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Restdues and Resultants

By Eduardo CATTANI!, Alicia DICKENSTEIN? and Bernd STURMFELS?

Abstract. Resultants, Jacobians and residues are basic invariants
of multivariate polynomial systems. We examine their interrelations in
the context of toric geometry. The global residue in the torus, studied
by Khovanskii, is the sum over local Grothendieck residues at the zeros
of n Laurent polynomials in n variables. Cox introduced the related
notion of the toric residue relative to n+ 1 divisors on an n-dimensional
toric variety. We establish denominator formulas in terms of sparse re-
sultants for both the toric residue and the global residue in the torus.
A byproduct is a determinantal formula for resultants based on Jaco-
bians.

§0. Introduction

Resultants, Jacobians and residues are fundamental invariants associ-
ated with systems of multivariate polynomial equations. We shall inves-
tigate relationships among these three invariants in the context of toric
geometry. The study of global residues in the torus has its origin in the
work of Khovanskii [K2]. The global residue is the sum over local Grothen-
dieck residues at the common roots of n Laurent polynomials in n variables;
see (3.8) and (3.10). The related notion of the toric residue was introduced
by Cox [C2] and subsequently studied in [CCD]. The toric residue is as-
sociated with n 4+ 1 divisors on an n-dimensional projective toric variety.
For our purposes here it suffices to consider divisors that are multiples of
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a fixed ample divisor #. An algorithmic link between these two notions of
residue (“toric” versus “in the torus”) was established in [CD].

The main results of this paper are denominator formulas for toric resi-
dues (Theorem 1.4) and for residues in the torus (Theorem 3.2). In each case
the denominator is given in terms of sparse resultants. These resultants are
naturally associated with sparse systems of Laurent polynomials, or with
line bundles on toric varieties. They were introduced by Gel’fand, Kapranov
and Zelevinsky [GKZ] and further studied in [KSZ],[PSt],[S1],[S2]. In §4
we present new determinantal formulas for sparse resultants based on
Jacobians.

One general objective of our work is to develop computational tech-
niques, which may ultimately enter into the design of algorithms for solv-
ing polynomial equations. Classical results on residues, Jacobians and re-
sultants are limited to dense equations, in which case the underlying toric
variety is complex projective n-space P™. In that classical case our denom-
inator formula appeared already in the work of Angéniol [A] and Jouanolou
[J1],[J3]. Our results also extend the work of Gel’fond-Khovanskii [GK] and
Zhang [Z], who studied residues in the torus for the special case when all
facet resultants are monomials.

We illustrate our results for two generic quadratic equations in two com-
plex variables:

fi = apx® + a1xry + a2y2 + asx + a4y + as,

(0.1) 9 )
fo = box® + biwy + bay” + b3x + byy + bs.
They have four common zeros (x;,v;), @ = 1,...,4, in the algebraic torus

(C*)2, and the (affine toric) Jacobian JT(z,y) := ﬂcy(%%—f — %—fyl%) is

non-zero at these four points. Consider any Laurent monomial x'y/. The
global residue is the expression

o i yj Zt yj
0.2 Resk (z'y?) = 171 272
02) f( ) JT(x1,91) JT (22, y2)
T4 4y
JT(x3,y3) T (24,9a)
This is a rational function in the twelve indeterminates ag, a1, ... ,b5. The-

orem 3.2 implies that there exists a polynomial P;;(ag, a1, ... ,bs) such that
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(0.2) equals

-Pi .
Rgéax{(],i—l—j—?)} ) R;nax{o,l—i} ) R:rgnaX{O,l—j} ’

(0.2/)

where the prime divisors in the denominator are the facet resultants

Roo = agb% — aga1b1by — 2agagbgby + a0a2b% + a%bobg — ajagbgby + a%bg ,
R, = agbg — agasgbsbs — 2agasbobs + aoag,b% + a§b0b5 — azasbgbs + a%bg ,
Ry = a%bg — agaygbybs — 2aa5bobs + a2a5bi + aibzb5 — aqasboby + a%b% .

For instance, for ¢ = 3 and j = 2 we find Res?(x?’yQ) = P3y/R2%, where

(0.3) Pz = adaibsby — 2a3asbibaby + adasbsbs — aZasbs
+ a%a4b1b% — aoa%b%bg + 2agaiazbibobs — 2a0a1a4b0b§
+ 2agasbobiby — 2agaibobybs — agaibibs + 2agasaszbobs
+ a%agbgb% — alagbglu — 2ayasa3bgb1by + 2a1a2a4b3bg

2 2 2 2 2 2 2
+ asbibs — a3asbibs + asaszbobt — a3asbib; .

It is convenient to review the toric algorithm of [CD] for computing global
residues by means of this example. First introduce the homogeneous poly-
nomials Fy(z,y,2) := 22 fs(x/2,y/z) for s = 1,2. Next consider the
following meromorphic 2-form on P?:

i lyi—1

(0.4) TSR,
where Q = xdy A dz — ydx A dz + zdx A dy denotes the Euler form on P2
The residue (0.2) in the torus (C*)? coincides with the toric residue of (0.4)
in P2.

Suppose, for simplicity, that ¢ > 1, 7 > 1 and ¢ + 7 > 3. Consider the
homogeneous ideal I = (2773 Fy  F3) in the polynomial ring K|[z,y, 2|
over the field K = Q(ao,a1,...,bs). The quotient modulo this ideal is a
one-dimensional K-vector space in the socle degree i + j — 2. The homog-
enized Jacobian J(x,y,z) := (277 /xy)JT (v/2,y/2) has degree i + j — 2
and is non-zero modulo I. Thus, the monomial 2°"1y/~! may be written
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as AJ(x,y,z) modulo I, where A € K. The desired residue Res? (z'y?) is
then given by 4X. The coefficient A may be computed, for example, as the
ratio of the normal form of 2'~'y/~! and the normal form of J relative to
a Grobner basis of 1.

To prove a denominator formula like (0.2") we use the following tech-
nique. We replace the form 2/77=3 by a generic homogeneous polynomial
Fo(z,y,z) of degree i + j — 3. Note that F has (iﬂ;l) indeterminate

coefficients, say, cg, c1,c2, . ... Consider the 2-form
i—1,j—1

(0.5) S A o
FoF1Fy

Now all three forms in the denominator of (0.5) are generic relative to their
degrees. In § 1 we study this situation for an arbitrary projective toric
variety in the role of P2. Theorem 1.4 implies that the denominator of
the toric residue of (0.5) equals the resultant R = R(Fy, F1, F3). We now
apply the specialization Fy — 27773, which sets all but one of the variables
o, C1, ... to zero. It takes (0.5) to (0.4), and by Lemma 3.4, it takes R to
RLI _3, as desired. Such a specialization from a generic polynomial Fjy to
a monomial will connect residues in the torus (§3) to toric residues (§1).
This technique will reduce Theorem 3.2 to Theorem 1.4.

In §2 we express the sparse resultant as the determinant of a Koszul-type
complex which involves the Jacobian. In some special cases (Corollary 2.4)
we obtain Sylvester-type formulas which generalize the approach in [GKZ,
§II1.4.D] (see also [Ch]).

Acknowledgements. We are grateful to David Cox, Fernando
Cukierman, Irena Peeva, and Richard Stanley for their very helpful sug-
gestions. Part of the work on this paper was done while Eduardo Cattani
was visiting the University of Grenoble and the University of Buenos Aires;
he is thankful for their support and hospitality.

§1. Residues, Jacobians and Resultants in Toric Varieties

We begin with a review of basic concepts from toric geometry including
the toric residue. For details and proofs see [F],[O],[C1],[C2], and [CCD].
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Let X = Xp denote the projective toric variety defined by an integral,
n-dimensional polytope

(1.1) P = {meR" : (mm)>-b for i=1,... s},

where the n; are the first integral vectors in the inner normals to the facets
of P. Thus, X is the toric variety associated with the lattice M = Z™ and
the inner normal fan ¥(P) as in [F, §1.5]. We introduce the polynomial ring
S := Clz1,...,xs], where the variable z; is associated to the generator n;
and hence to a torus-invariant irreducible divisor D; of X. The Chow group
Ap—1(X) of invariant Weil divisors is presented by the exact sequence

(1.2) 0-M-—-272°— A,1(X)—0

where the left morphism sends m € M to the s-tuple (m,n) := ((m,n1),...,
(m,ms)).
Let Z denote the algebraic subset of C* defined by the radical monomial
ideal
(H x; , caconeof X(P)) C S.
ni¢o
The algebraic group G := Homgz(A,_1(X),C*) — (C*)® acts naturally
on C? leaving Z invariant. The toric variety X may be realized as the
categorical quotient of C*\Z by G (see [C1]). When X is simplicial (i.e. P
is simple), then the G-orbits are closed and X is the geometric quotient of
C*\Z by G. The torus (C*)® lies in C*\Z and maps onto the dense torus
in X under the quotient map.
Given a € N*® we write 2 for the monomial IT{_, z7*. As in [C1] the right

morphism in (1.2) defines an A,,_1 (X )-valued grading of the polynomial ring
S:

(1.3) deg(z?) = D> aiDi] € Ay 1(X).
=1

Let S, denote the graded component of S of degree a. We abbreviate
Bo = [>_; Di] and §:=[>_,b;D;] € Ap,—1(X). The divisor § is ample and
S = HO(X, L), where £ = Ox(f3) is the line bundle associated to 3 (see
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[F, §3.4]). Thus, a homogeneous polynomial F' of degree kf represents a
global section of £, and we may consider its zero set in X.

A monomial x® has degree k3, k € N, if and only if there exists m(a) €
Z" such that

(m(a),m;) +kb; = a; for i=1,...,s.

The point m(a) is unique and, since a; > 0, it lies in kP N Z". Therefore,
the map

S
=1

defines a bijection between integral points in kP and monomials of degree
kB or, equivalently, between Laurent polynomials supported in kP and
homogeneous polynomials of degree k5 in S. If f(t1,... ,t,) is supported
in kP then its image is the kP-homogenization

(1.5)  F(x1,...,1s) = (H 2f%) (@), ta(2) € Sks,

S

where ti(z) = H erj’w (j=1,...,n)
i=1
and {e1,...,en} is the standard basis of Z". By restricting (1.4) we also

get a bijection between monomials % of degree kG — By and integral points
in (kP)°, the interior of kP.

PROPOSITION 1.1.  The ring Sig = @peSks is Cohen-Macaulay of
dimension n + 1, with canonical module ws, , = @y Sks—p,- Fix positive
integers ko, ... ,kn and let K = ko + -+ kpn, p = kB — Bo. Given F; € Sy,
fori=0,...,n such that Fy, ..., F, have no common zeroes in X, then:

(i) Fo,...,F, are a reqular sequence in S,g and, hence, in WS, 5-
(ii) The degree p component R, of the quotient R = S,g/(Fo,...,Fy)
has C-dimension 1.
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PROOF. See [B, Theorem 2.10 and Proposition 9.4] and [C2, Proposi-
tion 3.2]. OJ

We next recall the construction of the Euler form 2 and the toric Ja-
cobian J(F') (see [BC,§9], [C2,84]). For any subset I = {i1,...,i,} of
{1,...,s} we abbreviate

det(nr) := det({es,mi;)1<ej<n), dovyr =dziy Ao ANdwi,, Ty =gy

Note that the product det(n;)dz; is independent of the ordering of i1, . . . , iy.
The Euler form on X is the following sum over all n-element subsets I C

{1,...,s}h

Q = Zdet(m)ﬁcldaq.
|[I|l=n

The Euler form Q may be characterized by the property that Q/(xy - - - ) is
the rational extension to X of the T-invariant holomorphic form dt—tll/\- . -/\%?
on the torus T

As in Proposition 1.1, consider homogeneous polynomials Fy, Fy,... , Fy,
where deg(F;) = k; 3 and kK = ko + - - - + kp,. Then there exists a polynomial
J(F) € Skp—p, such that

(1.6) Z;’L:O(_l)iFi cdEg N - ANdF;_ 1 NdFypg N -+ NdF, = J(F) -Q.

Furthermore, if I = {i1,...,4,} is such that n;,,...,n;, are linearly inde-
pendent, then

koFo ki1Fy knFy
1 8F0/6xi1 6F1/8a:i1 . 8Fn/8xi1
1.7) J(F) = —————det . . .
( ) ( ) det(m) Xy : : :

The polynomial J(F') is called the toric Jacobian of F' = (Fy, Fi,... ,Fy).
In the special case kg = k1 = --- = k,, = 1 the toric Jacobian can also
be computed as follows. Let fo,... , fn, be Laurent polynomials supported



126 Eduardo CATTANI, Alicia DICKENSTEIN and Bernd STURMFELS

in P and let Fy,...,F), denote their P-homogenizations as in (1.5). Let
PNZ"={my,... ,m,} and

B B ];’}

tla—o tla—l ... 1 e n

(1.8) i) = det| O h
th3 .50 ... tn%

PROPOSITION 1.2. Let fj = Y1 w;it™ and setm; = (1,m;) € Z"+1.
Then,

i) = > i1 . . . in) - det (Mg, My, ... 10, ) - £ 0T i
1<i0<i1 <<t <p

where the brackets denote the maximal minors of the coefficient matriz:

UOio UOil .. u()in
[ioil c. ln] = det

Um'o Um'l P um-n

Moreover, j(t) is supported in ((n+1)P)° and its (n+ 1) P-homogenization
is x1 - xgJ(F).

PrROOF. We consider the (n 4 1) x g matrix A = (7ny,... ,7,), the
px p diagonal matrix D = diag(t™,... ,t™*) and the pux (n+1) matrix U,
obtained by transposing the matrix of coefficients (u;;). Their product A
D-U equals the (n+1) x (n+1) matrix in (1.8). The first assertion amounts
to the Cauchy-Binet formula for j(t) = (Any14) - (Aps1D) - (A U). If
the sum m;, + m;, + --- 4+ m;, lies in the boundary of (n + 1)P, then all
mg; lie in a facet of P and the determinant det(miq, My, - .. , M4, ) Must
vanish. Consequently, j(t) is supported in the interior of (n + 1)P. The
final statement follows from (1.6) together with

n

ot
GO A A = ST fidfo A Adfy Adfjea A Adf, . O
7=0
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We now return to general ko, ..., k,. Suppose that Fy,... ,F;, have no
common zeroes in X. Then R, = C by (ii) in Proposition 1.1. In [C2] Cox
constructs an explicit isomorphism Res%( : R, — C whose value on the toric
Jacobian is the positive integer

(1.9) Resx(J(F)) = Hk -n! - vol(P),

where vol(-) denotes the standard volume in R™. The isomorphism
Resy (-) is called the toric residue. From (1.9) we conclude that

(1.10) J(F) defines a non-zero element in R, .

We next present an affine interpretation of the toric residue. Let f; be
a generic Laurent polynomial with Newton polytope k;P. Let F; € Si
be the k; P-homogenization of f;. Given a homogeneous polynomial H of
critical degree p = k3 — 3y, the expression

HQ
Fy---F,

defines a meromorphic n-form on X. Its restriction to 7" may be written as

hdi
fOfn tl tn’

where h is a Laurent polynomial supported in (kP)°. Our generic choice
of fo,..., fn guarantees (cf. [K1,52]) the following properties for each i =
0,...,n: The finite set V; := {x € X : Fj(z) = 0; j # i} lies in the torus
T, hence V; = {t € T : f;(t) = 0; j # i}, and the function h/f; is regular at
the points of V;.

The following result is a consequence of Theorem 0.4 in [CCD]:

PROPOSITION 1.3. For any fized i € {0,...,n}, the toric residue
equals
h/ fi dty dty,
1.11) Res Res —A - A—).
( ) F( Z 6 fz 1fz+1 fn ty tn )

£ev;
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Here the right-hand side is a sum of Grothendieck residues (|[GH], [T]; see
also §3) relative to the divisors { fj(t) =0} C T, j #i.

REMARKS.

i) Even though Theorem 0.4 in [CCD] is only stated for simplicial toric
varieties, it is valid for arbitrary complete toric varieties provided V; lies in
T, by passing to a desingularization.

ii) Note that while the right side of (1.11) makes sense for every Laurent
polynomial h, Proposition 1.3 asserts that, if h is supported in (kP)°, then
that expression is independent of .

We next consider n + 1 polynomials having indeterminate coefficients:

(1.12) Fi(u;z) = Z Ujq T for i=0,...,n,
aE.Aki@

where Ay, := {a € N* : deg(z®) = k;3}. We shall work in the polynomial

ring
C = Alzy,... x4 over A= Quj; 1=0,...,n; a€ Agl.

We endow the polynomial ring C' with the A,_;(X)-grading given by (1.3).
For any H € C,, the expression (1.11) depends rationally on the coefficients
of Fy,...,F, and hence defines an element in the field of fractions of A,
which we also denote Resy (H).

As in [GKZ] we define the resultant associated with the bundles £*0, ...
L. Tt is an irreducible polynomial Rero,.. con € A, uniquely defined up to
non-zero rational constant, which vanishes for some specialization of the co-
efficients if and only if the corresponding sections Fy, ... , Fj, have a common
zero in X. Via the correspondence (1.4) between homogeneous polynomi-
als of degree k3 and Laurent polynomials supported in kP, the resultant
Rko, okn (u) agrees with the mixed sparse resultant (see [PSt],[S2]) asso-
ciated with the support sets ko P NZ",...  k, P NZ".

The degree of the resultant is computed as follows. Suppose kg > --- >
k,. Consider the lattice affinely generated by the integral points in koP It
has finite index in Z" :

(1.13) ¢ = [Z" : affz(koP NZ")] .
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Note that ¢ = 1 if £*0 is very ample. The degree of Rko,.. cen(u) in the
coefficients of the i-th form F; equals, by [PSt, Corollary 1.4],

1
(114) kOkz—lkz—i-lknn'z VOI(P)

We now state and prove the main result of this section:

THEOREM 1.4. For any H € C,, the product Rpry  pin (1) -Resy (H)
lies in A.

PROOF. As noted above, for values of u in a Zariski open set, Fy, ...,
F,, have no common zeroes in X and, for every ¢ = 0,... ,n, the set V; =
{r € X : Fj(z) =0, j # i} is finite and contained in 7. Thus, setting for
simplicity ¢ = 0, we have, as in (1.11):

h dt dt
(1.15) Resy (H) = ZResA /fo —1/\---A—n).
v Jifa t tn
0
We may further assume that the zeroes of f1,... , f,, are simple and, there-

fore, each term in the right hand side of (1.15) may be written as (see [GH,
page 650]):

h/ifo dti —— diny h(§)
Jieeofa Aot tn) fo(&) - JF . 1.(8)
ag(ur, ... up)

fo(é) . bg(ul,... ,un) ’

(1.16) Rese(

of:
ot
cients of f;, and ag, b are algebraic functions in these coefficients.

We now sum (1.16) over all points & in V. To get the best possible
denominator even if £ > 1, we must organize the sum (1.15) as follows.
First, we may assume that P contains the origin. Then the affine lattice
agrees with the linear lattice,

where J}; . = det(t; =), the symbol u; stands for the vector of coeffi-

(1.17) affz(kePNZ") = ling(kePNZ"),
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and the inclusion of (1.17) in Z" defines a morphism of tori 7 : ' — (C*)".
The map 7 is a finite cover of degree ¢, and the Laurent polynomial fj is
constant along the fibers of 7. Hence, if n = w(§) for £ € Vj, then we can
define fo(n) := fo(§). Therefore,

1 ag(Uy ..., Up)
Ref() = Y oy gl )
(Vo)

o f0(77) gen—1(n) bf(ula cee 7un)
This expression depends rationally on ug, u1,... ,u,. This implies
Aug, U1, ... ,u
Resy (H) = ( n)

(Hnew(vo) fo(m)) - B(ut, ... ,un)’

where A and B are polynomials. It follows from [PSt, Theorem 1.1] that
H fom) = Rpero . prn (o, u1, .y un) - Clun, .o up)
nem(Vo)
for some rational function C. Therefore, there exist polynomials Ay, By
such that
Ao(UQ, ULy - ,un)
R£k07.__ ,Ekn (Uo,ul, e ,Un) . Bo(ul, e ,Un) '

Resy (H) =

Replacing the role played by the index 0 by any other index ¢ = 1,... ,n,
we deduce that

P(ug,u1, ... ,un)
R,Cko,... ,Lkn (u07 Uy, .- 7un)

Resy (H) =

for some polynomial P € A. J

REMARK 1.5. Suppose P is the standard simplex in R™. Then X =
P", (3 is the hyperplane class, s = n+ 1, and Fj(zo,... ,zy) is a homoge-
neous polynomial of degree k;. The assumption that Fy, ..., F, have no
common zeroes in P means that their only common zero in C**! is 0. For
any homogeneous polynomial H of degree p = k — (n+ 1), the toric residue
Resh " (H) associated with the n-rational form ﬁﬁ on P" coincides
([PS], [CCD, §5]) with the Grothendieck residue at the origin of C"! of
the (n + 1)-form

ﬁ dxg Ndxy N - Ndxy, .
In this situation, it has been observed by Angéniol [A] that Theorem 1.4
follows from the work of Jouanolou (see, for example, [J1, 3.5]).
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§2. Jacobian Formulas for the Sparse Resultant

Let Fy, ..., F, be generic forms as in (1.12), let A be the polynomial ring
on their coefficients, and let C' = Alzq, ... , x| be graded by the Chow group
Ap—1(X) via (1.3). The given forms together with their toric Jacobian J(F')
define a map of free A-modules

L Cp,kogxu-xC’p,knng — Cp,

(2.1) (Aos -+ s A, ©) = iAiFw@J(F)-

i=0
For any particular choice of complex coefficients u = ¢ we abbreviate
Ff(z) := Fi(c; x). The resultant R = Rk, crn € A considered in Theo-
rem 1.4 satisfies R(c) = 0 if and only if the forms F§, ... , F}S have a common
zero in the toric variety X. Let

(2.2) (I)C : Sp—kg,@ X oo X Sp—knﬁ x C — Sp
denote the C-linear map derived from (2.1) by substituting ¢ for .
PROPOSITION 2.1. The map ®. is surjective if and only if R(c) # 0.

PrOOF. For the if direction suppose R(c) # 0. Then F§, ..., FS have
no common zeroes in X. Proposition 1.1 (ii) together with (1.10) implies
the surjectivity of ®..

For the converse, let V denote the affine variety in the space of coefficients
consisting of all ¢ such that the polynomials F{, ... , F}; have a common zero
in the torus (C*)®*. Fix ¢ € V and let p € (C*)® be such a common zero.
It follows from (1.7) that zjza---zs - J(F) lies in the ideal generated by
Fy,...,F, in S and hence J(F) vanishes at p. If a monomial 2% of degree p
were in the image of ®. then z%(p) = 0 which is impossible. Thus, for ¢ € V,
®. is not surjective. We conclude that V is contained in the algebraic variety
defined by the vanishing of all maximal minors of ®.. Since the closure of V
is the locus where the resultant R vanishes, the only if-direction follows. [

For any subset J C {0,... ,n} weset ky:=> ;. k. For 0 <j<n+1
denote

(2.3) Wi = P Crypp-
|J]=j
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From the Koszul complex on Fy, ... , F,, we derive the following complex of
free A-modules:

(2.4) 0 —Wo 22wy 25 o0 22w, 2% Whay — 0.

This construction is an instance of [GKZ, §3.4.A]. Note that W, = 0,
Wn+1 = Cp, and Wn =Cp—kep X+ X Cp—knﬁ' Define ((,Onfl,()) : Wn,1 —
W, ® A by adding 0 in the coordinate corresponding to A, and consider the
modified complex

(25) 0 — Wy LWy 22 o2y, OOy g S,

For any particular choice of coefficients u = ¢ in (2.5) we get a complex of
C-vector spaces:
c ¢ 1,0 .
(2.6) 0 — €D Skig-p — -+ Wi D Skys-s x C =5, — 0.
i |J|=n

Let D denote the determinant (see [GKZ, Appendix A]) of the complex
of A-modules (2.5) with respect a fixed choice of monomial bases for the
A-modules W1, ..., W,y1. This is an element in the field of fractions of A.
We shall prove that it is a polynomial in A. Suppose kg > --- > k, and let
¢ be the lattice index defined in (1.13).

THEOREM 2.2.

(i) The complex (2.6) is exact if and only if R(c) # 0.

(ii) The determinant D of the complex (2.5) equals the greatest common
divisor of all (not identically zero) mazimal minors of a matriz rep-
resenting the A-module map .

(iii) The determinant D equals R.

(iv) If LFo is very ample then the resultant R may be computed as the
greatest common divisor of all maximal minors of any matriz rep-
resenting P.

PrROOF. We first prove the if-direction in part (i). Let § be an am-
ple divisor and Fy,... , F); homogeneous polynomials of respective degrees
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k;8 without common zeroes in X, i.e. such that R(c) # 0. By Propo-

sition 1.1 (i), Fy,..., FS is a regular sequence in S, and in wg,,; conse-

*(3
quently, the corresponding Koszul complex is acyclic [BH, page 49]. Setting

I = (Fs,...,Ff) this implies that

i P v
27) 00— P Shp-g == D Sisp-po 8y — Sp/T, — 0
) |J|=n

is an exact sequence of C-vector spaces. Proposition 2.1 implies that &, is
surjective. Also, by (1.10), ®¢(A1,...,A\p,0) = >, NiF;+0J(F) = 0 implies
6 = 0. These two facts imply that (2.6) is exact. For the converse of (i)
suppose R(c) = 0. Then the map ®. is not surjective by Proposition 2.1,
and hence (2.6) is not exact.

We next prove part (ii). We claim that Fp,..., F, is a homogeneous
regular sequence in the graded Cohen-Macaulay ring C.g = @p, Cis-
We extend scalars and consider C,3 ®q C instead. Let N be the total
number of terms in Fp, ..., F,. The spectrum of C,3 ®q C equals affine
space CV times the (n+1)-dimensional affine toric variety X := Spec(S.s).
Let V denote the algebraic set defined by Fy, ..., F, in CN x Xj3.

We shall prove that V has codimension n + 1, by describing the two
irreducible components of V. Let O be the origin in X3 and M its maximal
ideal. Hence M is spanned by all non-constant monomials in S,3. For any
i € {0,...,n}, the z-monomials appearing in F; all lie in M*¥, and their
radical equals M. In other words, F;(p) # 0 for all p € X3\ {O}. Consider
the projection from CV x X3 onto its second factor and let m denote its
restriction to V. For p € X3\ {O}, the fiber 7~1(p) is a linear subspace of
codimension n + 1 in CY x {p}. The fiber 77(0) equals C x O, which
has codimension n+ 1 in CV x X3. We have shown that codim(V) =n+1,
as desired.

Since Cy3 ®q C is graded and Cohen-Macaulay, we may conclude that
Fy, ... F, is a regular sequence. The Koszul complex on Fy,...,F, is
exact, and therefore (2.4) and (2.5) are exact sequences of A-modules except
at Wy,+1. By Theorem 34 in [GKZ, Appendix A], the determinant D equals
the greatest common divisor of all maximal minors of .

Part (iv) of Theorem 2.2 follows directly from (ii) and (iii) and the
observation that ¢ = 1 if £*0 is very ample. It remains to prove part (iii).
Part (i) implies that D(c) = 0 if and only if R(c) = 0. We also deduce from
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the irreducibility of the resultant that D is a power of R. In order to prove
D = R’ we must show that the total degree of D equals

(2.8) C-deg(R) = (D ko kicakisr - kn)-n!-vol(P).
Let us consider the Erhart polynomial for the interior of P:
p(j) = |GP)°’NZ"| = vol(P)-j" + > aij'.

The rank of the free A-module W; equals Z‘ J=j p(ky). Taking into account
the fact that any non-zero maximal minor of ® has to involve the last column
and deg(J(F)) = n+ 1 in the coefficients of Fy,... , F,, we deduce from
Theorem 14 in Appendix A in [GKZ] that

n+1
(29)  deg(D) = > (=1)" 5| > p(ks)
§=0 |J|=5
n+1
= vol(P)- | Y (=)™ 5 > kG
Jj=0 |J|=3
Y
n+1
+ Zaz SNk
J=0 |J]|=3
Vi

To prove the equality of (2.8) and (2.9), it suffices to show the combinatorial
identities:

n+1

(2.10) v, = n'(ZHk,,) and vy = 0 for 0<i<n-1.
=0 v#j

Following a suggestion made to us by Richard Stanley, we prove a more
general identity:
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LEMMA 2.3. Let u;; be indeterminates indexed by 1 = 0,...,n and
j=0,...,r. Then

T

> EOITIO Suiy) = ()t > 1T @i -

1C{0,1,... n} i=0 icl #:{0,... ,r}—{0,... ,n} j=0

surjective

PrROOF. The terms in the expansion of the left side correspond to maps
from {0,...,r} to subsets I of {0,...,n}. Any term which appears at
least twice gets cancelled. What remains are the terms corresponding to
surjective maps from {0, ... ,r} to the full set I = {0,... ,n}. O

We are interested in the special case u; 0 = 1 for 0 <4 <n and u; ; = k;
for 0 <i<mnand1<j<r. Under this specialization, Lemma 2.3 implies
(2.10) and hence part (iii). This completes the proof of Theorem 2.2. [J

Theorem 2.2 expresses the ¢-th power of the resultant as an alternating
product of determinants. Of particular interest are those cases when one
determinant is involved. Such formulas are called Sylvester-type. They have
been studied systematically by Weyman and Zelevinsky [WZ] in the case
when X is a product of projective spaces.

COROLLARY 2.4. Suppose that (n — 1)P has no interior lattice points
and either
(a) ko=---=k,=1, or
(b) nP has no interior lattice points and ko + - -+ k, =n+ 2, or
(¢) n=2 and P is a primitive triangle and ko, k1, ko < 2.
Then, the matriz of ® is square and R* = det(®).

Let us discuss the formulas in Corollary 2.4 for the case of toric surfaces
(n = 2). Suppose ky = k1 = ko = 1 and the polygon P has no interior
lattice points. Then the matrix of ® is square and R = det(®P). A lattice
polygon P has no interior lattice points if and only if (X, 3) is either the
Veronese surface in P® or any rational normal scroll (Hirzebruch surface).
In the former case we recover Sylvester’s formula for the resultant of three
ternary quadrics [GKZ, §3.4.D]. In the latter case we get a new formula of



136 Eduardo CATTANI, Alicia DICKENSTEIN and Bernd STURMFELS

Sylvester type for the Chow form of any rational normal scroll. Here is an
explicit example.

Ezample 2.5 (The Chow form of a Hirzebruch surface). Consider the
quadrangle

0 1 1
1 2 m 3
2 1
= : < .
P {(ml,mg)ER 0 -1 <m2> <1 }
-1 0 0

The corresponding toric surface is the rational normal scroll S 3; cf. [Ha,
Example 8.17]. Let [ be the divisor on S; 3 defined by P. Consider three
generic elements of K[x1,... ,x4]s:

2 2
Fy = &1581063 + a2x12504 + A3T1T2Ty + CL4I1$§ + asxox3 + agr3ry,
(2.11) Fy = blmlxg + bgmlx%m + nglxgzri + b4w1xi + bsxoxrs + bgr3zy ,
2 2
Fy = clxlzc% + cox1x574 + Cc3T1X27y + 041’1:151 + Cc5T2x3 + Cgx3T4 -
The quadrangle 3P has 10 interior lattice points, corresponding to the 10

monomials of critical degree. The map ® in (2.1) is given by the following
10 x 10-matrix:

x% Tox4 :cﬁ z% 2Ty 3:421 :r% T2x4 :EZ 1
z123 ag 0 0 bt 0 0 a0 0 [125]
124824 | @2 a1 0 by b1 0 c2 a 0 [126] + 2[135]
12322 | a3 a2 @ b3 by b1 c3 c2 1 [235] + 2[136] + 3[145]
wlac%:ci aq as a2 ba b3 bo cq c3 c2 [236] + 2[245} + 3[146]
Tizezi | 0 as  ag 0 by b3 0 ¢ c3 [345] + 2[246]
175 0 0 aa 0 0 by 0 0 ¢ [346]
z3z3 as 0 0 bs 0 0 cs 0 0 —[156]
m%x3x4 ag as 0 bg bs 0 cg cs 0 —[256}
xgachi 0 ag as 0 bg bs 0 cg cs — [356}
z3Ty 0 0 as 0 0 b6 0 0 c¢6 —[456]

The border column lists the monomials of critical degree. The border row
gives the multipliers of Fy, Fy, Fy and J(F'). For the coefficients of the
Jacobian J(F') we use the abbreviation

a; a; ag
[’L]k] = det | b; bj by for 1<i<j<k<6.
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The determinant of the above 10 x 10-matrix equals the sparse unmixed re-
sultant of (2.11), i.e., the Chow form of S; 3 relative to the given embedding
into P5, by Corollary 2.4. [J

We close this section with an alternative proof of Theorem 1.4, based on
Theorem 2.2.

ALTERNATIVE PROOF OF THEOREM 1.4. We assume for simplicity
that £ = 1. The case £ > 1 can be dealt with by showing that the ma-
trix of ® has a block decomposition. We must show that R - Resi—{ (H) lies
in A for any H € C,. Let U’ be the intersection of I with the Zariski open
set where all (non identically zero) maximal minors of ® do not vanish. For
u € U', the C-linear map @, is surjective and we can write

n

H(z) = Y N(wz)Fi(uz) + 0(uw) J(F"),
=0

where 6 depends rationally on u. By (1.9) we have
Respu (H) = 7v-0(u),

where 7 is a rational constant independent of H and Fy, ..., Fj,. This im-
plies that every maximal minor of & which is not identically zero must
involve the last column and that 6(u) is unique. Thus, it follows from
Cramer’s rule that Res (H) may be written as a rational function with de-
nominator M for all non-identically zero maximal minors M. Consequently
it may also be written as a rational function with denominator R. [

§3. Residues and Resultants in the Torus
In this section we apply the results of §1 to study the global residue
associated with n Laurent polynomials in n variables. Let Aq,...,A, be

integral polytopes in R"™. We form the Minkowski sum A := A; +---4+ A,
and we consider its irredundant presentation

(3.1) A = {meR":(mmn)+a >0;i=1,...,s},
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where, as in (1.1), the n; are the first integral vectors in the inner normals
to the facets of A. Writing a] = —minpea;(m,n;), we get a (generally
redundant) inequality presentation

A = {mER":<m,ni>+a320;i:1,...,3} forall j=1,...,n.

The facet normal n; of A supports a (generally lower-dimensional) face of
A]‘:

(3.2) AT = {meA;:(mn)=—al}.

Consider Laurent polynomials with indetermined coefficients and Newton
polytopes A,

(3.3) fi = > ",

mEA]ﬂZ"
and introduce the polynomial ring on their coefficients:
A = Qlujm; j=1...,n;, meA;NZ"].

The leading form of f; in the direction 7; equals

(3.4) = > g - ™

n:
meAjZ

Since A = AT + .-+ Ajl' is a facet of A, we may regard f{",..., fil" as
a system of n polynomial functions on an (n — 1)-dimensional torus. We
define R to be their resultant relative to the ambient lattice Z"™. More
precisely, consider the sparse resultant R NN for the support sets A7'N
Z", ... A NZ" This is the unique (up to non-zero rational multiple)
irreducible polynomial in A" which vanishes whenever f{",..., f/" have a
common zero in (C*)". Let L' := affz(A]' N Z") be the affine lattice
spanned by the integral points in A?i, and let L = affg (A") N Z" be the
restriction of Z" to the i-th facet hyperplane of A. The index ¢; := [L" :
LT+ .-+ L] is finite. We define the i-th facet resultant to be

L;
(3.5) RY = (Rapap)  for i=1....s.



Residues and Resultants 139

We now specialize the coefficients w;,, in (3.4) to complex numbers such
that

(3.6) R"(u) # 0 fori=1,...,s.

By Bernstein’s Theorem [GKZ, §6.2.D, Thm. 2.8], the hypothesis (3.6) is
equivalent to

(3.6")  dimc (C[H, ..., 2"/ (fie-o o fu) = MV(Aq,...,Ay),

where MV(---) denotes the mized volume. Let V be the (finite) set of
common zeros of fi,...,f, in the torus T = (C*)". Given any Laurent

polynomial q € C[tlﬂ,. ., tF1, the global residue of the differential form
q dtl dtn
( ) ¢q fl o fn ty ty

is defined as the sum of the local Grothendieck residues of ¢,, at each of
the points in V:

(3.8) Res?(q) = ZRespyf(gbq).

peV

We refer to [GH], [AY], and [T] for the classical analytic definition of
residues and to [H], [Ku] or [SS] for the algebraic definition of the Grothen-
dieck residue.

Note that Res?(JfT) = MV(Ay,...,A,), where JfT denotes the affine
toric Jacobian

of;

(3.9) JE(f) = det(ty atk)léjvkén'

If all the roots of fi,... , f, are simple, i.e. if V has cardinality MV (Aq, ...,
A,,), then

_ q(6)
(3.10) Res}p(q) = ZW

£ev
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We conclude from (3.8) or (3.10) that, for fixed ¢ € C[tfl,... ,tE1], the
global residue Res?(q) depends rationally on the coefficients u. In particu-
lar, for any m € Z", Res?(tm) is a rational function in u with Q-coefficients.

Gel’fond and Khovanskii [GK] give a formula for evaluating that rational
function, provided the Newton polytopes Aq,... , A, satisfy the following
genericity hypothesis:

(3.11) Vie{l,...,s} 3je{l,....n}:dim(A%)=0.

The Gel’fond-Khovanskii formula implies the following result, which ap-
pears also in [Z]:

ProprosiTION 3.1. Suppose the Newton polytopes A1, ..., A, satisfy
(3.11). Then, for anym € Z", the residue Res]:f(tm) is a Laurent polynomial
in the coefficients of f1,..., fn.

If (3.11) is violated then ReS}F(tm) is generally not a Laurent polynomial.
In particular, it is never a non-zero Laurent polynomial in the unmixed case
Ay=---=A7A,,n>2

Our aim is to characterize the denominator of Res}r(tm). For each m €
Z" we define

(3.12) p; (m) = —min{0, (m,m) +a; —1}; i=1,...,s.

Geometrically, p; (m) > 0 if m lies beyond the facet A”. We state the
main result of this section:

THEOREM 3.2. Let fi,...,fn be generic polynomials with Newton
polytopes A1, ..., A,. For any m € Z™, the following expression is a poly-
nomial in A’:

S
Resf (") - [T R™CA oo freys o).

=1

It is easy to derive Proposition 3.1 from Theorem 3.2: If AT = {m}
in (3.11) then R"” = ujy, or R" = 1. In fact, (3.11) holds if and only if
RMR™ ... R" is a monomial. We present an example where some facet
resultants R are monomials and others are not.
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Example 3.3. Let n =2 and consider the mixed system

filti,t2) = aoti + artits +asty, fo(ti,te) = bota + bitits + bot] .

The Minkowski sum of their Newton triangles is the pentagon

A = A1+ Ay
-1 0 3 0
-1 -1 m 4 0
= {(ml,m2)€R2: 0 -1 ( 1)4— 31 >10 }
2 1] \"™ -3 0
1 2 -3 0
The A-homogenizations of the input polynomials are
2,.2 2
15T TIT5 T4X
ko= 122 S fu <4—5,ﬁ) = a3 + a1 T3T4TE + AT T
TyT5 1T T2T3
2,.2 2 2
riTHT TIT5 4T
F, = =L 223 . (4—5, ﬁ) = boxiry + biririzs + byrzxs .
T4Ts T1T2 T2X3

Consider the lattice point m = (3,3), which lies beyond three facets of A.
The global residue of the corresponding monomial ti”t%’ is equal to

ResT(t‘;’tg) _ aoalazboblbz + aoa%bob% — a?b%bz — a%agb‘;’ '
! azbz(arby — azby)?

The denominator can be derived from Theorem 3.2, since uj (m) =

ps (m) = 1,pu5(m) = 3,4, (m) = pg (m) = 0 and the five facets resul-
tants are

Rm:bg, Rm:albl—aQbQ, R"3:a2, Rm:bo, and R"5:a0.D

We shall develop the proof of Theorem 3.2 in several steps. We first
consider the unmixed case P := Ay = --- = A,. Let P be presented as in
(1.1) and L the associated line bundle on X. Fix an integer ky > 0 such that
L0 is very ample. Consider the mixed sparse resultant Riy := Riop,P,... P
associated with the support sets ko P NZ", PNZ",... ,PNZ". Thus, Ry,
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coincides with the resultant associated to the line bundles £, £, ... ,£. In
the following formula we evaluate Ry, at a special monomial section ¢t"* of
L0 and generic sections of £, ... , £. Note that the facet resultants R are
irreducible if £ is very ample.

LEMMA 3.4. For any m € koP NZ"™ we have the following identity in
A

Rt fro-o o fa) = [ RTGF,..., f)tmomdthobi
=1

PrROOF. Theorem 1.1 in [PSt] gives the following identity of rational
functions:

(313)  Riglfor frren o) =< I fo(é))

EEV(f1,e s fn)

S

JIR™C e

=1

where fo, f1,..., fn are generic polynomials supported in koP, P,... ,P.
On the other hand, the same result applied to the support sets {m}, P N
Z", ..., PNZ" gives

S

(3.14) H £ = HRm(f{”’”' ,f,’{i)<m’"i>

since Ry} p,.. pt", f1,-.., fn) = 1. Now combine (3.13) and (3.14) for
fo=tm. 0O

For m € Z™ and 1 < i < s we abbreviate

pi(m) = max{0, (m,n;) +nb; — 1} and
pi (m) = —min{0, (m, ;) +nb; —1}.

This notation distinguishes the facets of nP visible from m from those not
visible from m. The following lemma is the unmixed case of Theorem 3.2.
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LEMMA 3.5. Let fi,..., fn be generic polynomials with support in P.
Given m € Z",

Resy (™) - [[R™(f,..., 1y M e A,

i=1
Proor. We denote by F1,...,F, the generic polynomials in Sg ob-
tained from fi,..., f, by homogenization as in (1.5). More precisely, if

fi = 2 mepnzn imt™ then

s

mePNZn" =1
It is shown in [CD] that the differential form

it (m)

= Q)
Tk (m)Fl...Fn

is the meromorphic extension to the toric variety X of the form ¢y= on the
torus T defined in (3.7). By Theorem 4 in [CD] (or Lemma 3.6 below), there
exist monomials z¢ such that deg(z# ("™*¢) = kof for some (arbitrarily
large) positive integer kg. Whenever the coefficients of fi,..., f, lie in
the Zariski open set where none of the facet resultants R™ vanishes, then
Fi,...,F, have no common zeroes at infinity. In this case, {z € X :
Fi(x) = --- = Fy(x) = 0} C T and, as shown in [CCD], [CD], the global
residue in the torus of ¢y may be computed as

Res?(tm) = Resfg(x“Jr(m)JrC),

where F' denotes the (n + 1)-tuple: Fo = z# (M+te Fy . F,.
By Theorem 1.4, the global residue Res;";(tm) is a rational function with
denominator Ry, (x’f(m)“, Fi,...,F,). Lemma 3.4 implies that

(3.16) Rk, (xﬂ_(m)+c ... F,) = H (Rmu’{h’ o 7fgi))u{(m)+a ‘
i=1
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We conclude that the residue Res?(tm) may be written as a rational func-
tion with denominator the greatest common divisor of all expressions of
the form (3.16), where ¢ = (cy,...,cs) runs over all non-negative integer
vectors such that deg(a:“_(m)+c) = ko for some integer kg > 0. Since un-
mixed resultants depend on the coefficients of all polynomials (e.g. by [KSZ,
Theorem 5.3]), the facet resultants R (f{", ..., fi’) are powers of distinct
irreducible polynomials. The proof of Lemma 3.5 follows from Lemma 3.6
below. [J

LEMMA 3.6. For any non-negative vector a € N° and any i €
{1,...,s} there exists a non-negative vector ¢ € N* such that ¢; = 0 and
deg(x%t¢) = kof for some ko € N.

ProoF. Let u),... u(” e Z" be all the vertices of the lattice poly-
tope P which lie on the facet P" = {m € P : (m,n;) + b; = 0}. Their sum
w = uM) 4 .- 4+ ul™) satisfies (u,m;) +7-b; = 0 and (u,n;) +7-b; > 1 for
all j # i. Since n; is primitive, we can find m € Z™ such that (m,n;) = a;.
Let kg be an integer divisible by 7 such that

ko
G o= ((u,mj) + 7 b5) + (m,my) — a;

is non-negative for j = 1,2...,s. Then ¢ = (¢1,...,c¢s) has the desired
properties. [J

We now prove Theorem 3.2 for mixed systems of generic Laurent poly-
nomials.

PROOF OF THEOREM 3.2. We shall assume MV (Aq,... ,A,) > 0.
Otherwise the residue Res?(tm) is zero and Theorem 3.2 trivially holds.
Let X = XA be the projective toric variety associated with A. We

consider the homogenization of the Laurent polynomial f;(t1,... ,,):
T (mom)tal
m,n; +a7j
Fi(z1,...,z5) = Z Ujm (H x; )
mEA]ﬂZ” =1

Each F}(z) is generic of degree o := [>;_; a!Dj). Let a:= a1+ +a, =

)

Y7 ya;D;]. For each j = 1,...,n, let Q; be a generic polynomial of
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degree a — «; and set G; = F;Q;. Given a positive integer ko, let F be
a generic polynomial of degree kgae. Thus Fy, G, ... , G, are homogeneous
polynomials of degrees koo, a, ... , . For all choices of complex coefficients
in a Zariski open set, they have no common roots in X. Given a polynomial
H of critical degree p(F) := (ko + 1)a — [y relative to the (n + 1)-tuple
F = (Fy,Fy,...,F,), we can compute the toric residue ResX(H) and,
according to the Global Transformation Law [CCD, Theorem 0.1]:

Resf(H) = Resg(H-Q1---Qn); G = (Fy,Gy,...,Gp).

Let R be the (koA, A, ..., A)-resultant. It follows from Theorem 1.4 that
the specialization R(Fp, G1,. .. ,Gy) is a denominator for the rational func-
tion Resy (H).

Let fo denote the dehomogenization of Fp, let g; be the dehomogeniza-
tion of Q;, and set g; := f;j - ¢; for any j = 1,... ,n. Then, R(Fy,Gq,...,
G.,) agrees with the sparse resultant R(fo, g1, .. , gn) arising from the sup-
port sets kpANZ", ANZ", ... ANZ" Given a subset J C {1,...,n},
we denote }j = fjif j € J, and fo = qu if k Z J. We let Aj stand for the
Newton polytope of fj, ie. Aj =A;ifjeJ, and

Ak:A1+"‘+Ak,1+Ak+1+"'+An if k&J.

It follows from the Product Formula for sparse mixed resultants [PSt,
Proposition 7.1] that

(317) R(f(]vglv"' 7gn) = H RJ(fO?}l,"' a:fn)a

Jg{17 7”}

where R’ denotes the sparse mixed resultant associated with the support
sets

(3.18) koANZ'. A1NZ", ... A, NZ"

relative to the ambient lattice Z™ as in (3.5).

We now show that the factor R(fo,... , fn) corresponding, in (3.17), to
J={1,...,n} is already a denominator of the rational function Res (H).
Since this is a function of the coefficients of fy,..., f, only, it suffices
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to show that every additional factor in (3.17) must involve the coeffi-
cients of some qx, k = 1,...,n, ie. if J # {1,...,n}, the polynomial
R’ (fo, fi, ... ,fn) has positive degree in the coefficients of some ¢, k & J.
But this is a consequence of our assumption MV (Aq,...,A,) > 0. In-
deed, according to Lemma 1.2 and Corollary 1.1 of [S2], it is enough to
show that the collection of supports koA N Z", Aj NZ" j € J contains
no proper essential subset. A subset which contains kgA N Z™ cannot be
essential since dim(A) = n and the cardinality of the subset is at most
n. On the other hand, no collection of supports Aj N Z"™ can be essential
because MV (Aq,... ,A,) > 0.

We now complete the proof of Theorem 3.2 similarly to the proof of
Lemma 3.5. The algorithm in [CD] computes Res?(tm) as the toric residue
Resy (z*) for appropriate monomials 2# and Fy(x) = z¥ of degree (ko +
1)a— By and koo, respectively, where kg is a positive integer. For any such
choice of u and v, the specialization

R(a", F1,... . Fy) = [[R™(f, ... )"
=1

is a denominator of the rational function Res?(tm). Taking the greatest
common divisor over all possible choices and applying Lemma 3.6 yields
the theorem. O
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