ BL
are compatible with the isomor-

phism in (3.12.6), we see, under the above identification, that the map

H2k
c (π̄−1

0 (Zj)) → H2k
c (π̄−1(Zj)) coincides with the map H2k−2a(BL

) →
H2k−2a(BL

f(A′)) induced from the closed immersion BL
f(A′) ↪→ BL

.
Hence we get a commutative diagram of exact sequences

(3.12.7)
0 −−−−−→ H2k−2a(BL

) −−−−−→ H2k(π̄−1
0 (Y j)) −−−−−→ H2k(π̄−1

0 (Y j+1)) −−−−−→ 0� � �
0 −−−−−→ H2k−2a(BL

f(A′)) −−−−−→ H2k(π̄−1(Y j)) −−−−−→ H2k(π̄−1(Y j+1)) −−−−−→ 0

where the vertical maps are those induced from the inclusions π̄−1(Y j) ↪→
π̄−1

0 (Y j).
Next we consider the natural map π0 : B → P and compare the sets

such as π−1(Q2j+δ) with π−1
0 (Y2j+δ) for various j. First we consider the

case (a). We get the following commutative diagram.
(3.12.8)
0 → H4k

c (π−1
0 (Z′

j))
D′
ev → H4k(π−1

0 (Y2j+δ))
D′
ev → H4k(π−1

0 (Y2j+δ+2))D
′

ev → 0

� � �
0 → H4k

c (π−1(Zj))
D′
1,ev → H4k(π−1(Q2j+δ))

D′
1,ev → H4k(π−1(Q2j+δ+2))D

′
1,ev → 0

where Zj = Q2j+δ − Q2j+δ+2 as before and Z ′
j = Y2j+δ − Y2j+δ+2. The

horizontal maps are exact, and the vertical maps are those obtained from
the inclusions such as π−1(Q2j+δ) ↪→ π−1

0 (Y2j+δ).

Let ϕ : H4k
c (π−1

0 (Z ′
j))

D′
ev → H4k

c (π−1(Zj))
D′
1,ev be the map given in

(3.12.8). According to the inclusions π−1(Zj) ↪→ π−1
0 (Zj) ↪→ π−1

0 (Z ′
j) the

map ϕ factors through as

ϕ : H4k
c (π−1

0 (Z ′
j))

D′
ev

ϕ′
−−−→ H4k

c (π−1
0 (Zj))

D′
ev

ϕ′′
−−−→ H4k

c (π−1(Zj))
D′
ev .
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We know by (3.12.4) that H4k
c (π−1(Zj))

D′
1,ev

∼−→H4k−4a(BL
A′)D

′
1 . A similar

argument shows that H4k
c (π−1

0 (Zj))
D′
ev
∼−→H4k−4a(BL)D

′
ev . Furthermore, it is

clear that under those isomorphisms, ϕ′′ turns out to be a map

φL : H4k−4a(BL)D
′ → H4k−4a(BL

A′)D
′

1

induced from the closed immersion BL
A′ ↪→ BL.

On the other hand, the closed immersion π−1
0 (Y2j+1+δ − Y2j+2+δ) ↪→

π−1
0 (Z ′

j) gives rise to an isomorphism

H4k
c (π−1

0 (Z ′
j))

D′
ev

∼−→ H4k
c (π−1

0 (Y2j+1+δ − Y2j+2+δ))
D′
ev ,

and so it induces an isomorphism

H4k
c (π−1

0 (Z ′
j))

D′
ev

∼−→ H4k−4a(BL)D
′
.

The similar argument holds also for Zj = Q2j+1+δ −Q2j+3+δ and Z ′
j =

Y2j+1+δ − Y2j+3+δ in the case (b) and for Zj = Q2j+δ −Q2j+3+δ and Z ′
j =

Y2j+δ − Y2j+3+δ in the case (c). Then we have the following lemma.

Lemma 3.13. Assume that j is in the case (a) or (c). Then under

those isomorphisms given as above, the map ϕ′ : H4k
c (π−1

0 (Z ′
j))

D′
ev →

H4k
c (π−1

0 (Zj))
D′
ev turns out to be a non-zero scalar multiplication on

H4k−4a(BL)D
′
. In particular, up to a non-zero scalar, the map ϕ coincides

with the map φL.

3.14. Assuming Lemma 3.13, we shall continue the proof of (3.12.5).
First consider the case (a). The diagram (3.12.8) is now written as
(3.14.1)

0 → H4k−4a(BL)D
′ → H4k(π−1

0 (Y2j+δ))
D′
ev → H4k(π−1

0 (Y2j+2+δ))
D′
ev → 0

ϕ
� � �

0 → H4k−4a(BL
A′ )

D′
1 → H4k(π−1(Q2j+δ))

D′
1,ev → H4k(π−1(Q2j+2+δ))

D′
1,ev → 0.

Then we have the following.

(3.14.2) There exist maps ζj : H2k(π̄−1
0 (Y j)) → H4k(π−1

0 (Y2j+δ))
D′
1,ev such

that ζj is compatible with the commutative diagrams (3.12.7), (3.14.1), and

that the induced map ζ∗j : H2k−2a(BL
) → H4k−4a(BL) coincides with θL0 .
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In fact, it is known by [CP, Lemma 4.5], applied to the case 0 ∈ Ng,

that the map H∗(B) → H∗(π−1
0 (Y j)) is surjective, and its kernel is the

principal ideal generated by x̄b̄−j
1 . (In the case where A0 = 0, we can

choose, as a filtration given in 3.7, any filtration by successive projective
subspaces. Hence Y j can be regarded as the one appearing in this filtra-
tion with respect to A0 = 0, and so Lemma 4.5 can be applied.) On the
other hand, by using the similar argument as in [loc. cit.], one can show
that the map H∗(B) → H∗(π−1

0 (Y2j+δ)) is surjective, and its kernel can

be described. Hence we see that the map H∗(B)D
′

ev → H∗(π−1
0 (Y2j+δ))

D′
ev

is surjective and the kernel is the principal ideal generated by α(x1)
b−δ−2j .

Since b − δ − 2j = 2(b̄ − j), this shows the existence of the map ζj com-
patible with the diagram (3.12.7) and (3.14.1). Moreover, under the above

identification of H∗(π−1
0 (Y2j+δ)))

D′
ev as the quotient of H∗(B)D

′
ev , and sim-

ilarly for H∗(π̄−1
0 (Y j)), H∗(BL)D

′
(resp. H∗(BL

)) may be identified with

H∗(B)D
′

ev /(α(x1)
2) (resp. H∗(B)/(x̄1)). This implies that the induced map

ζ∗j coincides with θL0 . Hence (3.14.2) holds.

Now (3.14.2) implies (3.12.5). In fact, by (3.14.2), we obtain a commu-
tative diagram

H2k−2a(BL
)

θL0−−−→ H4k−4a(BL)D
′� ϕ

�
H2k−2a(BL

f(A′))
ξ∗j−−−→ H4k−4a(BL

A′)D
′

1 .

Then by Lemma 3.13 and by the uniqueness of θL, we see that ξ∗j = θL up
to a non-zero scalar.

The similar statement as in (3.14.2) holds also in the case (b) or (c). In

fact, the kernel of the map H∗(B)D
′

ev → H∗(π−1
0 (Y2j+1+δ))

D′
ev is again the

principal ideal generated by α(x1)
b−δ−2j , and the above argument can be

applied without change. Hence in the case (c), Lemma 3.13 is applied to
get (3.12.5) in a similar way as above. While in the case (b), the statement
of Lemma 3.13 is trivially true since we have Q2j+1+δ = Y2j+1+δ, and so
again we obtain (3.12.5). This proves the proposition up to Lemma 3.13. �

3.15. We shall prove Lemma 3.13. First consider the case (a). We
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consider the following diagram.
(3.15.1)

H4k
c (π−1

0 (Z ′
j))

D′
1,ev

∼−→ H4k
c (π−1

0 (Y 0
2j+1+δ))

D′
1,ev

ϕ′�
H4k

c (π−1
0 (Q0

2j+δ))
D′
1,ev

∼−→ H4k
c (π−1

0 (Zj))
D′
1,ev,

where Q0
2j+δ = Q2j+δ − Q2j+1+δ and Y 0

2j+1+δ = Y2j+1+δ − Y2j+2+δ. Let

U be one of the varieties such as π−1
0 (Q2j+δ − Q2j+1+δ) appearing in the

diagram. Then we have a spectral sequence

H i
c(π0(U), Rl(πU )!Q̄l) =⇒ H i+l

c (U, Q̄l),

where πU = π0|U . Taking their invariant parts, we also have

(3.15.2) H i
c(π0(U), Rl(πU )!Q̄l)

D′
1,ev =⇒ H i+l

c (U, Q̄l)
D′
1,ev.

We note that Rl(πU )!Q̄l is a constant sheaf H l(BL) on π0(U). In fact, by
the base change theorem, we have

Rl(πU )!Q̄l  Rl(π0)!Q̄l|π′(U).

But π0 : B → P is a locally trivial fibration, and so Rl(π0)!Q̄l is a locally
constant sheaf on P. Since P is connected and simply connected, Rlπ′

!Q̄l is

a constant sheaf whose fibre is given by (Rl(π0)!Q̄l)x  H l(BL) for x ∈ P.
It follows that

H i
c(π0(U), Rl(πU )!Q̄l)  H l(BL)⊗H i

c(π0(U)).

Hence, we have

H i
c(π0(U), Rl(πU )!Q̄l)

D′
1,ev  H l(BL)D

′
1 ⊗H i

c(π0(U))1,ev

since H l(BL)D
′

1 = H l(BL)D
′

1,ev. But if π0(U) = Q0
2j+δ or Y 0

2j+1+δ, then

π0(U)  A2a and so the left hand side of (3.14.2) vanishes except when
i = 4a. This implies that

H4k
c (U, Q̄l)

D′
1,ev  H4k−4a(BL)D

′
1 ⊗H4a

c (π0(U))

 H4k−4a(BL)D
′

1 .
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On the other hand, even if π0(U) = Q2j+δ − Q2j+2+δ ( A2a ∪ A2a−1), or

π0(U) = Y2j+δ − Y2j+2+δ ( A2a+1 ∪ A2a), then Hj
c (π0(U))ev = 0 except

when j = 4a. Thus, again we have

H4k
c (U, Q̄l)

D′
1,ev  H4k−4a(BL)D

′
1 ⊗H4a

c (π0(U))ev.

We now consider the following diagram,

H4a
c (Y2j+δ − Y2j+2+δ)ev

∼−−−→ H4a
c (Y2j+1+δ − Y2j+2+δ)ev

ϕ0

�
H4a

c (Q2j+δ −Q2j+1+δ)ev
∼−−−→ H4a

c (Q2j+δ −Q2j+2+δ)ev.

In view of the previous discussion, in order to prove Lemma 3.13 we have
only to show that ϕ0 is an isomorphism, or since both have dimension one,
enough to show that ϕ0 is injective. Now the complement of Q2j+δ−Q2j+2+δ

in Y2j+δ − Y2j+2+δ coincides with C2j+δ −C2j+2+δ. So it is enough to show
that

H4a
c (C2j+δ − C2j+2+δ) = 0.

Let

Ĉi = {(yi+1, . . . , yb) ∈ Ab−i | yi+1ym−i + yi+2ym−i+1 · · · = 1}.

Then Ĉi is a double covering of Ci. Moreover, Ĉi  Ai+b−m × Ĉ ′
i with

Ĉ ′
i = {(yi+1, . . . , ym−i) ∈ Am−2i | yi+1ym−i + · · · = 1}.

Now using the result of Fary ([F, Th.3, page 35]) we have

H l
c(Ĉ

′
i) =

{
Q̄l if l = 2(m− 2i− 1),m− 2i− 1,

0 otherwise.

(Fary’s result is concerned with the groups over C. However, since Ĉ ′
i is

smooth, it is also valid in the case where p is large enough.) It follows

that H l
c(Ĉi) = 0 except when l = 2b − 2i − 2 or l = 2b − m − 1. Since

4a = 2(b − δ) − 4j − 4, and 0 ≤ 2j + δ ≤ [(m − 1)/2] − 2, we see that

H4a
c (Ĉ2j+δ) = 0. Also one can check that H4a−1

c (Ĉ2j+2+δ) = 0. This
implies that

H4a
c (C2j+δ) = H4a−1

c (C2j+2+δ) = 0.
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By using the cohomology long exact sequence for C2j+2+δ ↪→ C2j+δ, we
obtain that H4a

c (C2j+δ − C2j+2+δ) = 0. This proves the lemma in the case
(a).

Next consider the case (c). In this case, we need to compare Q2j+δ −
Q2j+3+δ and Y2j+δ−Y2j+3+δ. But since Q2j+3+δ = Y2j+3+δ, we see that the
complement of Q2j+δ − Q2j+3+δ in Y2j+δ − Y2j+3+δ coincides with C2j+δ.

Then we can show that H4a
c (Ĉ2j+δ) = 0 in a similar way as above. This

proves the case (c), and so the lemma is proved. Now the proof of the
Proposition 3.12 is complete.

3.16. We keep the assumption in Proposition 3.12. Then the map ξ0

is injective. It follows from Corollary 3.11 that the map ξ′0 is also injective.
In particular, in the case where b is even, we have an injective map

(3.16.1) ξ′0 : H2k(π−1(Y 0)) → H4k(π−1(Y0))
D′
1,ev.

We now consider the case where b is odd, i.e., δ = 1. We have an injective
map

ξ′0 : H2k(π−1(Y 0)) → H4k(π−1(Y1))
D′
1,ev.

Then A0 is described as in (3.8.1). We have two cases where s′ ≤ s− 2 or
s′ = s− 1. In each case we denote by Y −1 the variety preceding Y 0 in the

filtration of KerA0 given in 3.8, as follows; if s′ ≤ s−2, we put Y −1 = Y
(s1)
0 ,

and if s′ = s − 1 = s1, we put Y −1 = Y
(s′)
j with j = ms′/2 − 1. Then one

can construct a map

ξ′−1 : H2k(π−1(Y −1)) → H4k(π−1(Y0))
D′
1,ev

such that the following diagram commutes.
(3.16.2)

H2k(BA0) −−−→ H2k(π−1(Y −1)) −−−→ H2k(π−1(Y 0)) −−−→

θ

� �ξ′−1

�ξ′0

H4k(BA)D1 −−−→ H4k(π−1(Y0))
D′
1,ev −−−→ H4k(π−1(Y1))

D′
1,ev −−−→ .

In fact, the kernel of the map H∗(BA0) → H∗(π−1(Y 1)) is the principal

ideal generated by x̄b̄+1
1 , with 2b̄ = b− 1, and H∗(Y0)ev  Z[x2

1]/x
b−1
1 . Our

assertion follows from this in a similar way as in the proof of Lemma 3.10.
We shall show
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Lemma 3.17. Under the assumption in Proposition 3.12, the map ξ′−1
is injective.

Proof. First we note that the closed immersion Y1 ↪→ Y0 induces an
exact sequence,
(3.17.1)

0 → H4k
c (π−1(Y0 − Y1))D

′
1,ev → H4k(π−1(Y0))D

′
1,ev → H4k(π−1(Y1))D

′
1,ev → 0.

In fact, the complement of Q0−Q1 in Y0−Y1 coincides with C0−C1. Since

H4k+1
c (π−1(Q0 −Q1))

D′
1,ev = H4k+1

c (π−1(C0 − C1))
D′
1,ev = 0

by (3.5.4) and (3.5.5), we see that H4k+1
c (π−1(Y0 − Y1))

D′
1,ev = 0. On the

other hand, by Lemma 3.6 we see that H4k−1
c (π−1(C1))

D′
1,ev = 0. Moreover

H4k−1
c (π−1(Q1))

D′
1,ev = 0 by (3.5.4). This implies that H4k−1

c (π−1(Y1))
D′
1,ev =

0, and so (3.17.1) follows.
We put Z−1 = C0 − C1, Z ′

−1 = Y0 − Y1 and Z−1 = Y −1 − Y 0. Then
using (3.17.1), we can define a map

ξ∗−1 : H2k
c (π−1(Z−1)) → H4k

c (π−1(Z ′
−1))

D′
1,ev

so that the following diagram commutes.

0 −−→ H2k
c (π−1(Z−1)) −−→ H2k(π−1(Y −1)) −−→ H2k(π−1(Y 0)) −−→ 0�ξ∗−1

�ξ′−1

�ξ′0

0 −−→ H4k
c (π−1(Z′

−1))
D′
1,ev −−→ H4k(π−1(Y0))

D′
1,ev −−→ H4k(π−1(Y1))

D′
1,ev −−→ 0.

As in the proof of Proposition 3.12, in order to prove ξ′−1 is injective it is
enough to show that ξ∗−1 is injective.

Now in view of (3.5.5), the open immersion π−1(Z−1) ↪→ π−1(Z ′
−1) in-

duces an isomorphism

H4k
c (π−1(Z−1))

D′
1,ev

∼−→ H4k
c (π−1(Z ′

−1))
D′
1,ev.

It follows that

H4k
c (π−1(Z ′

−1))
D′
1,ev

∼−→ H4k−4a
c (BA′′)D

′
1 ,
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with a = (b− 1)/2. Also we have

H2k
c (π−1(Z−1)) ∼−→ H2k−2a(Bf(A′′)),

by (3.8.2). Hence, in order to show that ξ∗−1 is injective, it is enough to see
that

(3.17.2) The map H2k−2a(Bf(A′′)) → H4k−4a(BA′′)D
′

1 induced from ξ∗−1 un-

der the above isomorphism coincides with θL up to a non-zero scalar.

We show (3.17.2). As in the previous discussion, we consider a commu-
tative diagram

0 −−→ H4k(π−1
0 (Z′

−1))
D′
1,ev −−→ H4k(π−1

0 (Y0))
D′
1,ev −−→ H4k(π−1

0 (Y1))
D′
1,ev −−→ 0

ϕ

� � �
0 −−→ H4k(π−1(Z′

−1))
D′
1,ev −−→ H4k(π−1(Y0))

D′
1,ev −−→ H4k(π−1(Y1))

D′
1,ev −−→ 0.

So, (3.17.2) will follow if we can show that

(3.17.3) Under the above isomorphisms, the map ϕ coincides with φL :

H4k−4a(BL)D
′

1 → H4k−4a(BL
A′′)D

′
1 up to a non-zero scalar.

Note that the identification of H4k
c (π−1(Z ′

−1))
D′
1,ev with H4k−4a

c (BL
A′′)D

′
1

is done via H4k
c (π−1(Z−1))

D′
1,ev. So, the map ϕ′ : H4k

c (π−1
0 (Z−1))

D′
1,ev →

H4k
c (π−1(Z ′

−1))
D′
1,ev is nothing but the map φL under the above identi-

fication. On the other hand, by the locally trivial fibration, the map
ϕ′′ : H4k

c (π−1
0 (Z−1))

D′
1,ev → H4k

c (π−1
0 (Z ′

−1))
D′
1 induced from the open immer-

sion Z−1 ↪→ Z ′
−1 clearly induces a non-zero scalar map on H4k−4a(BL)D

′
1 .

Thus, ϕ = ϕ′ ◦ϕ′′−1 coincides with θL up to a non-zero scalar. This proves
(3.17.3) and so proves the lemma. �

3.18. We now assume that V (s) is of type II. Let m = ms, b = bs and
δ = δs as before. We put b̄ = (b− δ)/2. Note that, contrast to the previous
cases, b̄ does not necessarily coincide with b̄s. In order to get a uniform

description in comparing the filtrations for the Y
(s)

and Y (s), we shift the

labeling of the filtration of Y
(s)

as follows. If s′ ≤ s− 2 or b is even, we use
the labeling given in the first part of 3.8, i.e.,

Y
(s)

= Y 0 ⊃ Y 1 ⊃ · · · ⊃ Y m̄ = Y
(s+1)

.
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While, if s′ = s− 1 and b is odd, we put

Y
(s)

= Y −1 ⊃ Y 0 ⊃ · · · ⊃ Y m̄ = Y
(s+1)

.

Here m̄ is given as follows; let s′′ > s be the smallest integer such that
ms′′ �= 0. Then

m̄ =




m/2 if b : even,

m/2 if b : odd and s = s′′ − 1,

m/2− 1 if b : odd and s ≤ s′′ − 2.

In any case, we have Y j − Y j+1  Ab̄−j−1. Then as in the proof of Lemma
3.10, one can construct, for each j such that 0 ≤ j ≤ m/2− δ, a map

ξ′j : H2k(π̄−1(Y j)) → H4k(π−1(Y2j+δ))
D′
1,ev

so that the following diagram commutes.

H2k(BA0) −−−→ H2k(π̄−1(Y 0)) −−−→ H2k(π̄−1(Y 1)) −−−→

θ

� �ξ′0

�ξ′1

H4k(BA)D1 −−−→ H4k(π−1(Y0+δ))
D′
1,ev −−−→ H4k(π−1(Y2+δ))

D′
1,ev −−−→ .

Here we note that

(3.18.1) Assume that b is odd. Then Y2j+δ = Ym−1 for j = m/2−δ. In this

case the closed immersion Y (s+1) = Ym ↪→ Ym−1 induces an isomorphism

H4k(π−1(Ym−1))
D′
1,ev

∼−→ H4k(π−1(Ym))D
′

1,ev.

In fact, for Z = Ym−1 − Ym, we have Z  Ab−m. Since b−m is odd, we
can verify, by using (3.5.1), that

H4k(π−1(Z))D
′

1,ev = H4k+1(π−1(Z))D
′

1,ev = 0.

(3.18.1) follows from this.
Then we have the following lemma.
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Lemma 3.19. Assume that the map ξ′j is injective for j = m/2 − δ.

Then ξ′j is injective for any j such that 0 ≤ j ≤ m/2− δ.

Proof. We prove the lemma in a similar way as in the proof of Propo-
sition 3.12. Put Z ′

j = Y2j+δ − Y2j+2+δ, and Zj = Y j − Y j+1 for j =

0, 1, . . . ,m/2− 2. Then we have a commutative diagram

0 → H2k
c (π̄−1(Zj)) → H2k(π̄−1(Y j)) → H2k(π̄−1(Y j+1)) → 0

ξ∗j
� ξ′j

� ξ′j+1

�
0 → H4k

c (π−1(Z′
j))

D′
1,ev → H4k(π−1(Y2j+δ))

D′
1,ev → H4k(π−1(Y2j+2+δ))

D′
1,ev → 0.

It is enough to show that ξ∗j is injective. As before we consider the following
commutative diagram,

0 → H4k
c (π−1

0 (Z′
j))

D′
1,ev → H4k(π−1

0 (Y2j+δ))
D′
1,ev → H4k(π−1

0 (Y2j+2+δ))
D′
1,ev → 0

ϕ
� � �

0 → H4k
c (π−1(Z′

j))
D′
1,ev → H4k(π−1(Y2j+δ))

D′
1,ev → H4k(π−1(Y2j+2+δ))

D′
1,ev → 0.

Note that the closed immersion π−1
0 (Y2j+1+δ−Y2j+2+δ) ↪→ π−1

0 (Z ′
j) induces

an isomorphism

H4k
c (π−1

0 (Z ′
i))

D′
1,ev

∼−→ H4k−4a(BL)D
′
,

where a = (b − δ)/2 − j − 1 as before. Also the closed immersion
π−1(Y2j+1+δ − Y2j+2+δ) ↪→ π−1(Z ′

j) induces an isomorphism

H4k
c (π−1(Z ′

j))
D′
1,ev

∼−→ H4k−4a(BL
A′)D

′
1 .

It follows that, under the above isomorphism, the map ϕ coincides with the
map

H4k−4a(BL)D
′ → H4k−4a(BL

A′)D
′

1

induced from the closed immersion BL
A′ ↪→ BL. Then, a similar discus-

sion as before implies that the map ξ∗j coincides with θL under the above
isomorphisms. Hence, ξ∗j is injective. This proves the lemma. �

3.20. We keep the assumption in Lemma 3.19. Then the map ξ′0 is
injective. In particular, in the case where b is even, we have an injective
map

ξ′0 : H2k(π−1(Y 0)) → H4k(π−1(Y0))
D′
1,ev.
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We now assume that b is odd, i.e., δ = 1. As discussed in 3.16, we define
Y −1 as the variety preceding Y 0 in the filtration of KerA0 given in 3.18.

Hence we have Y −1 = Y
(s1)
0 if s′ ≤ s− 2, and Y −1 = Y

(s)
if s′ = s− 1. As

in 3.15, we can construct a map

ξ′−1 : H2k(π−1(Y −1)) → H4k(π−1(Y0))
D′
1,ev

making the similar diagram as (3.16.1) commutative. The following lemma
is proved in a similar way as Lemma 3.17. (In some steps the proof becomes
simpler since we don’t need to use C0 − C1. Also we use the variety BA′

instead of BA′′ .)

Lemma 3.21. Under the assumption in Lemma 3.19, the map ξ′−1 is
injective.

3.22. Proposition 3.12, (3.16.1), Lemma 3.17, Lemma 3.19 and Lemma
3.21 covers all the steps in the filtration of BA and BA0 given in 3.4. Hence

we see that the map ξ0 or ξ′0 for V (0) is injective. Since this map coincides
with the map θ, Proposition 3.2 is now proved.

Appendix

In this Appendix, we use the same notation as before, but we consider
reductive groups G in general. Let P = LUP be a parabolic subgroup of
G containing B, where L is a Levi subgroup of P containing T and UP is
the unipotent radical of P . We denote by WL the Weyl subgroup of W
corresponding to L. Let P  G/P be the variety of parabolic subgroups
of G conjugate to P . For a nilpotent element A ∈ Ng, we denote by PA

the subvariety of P consisting of parabolic subgroups whose Lie algebra
contains A. The variety BA is defined as before. Then we have a natural
map π : BA → PA. The following proposition is an easy consequence of the
results of Borho and MacPherson [BM], and is applied in Section 3 for the
special case where P = P (1) is the maximal parabolic subgroup of G with
WL of type Cn−1.

Proposition A. Let Y be a locally closed subvariety of PA. Then
H i

c(π
−1(Y ), Q̄l) = H i

c(π
−1(Y )) admits a natural structure of WL-modules

satisfying the following.

(i) For a closed immersion Y1 ↪→ Y2 in PA, the cohomology long ex-
act sequence associated to π−1(Y1) ↪→ π−1(Y2) turns out to be a
sequence of WL-modules.
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(ii) If Y = PA, then π−1(Y ) = BA, and the WL-module structure of
H i(π−1(Y )) coincides with the restriction to WL of the Springer
(W -) module H i(BA).

(iii) If Y = {P ′} with P ′ = gPg−1, we have π−1(Y ) � BL
A′, where

A′ ∈ Nl is the image of Ad(g−1)A ∈ LieP under the map LieP →
LieP/LieUP � l. Then the WL-module structure of H i(π−1(Y ))
coincides with the Springer (WL-) module H i(BL

A′).

Proof. Let

Ñg = {(x, gB) ∈ Ng ×G/B | Ad(g−1)x ∈ LieB},
Ñ P

g = {(x, gP ) ∈ Ng ×G/P | Ad(g−1)x ∈ LieP}.

We consider a commutative diagram

where ρ′, η and ξ are defined by

ρ′(x, gB) = x, η(x, gB) = (x, gP ), ξ(x, gP ) = x,

respectively. Let ρ : g̃ → g be the map as given in the proof of Lemma
2.3. Then by the construction of Springer representations due to [L1]
as explained in 2.3, the complex Rρ∗Q̄l has a natural structure of W -
complex. Since Rρ′∗Q̄l � Rρ∗Q̄l|Ng

, Rρ′∗Q̄l also has a structure of W -

complex. Now it is shown in [BM, Prop. 2.13] that Rη∗Q̄l has a nat-
ural structure of WL-complex. Then for each locally closed subvariety

Y ′ in Ñ P
g , H

i
c(Y

′,Rη∗Q̄l) � H i
c(η

−1(Y ′), Q̄l) admits a structure of WL-
modules. If Y is a locally closed subvariety in PA, Y is isomorphic to

Y ′ = {(A, gP ) ∈ Ñ P
g | gPg−1 ∈ Y }, and π−1(Y ) � η−1(Y ′). Hence

H i
c(π

−1(Y )) admits a structure of WL-modules. Now (i) is clear from this
construction.
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We now assume that Y = PA. It is known by [loc. cit.] that the WL-
action on Rρ′∗Q̄l  Rξ∗(Rη∗Q̄l) induced from the WL-action on Rη∗Q̄l co-
incides with the restriction to WL of W -action (Springer action) on Rρ′∗Q̄l.
If we put Y ′ = ξ−1(A), then Y ′  PA and η−1(Y ′)  BA. Then we have

Hi({A}, Rρ′∗Q̄l)  Hi(Y ′, Rη∗Q̄l)  H i(η−1(Y ′), Q̄l).

Hence the WL-module structure on Hi(η−1(Y ′)) coincides with the WL-
module structure on Hi({A}, Rρ′∗Q̄l)  H i(BA) which is nothing but the
restriction to WL of the Springer action of W . This shows (ii).

It remains to show (iii). We consider the following commutative diagram,

Ñl
ĩ−−−→ ṼP q̃←−−− Ñg

ρ′′
� �ζ

�η

Nl
i−−−→ VP q←−−− Ñ P

g ,

where ρ′′ : Ñl → Nl is the similar map as ρ′ in the case for l = LieL, and

VP = {(x̄, gP ) | x̄ ∈ Lie gPg−1/Lie gUP g−1},
ṼP = {(x̄, gB) | x̄ ∈ Lie gBg−1/Lie gUP g−1},

and

ζ(x̄, gB) = (x̄, gP ), q(x, gP ) = (x̄, gP ), q̃(x, gB) = (x̄, gB),

i(x̄) = (x̄, P ), ĩ(x̄, lBL) = (x̄, lB)

for g ∈ G, l ∈ L. Since the squares in the above diagram are cartesian, we
have, by the proper base change theorem,

i∗(Rζ∗Q̄l)  Rρ′′∗Q̄l, q∗(Rζ∗Q̄l)  Rη∗Q̄l.

Then by [BM, Prop. 2.12] it is known that Rζ∗Q̄l admits a natural WL-
action, and the WL-actions on Rρ′′∗Q̄l (the Springer action of WL) and on
Rη∗Q̄l (the one given in the proof of (i)) are inherited from the WL-action on

Rζ∗Q̄l. We now consider a point (A, gP ) ∈ Ñ P
g . Then q(A, gP ) = (Ā, gP ),

where Ā ∈ Lie gPg−1/Lie gUP g−1, and (Ā, gP ) is G-conjugate to (A′, P ),
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where A′ is the image of A in LieP/LieUP  l. Hence, by considering the
stalks at these points, we have

(Rρ′′∗Q̄l)A′  (Rζ∗Q̄l)(A′,P ), (Rη∗Q̄l)(A,gP )  (Rζ∗Q̄l)(Ā,gP ).

All the isomorphisms are WL-equivariant. Since (Rζ∗Q̄l)(A′,P ) 
(Rζ∗Q̄l)(Ā,gP ) as WL-complexes, we have (Rρ′′∗Q̄l)A′  (Rη∗Q̄l)(A,gP ). On

the other hand, we have (Riρ′′∗Q̄l)A′  H i(BL
A′) and also,

(Riη∗Q̄l)(A,gP )  Hi(Y ′, Rη∗Q̄l)  H i(η−1(Y ′))

with Y ′ = {(A, gP )}, as WL-modules. Hence for Y = {gPg−1} ⊂ PA, the
WL-module H i(π−1(Y )) coincides with the Springer module H i(BL

A′). This
proves (iii), and so the proposition is proved. �
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Ann. Scient. Ecole Norm. Sup. (1974), 53–88.

[F] Fary, I., Cohomologie des variétés algébriques, Ann. of Math. 65 (1957),
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