
J. Math. Sci. Univ. Tokyo
5 (1998), 41–74.

Laplace Distributions and Hyperfunctions on R
n
+

By Zofia Szmydt and Bogdan Ziemian

The paper presents foundations of the theory of Laplace distributions in

several variables. Laplace distributions are investigated from the point of

view of two different frameworks: of functional analysis and hyperfunction

theory. The main results are the Martineau–Harvey type theorems estab-

lishing topological isomorphism between the spaces of Laplace distributions

regarded as the dual space of Laplace test functions and those regarded as

certain quotient spaces of holomorphic functions of exponential growth.

Automatically these results lead to the imbedding of Laplace distribu-

tions in the space of Laplace hyperfunctions. We consider only a canonical

realization of hyperfunctions as the sum of boundary values from wedges

modelled over coordinate orthants in R
n and avoid introducing coordinate

independent versions based on suitable relative cohomologies. The realiza-

tions are convenient for the applications to PDE’s. Namely solutions to a

large class of constant coefficient PDE’s can be represented at infinity as

sums of Laplace integrals of the form T [ex·z] where T is a Laplace distribu-

tion whose support is related to the complex geometry of the characteristic

set (see [S2–Z1], [Z1], [Z2]). Similar results have also been established for

semilinear Laplace equations [P–Z].

Finally let us note that Laplace hyperfunctions considered in this paper

can be regarded as a special case of Fourier hyperfunctions (cf. [K], [Ka],

[S–Mo]) and are closely related to those introduced by Komatsu [Ko] in the

case of one variable.

Notation. Throughout this paper we shall deal with polytubular open
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sets W ⊂ C
n defined as follows: W = W1 × · · · × Wn and there exists

ζ = (ζ1, . . . , ζn) ∈ C
n such that Wj contains a tubular neighbourhood of

the halfline ζj + R+, i.e.

Wj ⊃ (ζj + R+)ε
df
= {z : dist(z, ζj + R+) < ε}

for some ε > 0 (j = 1, . . . , n). If ζ = 0 and Wj ⊃ (R+)ε, j = 1, . . . , n,

we say that W is an open polytubular neighbourhood of R
n
+. We shall also

need the following sets

W=\\Rn
+ = (W1 \ R+)× · · · × (Wn \ R+),

W=\\jR
n
+ = (W1 \ R+)× · · · ×Wj × · · · × (Wn \ R+) (j = 1, 2, . . . , n).

We write V � W if V is a subset of W such that dist(V,bdW ) is strictly

positive. We denote
•
R
n = R

n \ {0}. If Γ′ is a proper subcone of an open

cone Γ ⊂
•
R
n, we write Γ′ ✭✦�❤ Γ. By Γ|r we denote the intersection of the cone

Γ with a ball of radius r with centre at zero. For x, y ∈ R
n we denote by

x · y the scalar product x · y =
∑n

j=1 xjyj .

1. Basic Spaces and Their Properties

We define the following spaces.

The space L(ω)(W ) of holomorphic functions on W having exponential

growth of type ω ∈ (R ∪ {∞})n at infinity is defined by

L(ω)(W ) = {H ∈ O(W ) : q
δ,W̃

(H) <∞ for every δ ∈ R
n, δ < ω

and every closed (in C
n) polytubular subset W̃ � W},

where q
δ,W̃

(H) = sup
ζ∈W̃ |e

δ·ζH(ζ)| are seminorms defining the topology in

L(ω)(W ).

Let for k ∈ N0, κ ∈ R
n

L
k
κ(W=\\Rn

+) = {ψ ∈ O(W=\\Rn
+) : θkκ,V (ψ) <∞

for every polytubular subset V � W},
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with the convergence defined by the family of norms

θkκ,V (ψ) = sup
α+iβ∈V

eα·κ|ψ(α + iβ)| ‖β‖k

for any V � W and denote Lk
(ω)(W=\\Rn

+) = lim←−κ<ω Lk
κ(W=\\Rn

+).

Now we define the spaces L∼a(W ), a ∈ R
n:

L∼a(W ) = {σ ∈ O(W ) : ρa,V (σ) <∞ for every polytubular V � W},

with the convergence defined by the family of norms

ρa,V (σ) = sup
ζ∈V
|e−a·ζσ(ζ)| for any V � W,

and denote L∼a(R
n
+)

df
= lim−→W⊃R

n
+

L∼a(W ), where W ranges over open poly-

tubular neighbourhoods of R
n
+. We put for any ω ∈ (R∪{∞})n L∼(ω)(R

n
+)

df
=

lim−→a<ω
L∼a(R

n
+). By L∼

′
(ω)(R

n
+)(1) we denote the dual space to L∼(ω)(R

n
+).

Note that:

1. σ ∈ L∼(ω)(R
n
+) if and only if there exists a polytubular neighbourhood

W � R
n
+ and a < ω such that σ ∈ O(W ) and ρa,V (σ) < ∞ for every

V � W .

2. f ∈ L∼
′
(ω)(R

n
+) if and only if for every a < ω, f is linear on L∼a(R

n
+) and for

every open polytubular set V ⊃ R
n
+ there exists Ca,V <∞ such that(2)

|f [σ]| ≤ Ca,V · ρa,V (σ) for σ ∈ L∼a(W ),

where W is an arbitrary open polytubular set such that V � W .

Next for a ∈ R
n we define the space

La(R
n
+) = {ϕ ∈ C∞(R

n
+) : γa,ν(ϕ) <∞ for every ν ∈ N

n
0},

(1)The elements of L∼
′
(ω)(R

n
+) may have support also at infinity, cf. [Mo–Y].

(2)This follows from the fact that L∼a(R
n
+) = lim−→V⊃R

n
+
L∼a(V ), where L∼a(V ) = {σ ∈

O(V ) ∩ C(V ) : ρa,V (σ) < ∞} is a Banach space.
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with the convergence defined by the seminorms

γa,ν(ϕ) = sup
x∈R

n
+

|e−a·x
( ∂

∂x

)ν
ϕ(x)|, ν ∈ N

n
0 .

For k ∈ N0, a ∈ R
n we denote

Lka(R
n
+) = {ϕ ∈ Ck(R

n
+) : γa,ν(ϕ) <∞ for |ν| ≤ k}

and for an ω ∈ (R ∪ {∞})n we define

L(ω)(R
n
+) = lim−→

a<ω

La(R
n
+), Lk(ω)(R

n
+) = lim−→

a<ω

Lka(R
n
+)

equipped with the inductive limit topology.

The spaces defined above are counterparts of those introduced in [S2–

Z1] in the case of Mellin distributions. They are isomorphic to the Mellin

spaces under the logarithmic change of variable and hence the following

their properties can be derived therefrom.

Since the set C∞
(0)(R

n
+) of restrictions to R

n
+ of functions in C∞

0 (Rn) is

dense in L(ω)(R
n
+) (cf. [S2–Z1]), the dual space L′

(ω)(R
n
+) is a subspace of

D′(R
n
+) (=the dual space of C∞

(0)(R
n
+)). We call it the space of Laplace

distributions on R
n
+.

Note that:

3. The spaces L(ω)(R
n
+) and L∼(ω)(R

n
+) are complete (cf. [S2–Z1]), L(ω)(R

n
+)

is dense in Lk(ω)(R
n
+) for any k ∈ N and L∼(ω)(R

n
+)|

R
n
+

is dense in L(ω)(R
n
+).

4. There exist natural imbeddings L∼c(R
n
+)⊂−>Lc(R

n
+) and L∼(ω)(R

n
+)⊂−>

L(ω)(R
n
+) given by the restrictions to R

n. By duality they induce a

natural imbedding

L′
(ω)(R

n
+)⊂−>L∼

′
(ω)(R

n
+).

The following theorem characterizes the space of Laplace distributions

on R
n
+ (see [S2–Z1] Theorem 8.2 and p. 164):

Theorem 1 [CLy]. Let ω ∈ (R ∪ {∞})n. A distribution T ∈ D′(R
n
+)

is in L′
(ω)(R

n
+) if and only if for every κ < ω there exist mκ ∈ N0 and

measurable functions Tν,κ on R
n, |ν| ≤ mκ, with support in R

n
+ such that

T =
∑

|ν|≤mκ

( ∂

∂y

)ν
Tν,κ in L′

(κ)(R
n
+),
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where

|Tν,κ(y)| ≤ Cκe
−κ·y for 0 ≤ y <∞

almost everywhere with some Cκ <∞.

In the sequel besides the space La(R
n
+) we shall deal with the space

La(R
n
+ + ◦x), where ◦x ∈ R

n:

La(R
n
++ ◦x) = {ϕ ∈ C∞(R

n
++ ◦x) : sup

x∈R
n
++◦x

∣∣∣e−a·x( ∂

∂x

)ν
ϕ(x)

∣∣∣ <∞, ν ∈ N
n
0}.

Let A ∈ GL(n,R),
◦
ξ = A ◦x, α = Ax. Then a · x = a · A−1α = b · α, where

b = (Atr)−1a. If ϕ ∈ C∞(R
n
+ + ◦x) then ψ

df
= ϕ ◦ A−1 ∈ C∞(A(R

n
+) +

◦
ξ). It

is natural to define

Lb(A(R
n
+) +

◦
ξ) = {ψ : ψ ◦A ∈ LAtrb(R

n
+ + ◦x)}

and we easily see that

Lb(A(R
n
+) +

◦
ξ)

= {ψ ∈ C∞(A(R
n
+) +

◦
ξ) : sup

α∈A(R
n
++◦x)

|e−b·α
( ∂

∂α

)ν
ψ(α)| <∞, ν ∈ N

n
0}.

Introduce further the space L(κ)(A(R
n
+) +

◦
ξ) in any of the following equiv-

alent ways:

L(κ)(A(R
n
+)+

◦
ξ) = {ψ : ψ ◦A ∈ L(Atrκ)(R

n
+ + ◦x)} = lim−→

Atrb<Atrκ

Lb(A(R
n
+)+

◦
ξ).

Now, let Ω ⊂ R
n be an open set and let a ∈ R

n. We define

La(Ω) = {ϕ ∈ C∞(Ω) : dist(suppϕ, ∂Ω) > 0, γa,ν(ϕ) <∞, ν ∈ N
n
0}.

If for some open set Ω ⊂ R
n La(Ω) ⊂ Lb(Ω) for a < b, we put as usual

L(ω)(Ω) = lim−→a<ω
La(Ω) and denote by L′

(ω)(Ω) the dual space, called the

space of Laplace distributions in Ω (indexed by ω).
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2. Characterization of Holomorphic Functions Whose

Boundary Values are Laplace Distributions

In this section we provide conditions under which the boundary value

of a holomorphic function is a Laplace distribution. We start with the

following lemma.

Lemma 1. Let Ω be an open set in R
n for which there exists b ∈ R

n

such that the function

(1) Ω � α �−→ eα·b is integrable.

Let κ ∈ R
n, r ∈ R+, r = (r, . . . , r),k = (k1, . . . , kn) ∈ N

n
0 and let a function

F ∈ O(Ω + i(0, r)) be of growth type k near Ω, i.e. such that

(2) |F (α + iβ)| ≤ C
e−α·κ

βk1
1 · . . . · βknn

for α + iβ ∈ Ω + i(0, r), C <∞.

Let a = b + κ. Then there exists T ∈ L′
a(Ω) such that

(3) lim
β→0+

∫
Ω
F (α + iβ)ϕ(α)dα = T [ϕ] for ϕ ∈ La(Ω).

More precisely, there exist functions Hν ∈ C0(Ω) such that |Hν(α)|eα·κ ≤
C <∞ for α ∈ Ω, ν ∈ N

n
0 , ν ≤ k + 22 (i.e. νs ≤ ks + 2, s = 1, . . . , n) and

T =
∑

ν≤k+22

(
∂
∂α

)ν
Hν in L′

a(Ω).

Remark 1. Let H ∈ C0(Ω), |H(α)|eα·κ ≤ C < ∞ for α ∈ Ω and let

ν ∈ N
n
0 . Then by assumption (1) u

df
=

(
∂
∂α

)ν
H ∈ L′

a(Ω), since a = b + κ.

Proof of Lemma 1. We shall prove Lemma 1 for n = 2 and introduce

to this aim the operators(3)

(4) J1F (z) =

∫ z1+iδ

z1

F (ζ1, z2)dζ1, J2F (z) =

∫ z2+iδ

z2

F (z1, ζ2)dζ2

(3)To prove the general case one can take n operators J1, . . . , Jn defined analogously
and proceed in the same way.
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for z = (z1, z2) ∈ Ω + i(0, r), 0 < δ < r, 0 < βk = Im zk < r − δ, k = 1, 2.

If z = α + iβ, α = (α1, α2), β = (β1, β2), we obtain by (4)

(5)

∂J1F

∂z1
(z) = F (z1 + iδ, z2)− F (z),

(J1F )(z) = i

∫ β1+δ

β1

F (α1 + is, z2)ds,

and analogous formulae for J2F . Hence

(6) (J2(J1F ))(z) = −
∫ β2+δ

β2

{∫ β1+δ

β1

F (α1 + is, α2 + it)ds
}
dt.

We prove Lemma 1 for F of the following growth types: (i) case (0, 0);

(ii) case (1, 0); (iii) case (1, 1); (iv) case (2, 0) (neglecting the obvious

symmetrical cases (0, 1) and (0, 2)) and hence establish that it is true for

k1, k2 ∈ N0, k1 + k2 ≤ 2. Next we proceed by induction.

(i) Case (0, 0). Then by (2) and (6) J2J1F (α + iβ) is locally uniformly

convergent as β → 0+ to a continuous function F 11. By (5) we get

F (z1, z2) =
∂

∂z1

∂

∂z2
J2J1F (z)− F (z1 + iδ, z2 + iδ)

+ F (z1, z2 + iδ) + F (z1 + iδ, z2)

(7)

and from this formula we shall find the limit (3). It is easy to see that

|J2J1F (α + iβ)| ≤ Cδ2e−α·κ hence also |F 11(α)| ≤ Cδ2e−α·κ. So for ϕ ∈
La(Ω) (a = b + κ) we get by assumption (1)

(8) lim
β→0+

∫
Ω

∂

∂z1

∂

∂z2
J2J1F (z) · ϕ(α)dα =

∫
Ω
F 11(α)

∂2ϕ

∂α1∂α2
dα

since |J2J1F (α+ iβ) ∂2ϕ
∂α1∂α2

| ≤Meα·b with some constant M . Observe that

by (5) the third summand on the right-hand side of (7) can be written in

the form:

(9) F (z1, z2 + iδ) = F (z1 + iδ, z2 + iδ)− ∂J1F

∂z1
(z1, z2 + iδ)
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and by (2) we get assuming 0 ≤ β′
1 − β′′

1 ≤ δ

|J1F (α1 + iβ′
1, α2 + i(β′

2 + δ))− J1F (α1 + iβ′′
1 , α2 + i(β′′

2 + δ))|(10)

≤ 2Ce−α·κ|β′′
1 − β′

1|+ δ sup
β′
1≤s≤β′

1+δ

|F (α1 + is, z′2)− F (α1 + is, z′′2 )|,

where z′2 = α2 + i(β′
2 + δ), z′′2 = α2 + i(β′′

2 + δ).

To estimate the second summand in (10) we consider F (z1, z2) as a

function of z2 depending on a parameter z1: Gz1(z2)
df
= F (z1, z2). By the

Cauchy integral formula we get:

∂Gz1

∂z2
(z2) =

1

2πi

∫
|ζ−z2|=δ

Gz1(ζ)

(ζ − z2)2
dζ

and by (2): |Gz1(ζ)| ≤ Ce−α·κ+|κ2|δ for |ζ − z2| = δ. Hence we obtain the

estimate

|Gα1+is(z
′
2)−Gα1+is(z

′′
2 )| ≤ Ce−α·κ

1

δ
e|κ2|δ|β′′

2 − β′
2|

independent of s ∈ [β′
1, β

′
1 + δ] and thus by (10) limβ→0+ J1F (α1 + iβ1, α2 +

i(β2 + δ)) exists locally uniformly and defines a continuous function F 1(α)

on Ω, |F 1(α)| ≤ Cδe−α·κ for α ∈ Ω. Thus by (9) and (1) we get

lim
β→0+

∫
Ω
F (α1 + iβ1, α2 + i(β2 + δ))ϕ(α)dα(11)

=

∫
Ω
F (α1 + iδ, α2 + iδ)ϕ(α)dα +

∫
Ω
F 1(α)

∂ϕ

∂α1
dα,

since |J1F (α1 + iβ1, α2 + i(β2 + δ)) ∂ϕ
∂α1
| ≤ M1e

α·b with some constant M1

independent of β. We also prove that there exists a continuous function F 2

on Ω such that |F 2(α)| ≤ Cδe−α·κ and

lim
β→0+

∫
Ω
F (α1 + i(β1 + δ), α2 + iβ2)ϕ(α)dα(12)

=

∫
Ω
F (α1 + iδ, α2 + iδ)ϕ(α)dα +

∫
Ω
F 2(α)

∂ϕ

∂α2
dα.
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Thus by (7), (8), (11), (12) we get

lim
β→0+

∫
Ω
F (α+iβ)ϕ(α)dα =

∂2

∂α1∂α2
F 11[ϕ]− ∂

∂α1
F 1[ϕ]− ∂

∂α2
F 2[ϕ]+F 3[ϕ]

for ϕ ∈ La(Ω), where F 3(α) = F (α1 + iδ, α2 + iδ), |F 3(α)| ≤ Ce−α·κ for α ∈
Ω. Hence assertion (3) follows with T = ∂2

∂α1∂α2
F 11 − ∂

∂α1
F 1 − ∂

∂α2
F 2 + F 3

and by Remark 1 T ∈ L′
a(Ω) is a Laplace distribution of multiorder(4) (1, 1)

(hence also of multiorder (2, 2)). The proof of Lemma 1 in the case (i) is

thus complete.

For the proof of (3) in the cases (ii)–(iv) the following remark will be

useful: If k = (k1, 0), k1 ≥ 1 and 0 < δ < r(k1 + 1)−1, then by (4) and (2)

we get with some constant Ck1+1 <∞

|Jk1+1
1 F (α + iβ)| < Ck1+1e

−α·κ(13)

for 0 < β1 < r − (k1 + 1)δ, 0 < β2 < r.

Thus Jk1+1
1 F is of growth type (0, 0) for α+ iβ ∈ Ω + i

(
(0, r− (k1 + 1)δ)×

(0, r)
)

and there exists a Laplace distribution Tk1 ∈ L′
a(Ω) of multiorder

(1, 1) such that

(14) lim
β→0+

∫
Ω
Jk1+1

1 F (α + iβ)ϕ(α)dα = Tk1 [ϕ] for ϕ ∈ La(Ω).

If F is of growth type (k1, k2) with k1 > 1 then J1F is of growth type

(k1 − 1, k2).

(ii) Case (1, 0). By (5) we get

(15)
∂2

∂z2
1

J2
1F (z) = F (z1 + 2iδ, z2)− 2F (z1 + iδ, z2) + F (z1, z2).

Since |F (z1 + ipδ, z2)| ≤ C
pδe

−α·κ (p = 1, 2), by the case (i) there exist

Laplace distributions T2, T3 ∈ L′
a(Ω) of multiorder (1, 1) such that

lim
β→0+

∫
Ω
F (α1 + i(β1 + pδ), α2 + iβ2)ϕ(α)dα = Tp+1[ϕ]

for ϕ ∈ La(Ω), p = 1, 2,

(4)For the use of the proof we introduce the notion of the multiorder of a Laplace distri-

bution T ; namely we say that T ∈ L′
a(Ω) is of multiorder p ∈ N

n
0 if T =

∑
ν≤p

(
∂
∂α

)ν
Hν

with Hν such as H in Remark 1.
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and hence by (14), (15) we get for ϕ ∈ La(Ω):

lim
β→0+

∫
Ω
F (α + iβ)ϕ(α)dα = T1

[∂2ϕ

∂α2
1

]
+ 2T2[ϕ]− T3[ϕ] = T [ϕ],

where T = ∂2T1

∂α2
1

+ 2T2 − T3 is a Laplace distribution of multiorder (3, 1),

T ∈ L′
a(Ω).

(iii) Case (1, 1). Then with some constant C < ∞ |J2
2J

2
1F (α + iβ)| ≤

Ce−α·κ for 0 < βj < r − 2δ, j = 1, 2, and by (i) there exists a Laplace

distribution T1 ∈ L′
a(Ω) of multiorder (1, 1) such that

(16) lim
β→0+

∫
Ω
J2

2J
2
1F (α + iβ)ϕ(α)dα = T1[ϕ] for ϕ ∈ La(Ω).

For the proof of assertion (3) one derives F (z) from the formula analogous

to (15) with ∂2

∂z21

∂2

∂z22
J2

2J
2
1F (z) on the left-hand side, this time. There is no

problem with the terms in which both arguments of F are translated by iδ

or 2iδ. If only one of the arguments is translated, for example the second

one, we deduce by (13) and (i) that there exists T2 ∈ L′
a of multiorder (1, 1)

such that

(17) lim
β→0+

∫
Ω
J2

1F (α1+iβ1, α2+i(β2+δ))ϕ(α)dα = T2[ϕ] for ϕ ∈ La(Ω).

By (15) and (17) we get for ϕ ∈ La(Ω):

lim
β→0+

∫
Ω
F (α1 + iβ1, α2 + i(β2 + δ))ϕ(α)dα(18)

= T2

[∂2ϕ

∂α2
1

]
+ T3[ϕ] + T4[ϕ] = T ∗

1 [ϕ],

where T3(α) = 2F (α1 + iδ, α2 + iδ), T4(α) = −F (α1 + 2iδ, α2 + iδ), T ∗
1 =

∂2

∂α2
1
T2 + T3 + T4 is a Laplace distribution of multiorder (3, 1). Thus by

(16), (18) and analogous formulae for all the terms involving translation

of one variable only we find a distribution T ∗ ∈ L′
a(Ω) of multiorder (3, 3)

such that formula (3) holds with T = ( ∂
∂α1

)2( ∂
∂α2

)2T1 + T ∗ + T̃ ∈ L′
a(Ω) of

multiorder (3, 3), where T̃ (α) = −F (α1 + 2iδ, α2 + 2iδ) + 2F (α1 + iδ, α2 +

2iδ) + 2F (α1 + 2iδ, α2 + iδ)− 4F (α1 + iδ, α2 + iδ).
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(iv) Case (2, 0). The proof of (3) with T of multiorder (4, 1) follows by

(i), (ii) and the formula

(19) F (z1, z2) = − ∂

∂z1
J1F (z1, z2) + F (z1 + iδ, z2).

Thus we have proved Lemma 1 for F of growth type (k1, k2) with k1 ∈
N0, k2 ∈ N0, k1 + k2 ≤ 2. For the proof by induction fix arbitrarily p ∈ N,

p ≥ 2 and suppose that Lemma 1 is true for all (k1, k2) with k1 ∈ N0,

k2 ∈ N0, k1 +k2 ≤ p. We have to prove it for F having the following growth

types (near Ω):

(p + 1, 0), (p, 1), . . . , (2, p− 1) and (1, p), (0, p + 1).

If F is of growth type belonging to the first group then J1F is of growth

type (p, 0), (p − 1, 1), . . . , (1, p − 1) correspondingly and F (z1 + iδ, z2) is

of growth type (0, 0), (0, 1), . . . , (0, p − 1). Applying formula (19) and the

induction assumption we get (3).

If F is of growth type (1, p) or (0, p + 1) then J2F is of growth type

(1, p − 1) or (0, p) correspondingly and by the induction assumption and

the formula for J2F analogous to (5) we get (3).

This ends the proof of Lemma 1 for n = 2. �

The set Ω ⊂ R
n in Lemma 1 was an arbitrary open set satisfying con-

dition (1). In Proposition 1 we shall assume that Ω ⊂ ◦
ξ + Γ where

◦
ξ ∈ R

n

and Γ is an open cone in
•
R
n, whose dual cone Γ⊥ df

= {y ∈ R
n : y · x <

0 for every x ∈ Γ} has a non-empty interior.

Note that

(i) (Rn
+)⊥ = R

n
−; if Γ ⊂ R

n
+ then Γ⊥ ⊃ R

n
−; if for some x ∈ Γ, −x ∈ Γ

then Γ⊥ is empty;

(ii) if Int Γ⊥ is not empty then
∫
Γ eb·xdx <∞ for every b ∈ Int Γ⊥.

(iii) Let Γ be a cone in
•
R
n, A ∈ GL(n,R) and let ∆ = AΓ. Then ∆⊥ =

(Atr)−1Γ⊥ and hence in particular (AR
n
+)⊥ is open and not empty.

Proof of (iii). Let h ∈ ∆⊥. For every a ∈ Γ we have h ·Aa < 0 and

hence also Atrh · a < 0. This means that Atrh ∈ Γ⊥, hence h ∈ (Atr)−1Γ⊥.

The proof of the inclusion (Atr)−1Γ⊥ ⊂ ∆⊥ is analogous. �
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Proposition 1. Let Ω be an open set in R
n such that Ω ⊂ ◦

ξ+Γ, where
◦
ξ ∈ R

n and Γ is an open cone, Int Γ⊥ �= ∅. Let F ∈ O(Ω + iRn
+|r) satisfy

condition (2). Then for every a ∈ Int Γ⊥ + κ there exists T ∈ L′
a(Ω) such

that (3) holds.

Proof. Let a ∈ Int Γ⊥ +κ. Then by (ii)
∫
Γ e(a−κ)·xdx <∞ and hence

also
∫
Ω e(a−κ)·xdx ≤

∫
◦
ξ+Γ

e(a−κ)·xdx = e(a−κ)·◦ξ ∫
Γ e(a−κ)·ydy <∞. Thus our

assertion follows by Lemma 1. �

Let Ω =
◦
ξ+R

n
+,

◦
ξ ∈ R

n and let Γ be an open connected cone in
•
R
n. We

denote by [Ω+ iΓ] the germ of the set Ω+ iΓ near R
n, i.e. the class of open

sets V ⊂ C
n for which there exists a complex neighbourhood W of R

n such

that V ∩W = (Ω + iΓ) ∩W . We write F ∈ O([Ω + iΓ]) if for some W as

above F ∈ O((Ω + iΓ) ∩W ).

Definition 1. Let F ∈ O
(
[Ω+ iΓ]

)
. Assume that there exists κ ∈ R

n

such that for every Γ′ ✭✦�❤ Γ and any β ∈ Γ′ close to zero the functional

L(κ)(Ω) � ϕ �→ uβ[ϕ] =
∫
Ω F (α + iβ)ϕ(α)dα belongs to L′

(κ)(Ω) and that

there exists limΓ′�β→0 uβ. We say that u
df
= limΓ′�β→0 uβ (belonging to

L′
(κ)(Ω)) is a Laplace distributional boundary value (LDBV in short) of F

on Ω (from the wedge Ω + iΓ) and write u = bΓ(F ),

(20) u[ϕ] = lim
Γ′�β→0

∫
Ω
F (α + iβ)ϕ(α)dα for ϕ ∈ L(κ)(Ω).

Next we define the space Lh
κ̃([Ω + iΓ]) (h ∈ N0, κ̃ ∈ R

n) of all functions

F ∈ O
(
[Ω + iΓ]

)
such that for every Γ′ ✭✦�❤ Γ, Ω′ � Ω there exist r > 0 and

CΓ′,Ω′ <∞ such that

(21) |F (α + iβ)| ≤ CΓ′,Ω′
e−α·κ̃

‖β‖h for α + iβ ∈ Ω′ + iΓ′|r.

For κ ∈ R
n we define(5) L

(∞)
(κ) ([Ω + iΓ]) = lim←−κ̃<κ lim−→h∈N0

Lh
κ̃([Ω + iΓ]).

(5)Sometimes, for convenience, we use the notation L
h
κ(Ω + iΓ), L

(∞)
(κ)

(Ω + iΓ) instead

of L
h
κ([Ω + iΓ]), L

(∞)
(κ)

([Ω + iΓ]).
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Proposition 2. Let Γ be an open connected cone in
•
R
n,

◦
ξ ∈ R

n,

κ ∈ R
n, Ω =

◦
ξ + R

n
+. Then every function F ∈ L

(∞)
(κ) (Ω + iΓ) has an

LDBV: u = bΓ(F ) ∈ L′
(κ)(Ω).

Proof. Take an arbitrary cone Γ′ ✭✦�❤ Γ and a covering Γ′ ✭✦�❤
⋃p
j=1 Γ′

j
✭✦�❤

Γ, where Γ′
j are open simplexes Γ′

j
✭✦�❤ Γ (j = 1, . . . , p) such that Γ′

j

⋂
Γ′
j+1 �=

∅ (j = 1, . . . , p − 1). Take Aj ∈ GL(n,R) such that Aj(R
n
+) = Γ′

j . Define

Fj = F |Ω+iΓ′
j
, Gj = Fj ◦Aj (j = 1, . . . , p). Then Gj ∈ O(A−1

j Ω + iA−1
j Γ′

j)

and since R
n
+ = A−1

j Γ′
j
✭✦�❤A−1

j Γ and A−1
j Ω = ◦xj + Λj with ◦xj = A−1

j

◦
ξ,

Λj = A−1
j (Rn

+), we have Gj ∈ O( ◦xj + Λj + iRn
+) (j = 1, . . . , p).

Moreover for every κ̃ < κ there exists h ∈ N0 such that by (21)

|Gj(x + iy)| = |Gj(z)| = |Fj(Aj(z))| ≤ C
e−κ̃·Ajx

‖Ajy‖h
≤ C1

e−x·A
tr
j κ̃

yk1 · . . . · ykn

for x ∈ ◦xj + Λj , y ∈ R
n
+, where k = h

n if h
n ∈ N, and k = [hn ] + 1 if h

n /∈ N.

Hence by (iii) and Proposition 1 for every aj ∈ Int(A−1
j (Rn

+))⊥+Atr
j κ̃ there

exists Tj ∈ L′
aj (

◦xj + A−1
j (Rn

+)) such that

lim
y→0+

∫
◦xj+A

−1
j (Rn

+)
Gj(x + iy)ψ(x)dx = Tj [ψ] for ψ ∈ Laj (

◦xj + A−1
j (Rn

+)).

Then

Tj [ψ] = lim
y→0+

∫
A−1

j (
◦
ξ+Rn

+)
(Fj ◦Aj)(x + iy)ψ(x)dx

= lim
Γ′
j�β→0

∫
◦
ξ+Rn

+

F (α + iβ)ψ(A−1
j α)|detA−1

j |dα.

Let ϕ = ψ ◦A−1
j . Clearly ϕ ∈ L(Atr

j )−1aj (
◦
ξ + R

n
+) and

(22) lim
Γ′
j�β→0

∫
◦
ξ+Rn

+

F (α + iβ)ϕ(α)dα = |detAj | Tj [ϕ ◦Aj ] = Tj ◦A−1
j [ϕ].
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Since aj ∈ Int(A−1
j (Rn

+))⊥ + Atr
j κ̃, we get easily by (iii) that (Atr

j )−1aj ∈
κ̃ + R

n
−, hence (22) holds for ϕ ∈ L(κ̃)(

◦
ξ + R

n
+). Since Γ′

j ∩ Γ′
j+1 �= ∅,

lim
β→0

β∈Γ′
j∩Γ′

j+1

∫
◦
ξ+Rn

+

F (α + iβ)ϕ(α)dα = Tj ◦A−1
j [ϕ] = Tj+1 ◦A−1

j+1[ϕ]

for ϕ ∈ L(κ̃)(Ω) and hence there exists limΓ′�β→0

∫
Ω F (α + iβ)ϕ(α)dα for

ϕ ∈ L(κ̃)(Ω). This ends the proof, since κ̃ < κ was arbitrary. �

Define for σ = (σ1, . . . , σn) ∈ {+,−}n: sgnσ = σ1 · . . . · σn and a cone

Γσ = {β ∈ R
n : σjβj > 0, 1 ≤ j ≤ n}, called the n-th orthant.

Now we shall deduce from Proposition 2 the following important corol-

lary.

Corollary 1. Let F ∈ L
(∞)
(κ) (W=\\Rn

+), κ ∈ R
n, and define

bF =
∑
σ

sgnσbΓσF

where bΓσF is defined by (20). Then bF ∈ L′
(κ)(R

n
+).

Proof. Let F ∈ L
(∞)
(κ) (W=\\Rn

+), κ ∈ R
n. Then for every κ̃ < κ there

exists h ∈ N0 such that F ∈ Lh
κ̃(W=\\Rn

+). Hence F ∈ O((Rn + iΓσ) ∩W )

for every σ ∈ {+,−}n and we can choose Ω =
◦
ξ + R

n
+ with

◦
ξ < 0 such

that for every Ω′ � Ω, Γ′ ✭✦�❤ Γσ estimate (21) holds. Thus by Proposition 2,

bF ∈ L′
(κ)(Ω). Due to the cancellation of boundary values

∑
σ sgnσbΓσF

from the wedges Ω + iΓσ with Ω in the complement of R
n
+ it follows that

supp bF ⊂ R
n
+. Finally we apply Theorem 3 from [S2–Z2] (or Theorem 8.3

in [S2–Z1]) in logarithmic coordinates. �

Proposition 3. Let Ω, Γ, W be as in Definition 1. If F ∈ O
(
(Ω +

iΓ) ∩W
)

has LDBV u ∈ L′
(κ)(Ω) (κ ∈ R

n), then F ∈ L
(∞)
(κ) (Ω + iΓ).

Proof. Fix Ω′ � Ω, Γ′ ✭✦�❤ Γ and take Ω′ � Ω′′ � Ω, Γ′ ✭✦�❤ Γ′′ ✭✦�❤ Γ, 0 <

r < 2 such that F ∈ O(Ω′′ + iΓ|r). Fix arbitrarily ◦α ∈ Ω′,
◦
β ∈ Γ′|r/2.
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Then there exists 0 < c ≤ 1 such that F ∈ O
(
{α : ‖α− ◦α‖ ≤ c‖ ◦

β‖}+ i{β :

‖β− ◦
β‖ ≤ c‖ ◦

β‖}
)
. Since bLΓ(F ) ∈ L′

(κ)(Ω), by the Banach-Steinhaus theorem

for every κ̃ < κ there exist constants c̃, k̃ ∈ N0 such that

∣∣∣ ∫
Ω
F (α + iβ)ϕ(α)dα

∣∣∣ ≤ c̃q
k̃,κ̃

(ϕ) for ϕ ∈ Lk̃κ̃(Ω), β ∈ Γ′′|r,

where q
k̃,κ̃

(ϕ) = max
|ν|≤k̃

sup
α

∣∣∣e−κ̃·α( ∂

∂α

)ν
ϕ(α)

∣∣∣.
Let ψ ∈ C∞

0

(
{α : ‖α− ◦α‖ ≤ c‖ ◦

β‖}
)

with q
k̃
(ψ)

df
= max|ν|≤k̃ sup

∣∣( ∂
∂α

)ν
ψ(α)

∣∣
≤ 1

c̃ . Then q
k̃,κ̃

(ψ) ≤
(
sup‖α−◦α‖≤c‖◦

β‖ e
−κ̃·α)q

k̃
(ψ) ≤ 1

c̃e
|κ̃|e−κ̃·

◦α, where |κ̃| =∑n
j=1 κ̃j . Hence

(23)
∣∣∣ ∫

Ω
F (α + iβ)ψ(α)dα

∣∣∣ ≤ e|κ̃|e−κ̃·
◦α if ‖β − ◦

β‖ ≤ c‖ ◦
β‖.

In the further proof we shall use the function(6) ρ ∈ C∞
0 (Cn) supported

by {z ∈ C
n : ‖z‖ ≤ 1

2} such that
∫
ρ(α + iβ)f(α + iβ)dαdβ = f(0) for

f ∈ O
(
{z : ‖z‖ ≤ 1}

)
. Let ◦z = ◦α + i

◦
β, g(z)

df
= F (z + ◦z), µ(α)

df
= ψ( ◦α +

α). Then by (23)
∣∣∣ ∫ g(α + iβ)µ(α)dα

∣∣∣ ≤ e|κ̃|e−κ̃·
◦α for ‖β‖ ≤ c‖ ◦

β‖. Let

g
c‖◦
β‖(α + iβ) = g(c‖ ◦

β‖α + ic‖ ◦
β‖β). Then

(24)

F (◦z) = g(0) = g
c‖◦
β‖(0) =

∫
ρ(α + iβ)g(c‖ ◦

β‖α + ic‖ ◦
β‖β)dαdβ

=
1

(c‖ ◦
β‖)2n

∫
ρ
( ξ

c‖ ◦
β‖

+ i
η

c‖ ◦
β‖

)
g(ξ + iη)dξdη.

Observe that since c‖ ◦
β‖ ≤ 1, we get for every |ν| ≤ k̃:

∣∣∣( ∂

∂ξ

)ν
ρ
( ξ

c‖ ◦
β‖

+ i
η

c‖ ◦
β‖

)∣∣∣ ≤ 1

(c‖ ◦
β‖)|ν|

sup
∣∣∣( ∂

∂α

)ν
ρ(α + iβ)

∣∣∣ ≤ M

(c‖ ◦
β‖)k̃

with some M < ∞ (depending on k̃ but independent of ξ, η). Now fix

η : ‖η‖ < c‖◦
β‖
2 < 1

2 and let σ(ξ, η) = (c‖◦
β‖)k̃
Mc̃ ρ( ξ

c‖◦
β‖

+ i η

c‖◦
β‖

). Then

(6)See e.g. [L].
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∫
g(ξ + iη)σ(ξ, η)dξ ≤ e|κ̃|e−κ̃·

◦α. Hence we deduce from (24) that |F (◦z)| ≤
c

‖◦
β‖n+k̃

e−κ̃·
◦α, where the constants c < ∞, k̃ ∈ N0 do not depend on the

choice of ◦α + i
◦
β ∈ Ω + iΓ|r/2. �

By Propositions 2 and 3 we get

Theorem 2. Let Γ be an open cone in
•
R
n, ◦α ∈ R

n, κ ∈ R
n, Ω = ◦α +

R
n
+ and let W be a complex neighbourhood of Ω. Let F ∈ O

(
(Ω+ iΓ)∩W

)
.

Then the following assertions are equivalent:

(i) There is u ∈ L′
(κ)(Ω) with u = bΓ(F ).

(ii) F ∈ L
(∞)
(κ)

(
[Ω + iΓ]

)
.

3. Laplace Hyperfunctions and Distributions

Throughout this section W = W1 × · · · × Wn is a polytubular neigh-

bourhood of R
n
+ such that Im ζj is bounded for ζj ∈Wj (j = 1, . . . , n). We

shall denote by γj a regular curve in Wj \ R+ encircling R+ once in the

anticlockwise direction (j = 1, . . . , n) and put γ = γ1 × · · · × γn.

Let G ∈ L(ω)(W=\\Rn
+), ϕ ∈ L∼(ω)(R

n
+). By the definition of such functions

given in Section 1, in every polytubular set V = V1×· · ·×Vn in which both

of them are defined there exist a < κ < ω and C <∞ such that

(25) |ϕ(z)G(z)| ≤ Ce−(κ−a)·Re z.

When considering the integral
∫
γ G(z)ϕ(z)dz we shall always assume that

γ ⊂ V .

Let Λ(ζ, w) =
∏n

j=1 Λj(ζj , wj) with Λj(ζj , wj) = e−(ζj−wj)
2
/(ζj − wj)

(j = 1, . . . , n). In vector notation we write

Λ(ζ, w) = e−(ζ−w)2(ζ − w)−11

and call it a modified Cauchy kernel.

Proposition 4. Fix a polytubular neighbourhood W ⊃ R
n
+ and a poly-

tubular set V 1 � W=\\Rn
+. Choose a polytubular set V 2 : R

n
+ ⊂ V 2 � W
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such that dist(V 1
j , V

2
j ) = ηj > 0 (j = 1, . . . , n) and let a ∈ R

n. Then there

exists C <∞ such that

(26) sup
w∈V 2

sup
ζ∈V 1

|ea·(ζ−w)Λ(ζ, w)| < C.

In particular for a fixed ζ ∈ W=\\Rn
+ with dist(ζj , V

2
j ) ≥ ηj > 0 (j =

1, . . . , n) we have supw∈V 2 |e−a·wΛ(ζ, w)| < ∞ which means that Λ(ζ, ·) ∈
L∼a(V

2).

The proof follows from the estimate:

sup
w∈V 2

sup
ζ∈V 1

|ea·(ζ−w)Λ(ζ, w)| ≤ C sup
w∈V 2

sup
ζ∈V 1

eRe(ζ−w)·(a−Re(ζ−w))

≤ C
n∏
j=1

sup
ξj∈R

eξj ·(aj−ξj) <∞.

Lemma 2. Let G ∈ L(ω)(W=\\Rn
+). Then G ∈

∑n
j=1 L(ω)(W=\\jR

n
+) if

and only if

(27)

∫
γ
G(z)ϕ(z)dz = 0 for ϕ ∈ L∼(ω)(R

n
+).

Proof. To simplify the notation take G ∈ L(ω)(W=\\nR
n
+) and put

z1 = (z1, . . . , zn−1), γ
1 = γ1 × · · · × γn−1. Then for all ϕ ∈ L∼(ω)(R

n
+) the

function G(z1, ·)ϕ(z1, ·) is holomorphic in the domain bounded by γn, hence

by (25)
∫
γn

G(z1, zn)ϕ(z1, zn)dzn = 0 and consequently we get (27). For the

proof of the second part of Lemma 2 let Pγ−j ,γ
+
j
⊂ Wj \ R+ be a domain

bounded by an inner curve γ−j and an outer curve γ+
j , both rectifiable and

encircling R+, dist(γ−j , γ
+
j ) > 0, dist(γ−j ,R+) > 0, γj = ∂Pγ−j ,γ

+
j

= γ+
j − γ−j

(j = 1, . . . , n). By (27), the Cauchy formula and Proposition 4 we have

(28)

G(z) =
∑

σ∈{+,−}n
σ �=(−,... ,−)

Hσ(z) for z ∈ P = Pγ−1 ,γ
+
1
× · · · × Pγ−n ,γ+

n
,

where Hσ(z) =
1

(2πi)n
sgnσ

∫
γσnn

· · ·
∫
γ
σ1
1

G(ζ)Λ(ζ, z)dζ1 · · · dζn.
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Observe that every summand in (28) extends holomorphically to the carte-

sian product of a number p ≥ 1 of sets Vγ+
j

and n − p of sets Wk \ V γ−k
,

where Vγ±k
denotes the domain bounded by the curve γ±k . Since the curves

γ−j can be taken arbitrarily close to R+ and γ+
j arbitrarily close to ∂Wj

(j = 1, . . . , n), we see that G ∈
∑n

j=1O(W=\\jR
n
+). To prove the desired es-

timates we observe that by Proposition 4 the function G(ζ)Λ(ζ, z) satisfies

estimates (25) and hence applying the Cauchy formula we can write Hσ as

a linear combination of integrals taken only over the curves γ+
j . Consider

for instance the integral

(29) Gn(z) =

∫
γ+
n

G(z1, ζn)Λn(ζn, zn)dζn for (z1, zn) = z ∈W=\\nR
n
+.

Clearly Gn ∈ O(W=\\nR
n
+). To prove that Gn ∈ L(ω)(W=\\nR

n
+) we take

a polytubular set V = V 1 × Vn, where V 1 is a polytubular set in (W1 \
R+) × · · · × (Wn−1 \ R+) and Vn is contained inside γ+

n , dist(Vn, γ
+
n ) > 0.

Take arbitrarily a < ω. Let a = (a1, an), b = (a1, bn), an < bn < ωn. By

the assumption on G we have |G(z1, ζn)| ≤ C|e−a1·z1−bnζn | for z1 ∈ V 1,

ζn ∈ γ+
n and some C < ∞. Hence by (29) and (26) we get, with some

C̃ < ∞, supz∈V |ea·zGn(z)| ≤ C̃
∣∣∫
γ+
n
e−(bn−an) Re ζndζn

∣∣ < ∞, which proves

that Gn ∈ L(ω)(W=\\nR
n
+). The proof of Lemma 2 follows by the consecutive

application of the above reasoning. �

Proposition 5. The space
∑n

j=1 L(ω)(W=\\jR
n
+) is a closed subspace

of L(ω)(W=\\Rn
+).

Proof. Let
∑n

j=1 L(ω)(W=\\jR
n
+) � Gν −−→

ν→∞
G in L(ω)(W=\\Rn

+). Hence

by Lemma 2 for ϕ ∈ L∼(ω)(R
n
+), γ ⊂ W=\\Rn

+ we have
∫
γ G

ν(z)ϕ(z)dz = 0

(ν = 1, 2, . . . ), and to prove that G ∈
∑n

j=1 L(ω)(W=\\jR
n
+) it suffices to

show that the same is true for G. Take any ϕ ∈ L∼(ω)(R
n
+) and a < ω such

that ϕ ∈ L∼a(R
n
+). Then for 0 < δ < ω − a we get the estimate

∣∣∫
γ
G(z)ϕ(z)dz

∣∣ =
∣∣∫
γ
(G(z)−Gν(z))ϕ(z)dz

∣∣
≤ C sup

z∈γ

∣∣e(ω−δ)·z(G(z)−Gν(z))
∣∣ · ∣∣∫

γ
e−(ω−a−δ)·zdz

∣∣,
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in which the right-hand side converges to zero as ν → ∞. Hence∫
γ G(z)ϕ(z)dz = 0. �

Definition 2. The quotient space(7)

Q(ω)(R
n
+) = L(ω)(W=\\Rn

+)
/ n∑

j=1

L(ω)(W=\\jR
n
+)

is called the space of Laplace hyperfunctions on R
n
+ of type ω ∈ R

n. By

Proposition 5 it is a Hausdorff topological space. A function F ∈
L(ω)(W=\\Rn

+) is called a defining function for the Laplace hyperfunction

f = F +
∑n

j=1 L(ω)(W=\\jR
n
+) denoted shortly f = [F ].

Definition 3. We say that a sequence fν ∈ Q(ω)(R
n
+) (ν = 1, 2, . . . )

is convergent if there exist defining functions Fν such that {Fν} converges

in L(ω)(W=\\Rn
+) to some F . We set limν→∞ fν = f

df
= [F ].

We intend to provide an n-dimensional version of the well-known Köthe

theorem [Kö] and Martineau–Harvey theorem [M], [H] for the case of

Laplace hyperfunctions. To this aim we need Lemma 3 below.

Lemma 3. Let Ψ ∈ L(ω)(W=\\Rn
+), W ⊃ R

n
+, γ = γ1 × · · · × γn, and

define Ψ∗(z) =
(−1

2πi

)n ∫
γ Ψ(w)Λ(w, z)dw, where γj leaves zj on the right.

Then Ψ∗ ∈ L(ω)(W=\\Rn
+) and

(30) Ψ−Ψ∗ ∈
n∑
j=1

L(ω)(W=\\jR
n
+).

Proof. Observe first that Ψ∗ ∈ O(W=\\Rn
+). To prove that Ψ∗ ∈

L(ω)(W=\\Rn
+) take a polytubular set W̃j � Wj \ R+ (j = 1, . . . , n), an

a < ω and choose 0 < ρ < ω − a and a curve γj encircling R+ in the

(7)The correctness of this symbol (i.e. the independence from W ) will be clear from
Theorem 3 below.
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anticlockwise direction and leaving W̃j on the right (j = 1, . . . , n). Then

by assumption on Ψ and Proposition 4 we get

sup
z∈W̃
|ea·zΨ∗(z)| ≤ C sup

z∈W̃
sup
w∈γ

∣∣ea·(z−w)Λ(z, w)
∣∣ · ∣∣∫

γ
e−ρ·Rewdw

∣∣ <∞

and thus Ψ∗ ∈ L(ω)(W=\\Rn
+). For the proof of (30) we apply Lemma 2.

To this aim take ϕ ∈ L∼(ω)(R
n
+) and the curves γ and γ̃ verifying the usual

conditions and moreover such that for every j = 1, . . . , n the curve γ̃j leaves

γj on the left, dist(γ̃j , γj) = ηj > 0.

Fix arbitrarily a point w ∈ γ and let M > Rewj for j = 1, . . . , n,

split the curve γ̃j into two curves: a bounded γ̃1,M
j and an unbounded

γ̃2,M
j having a common bounded segment with the line Re zj = M (j =

1, . . . , n). Clearly by the Cauchy formula applied to the function fw(z) =

ϕ(z)e−(z−w)2 we have ϕ(w) = 1
(2πi)n

∫
γ̃1,M ϕ(z)Λ(z, w)dz for every M >

Rewj , j = 1, . . . , n. By the standard estimation |ϕ(z)Λ(z, w)| ≤ Ce−ρ·Re z

with some ρ ∈ R
n
+, C = C(w) <∞ and hence

∫
γ̃2,M
j

ϕ(z)Λ(z, w)dzj −−−→
M→∞

0,

j = 1, . . . , n. Thus

(31) ϕ(w) =
1

(2πi)n

∫
γ̃
ϕ(z)Λ(z, w)dz

and, by the standard estimation we get
∫
γ̃ Ψ∗(z)ϕ(z)dz = 1

(2πi)n

∫
γ Ψ(w)×(∫

γ̃ ϕ(z)Λ(z, w)dz
)
dw =

∫
γ Ψ(w)ϕ(w)dw =

∫
γ̃ Ψ(z)ϕ(z)dz for every ϕ ∈

L∼(ω)(R
n
+), which by Lemma 2 yields (30). �

Theorem 3. There exists a natural topological isomorphism

Q(ω)(R
n
+) ∼= L∼

′
(ω)(R

n
+), ω ∈ R

n,

given by the assignment

Q(ω)(R
n
+) � f = [F ] �−→ If ∈ L∼

′
(ω)(R

n
+),
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where F ∈ L(ω)(W=\\Rn
+) and the functional If is given by If [ϕ] =

(−1)n
∫
γ F (z)ϕ(z)dz for ϕ ∈ L∼(ω)(R

n
+). The inverse mapping J is the

assignment

L∼
′
(ω)(R

n
+) � T

J�−→[CΛT ] = Ψ +
n∑
j=1

L(ω)(W=\\jR
n
+),

where

(CΛT )(ζ) = Ψ(ζ)
df
=

(−1

2πi

)n
T
[ e−(ζ−w)2

(ζ − w)11

]
for ζ ∈ C

n=\\Rn
+

belongs to L(ω)(W=\\Rn
+) for every tubular neighbourhood W of R

n
+.

Proof. By the assumptions on F,ϕ, γ there exists a polytubular neigh-

bourhood V ⊃ R
n
+ and a < ω such that

∣∣∫
γ F (z)ϕ(z)dz

∣∣ ≤ Cρa,V (ϕ) and

If(ϕ) is independent of the choice of γ encircling R+ in V . Thus the func-

tional If ∈ L∼
′
(ω)(R

n
+) and by Lemma 2 it does not depend on the choice of

a defining function F .

Let T ∈ L∼
′
(ω)(R

n
+) and let W,V1, V2 be defined as in Proposition 4. Take

a < ω. Then T ∈ L∼
′
a(V2), Λ(ζ, ·) ∈ L∼a(V2) for every ζ ∈ V1 and hence

Ψ(ζ) = ( −1
2πi)

nT [Λ(ζ, ·)] is well defined for ζ ∈ V1. By point 2 in Section 1

and (26) we get

sup
ζ∈V1

|ea·ζΨ(ζ)| ≤ (2π)−nCa,V2 sup
ζ∈V1

∣∣ea·ζ sup
w∈V2

|e−a·wΛ(ζ, w)|
∣∣

≤ (2π)−nCa,V2 sup
ζ∈V1

sup
w∈V2

|ea·(ζ−w)Λ(ζ, w)| ≤ C̃ <∞.

Recall that V1 was an arbitrary polytubular set � W=\\Rn
+ and a < ω was

also arbitrary. Thus Ψ ∈ L(ω)(W=\\Rn
+) since (as it can be shown directly)

it is holomorphic on W=\\Rn
+. Thus the transformation J in Theorem 3 is

well defined and CΛT ∈ L(ω)(W=\\Rn
+). The equality J = I−1 can be shown

by (31) in the following way: (I ◦ J T )[ϕ] =
(

1
2πi

)n ∫
γ ϕ(z)T [Λ(z, w)]dz =

T
[(

1
2πi

)n ∫
γ ϕ(z)Λ(z, w)dz

]
= T [ϕ] for ϕ ∈ L∼(ω)(R

n
+). To prove that J ◦

If = f for f = [F ] ∈ Q(ω)(R
n
+) observe that by Lemma 3: (CΛ(If))(ζ) =(

1
2πi

)n ∫
γ F (z)Λ(ζ, z)dz = F ∗(ζ) and J ◦ If = [CΛ(If)] = [F ∗] = f .
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To prove the continuity of I assume that limν→∞ fν = f in Q(ω)(R
n
+)

(cf. Definition 3), note that |Ifν [ϕ]−If [ϕ]| = |
∫
γ(Fν(z)−F (z))ϕ(z)dz| for

ϕ ∈ L∼(ω)(R
n
+) and end the proof as in Proposition 5. The continuity of the

mapping J follows from the Banach-Steinhaus and the Vitali theorems. �

By Theorem 3 and point 4. in Section 1 we deduce immediately:

Corollary 2 (Imbedding of Laplace distributions in Laplace hyper-

functions). There exists a natural topological imbedding:

L′
(ω)(R

n
+)⊂−>Q(ω)(R

n
+).

Now we pass to the description of the image of L′
(ω)(R

n
+) under the

imbedding.

The space L
(∞)
(k) (Ω + iΓ) of Section 2 turns out however to be unsuit-

able for our purpose, namely we need to control the way we approach the

boundary of the cone Γ. Therefore we proceed as follows. We consider

local wedges at infinity Q = Ω + iΓ|r with profile Γ ⊂
•
R
n (cf. Definition 1)

and edge Ω ⊂ R
n having (up to a permutation) one of the following forms:

(M1,∞) × · · · × (Mn,∞) (i.e. as in Definition 1 if Ω = M + R
n
+, M =

(M1, . . . ,Mn) ∈ R
n) or ωαj×(Mn−j+1,∞)×· · ·×(Mn,∞), j = 1, . . . , n−1;

here αj = (α1, . . . , αn−j), ωαj = ωα1 × · · · × ωαn−j , ωαk
are open bounded

neighbourhoods of αk in R.

Definition 4. Let V ⊂ C
n be open and [V ] be its germ near R

n

(cf. Definition 1). Let k ∈ N0, κ ∈ R
n. We define the space Lκ

|k([V ]) by

Lκ
|k([V ]) ={H ∈ O(V ) : qQ(H) <∞

for every local wedge Q = Ω + iΓ|r ⊂ V and

qQ(H) = sup
α+iβ∈Q

|H(α + iβ)| · (dist(β,bd Γ))k exp(

p∑
j=1

αljκlj )}.

The exponential factor in the definition of qQ(H) appears every time the

cartesian product Ω contains unbounded intervals (Ml1 ,∞), . . . ,
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(Mlp ,∞).(8) By L(κ)
|k ([V ]) we denote lim←−

κ̃<κ

Lκ̃
|k([V ]).

We shall often write Lκ
|k(V ) instead of Lκ

|k([V ]).

Lemma 4. Let k ∈ N0, κ ∈ R
n, and G ∈ L(κ)

|k (W=\\Rn
+). Fix j, 1 ≤

j ≤ n, take zj ∈Wj and let γj ⊂Wj \R+ be a regular curve encircling R+

in the anticlockwise direction and leaving the point zj on the left. Define

Gj(z) =

∫
γj

G(z1, . . . , zj−1, ζj , zj+1, . . . , zn)Λj(ζj , zj)dζj

for z ∈W=\\jR
n
+.

Then Gj ∈ L(κ)
|k (W=\\jR

n
+).

Proof. We have to control at the same time the behaviour of the

estimates as Re z →∞ as in Lemma 3 and moreover the way we approach

R
n. To simplify the formulae assume j = n and thus Gn is given by (29)

with zn ∈Wn, z
1 = (z1, . . . , zn−1) ∈ (W1 \R)× · · · × (Wn−1 \R). Let α1 =

Re z1, β1 = Im z1. We have to show that for any local wedge Q ⊂W=\\nR
n

and any κ̃ < κ the inequality qQ(Gn) < ∞ holds. We distinguish some

types of local wedges:

(i) Let ◦α1 ∈ R
n−1
+ , ◦αn ∈ Wn ∩ R, and ω◦α1 , ω◦αn

be their bounded neigh-

bourhoods. Take Ω = ω◦α1 ×ω◦αn
and(9) Qε = Ω+ i(Rn−1

+ ×R)|ε ⊂W=\\nR
n
+.

In this case we have to show that for some C <∞ the following inequal-

ity holds for ε sufficiently small:

|Gn(α + iβ)| ≤ C( min
1≤j≤n−1

βj)
−k for α + iβ ∈ Qε.

Take α− < c− < 0 such that [α−,+∞) ⊂ Wn ∩ R, ω◦αn
⊂ (c−,+∞). Let

{ω1, ω2} be an open covering of [α−, +∞) in R, where ω1 is a bounded

neighbourhood of α−. Let ωα1 be an open bounded neighbourhood of α1 ∈
(8)We may equivalently define the topology assuming qQ with the exponential factor∑n

j=1 αjκj in all the cases.
(9)To simplify the notation we select the case Γ = R

n−1
+ × R instead of the general

one: Γ = Rσ1 × · · · × Rσn−1 × R, σq ∈ {+,−} for q = 1, . . . , n− 1.
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R
n−1 and denote Ω1 = ωα1 × ω1, Ω2 = ωα1 × ω2. Let Γ1 = R

n−1
+ × R,

(Γ2)± = R
n−1
+ × R± and r∗ > 0 small enough that Ω1 + iΓ1|r∗ ⊂ W=\\nR

n
+,

Ω2 + i(Γ2)±|r∗ ⊂W=\\nR
n
+. Take 0 < ε < r < r∗ and consider two strips:

1) P+ bounded by the half-lines l± = (α− + s) ± ir (0 < s < ∞) and

the segment [α− − ir, α− + ir],

2) P− bounded by (c− + s)± iε (0 < s <∞) and [c− − iε, c− + iε].

Let γn = ∂P+ and let zn ∈ ω◦αn
+ iR|ε. Then there exists ρ > 0 such that

|zn − ζn| ≥ ρ if ζn ∈ γn and, by the estimate verified by G on the wedge

Ω1 + iΓ1|r∗ there exists C <∞ such that

|G(z1, ζn)| ≤ C( min
1≤j≤n−1

βj)
−k

for z1 ∈ ω◦α1 + iRn−1
+ |r∗ , ζn = α− + it, −r ≤ t ≤ r.

Hence with C1 <∞ we get the estimate:

(32)
∣∣∣∫ α−+ir

α−−ir
G(z1, ζn)Λn(ζn, zn)dζn

∣∣∣ ≤ C1( min
1≤j≤n−1

βj)
−k.

If ζn ∈ l± and ‖β1‖ ≤ ε we have dist((β1, Im ζn),bd(Rn−1
+ × R±)) =

min1≤j≤n−1 βj . Note that by the estimate verified by G on the wedge

Ω2 + i(Γ2)±|r∗ there exists C <∞ such that

(33)
|G(z1, ζn)| ≤ Ce−Re ζn·κ̃n( min

1≤j≤n−1
βj)

−k

for ζn ∈ l±, z1 ∈ ω◦α1 + iRn−1
+ |ε,

and hence by the assumption that Re zn ranges over the bounded set

ω◦αn
we get with some C2 < ∞:

∣∣∫
l± G(z1, ζn)Λn(ζn, zn)dζn

∣∣ ≤
C2(min1≤j≤n−1 βj)

−k, since e−Reζn·κ̃n−(Re(ζn−zn))2 ≤ e−Reζn(Reζn+κ̃n−2Rezn)

is integrable over l±.

Thus by (29), (32) we get the desired assertion for ‖β‖ ≤ ε.

Consider now the following case:

(ii) ◦α1 ∈ R
n−1
+ , Mn ∈ R, Ω = ω◦α1×(Mn,+∞), Qε = Ω+i(Rn−1

+ ×R)|ε ⊂
W=\\nR

n
+ (or more generally in the spirit of foot-note(9)).

Thus we have to show that to every κ̃n < κn there exist C < ∞, ε > 0

such that |Gn(α + iβ)| ≤ Ce−αnκ̃n(min1≤j≤n−1 βj)
−k for z ∈ Ω + i(Rn−1

+ ×
R)|ε.
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To this aim fix κ̃n < κn and take M̃n < Mn, ε < r such that Q̃± =

(ω◦α1 + iRn−1
+ |ε)× ((M̃n,+∞) + iR±|r) ⊂ W=\\nR

n
+. Let P+, P− be defined

as in the case (i) with α− = M̃n, c− = Mn and let γn = ∂P+. Let

κ̃n < bn < κn. By the assumption on G there exists a constant C1 < ∞
such that

|G(z1, ζn)| ≤ C1( min
1≤j≤n−1

βj)
−ke−bn Re ζn

for ζn ∈ l+ ∪ l−, z1 ∈ ω◦α1 + iRn−1
+ |ε

and similarly as in the proof of Proposition 4, we get the following estimates

with some new constants C2 <∞, C3 <∞:

(34)

∣∣∣∫
l±

G(z1, ζn)Λn(ζn, zn)e
κ̃n Re zndζn

∣∣∣
≤ C2( min

1≤j≤n−1
βj)

−k

×
∣∣∣∫
l±

e−Re(zn−ζn)(Re(zn−ζn)−κ̃n) · e−(bn−κ̃n)ζndζn

∣∣∣
≤ C3( min

1≤j≤n−1
βj)

−k.

To estimate the integral over the interval [M̃n − ir, M̃n + ir] we observe

that by the assumption on G there exists C4 < ∞ such that |G(z1, ζn)| ≤
C4(min1≤j≤n−1 βj)

−k on (ω◦α1 + iRn−1|r)× (ω
M̃n

+ iR|r) ⊂W=\\nR
n
+. Hence

we get the following estimates with some new constants C5 <∞, C6 <∞:

∣∣∣∫ M̃n+ir

M̃n−ir
G(z1, ζn)Λn(ζn, zn)e

κ̃n Re zndζn

∣∣∣
≤ 2rC5( min

1≤j≤n−1
βj)

−ke−αn(αn−2M̃n−κ̃n) ≤ C6( min
1≤j≤n−1

βj)
−k.

This together with (34) and (29) gives the desired estimate.

(iii) ◦α1 ≥ 0, . . . , ◦αm ≥ 0, ◦αm+1 < 0, . . . , ◦αn−1 < 0. Write z∗ =

(zm+1, . . . , zn−1),
◦α∗ = ( ◦αm+1, . . . ,

◦αn−1) and observe that the function

Gz∗(z1, . . . , zm, zn) = G(z1, . . . , zm, z∗, zn) is holomorphic with respect to

the parameter z∗ in a complex neighbourhood of ◦α∗ ∈ R
n−m−1. Select the
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cases (i) or (ii) for the function Gz∗ of m + 1 variables z1, . . . , zm, zn and

prove the adequate estimates uniformly with respect to the parameter z∗.
(iv) The case where Ω is a cartesian product of more than one un-

bounded intervals, for instance Ω = ω◦α2 × (Mn−1,∞)× (Mn,∞). Then we

have to show that for every κ̃n−1 < κn−1, κ̃n < κn there exists C < ∞
such that |Gn(α + iβ)| ≤ C(min1≤j≤n−1 βj)

−k exp(−αn−1κ̃n−1 − αnκ̃n) for

z = α + iβ ∈ Ω + i(Rn−1
+ × R)|ε. This can be derived from the esti-

mate |G(z2, zn−1, ζn)| ≤ C(min1≤j≤n−1 βj)
−k exp(−αn−1κ̃n−1 − αnbn) for

ζn ∈ l+ ∪ l−, z2 ∈ ω◦α2 + iRn−2
+ |ε, zn−1 ∈ (Mn−1,+∞) + iR+|ε, where

l+, l−, bn are defined as in (ii), and from the estimate |G(z2, zn−1, ζn)| ≤
C(min1≤j≤n−1 βj)

−k exp(−αn−1κ̃n−1) on (ω◦α2 × (Mn−1,+∞) × ω
M̃n

) +

i(Rn−1
+ × R)|ε where M̃n < Mn. �

Lemma 5. If u ∈ L′
(ω)(R

n
+) then the function CΛu(z)

df
=

(−1
2πi

)n
u[Λ(z, ·)]

for z ∈ C
n=\\Rn

+ belongs to L(ω)
|∞ (Cn=\\Rn

+)
df
= lim←−κ<ω lim−→k∈N0

Lκ
|k(Cn=\\Rn

+)

(cf. Definition 4 ).

Proof. By point 4. of Section 1 and by Theorem 3 CΛu ∈ O(Cn=\\Rn
+).

On the other hand for any κ̃ < ω there exist C = C(κ̃) <∞, m = m(κ̃) ∈
N0 such that (with γκ̃,ν defined in Section 1) |u[ϕ]| ≤ C

∑
|ν|≤m γκ̃,ν(ϕ) for

ϕ ∈ Lκ̃(R
n
+). Hence by Proposition 4 we get the estimate

(35) |CΛu(z)| ≤ C1

∑
|ν|≤m

sup
x∈R

n
+

∣∣∣e−κ̃·x( ∂

∂x

)ν e−(z−x)2

(z − x)11

∣∣∣.
Take first Ω = ω1 × · · · × ωn, where ωj are open bounded intervals in R

with dist(ωj ,R+) ≥ ρ > 0 (j = 1, . . . , n). Let Q = Ω + i
•
R
n|r, 0 < r < ∞.

Then by (35) there exist C2 = C2(r), C3 = C3(r) such that |CΛu(z)| ≤
C2ρ

−m−n ≤ C3 <∞ for z ∈ Q since Ω is bounded.

Let now Ω = ω1 × · · · × ωn−1 × (Mn,+∞) where ωj are open bounded

intervals in R+, j = 1, . . . , n − 1, Mn ∈ R, Γ = R
n
+, Q = Ω + iΓ|r. Then

dist(β,bd Γ) = min1≤j≤n βj . Take an arbitrary κ < ω and let κ < κ̃ < ω.

Then by the standard estimation (e.g. as in (34)) we derive from (35)

∣∣eκn Re znCΛu(z)
∣∣ ≤ C

(dist(β,bd Γ))m+n
for z ∈ Ω + iΓ|r
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with some C < ∞, m = m(κ), 0 < r < ∞. In an analogous way we

establish the pertinent estimates in other wedges and hence deduce that

the function CΛu ∈ L(ω)
|∞ (Cn=\\Rn

+). �

Lemma 6. Under the notation of Lemma 4, a function G ∈
L(κ)

|k (W=\\Rn
+), k ∈ N0, κ ∈ R

n, is such that
∫
γ G(z)ϕ(z)dz = 0 for ϕ ∈

L∼(κ)(R
n
+) if and only if G ∈

n∑
j=1

L(κ)
|k (W=\\jR

n
+). Hence if G ∈ L(κ)

|∞ (W=\\Rn
+)

then G belongs to
n∑
j=1

L(κ)
|∞ (W=\\jR

n
+) if and only if

∫
γ G(z)ϕ(z)dz = 0 for

ϕ ∈ L∼(κ)(R
n
+).

Proof. Let G ∈ L(κ)
|k (W=\\Rn

+),
∫
γ G(z)ϕ(z)dz = 0 for ϕ ∈ L∼(κ)(R

n
+).

Then following the proof of Lemma 2 we can write G as a linear combination

of integrals taken only over the curves γ+
j . By Lemma 4 the function Gn

given by (29) belongs to L(κ)
|k (W=\\nR

n
+). �

Lemma 7. Let ψ ∈ L(ω)
|∞ (W=\\Rn

+), ω ∈ R
n. Then the functional v

given by L∼(ω)(R
n
+) � ϕ �−→ (−1)n

∫
γ ψ(z)ϕ(z)dz, where γ = γ1 × · · · × γn is

as in Theorem 3, extends uniquely to a distribution bψ ∈ L′
(ω)(R

n
+).

Proof. By Theorem 3 v ∈ L∼
′
(ω)(R

n
+). The further proof is divided into

two steps.

Step I . n = 1. For ϕ ∈ L∼(ω)(R+) and ψ ∈ L(ω)
|∞ (W \ R+) there exists

ε > 0 such that ϕ ∈ O((R+)ε), ψ ∈ L(ω)
|∞ ((R+)ε \ R+). Moreover for some

c < ω supζ∈(R+)ε
|e−cζϕ(ζ)| < ∞ and for any κ ∈ ω there exists k(κ) ∈ N0

such that ψ ∈ Lk
κ((R+)ε \ R+). Using the estimates satisfied by ψ and ϕ

one can prove the relation

(36)

−
∫
γ
ψ(z)ϕ(z)dz = lim

β→0+

∫ +∞

−ε/2
ψ(α + iβ)ϕ(α)dα

− lim
β→0+

∫ +∞

−ε/2
ψ(α− iβ)ϕ(α)dα

for ϕ ∈ L∼(ω)(R+). Take now ϕ ∈ L(ω)(R+) and its extension ϕ̃ ∈ C∞(R),

ϕ̃(α) = 0 for α ≤ −ε/2. We shall prove that the right-hand side of (36)
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makes sense for such ϕ̃ and defines a functional T ∈ L′
(ω)(R+), in fact

T = bψ. Assume first ω ≤ 0 and fix arbitrarily a < ω. Next take

a < κ < ω, choose a base point
◦
ζ = −ρ, where 0 < ρ < ε, and define

an operation Jψ(ζ) =
∫
γζ

ψ(w)dw, where γζ is a curve joining
◦
ζ with

ζ ∈ (R+)ε \ R+. After k + 1 iterations of the operation J we arrive

at the function J k+1ψ ∈ O((R+)ε \ R+), |J k+1ψ(α + iβ)| ≤ Ce−ακ for

α+ iβ ∈ (R+)ε,
dk+1

dzk+1J k+1ψ = ψ and such that limβ→0+ J k+1ψ(α± iβ) ex-

ist locally uniformly and define continuous functions on (−ε,∞): ψ±(α)
df
=

limβ→0+ J k+1ψ(α ± iβ), ψ+(α) = ψ−(α) for α < 0, |ψ±(α)| ≤ Ce−ακ for

α > −ε. Now if ϕ ∈ La(R+) (and ϕ̃ is its extension), we get easily by

integrating by parts

(37)

lim
β→0+

∫ +∞

−ε/2
(ψ(α + iβ)− ψ(α− iβ))ϕ̃(α)dα

= (−1)k+1

∫ ∞

0
(ψ+(α)− ψ−(α))

dk+1

dαk+1
ϕ(α)dα = T [ϕ],

where T =
dk+1

dαk+1
(ψ+(α)− ψ−(α)) ∈ L′

a(R+).

Since a < ω ≤ 0 was arbitrary, we have T ∈ L′
(ω)(R+).

Assume now that ψ ∈ L(ω)
|∞ ((R+)ε \ R+) with ω > 0. Then T ∗ defined

by (37), with ψ∗(ζ) = ψ(ζ)eζω instead of ψ, belongs to L′
(0)(R+) and T̃

df
=

e−ωαT ∗ belongs to L′
(ω). Moreover for ϕ ∈ La(R+), a < ω, T̃ [ϕ] = T [ϕ]

given by the right-hand side of (36).

Step II . Let ψ ∈ L(ω)
|∞ (W=\\Rn

+). Consider v on functions ϕ ∈ L∼(ω)(R
n
+)

in the product form ϕ(z) = ϕ1(z1) · . . . · ϕn(zn) with ϕj ∈ L∼(ωj)(R+), j =

1, . . . , n, and apply a parameter version of the one-dimensional assertion

(36) proved above:

−
∫
γ1

ψ(z1, z2, . . . , zn)ϕ1(z1)dz1

=
∑

σ1∈{+,−}
sgnσ1 lim

β1→0+

∫
ψ(α1 + iσ1β1, z2, . . . , zn)ϕ(α1)dα1
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with γ1 ⊂ W1 encircling R+. Let W ′ = W2 × · · · × Wn. We note the

following result:

the function

W ′=\\Rn−1
+ � (z2, . . . , zn) �→ ψ1(z2, . . . , zn)

= −
∫
γ1

ψ(z1, z2, . . . , zn)ϕ1(z1)dz1

belongs to L(ω′)
|∞ (W ′=\\Rn−1

+ ), ω′ = (ω2, . . . , ωn)

whose proof is done in the spirit of the proof of Lemma 4.

Hence we deduce that

v[ϕ] = (−1)n
∫
γ1×···×γn

ψ(z)ϕ1(z1) · . . . · ϕn(zn)dz

=
∑

σ∈{+,−}n
sgnσ lim

βn→0+

∫ (
. . .

(
lim

β1→0+

∫
ψ(α + iσβ)ϕ(α)dα1

)
. . .

)
dαn.

Next we prove that

∑
σ∈{+,−}n

sgnσ lim
βn→0+

∫ (
. . .

(
lim

β1→0+

∫
ψ(α + iσβ)ϕ(α)dα1

)
. . .

)
dαn

(38)

=
∑

σ∈{+,−}n
sgnσ lim

β→0+

∫
ψ(α + iσβ)ϕ(α)dα.

This is clear for ψ which extends continously to the boundary from every

local wedge Ω + iσR
n
+ ⊂W . In the general case we use the fact that every

ψ ∈ L(ω)
|∞ (W=\\Rn

+) can be represented (cf. e.g. (7)) as a finite sum over

multiindices k = (k1, . . . , kn)

ψ(z) =
∑
k

( ∂

∂z

)k
Fk(z),

where Fk have the above property. Thus the proof reduces to proving a

series of identities (38) with ψ replaced by Fk and ϕ by
(
∂
∂z

)k
ϕ.
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The result follows by the density of the space (cf. [Mi]) L∼(ω1)(R+) ⊗
· · · ⊗ L∼(ωn)(R+) in L∼(ω)(R

n
+). �

Theorem 4. The isomorphism I of Theorem 3 extends to a topological

isomorphism of the spaces

L(ω)
|∞ (W=\\Rn

+)
/ n∑

j=1

L(ω)
|∞ (W=\\jR

n
+) ∼= L′

(ω)(R
n
+), ω ∈ R

n.

Proof. Let ψ ∈ L(ω)
|∞ (W=\\Rn

+). Then by Lemma 7 the functional

L∼(ω)(R
n
+) � ϕ �→ (−1)n

∫
γ ψ(z)ϕ(z)dz extends uniquely to a distribution

bψ ∈ L′
(ω)(R

n
+) and in view of Lemma 6 the mapping I:

(39) L(ω)
|∞ (W=\\Rn

+)
/ n∑

j=1

L(ω)
|∞ (W=\\jR

n
+) � [ψ]

I�−→ bψ ∈ L′
(ω)(R

n
+)

is well defined.

On the other hand Lemma 5 provides a mapping J

(40) L′
(ω)(R

n
+) � u

J�−→[CΛu] ∈ L(ω)
|∞ (W=\\Rn

+)
/ n∑

j=1

L(ω)
|∞ (W=\\jR

n
+),

which turns out to be the inverse of I.
Indeed, take u ∈ L′

(ω)(R
n) and observe that by (39), (40) I ◦ J u− u ∈

L′
(ω)(R

n
+). By point 4. from Section 1 and by Theorem 3 (I ◦J u−u)[ϕ] = 0

for ϕ ∈ L∼(ω)(R
n
+). Thus by point 3. from Section 1 (I ◦ J u− u)[ϕ] = 0 for

ϕ ∈ L(ω)(R
n
+) and hence I ◦ J u = u.

Next take ψ ∈ L(ω)
|∞ (W=\\Rn

+). By (39) and Lemma 5 CΛ(I[ψ]) ∈
L(ω)

|∞ (W=\\Rn
+) and hence F

df
= CΛ(I[ψ]) − ψ ∈ L(ω)

|∞ (W=\\Rn
+). Since

L(ω)
|∞ (W=\\Rn

+) ⊂ L(ω)(W=\\Rn
+) by Theorem 3 F ∈

n∑
j=1

L(ω)(W=\\jR
n
+) and

hence by Lemmas 2 and 6 F ∈
n∑
j=1

L(ω)
|∞ (W=\\jR

n
+). �

Note that the last fragment of the proof amounts in fact to the statement:



Laplace Distributions and Hyperfunctions 71

Remark 2. We have the canonical imbedding

L(ω)
|∞ (W=\\Rn

+)
/ n∑

j=1

L(ω)
|∞ (W=\\jR

n
+)⊂−>Q(ω)(R

n
+).

4. Martineau–Harvey Theorems

Let K1, . . . ,Kn be compact sets in R and let K = K1 × · · · ×Kn. For

every open bounded set V in C
n containing K denote by H(V ) the space

of continuous functions in V which are holomorphic in V with ‖F‖V =

supz∈V |F (z)|. Let A(K) = lim−→V⊃K H(V ). The elements of the dual space

of A(K), denoted by A′(K), are called analytic functionals carried by K.

Denote by BK(Rn) the space of hyperfunctions with support contained

in K. The standard realization of BK(Rn) can be represented in the form

BK = BK(Rn) ∼= O(U=\\K)
/ n∑

j=1

O(U=\\jK),

where U = U1 × · · · × Un, Uj—a connected domain in C containing Kj

(j = 1, . . . , n), U=\\jK = (U1\K1)×· · ·×Uj×· · ·×(Un\Kn) (j = 1, . . . , n).

Theorem 5 (Martineau–Harvey, [M], [H]). There exists a natural

topological isomorphism

BK
∼= A′(K)

given by the assignment

BK � f = [F ] �→ If ∈ A′(K),

where F ∈ O(U=\\K). The functional If is given by

If [ϕ] = (−1)n
∫
γ1×···×γn

F (z)ϕ(z)dz for ϕ ∈ A(K)

and for j = 1, . . . , n, γj is a closed curve in Uj \Kj encircling Kj in the

anticlockwise direction and contained in an open set Vj ⊃ Kj (provided ϕ

extends holomorphically to V1 × . . .× Vn). The inverse mapping I−1 is the
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assignment A′(K) � g �→ I−1g = [Cg] where Cg(z) =
(−1

2πi

)n
g[(z − ζ)−11] ∈

O(Cn=\\K).

Theorem 5 leads to a distributional version of Martineau–Harvey theo-

rem in a way similar to that of deriving Theorem 4 from Theorem 3. The

situation now is however simpler since it does not involve the estimates at

infinity. Therefore we only restrict ourselves to introducing pertinent spaces

and formulating final results.

Ω will stand now for a bounded open set in R
n. As before, Γ denotes

the non-empty open cone in
•
R
n, Γ|r—its intersection with a ball of radius

r, 0 < r <∞, and Q = Ω + iΓ|r—the corresponding local wedge.

Let V ⊂ C
n be an open set and [V ] its germ near R

n. Let k ∈ N0.

Define the space O|k([V ]) by

O|k([V ]) =
{
H ∈ O(V ) : qQ(H) <∞ for every local wedge Q ⊂ V

where qQ(H)
df
= sup

z∈Q
|H(z)| ·

(
dist(Im z,bd Γ)

)k}
and let

O|∞([V ]) = lim−→
k∈N0

O|k([V ]).

Finally, we denote by D′
K(Rn) the space of distributions on R

n with support

in K.

Theorem 6 (cf. [M]). The isomorphism I of Theorem 5 extends to a

topological isomorphism of the spaces

(41) O|∞(U=\\K)
/ n∑

j=1

O|∞(U=\\jK) ∼= D′
K(Rn).

Observe that for k, p ∈ N0, k < p, F ∈ O|k(U=\\K) the mapping(10) E :

F +

n∑
j=1

O|k(U=\\jK)
E�−→F +

n∑
j=1

O|p(U=\\jK)

(10)For the proof observe that a function F ∈ O|k(U=\\K) satisfies
∫
γ1×···×γn

×
F (ζ)ϕ(ζ)dζ = 0 for ϕ ∈ A(K) and γ1 × · · · × γn as in Theorem 5, if and only if
F ∈

∑n
j=1 O(U=\\jK) (cf. Lemma 6).
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is a well defined 1–1 mapping and hence we can write (41) in the following

form

(41′) lim−→
k∈N0

(
O|k(U=\\K)

/ n∑
j=1

O|k(U=\\jK)
)
∼= D′

K(Rn).

Similarly, if F ∈ O|k(U=\\K), k ∈ N0, the mapping Ẽ

F +
n∑
j=1

O|k(U=\\jK)
Ẽ�−→F +

n∑
j=1

O(U=\\jK)

is 1–1, which gives the imbedding

lim−→
k∈N0

(
O|k(U=\\K)

/ n∑
j=1

O|k(U=\\jK)
)
⊂−>

O(U=\\K)
n∑
j=1
O(U=\\jK)

.

Hence (41′) leads to a natural imbedding of distributions in hyperfunctions:

D′
K(Rn)⊂−>BK(Rn), K compact in R

n.
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