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Remarks on Gorenstein Terminal Fourfold Flips

By Hiromichi Takagi∗

Abstract. We prove that for any flipping contraction from a
Gorenstein terminal 4-fold, a general hyperplane section which contains
the exceptional locus has only canonical singularities. Based on this
fact and using Ran’s theorem, we prove the existence of the flip of a
flipping contraction from a Gorenstein terminal 4-fold whose general
hyperplane section has only isolated canonical singularities and excep-
tional locus is irreducible. Furthermore we classify such flipping con-
tractions and flips.

0. Introduction

To proceed the Minimal Model Program (in short MMP), an elementary

transformation called flip is very important (see [KMM] for detail).

Definition 0.1. Let X be a normal algebraic variety (resp. normal

analytic variety) with only terminal singularities and Y a normal algebraic

variety (resp. (Y, S) a pair of an analytic space and its compact subspace).

A projective morphism f : X → Y is called a (terminal) flipping contraction

if

(1) −KX is f -ample;

(2) ρ(X/Y ) = 1 (resp. ρ(X/Y, f−1(S)) = 1);

(3) f is an isomorphism in codimension 1.

If there exists a normal algebraic variety (resp. normal analytic variety) X+

with only terminal singularities and a projective morphism f+ : X+ → Y
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such that

(1) KX+ is f+-ample;

(2) ρ(X+/Y ) = 1 (resp. ρ(X+/Y, (f+)−1(S)) = 1);

(3) f+ is an isomorphism in codimension 1,

we call f+ the (terminal) flip of f . We call the following diagram a flipping

diagram:
X ��� X+

f ↘ ↙ f+

Y .

The existence of the flip is a very hard problem. In dimension 3,

Shigefumi Mori proved it in [M4]. As a test case of 4-dimensional flips, we

consider a flipping contraction from an algebraic 4-fold with only Gorenstein

terminal singularities. Let X be an algebraic 4-fold with only Gorenstein

terminal singularities and f : X → Y be a flipping contraction. Let E be

the exceptional locus. Since there is no flipping contraction from an alge-

braic (or analytic) 3-fold with only Gorenstein terminal singularities, we

find that f(E) is a set of finite points. Hence replacing Y by a small Stein

neighborhood of a point in f(E), we can proceed in the analytic category.

Precisely speaking, we consider the following object below (we call this (∗)).
(∗) Let X be an analytic 4-fold with only Gorenstein terminal singu-

larities and (Y, P ) a pair of a contractible 4-dimensional Stein space and a

point in it such that Y has only ccDV singularities (i.e., singularities whose

general hyperplane sections have only cDV singularities) outside P . Let

f : X → Y be a flipping contraction and E := f−1(P ), i.e., the exceptional

locus of f .

In [Kaw3], Yujiro Kawamata considered the case where X is smooth.

He proved the following:

Theorem 0.1. Assume that X is smooth. Then the flip exists and

E � P2 and NE/X � OP2(−1) ⊕OP2(−1). In particular we obtain the flip

by blowing up E (the exceptional locus of the blowing up is P2 × P1) and

blowing down this P2 × P1 to P1.

Quite recently Yasuyuki Kachi proved in his preprint [Kac2] the follow-

ing:
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Theorem 0.2. Assume that X is singular and has only isolated com-

plete intersection terminal singularities. Suppose that there is a member of

| − 2KY | through P which has only a rational singularity at P .

Then the flip exists and E � P2 and NE/X � OP2 ⊕OP2(−2). Further-

more X has only one singularity on E, which is analytically isomorphic to

o ∈ (xy + zw + tm = 0) ⊂ C5.

He proved the existence of such a flip by induction and constructed the

desired flip very explicitly (see [Kac2, §8] for detail). He also investigated

some special semistable 4-fold flipping contractions in [Kac1].

First we consider the above object (∗) with no additional assumption.

Our starting points are the following two theorems:

Theorem 1.2 (Rough classification of the exceptional locus). Assume

that the exceptional locus E contains 2-dimensional components. Let E =

∪Ei be the irreducible decomposition of E. Then E is purely 2-dimensional

and (Ei,−KX |Ei) is isomorphic to (Fn,0, nl), where l is a ruling of Fn,0.

Theorem 1.3. Let B a general hyperplane section through P . Then

the strict transform A := f∗B has only canonical singularities.

Our main result is the following:

Main Theorem. We use also the notation as in Theorem 1.3. Assume

that A has only isolated singularities. Then E is 2-dimensional. Further-

more assume that E is irreducible and hence isomorphic to Fn,0 for some

natural number n.

Then the flip exists.

We give the description of the flipping diagram for such an f as in the

main theorem. (See Corollary 2.3.)

A key to the main theorem is the theorem of Ziv Ran (Theorem 1.5 be-

low). By this, we can construct the flip as János Kollár and Shigefumi Mori

did for 3-dimensional terminal flipping contractions by using the deforma-

tion theory of rational singularities of surfaces. (see [KM, Theorem 11.7]).

We hope that by generalizing Ran’s Theorem we can prove the existence

of the flip for any flipping contraction from a Gorenstein terminal 4-fold as

we do in this paper.
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Notation and Convention.

(1) In this paper, we will work over C, the complex number field and

in the analytic category;

(2) We denote by Fn, the Hirzebruch surface P(OP1 ⊕ OP1(−n)) and

by Fn,0 the normal surface which is obtained from the Hirzebruch

surface Fn by contracting the negative section.

1. Preliminaries

Theorem 1.1. Let X and Y be normal log terminal varieties and f :

X → Y a projective morphism. Let L an f-ample line bundle on X and F

a fiber of f . Assume that f : X → Y is the adjoint contraction supported

by KX + rL and either dimF < r + 1 if dimY < dimX or dimF ≤ r + 1

if dimY = dimX.

Then f∗f∗L → L is surjective at every point of F .

Proof. See [AW1]. They assume that L is ample but their proof works

also for the case that X is analytic and L is relatively ample. �

Theorem 1.2 (Rough classification of the exceptional locus). We con-

sider the object (∗). Assume that the exceptional locus E contains 2-

dimensional components. Let E = ∪Ei be the irreducible decomposition

of E. Then E is purely 2-dimensional and (Ei,−KX |Ei) is isomorphic to

(Fn,0, nl), where l is a ruling of Fn,0.

Proof. By Theorems 1.10 and 1.19 of [AW3], it is sufficient to exclude

the following possibilities: (Ei,−KX |Ei) is isomorphic to (P2,OP2(2)) or

(Fn, C0 + ml), where C0 is the negative section and l is a ruling and m ≥
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n+1. By following the argument of [W, Theorem 1.1, claim] with Theorem

2.13 in [Ko3], we can prove

Claim. Let X be a variety with only log terminal singularities and R

an extremal ray of X. Let F be an irreducible component of a non-trivial

fiber of the contraction of R. Assume that for a general point x ∈ F , there

is a rational curve M ⊂ F through x with the following condition:

(1) its intersection with −KX is minimal among all rational curves in

F through x.

(2) X has only local complete intersection singularities along M and M

is not contained in the singular locus of X.

Then

(1.2.1) dimF + dim(locus of R) ≥ dimX + l(R) − 1,

where l(R) is the length of R. Furthermore if the equality holds, the dimen-

sion of the deformation of M which through a fixed point x is dimF − 1.

If (Ei,−KX |Ei) is isomorphic to (P2,OP2(2)), a general line satisfies the

assumption of M in Claim. So we can use Claim and derive a contradiction

to the inequality (1.2.1). If (Ei,−KX |Ei) is isomorphic to (Fn, C0 + ml), a

general ruling satisfies the assumption of M in Claim. So by using Claim,

we obtain the equality in (1.2.1). But a ruling cannot move if a general

point on it is fixed, a contradiction to the second part of Claim. �

By this Theorem, the exceptional locus of a Gorenstein terminal 4-fold

flipping contraction is either purely 1-dimensional or purely 2-dimensional.

In the former case, we call it a flipping contraction of type (1, 0). In the

latter case, we call it a flipping contraction of type (2, 0).

Theorem 1.3. We consider the object (∗). Let B be a generic hyper-

plane section through P . Then the strict transform A := f∗B has only

canonical singularities.

Proof. We take a general member C ∈ |−KX | and let D := f(C). By

the freeness of | −KX | (Theorem 1.1), we can assume that C is Gorenstein

terminal. D is Gorenstein by the Serre-Grothendieck duality (cf. [Kaw
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2, the Proof of Theorem 8.7]), which in turn shows that D is normal and

C → D has then only connected fibers by the Zariski Main Theorem. Hence

if f is of type (1, 0), C → D is an isomorphism or if f is of type (2, 0), f |C
is a flopping contraction. So in any case D has also Gorenstein terminal

singularity at P , i.e., cDV singularity. Then we may assume that B|D is

canonical by replacing B if necessary. So A|C must be also normal and

canonical since A|C → B|D is isomorphism if f is of type (1, 0) or A|C →
B|D is crepant if f is of type (2, 0). We know that A is canonical along C|A
by the above argument. So it suffices to prove that A is canonical outside

C|A. The argument below is inspired by the proof of [Kaw 2, Theorem 8.5].

Let C ′ be a general member of | − 2KX | and D′ := f(C ′). We know that

KB + D|B is canonical by the inversion of adjunction as follows:

KB + D|B|D|B = KD|B is canonical and in particular kawamata log

terminal. Hence by [Utah, 17.6 Theorem], KB +D|B is purely log terminal.

But KB + D|B is Cariter so it is canonical.

Hence

(1.3.1) KB +
1

2
D′|B is also canonical since D′ is more general than D.

We take the double cover Ã → A (resp. B̃ → B) whose branch locus is C ′|A
(resp. D′|B). Let g : Ã → B̃ be the natural morphism. It is sufficient to

prove that Ã is canonical since Ã → A is etale outside C ′|A. By (1.3.1), B̃

is Gorenstein canonical. So Ã is also Gorenstein canonical since g is crepant

and we are done. �

Remark. By this Theorem, we see that the object (∗) is a very spe-

cial example of a semistable 4-fold flipping contraction. (See [C] for the

definition of a semistable flipping contraction.)

Proposition 1.4. Consider the situation of Theorem 1.3 and take A

and B as there. Then

(1) a general element of | − KB| has only Du Val singularity at P ;

(2) for any i, Ei is not Q-Cartier divisor in A.

Proof.

(1) D|B ∈ | − KB| in the proof of Theorem 1.3 satisfies (1).
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(2) (cf. the argument of [Kac1, 4.3]) We assume that for some i, Ei is Q-

Cartier. Assume further that E has another component. Let Ej be

a component such that Ei ∩ Ej �= φ. Then by the assumption that

Ei is Q-Cartier, Ei ∩ Ej is 1-dimensional. Then since the Picard

numbers of such Ej ’s and Ei are 1, the union of Ei and Ej ’s is

covered by one extremal ray in NE(A/B). For a ruling m of Ej

(not contained in Ei), Ei.m > 0. But for a ruling l in Ei, Ei.l < 0,

a contradiction. Hence E is irreducible and Q-Cartier. So B has

only canonical singularities by [KMM, Lemma 5-1-7]. Note that

B is smooth outside P and that | − KB| has a Du Val element

through P . So in fact B is terminal by [St, Section 5]. Since B can

deform to a 3-fold with only cDV singularities in Y , B also has only

cDV singularity (cf. [Ko1] or [Ra2, Theorem 2.3]). In particular B

has only hypersurface singularity so Y has also only hypersurface

singularity, a contradiction. We establish the proposition. �

The next theorem due to Z. Ran is another key to the proof of the main

theorem.

Theorem 1.5. Let U be a smooth 3-fold and µ : U → V a projective

bimeromorphic morphism. Let C be the exceptional locus of µ. Assume

that C is P1 and KU .C > 0. Then µ is target stable, i.e., if there is a small

deformation V → (S, o) of V over S, then we have a small deformation

U → V of µ : U → V over (S, o).

Proof. See [Ra2, Theorem 3.2]. �

Proposition 1.6 (H. Laufer). Let S be normal Gorenstein surface

and f : S → T a projective bimeromorphic morphism to a normal suface T .

Let C be the exceptional curve. Suppose that C is irreducible, isomorphic

to P1 and KS .C = −1. Then f(C) is a smooth point of T , S has only one

singular point on C which is of type An−1 for some n ∈ N. Furthermore

C2 = − 1
n .

Proof. See [LS, Theorem 0.1]. �

Theorem 1.7 (Length of an extremal ray). Let X be a variety with

only canonical singularities and R an extremal ray of X. Let F be a 1-
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dimensional irreducible component of the fiber of the contraction of R which

contains Gorenstein points of X. Then KX .F ≥ −1.

Proof. See [M4, 1.3 and 2.3.2] or [I, Lemma 1]. �

Proposition 1.8. Let U be a 3-fold with only Gorenstein canonical

singularities and (V, P ) a pair of a 3-dimensional normal Stein space and a

point in it. Let f : U → V be a flipping contraction whose exceptional locus

l is connected. Then l is irreducible and l ⊂ Sing U .

Proof. The irreducibility of l can be proved by the same argument as

the first part of the proof of Theorem 1.3. Assume that

(1.8.1) Sing U ∩ l consists of finite points.

Let g : U ′ → U be a partial resolution such that g is crepant and U ′ has

only Gorenstein terminal singularities (cf. [M3] and [Re2]). Since KU ′ is

not f ◦ g-nef, we can find an extremal ray R ∈ NE(U ′/V ). Let l′ be an

irreducible curve such that [l′] ∈ R. Then l′ is the strict transform of l

by (1.8.1) and the fact that KU ′ is g-nef. So R is a flipping ray. But this

contradicts the fact that there is no flipping contraction from a Gorenstein

terminal 3-fold. �

2. Proof of the Main Theorem

We will also use the notation in Theorem 1.3 freely.

Proof. First we prove that E is 2-dimensional. Assume that E is

1-dimensional. Then we obtain a flipping contraction from a Gorenstein

canonical 3-fold A such that the exceptional locus E is not contained in the

singular locus of A, a contradiction to Proposition 1.8.

In the following we assume that E is irreducible and is isomorphic to

Fn,0. Let q : Aq → A be a small morphism such that the inverse image Eq of

E is q-anti-ample (i.e., Aq := ProjanProjanProjan
⊕∞

m=0 OA(−mE) and q is the natural

projection). We can take such a small morphism by [Kaw2, Theorem 6.1].

Since E is not Q-Cartier by Proposition 1.4, Aq is not isomorphic to A.
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Let Φ : Aq → A+ be the contraction of an extremal ray in NE(Aq/B) and

g+ : A+ → B the natural morphism. We obtain the following diagram:

Aq

q ↙ ↘ Φ

A A+

f |A ↘ ↙ g+

B .

Claim 2.1. Φ is a divisorial contraction which contracts Eq to a curve.

Proof. Since q is not an isomorphism and −Eq is q-ample, Eq contains

all q-exceptional curves. If Φ is a divisorial contraction which contracts Eq

to a point, such q-exceptional curves are contracted by Φ. But this is absurd

since KAq is q-trivial but Φ-negative. If Φ is a flipping contraction, then the

flipping curve m is contained in the curve singularity of Aq by Proposition

1.8. So by the assumption that A has only isolated singularities, m must

be contained in the q-exceptional curve, a contradiction. �

Let E+ be the curve Φ(Eq).

Claim 2.2.

(1) A+ is smooth along E+. E+ � P1 and Eq � Fn;

(2) Aq is smooth outside the negative section M of Eq and Aq has only

(locally trivial) cAm−1 singularity along M , where m is an positive

integer (later we will show that m = n in the proof of Corollary 2.3);

(3) KA+ .E+ = 2m − n > 0.

Proof.

(1) By Theorem 1.1, | −KAq | is free near the fiber over any point Q of

E+, so we can take a smooth member D ∈ | − KAq | near the fiber

since Aq has only isolated singularities. Since D maps isomorphi-

cally to Φ(D) ∈ | − KA+ | (cf. [Kaw2, the Proof of Theorem 8.7]),

we see that there is a smooth member of | −KA+ | through Q. Note

that Q is a canonical singularity of A+. By these, we can see that

Q is a smooth point of A+ as follows:

It is sufficient to prove that KA+ is Cartier at Q. Assume the

contrary. Let π : Ã+ → A+ be the index 1 cover for KA+ near Q.



158 Hiromichi Takagi

Then Ã+ is Gorenstein canonical at π−1(Q). Since π is ramified

only at Q and Φ(D) is smooth,

π−1Φ(D) has at least 2 components and(2.2.1)

they intersect mutually only at π−1(Q).

Furthermore they are all smooth. In praticular π−1Φ(D) satisfies R1

condition. On the other hand π−1Φ(D) satisfies S2 condition since

this is a Cartier divisor of a canonical singularity. Hence π−1Φ(D)

is normal by the Serre’s criterion. But this is a contradiction to

(2.2.1).

Since B has only rational singularities and E+ is an irreducible

curve, E+ must be P1. Since a general fiber n of Φ is irreducible

and reduced and −KAq .n = 1 (Theorem 1.7), any fiber is irreducible

and reduced. So Eq is Fn.

(2) Let Q be any point on E+, G a general (smooth) hyperplane section

of A+ through Q such that A+|E+ is one point and F the pull

back of G (we consider analytically locally near Q). Then F is

normal. In fact, since the fiber (Eq)Q over Q of Φ is not contained

in the singular locus of Aq, Eq is generically Cartier in Aq near

(Eq)Q, which in turn shows (Eq)Q is generically Cartier divisor on

F . Since (Eq)Q is smooth, F is generically smooth along (Eq)Q,

i.e., F is normal. Furthermore we have KF .(Eq)Q = −1 and F is

Gorenstein. So we know by Proposition 1.6 that F has only one

Am−1 singularity for some integer m and ((Eq)Q)2F = − 1
m . On the

other hand, ((Eq)Q)2F = (Eq.(Eq)Q)Aq and the value of the right

side of this equality is independent of Q, so m is also independent

of Q. Consequently, we find that Aq has the locally trivial cAm−1

curve singularity along M and outside M , Aq is smooth.

(3) By ((Eq)Q)2F = − 1
m , we obtain the subadjunction formula KEq +

m−1
m M = KAq +Eq|Eq and KAq = Φ∗KA+ +mEq. Intersecting these

with M , we can see (3). Remark that Eq.M is negative since Eq is

q-anti-ample. Hence KA+ .E+ is positive. �

By Claim 2.2 (1) and (3), g+ : A+ → B satisfies the assumption of

Theorem 1.5 and hence is target stable. We can take Y as the total space

of a 1-parameter deformation of B. Let f+ : X+ → Y be the deformation
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of g+ associated to this deformation. Then this is the flip of f . (We can

easily check the conditions of the definition of flip.) �

Corollary 2.3. Consider the situation as in the main theorem. Let

f+ : X+ → Y be the flip of f and E+ the exceptional locus of f+. Then

(1) A is singular only at the vertex v of E (if n = 1, the vertex means

a point on E). Near v, (v ∈ E ⊂ A ⊂ X) is analytically isomorphic

to (o ∈ (x = z = t = 0) ⊂ (xy + zw = t = 0) ⊂ (xy + zw + tk =

0)) in C5/Zn(1,−1, 1,−1, 0);

(2) X+ is smooth, E+ is P1 and NE+/X+ � O(−1) ⊕O(−1) ⊕O(−n)

or O⊕O(−2)⊕O(−n). Furthermore the former case occurs if and

only if X has only 1
n(1,−1, 1,−1) singularity at v;

(3) there exists a Weil divisor H on X such that −KX ∼ nH. Let C be

a general member of |nH| such that C has only Gorenstein terminal

singularities. By using C, define ring structures to

n−1⊕

j=0

OX(−jH) and
n−1⊕

j=0

OY (−jf(H))

and set

X̃ := SpecanSpecanSpecan
n−1⊕

j=0

OX(−jH) and Ỹ := SpecanSpecanSpecan
n−1⊕

j=0

OX(−jf(H)).

Let Ẽ ⊂ X̃ be the pull back of E by the natural morphism X̃ → X.

Then the natural morphism f̃ : X̃ → Ỹ is a flipping contraction

which satisfies the same assumption as f , and Ẽ is the exceptional

locus of f̃ and is isomorphic to P2.

Proof. First we will show m = n in Claim 2.2. If we restrict the flip to

a general member C ∈ |−KX | and its strict transform C+ ⊂ X+, we obtain

the flop C ��� C+. (Remark that C+ is normal because dim Sing C+ ≤ 1

and C+ is a Cartier divisor on a smooth 4-fold. Hence by the uniqueness of

the flop, C ��� C+ is the flop.) Since C is smooth, the analytic structure

along the exceptional curves is unchanged by the flop (cf. [Ko2, Theorem

2.4]). So C+ is also smooth. Let E′ be the exceptional curve of f |C and
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C ′ ∈ | − KX |C |. Then we have C ′.E′ = n. Let C ′+ ∈ | − KX+ |C+ | be the

strict transform of C ′. We see that C ′+.E+ = −(2m−n) by Claim 2.2 (3).

Since C ��� C+ is a terminal flop, we must have 2m − n = n, i.e., m = n.

We will prove (3). Let H+ be a Cartier divisor on X+ such that

H+.E+ = −1 and H ⊂ X be the strict transform of H+. Then KX+ +nH+

is linearly f+-trivial by Claim 2.2 (3) since we consider locally analytically

along E+. Hence KX + nH is linearly f -trivial since the linear triviality

is preserved by an anti-flip. Let X̃ and Ỹ be as in the statement of (3).

We check that the natural morphism f̃ : X̃ → Ỹ and the pull backs Ã of

A, Ẽ of E satisfy the same assumption as f , A and E and that Ẽ is P2.

Let π : X̃ → X be the covering morphism and C̃ := (π∗(C))red. Note that

nC̃ = π∗(C), C̃ � C and C̃ is a Cartier divisor since C is contained in the

branch locus. Then by the ramification formula KX̃ = π∗KX + (n − 1)C̃,

C̃ ∈ |−KX̃ |. Since C̃ is a Cartier divisor, we see that X̃ is Gorenstein. We

also know that X̃ is terminal since codimension 1 ramification locus C̃ of π

is smooth. The rest are clear except that Ẽ � P2. The restriction of π to

Ẽ is π|Ẽ : Ẽ = SpecanSpecanSpecan
⊕n−1

j=0 OE(−jl) → E, where l is a ruling of E. (Note

that H|E ∼ l.) So it coincides with the quotient P2 → Fn,0 by the action of

Zn, (X : Y : Z) → (ηX : ηY : Z), where X,Y and Z is the homogeneous

coordinate of P2 and η is a primitive n-th root of unity. So Ẽ is P2.

To prove (1), we apply the same method to these f̃ , Ã and Ẽ that we

used in Claim 2.2. (we express all things with ∼ in this case). Then we can

show that Ãq̃ and Ẽq̃ are smooth, Ẽq̃.M̃ = −1. By considering the normal

bundle sequence

0 → NM̃/Ẽq̃
→ NM̃/Ãq̃

→ NẼq̃/Ãq̃
|M̃ → 0,

we see that NM̃/Ãq̃
� OM̃ (−1) ⊕ OM̃ (−1). So M̃ is contracted to an

ordinary double point by q̃. Denote this point by ṽ(∈ Ã). We note that

X̃ is singular at worst only at ṽ since so is Ã and X̃+ is smooth. Then

ṽ is the unique isolated ramification point of π and hence ṽ = π−1(v).

(Recall that v is the vertex of E.) So we can write locally analytically

(ṽ ∈ Ẽ ⊂ Ã ⊂ X̃) � (o ∈ (x = z = t = 0) ⊂ (xy + zw = t = 0) ⊂
(xy + zw + tk = 0)), where x, y, z, w are the semi-invariant coordinates and

xy+zw is semi-invariant with respect to the action of Zn. When we restrict

the action to Ẽ, the action is (y, w) → (ηy, ηw), where η is a primitive

n-th root of unity by the explicit description of π|Ẽ . Hence the action is
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(x, y, z, w) → (ηax, ηy, ηaz, ηw), where a is an integer. By the necessary

condition for the quotient to be canonical ([M3, Theorem 2]), a must be

−1. This is also sufficient.

Next we will prove (2). To determine the normal bundle NE+/X+ , we

consider the normal bundle sequence

(2.1) 0 → NE+/C+ → NE+/X+ → NC+/X+ |E+ → 0.

Since A|C is smooth, we see that NE|C/C = O⊕O(−2) or O(−1)⊕O(−1)

by using the normal bundle sequence

0 → NE|C/A|C → NE|C/C → NA|C/C |E|C → 0.

Since C ��� C+ is the flop, we have NE+/C+ � NE|C/C . On the other hand,

NC+/X+ |E+ = O(−n), so the sequence (2.1) is split. Hence we obtained

the first part of (2).

To prove the second part of (2), we consider the covering described in

the statement of (3). We use the notation there. Recall that C̃ � C and

C̃ ∈ | − KX̃ |. By the argument above together with this, we see that

NE+/X+ � O(−1) ⊕O(−1) ⊕O(−n)(2.2)

if and only if NẼ|C̃/C̃ � O(−1) ⊕O(−1).

So ‘if’ part of (2) follows from Kawamata’s determination of a flipping

contraction from a smooth 4-fold (see Theorem 0.1) and (1). Finally we

prove ‘only if’ part. Assume that NE+/X+ � O(−1) ⊕ O(−1) ⊕ O(−n).

Then by (2.2), NẼ|C̃/C̃ � O(−1) ⊕O(−1). Then locally analytically there

is a smooth surface S̃ such that S̃ ⊂ C̃ and S̃.(Ẽ|C̃) = −1 (note that

S̃ ∈ |KX̃ |C̃ |.) Let S̃+ ∈ |KX̃+ |C̃+ | be the strict transform of S̃ on C̃+.

Consider the exact sequence

0 → OX̃+(2KX̃+) → OX̃+(KX̃+) → OC̃+(KX̃+) → 0.

By the Kodaira-Kawamata-Viehweg vanishing theorem, H1(X̃+,

OX̃+(2KX̃+)) = 0. So there is an element Ṽ + ∈ |KX̃+ | such that Ṽ +|C̃+ =

S̃+. Let Ṽ ∈ |KX̃ | be the strict transform of Ṽ +. Then Ṽ |C̃ = S̃. We

claim that Ṽ is smooth. This implies X̃ is also smooth, which completes



162 Hiromichi Takagi

the proof of the ‘only if’ part whence (1). First we note that Ṽ is normal

since Ṽ |C̃ is smooth. Let x be any point of Ṽ and C̃x a normal general

member of | −KX̃ |Ṽ |. Let Ẽx := Ẽ|C̃x
. Ẽx is the exceptional curve of f̃ |C̃x

and KC̃x
.Ẽx = −1. Hence by Proposition 1.6, C̃x has only one singular

point on Ẽx which is of type Am−1 for some m and (Ẽx)
2
C̃x

= − 1
m . Since

(Ẽx)
2
C̃x

= (Ẽ2.C̃x)Ṽ , m is independent of x. Hence (Ẽx)
2
C̃x

= (Ẽ|S̃)2 = −1

and m is 1, i.e., C̃x is smooth. Consequently Ṽ is found to be smooth at

any point x and we are done. Now we finished the proof of Corollary 2.3. �

Remark 2.4. Let f : X → (Y, P ) be a flipping contraction from a

Gorenstein terminal 4-fold. We use the notation of Theorem 1.3 and Propo-

sition 1.4. By Proposition 1.5, a general member of | − KB| has only Du

Val singularity at P . So
⊕∞

j=0 OX(−jKB) and
⊕∞

j=0 OX(jKB) are finitely

generated. Set A+ := ProjanProjanProjan
⊕∞

j=0 OX(jKB) and let g+ : A+ → B be

the natural morphism. Then A+ has only terminal singularities, KB+ is

g+-ample and g+ is a small morphism (see [KM, Theorem 3.1]). So if we

can generalize Theorem 1.5, we may construct the flip of f by deforming

g+.

3. Some Examples

We construct examples of flipping contractions from Gorenstein terminal

4-folds.

Example 3.1 (Toric example). Let eeei be the vector (0, . . . ,

i
∨
1, . . . , 0) in

R4 for i = 1, 2, 3, eee4 = (−1,−1, n − 1, n) and eee5 = (0, 0,−1,−1). Let

Ci be the cone < eee1, eee2, . . . , ěeei, . . . , eee5 > for i ≥ 0 and C0 the cone <

eee1, eee2, . . . , eee5 >. We denote the toric variety associated to the fan ∗ by

V (∗). Set X := V (C3 ∪ C4 ∪ C5), X+ := V (C1 ∪ C2) and Y := V (C0). Let

f : X → Y and f+ : X+ → Y be the natural morphisms. Then it is easy

to check that they define a flipping diagram. (See [Re].)

Example 3.2 (Y. Kachi, M. Gross). For the above example we can eas-

ily find A (as in the main theorem) with only isolated canonical singular-

ity as determined in Corollary 2.3. We can consider that X is locally a

1-parameter family of A over the unit disk ∆(t). Take the cyclic cover-

ings X̂ → X, Ŷ → Y and X̂+ → X+ associated to the cyclic covering
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∆(s) → ∆(t) defined by t = sm. Then the natural morphisms X̂ → Ŷ and

X̂+ → Ŷ give a flipping diagram.

Example 3.3. For the example 3.1 with n = 1, we can find A whose

singularity is the curve singularity of generically cA1 type along a line of

P2. For this A, we make the similar construction to Example 3.2. We

obtain a flipping contraction from a Gorenstein terminal 4-fold which has

a 1-dimensional singular locus. Furthermore if we take q : Aq → A as in

the proof of the main theorem for this A, the first extremal contraction of

Aq over B is a flipping contraction and after the flip, we can contract the

strict transform of E to a Gorenstein terminal point.
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