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Laplace Distributions and Hyperfunctions on R,

By Zofia SzMmYDT and Bogdan ZIEMIAN

The paper presents foundations of the theory of Laplace distributions in
several variables. Laplace distributions are investigated from the point of
view of two different frameworks: of functional analysis and hyperfunction
theory. The main results are the Martineau—Harvey type theorems estab-
lishing topological isomorphism between the spaces of Laplace distributions
regarded as the dual space of Laplace test functions and those regarded as
certain quotient spaces of holomorphic functions of exponential growth.

Automatically these results lead to the imbedding of Laplace distribu-
tions in the space of Laplace hyperfunctions. We consider only a canonical
realization of hyperfunctions as the sum of boundary values from wedges
modelled over coordinate orthants in R” and avoid introducing coordinate
independent versions based on suitable relative cohomologies. The realiza-
tions are convenient for the applications to PDE’s. Namely solutions to a
large class of constant coefficient PDE’s can be represented at infinity as
sums of Laplace integrals of the form T'[e”*] where T is a Laplace distribu-
tion whose support is related to the complex geometry of the characteristic
set (see [S2-71], [Z1], [Z2]). Similar results have also been established for
semilinear Laplace equations [P—Z].

Finally let us note that Laplace hyperfunctions considered in this paper
can be regarded as a special case of Fourier hyperfunctions (cf. [K], [Kal,
[S-Mo]) and are closely related to those introduced by Komatsu [Ko] in the
case of one variable.

Notation. Throughout this paper we shall deal with polytubular open
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42 Zofia SZzMYDT and Bogdan ZIEMIAN

sets W C C™ defined as follows: W = Wjp x --- x W,, and there exists
¢ = (C1,--.,¢n) € C" such that W; contains a tubular neighbourhood of
the halfline ¢; + R4, i.e.

W; D (¢ +Ry)e & {2t dist(z,¢ +Ry) < e}

for somee >0 (j =1,...,n). If ( =0and W; D Ry), j =1,...,n,
we say that W is an open polytubular neighbourhood of Ei. We shall also
need the following sets

WERY = (Wi \Ry) x - x (W \ Ry),
WERY = (W A\RY) x - x Wy x--x (W, \Ry) (1=1,2,...,n).

We write V€ W if V is a subset of W such that dist(V,bd W) is strictly
positive. We denote R = R \ {0}. If TV is a proper subcone of an open
cone I' C I[.%", we write [V <T'. By I'|, we denote the intersection of the cone
I'" with a ball of radius r with centre at zero. For z,y € R™ we denote by
x -y the scalar product z -y = Z?Zl xjyj.

1. Basic Spaces and Their Properties

We define the following spaces.
The space £, (W) of holomorphic functions on W having exponential
growth of type w € (RU {oo})™ at infinity is defined by

LwyW)={HecOW): H) < o0 for every 6 € R", 6 <w

q(iW(
and every closed (in C") polytubular subset We W,

where qéﬁ/(H) = Sup, |e¥CH ()| are seminorms defining the topology in
Lwy(W).
Let for k € Ny, K € R™

SLWSRY) = {v € O(WKRY) : 67y (1) < o0
for every polytubular subset V'€ W},
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with the convergence defined by the family of norms

Ouv(¥) = sup e [(a+ip) |8]"*

a+ifBeV

for any V € W and denote S?W)(W%Ri) = (h_m,Kw SE(W%@K)
Now we define the spaces L,(W), a € R™:

Lo(W)={oc€OW): pgv(c) <oo forevery polytubular V € W},

~

with the convergence defined by the family of norms

pay(0) = supleCa(C)| for any V € W,
cev

and denote L,(R}) 4 lim, Lo(W), where W ranges over open poly-

WoORY

tubular neighbourhoods of R'y. We put for any w € (RU{co})" Liw) (R,

liin>a<w L.(RY). By L(w)( )(1) we denote the dual space to L, )(RZLF).
Note that:

1. 0 € L(w) (R ) if and only if there exists a polytubular neighbourhood
W 5 R and a < w such that ¢ € O(W) and p,v(c) < oo for every
Vew.

2. fe L ( ) if and only if for every a < w, f is linear on L (R ) and for

)df

every open polytubular set V' D R’ + there exists Cy )y < 0o such that(2
[floll < Cav - pay (o) for o€ La(W),

where W is an arbitrary open polytubular set such that Ve W.
Next for a € R™ we define the space

LoRY) ={p € C®°[R]) : 74u(p) < oo for every v € Nj},

(U The elements of L(w)(Ri) may have support also at infinity, cf. [Mo-Y].
—n ) — —
() This follows from the fact that La(R}) = lin, g La(V), where Lo(V) = {0 €

O(V)NC(V): pav(c) < oo} is a Banach space.
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with the convergence defined by the seminorms

—a-x 9 v n
7(1,1/(%0) = sup ’6 (8_) go(m)], Ve NO'
SCER:L_ x

For k € Ny, a € R™ we denote
Ly(RY) = {p € C*RY) : quulp) < oo for v <k}
and for an w € (RU {oo0})"™ we define

Ly (RY) = lim Ly(RY),  L{,(RY) = lim LE(RY)
a<w a<w
equipped with the inductive limit topology.

The spaces defined above are counterparts of those introduced in [S2—-
Z1] in the case of Mellin distributions. They are isomorphic to the Mellin
spaces under the logarithmic change of variable and hence the following
their properties can be derived therefrom.

Since the set C(o)( R'}) of restrictions to R’y of functions in C§°(R™) is

dense in L, (R"}) (cf. [S2-Z1]), the dual space L’(w) (R’}) is a subspace of
D'(R)}) (=the dual space of Co (R'})). We call it the space of Laplace
distributions on ]Ri.
Note that:
3. The spaces L(w)(R ) and Ly, )(R ) are complete (cf. [S2-Z1]), L, )(Rﬁ)
is dense in L(w) (R"}) for any k € N and LR )\Rn is dense in L, (RY).

n

4. There exist natural imbeddings L.(R})C. L.(R}) and LR s
L) (RY) given by the restrictions to R". By duality they induce a

natural imbedding
n

(o) R CS L, (RY).
The following theorem characterizes the space of Laplace distributions
on R? (see [S2-Z1] Theorem 8.2 and p. 164):

THEOREM 1 [Ly]. Let w € (RU {oo})". A distribution T € D'(R)
is in L’(w)(ﬁi) if and only if for every Kk < w there exist my, € Ny and
measurable functions T, . on R", |v| < my, with support in Ei such that

= Y (%)”Tm in L, (RY),

lv|<m
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where

|T,kx(y)| < Cre™™Y  for 0 <y < oo

almost everywhere with some Cy, < 00.

In the sequel besides the space La(Ri) we shall deal with the space
Lo(R!, + &), where & € R™:

—n —n O\V
LR +%&) ={pec CR.+2): sup ‘6_“‘:‘(—) Lp(x)‘ < oo, veNg}
zeRY +% O

Let A € GL(n,R), § = A%, o = Az. Thena-z=a-A'a =b- a, where
b= (A")"la. If o € C®(R} + 2) then ¢ = po A1 € C®(AR}) + &). Tt
is natural to define

Ly(ARY) +&) = {¢ : o A € Ly (R} +2)}
and we easily see that

Ly(ARY) +§)

_ 00 o™ &\ . —b« i v n
e CTAE +h: s 7 (Go) viel <o e N}

Introduce further the space L(H)(A(Ki) + &) in any of the following equiv-
alent ways:

Liy(ARY) +&) = {¢: oA € Liauy (R} +8)} =  lim  Ly(ARY)+£).

—_
AtTp< Aty

Now, let 2 C R™ be an open set and let a € R™. We define
Ly(92) = {p € C™(Q) : dist(supp ¢, 92) > 0, Y4, (p) < 00, v € Ny}

If for some open set Q@ C R"™ L,(Q) C Ly(2) for a < b, we put as usual
L,y (©2) = li_m)a<w L,(€2) and denote by L’(w)(ﬂ) the dual space, called the
space of Laplace distributions in Q (indexed by w).
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2. Characterization of Holomorphic Functions Whose
Boundary Values are Laplace Distributions

In this section we provide conditions under which the boundary value
of a holomorphic function is a Laplace distribution. We start with the
following lemma.

LEMMA 1. Let Q be an open set in R™ for which there exists b € R™
such that the function

(1) Q3 ar— e* s integrable.

Letk e R",r e Ry, r=(r,...,r), k= (ki,... ,ky,) € N} and let a function
F e OQ+i(0,7)) be of growth type k near §2, i.e. such that

e—Oé'lﬂ',

(2) |Fla+ip)|<C —  fora+ipeQ+i(0,r), C<co.

k n
Mgk

Let a = b+ k. Then there exists T € L., () such that

(3) i A Fla+iB)e(a)da =T[p]  for ¢ € La(Q2).

More precisely, there exist functions H, € C°(Q) such that |H,(a)e*" <

C<ooforacQ,veNy,v<k+2 (ie vs<ks+2 s=1,...,n)and
v .

T =3 crra() Hy in L, ().

REMARK 1. Let H € C°(Q), |H(a)|e®" < C < oo for a € Q2 and let

v € Nj. Then by assumption (1) u a (%)VH € L (), since a = b+ k.

ProOF OF LEMMA 1. We shall prove Lemma, 1 for n = 2 and introduce
to this aim the operators®)

21+16 2o0+16
(4)  JiF(2) = / F(C1, 22)dG, JoF(z) = / F(z1,C2)dCs
z1 22
®)To prove the general case one can take n operators Ji, ... , Jn defined analogously

and proceed in the same way.
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for z = (21,22) € Q+i(0,7),0<6<r, 0< By =Imzp, <r—06,k=1,2.
If z=a+1i8, a=(a1,a2), 8= (01,2), we obtain by (4)

O F
92 %)

B1+6
(J1F)(z) = z/ F(ag +1s, z2)ds,
1

= F(z1 + 16, 20) — F(2),
(5)

and analogous formulae for JoF'. Hence

6)  (B(hF) ()= — / [W{ / ﬁlJréF(al—l—is,ag—i—it)ds}dt.

1

We prove Lemma 1 for F' of the following growth types: (i) case (0,0);
(73) case (1,0); (idi) case (1,1); (iv) case (2,0) (neglecting the obvious
symmetrical cases (0,1) and (0,2)) and hence establish that it is true for
k1,ko € No, k1 + ko < 2. Next we proceed by induction.

(i) Case (0,0). Then by (2) and (6) JoJ1 F(a + i) is locally uniformly
convergent as 3 — 04 to a continuous function F''. By (5) we get

0 0 . .
(7) F(Zl,ZQ) = 8—218—22J2J1F( ) F(Zl + 26, Z2 + 716)

+ F(Zl,ZQ +16) + F(Zl + 16, ZQ)

and from this formula we shall find the limit (3). It is easy to see that
|JoJ1 F(a +i8)| < C6%e~** hence also |F'(a)| < Cé6%e~**. So for ¢ €
La(Q) (a =b+ k) we get by assumption (1)

0

®  am [ L hnFe) - ea)da = /Q Pl ()27

(90[18042

d
B—04+ 821 822 “

since |JoJy F(a +i3) 72 8a18a2 | < Me®? with some constant M. Observe that
by (5) the third summand on the right-hand side of (7) can be written in
the form:

o1 F
82’1

(9) F(z1,20 +16) = F(21 + 6, z0 + i0) — (21,22 + 6)
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and by (2) we get assuming 0 < 3] — 8] < 6

(10) | J1F(oq +ify, a0 +i(By + 6)) — JiF (a1 + 437, as + i(By +6))|

<20e "B = Bl +6  sup  |Flog +is,2p) — F(aq +is, 25)),
B1<s<Bi+6

where 2, = ag + (8 + ), 25 = as + (B85 + 9).

To estimate the second summand in (10) we consider F'(z1,z22) as a
function of zp depending on a parameter z1: G, (22) 4 F(z1,22). By the
Cauchy integral formula we get:

0Gs v 1 G (O
822 (22) - i |(—z2|:6 (C _ 22)2 dC

and by (2): |G, (¢)] < Ce*+Hm2l8 for |¢ — 2| = 6. Hence we obtain the
estimate

a1
’Ga1+i5<zé) - Ga1+i8(2g)| <Ce™® 'f_e|fi2|5’ﬁé/ - 5é|

6
independent of s € [3], 8] + 6] and thus by (10) limg_o, J1F (a1 + i1, a2+
i(B2 + 6)) exists locally uniformly and defines a continuous function F(«)
on €, |Fl(a)| < Cée=** for a € Q. Thus by (9) and (1) we get

(11) S F(on +if1, as +i(B2 + 6))p(a)da
—Y+ JQ

:/F(a1+i5,a2+i5)<,0(a)da+/Fl(a)a—soda,
0 Q day

since |J1F (a1 + 61, a0 + (B2 + 5))%\ < Mie®? with some constant M

independent of 3. We also prove that there exists a continuous function F2
on 2 such that |F?(a)| < Cée™** and

(12) Bh%l F(Oq + Z(,@l + 5), a9 + iﬁg)gp(a)da
—U+ JQ

= / F(ay +1i6, a0 + 16)p(a)da + / Fz(a)a—@da.
Q Q darg
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Thus by (7), (8), (11), (12) we get
0

. . _ 82 11 8 1 2 3
/3’15& QF(Q+ZB)@(a)da_8a18a2F _BTMF [@]—%F [] + F°[¢]

for ¢ € Ly(2), where F3(a) = F(aq +1i6, ap +1i6), |F3(a)| < Ce™ " for a €
Q). Hence assertion (3) follows with 7' = aai;% Fil - a%lFl - a%zFQ + F3
and by Remark 1 T € L/,(Q) is a Laplace distribution of multiorder® (1, 1)
(hence also of multiorder (2,2)). The proof of Lemma 1 in the case (i) is
thus complete.

For the proof of (3) in the cases (ii)—(iv) the following remark will be
useful: If k = (k1,0), k1 > 1 and 0 < & < r(k; + 1)7L, then by (4) and (2)
we get with some constant C}, 11 < 00

(13) [T F(a 4+ i8)| < Ciyae "
for 0<fBi<r—(ki+1)8 0<f2<r.
Thus JP* ™ F is of growth type (0,0) for a+if € Q +i((0,7 — (k1 +1)8) x

(0,7)) and there exists a Laplace distribution Ty, € L[ (2) of multiorder
(1,1) such that

(14) ﬂlirg JMT R (a4 if)p(a)da = Ty, [¢] for ¢ € Ly().

If F is of growth type (ki,ks) with k1 > 1 then J1F is of growth type

(k1 — 1, k2).
(7i) Case (1,0). By (5) we get
62
(15) lezF(z) = F(21 + 2i6, 29) — 2F (21 + 6, 22) + F(21, 22)-
1

Since |F(z1 + ipd, z2)| < ]%e_o"“ (p = 1,2), by the case (i) there exist
Laplace distributions Ty, T5 € L () of multiorder (1,1) such that

611%1 F(aq +i(f1 4+ pd), as + ifB2)p(a)da = Tpi1]p)]
-0+ Jo

for ¢ € L,(Q), p=1,2,

(4)For the use of the proof we introduce the notion of the multiorder of a Laplace distri-
bution T; namely we say that T' € L} () is of multiorder p € N if T' = >v<p (%)UHV
with H, such as H in Remark 1. h
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and hence by (14), (15) we get for ¢ € L,(Q):

. ‘ 02
lim | Fla+if)p(a)da =Ti| 55| +2Tal¢] - Tale] = Tle),
B=0+ Ja das
where T = 8;7;1 + 275 — T35 is a Laplace distribution of multiorder (3,1),
ai
T e L,(Q).

(iii) Case (1,1). Then with some constant C' < oo |J3JZF (o +i3)| <
Ce " for 0 < B; < r—26, j = 1,2, and by (i) there exists a Laplace
distribution T € L/, () of multiorder (1, 1) such that

(16) ﬁlirgl J3J3F (a +if)e(a)da = Ti[p] for o € La(Q).

For the proof of assertion (3) one derives F'(z) from the formula analogous
to (15) with g—;g—;JfJfF(z) on the left-hand side, this time. There is no
problem with tﬁe t2erms in which both arguments of F' are translated by 70
or 2i6. If only one of the arguments is translated, for example the second
one, we deduce by (13) and (i) that there exists T € L/, of multiorder (1,1)

such that

(17) 511%1 J2F (a1 +iB1, an+i(Ba+6))p(a)da = Talp] for ¢ € Ly(9).

By (15) and (17) we get for ¢ € L,(Q):

(18) ﬁhnél F(oq +if, az +i(B2 + 6))p(a)do
—0+ Jq
o2
=Ta oz + Talel + Talel = 771,

where T3(a) = 2F (a1 + i6, 0 + i0), Tu(a) = —F(ay + 26, ag + i6), T =
%Tg + T3 + Ty is a Laplace distribution of multiorder (3,1). Thus by
(16), (18) and analogous formulae for all the terms involving translation
of one variable only we find a distribution 7* € L/ () of multiorder (3, 3)
such that formula (3) holNds with T' = ((%1)2(3%2)2T1 +T*+T e L,(Q) of
multiorder (3,3), where T'(a) = —F (a1 + 2i6, ag + 2i6) + 2F (g + i, aa +
2Z5) + 2F(041 + 216, g + Z(S) — 4F(O¢1 + 18, ag + Z(S)
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(iv) Case (2,0). The proof of (3) with T of multiorder (4,1) follows by
(), (i1) and the formula

0
(19) F(Zl, 2’2) = —87J1F(2’1, 22) + F(Zl + ’L(S, 2’2).
1

Thus we have proved Lemma 1 for F' of growth type (k1, k2) with k; €
No, ko € Ny, k1 + ko < 2. For the proof by induction fix arbitrarily p € N,
p > 2 and suppose that Lemma 1 is true for all (ki,ks) with k1 € Ny,
ko € Ny, k1 + ko < p. We have to prove it for F' having the following growth
types (near 2):

(p+1,0), (p,1), ..., (2,p—1) and (1,p), (0,p+ 1).

If F is of growth type belonging to the first group then J; F is of growth
type (p,0),(p — 1,1),...,(1,p — 1) correspondingly and F'(z; + 0, z2) is
of growth type (0,0),(0,1),...,(0,p —1). Applying formula (19) and the
induction assumption we get (3).

If F is of growth type (1,p) or (0,p + 1) then JyF is of growth type
(I,p—1) or (0,p) correspondingly and by the induction assumption and
the formula for JoF' analogous to (5) we get (3).

This ends the proof of Lemma 1 for n = 2. [J

The set 2 C R™ in Lemma 1 was an arbitrary open set satisfying con-
dition (1). In Proposition 1 we shall assume that 2 C £+ T where £ € R”

and I' is an open cone in I@”, whose dual cone T+ & {yeR":y-z <
0 for every = € I'} has a non-empty interior.
Note that
(i) (R?")+ =R"; if I' € R? then 't D R”; if for some z € I, —z € T

then I't is empty;

(i) if Int T is not empty then [, e’*dz < oo for every b € IntI't.

(7i7) Let T be a cone in R, A€ GL(n,R) and let A = AT. Then A+ =
(A™)7'T and hence in particular (AR7 )" is open and not empty.

PROOF OF (iii). Let h € At. For every a € I' we have h - Aa < 0 and
hence also Ah - a < 0. This means that A%h € T, hence h € (A™)~1T+.
The proof of the inclusion (A")~!'T+ ¢ At is analogous. [
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PROPOSITION 1. Let Q) be an open set in R™ such that £ C §+1“, where
£ € R" and T is an open cone, It T+ # (. Let F € O(Q +iR%|,.) satisfy
condition (2). Then for every a € Int T + k there exists T € L' () such
that (3) holds.

PROOF. Let a € IntI'" + k. Then by (i) [, @5z < oo and hence
also fQ ela=r) Ty < f§+F ela=r) e gy — e(“_”“)‘g fF ele=R)Ydy < co. Thus our
assertion follows by Lemma 1. [J

Let Q = E—i— R™, é € R™ and let " be an open connected cone in R". We
denote by [Q2+iI'] the germ of the set Q + I’ near R™, i.e. the class of open
sets V' C C™ for which there exists a complex neighbourhood W of R™ such
that VN W = (Q4I') N W. We write F' € O([Q + iT']) if for some W as
above F' € O((Q+i[)NW).

DEFINITION 1. Let F € O([Q2+4I]). Assume that there exists k € R"
such that for every F’ <T and any # € TI" close to zero the functional
Ly (Q) 3 ¢ = uglg] = [ Fla+if)e(a )da belongs to L( )(Q) and that

there exists liml“laﬁ_)O ug. We say that u & limpsg-0ug (belonging to
L’(K) (Q)) is a Laplace distributional boundary value (LDBV in short) of F
on Q (from the wedge Q2 + ¢I") and write u = br(F),

(20) ulyp] = F/lai,ér’rio ; Fla+if)p(a)da  for ¢ € Li,)(9).

Next we define the space £2([Q + iT']) (h € Ny, & € R") of all functions
F € O([Q 4 iT7) such that for every I'<T, @' € Q there exist r > 0 and
C[‘/’Q/ < oo such that

(21) |F(a+1i8)| < Cr v ||ﬁ||h for a+iBe€Q +il’},.

For € R" we define(®) £(>)([Q+il]) =lim__ Jim _ £A([Q+l)).

(k <Kk —heNy

(5)Sometimes, for convenience, we use the notation £/ (€ 4 iI'), SE:';)(Q +:I') instead

of SR ([ +T)), £ ([ +iT)).
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PROPOSITION 2. Let I' be an open connected cone in ]I.Q", E e R7,
keR, Q=2¢+ R%. Then every function F € SE:.;)(Q + iI") has an
LDBV:u=bp(F) € L/(K)(Q).

PRrROOF. Take an arbitrary cone IV<TI' and a covering I" <U§:1 I <
I, where I'; are open simplexes I'; <I" (j = 1,... ,p) such that I'; I}, | #
0 (G=1,...,p—1). Take A; € GL(n,R) such that A;(R%}) = I';. Define
Fj = Floyr, Gy = FjoA; (j=1,...,p). Then G; € O(A;'Q +iA;'T))
and since Ri = AJ_II‘;<AJ_1F and Aj_lg = .%] + A] with %] = Aj_lfa
Aj = A7Y(R?Y), we have G € O(&; + Aj +iR%) (j=1,... ,p).

Moreover for every k < k there exists h € Ny such that by (21)

e F-Ajz c o T AYE
1

Gi(x+1y)| =1G;i(2)| =|F;(A;(2)| < C-r—r < C1—4———
Gy )] = 162 = B4, ()] < O < O

forz € #j+Aj, y € R, where k=2 if L € N, and k = [2] + 1 if 2 ¢ N.
Hence by (i47) and Proposition 1 for every a; € Int(A;l(]R:i))L + AY there
exists T € Lg (&; + A;l(RZ‘r)) such that

lim Gj(x +iy)v(z)ds = Tj[y] for ¢ € Lo, (25 + A7 (RY)).
y=0+ Jg+ AT (RY)

Then

Ti[y] = lim (Fj o Aj)(x + iy)y(z)dx
v=0+ JAT E+Re)
= lim Fla+1 A7 )| det A7V da.
VECIRY S ( B)v(A; o) i

Let ¢ =1 o Aj_l. Clearly ¢ € L(Ag_r)flaj (g + R’) and

(22) _ lim F(a+if)p(a)da = |det Aj| Ty[p o Aj] = Tj o A7 [p].
T556-0 Jé+mry J
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Since a; € Int(A; (]R"))L Atf/% we get easily by (iii) that (A”)*1 a; €
K+ R”, hence (22) holds for ¢ € L (f +R%). Since I'; N1, 1 # 0,

Jim /2+RnF(a+w)‘P(o‘)dO‘:Tj°Ajl[] Tjero A7l (o]
Bernr

!
for ¢ € L (Q) and hence there exists limpsg_9 [ F(a + i3)p(a)da for
¢ € L (£2). This ends the proof, since k < x was arbitrary. [J

Define for o = (01,... ,0p) € {+,—}": sgno =01 -...- 0, and a cone
I ={feR": 0;8; >0,1<j <n}, called the n-th orthant.

Now we shall deduce from Proposition 2 the following important corol-
lary.

CoROLLARY 1. Let F € £ (WRY), k € R", and define
bF = Z sgn obps F'

where bro F' is defined by (20). Then bF € L’(K) (R%).

PrOOF. Let F € SE?;)(W%@Z), k € R™. Then for every k < k there

exists h € Ny such that F € SH(WR"). Hence F € O((R™ +il?) N W)
for every o € {+,—}" and we can choose Q2 = &+ R" with £ < 0 such
that for every ' € Q, I"<T'? estimate (21) holds. Thus by Proposition 2,
bF € L'(H)(Q). Due to the cancellation of boundary values ) sgnobres F'
from the wedges 2 4 ¢I'? with € in the complement of Ki it follows that
supp bF' C @1. Finally we apply Theorem 3 from [S2-72] (or Theorem 8.3

in [S2-Z1]) in logarithmic coordinates. O]

PROPOSITION 3. Let Q, I', W be as in Definition 1. If F € O((Q +

il) W) has LDBV u € L, (Q) (k € R"), then F € £ (Q +1T).

ProOF. Fix ' € Q, I"<T and take Q' € Q" € Q, I"'<I"<TI, 0 <
r < 2 such that F € O(Q + il'},). Fix arbitrarily & € @, § € IR
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Then there exists 0 < ¢ < 1 such that F € O({a: [ja— & < B} + {3 :
16— < cHE’H}) Since bk (F) € L’(K)(Q), by the Banach-Steinhaus theorem

for every k < k there exist constants ¢, ke Np such that
’ / Fla+ zﬂ)go(a)da’ <z (@) for pe LE(Q), per”,,
Q b
rafl O\
" (5a) #@)|
0o 2 . df o \V
Let v € C*({a s la—all < e B]}) with g;(¥) L max,,, ¢ sup| () (@)

< 7 Then g (V) < (5D, gy oy € ) ap(®) < Felfle™ 4, where || =
> j—1 Kj. Hence

where ¢; —(¢) = max sup
’ <k o

@) | [ Flaipa)da < He it 16 B < el

In the further proof we shall use the function® p € C§°(C") supported
by {z € C" : ||z < 3} such that [ p(a + iB)f(a + iB)dadB = f(0) for
Feo(z: |z <1}). Let 2 = &+, 9(z) L F(z+2), n(e) L o(a +
a). Then by (23) ‘fg(a + iﬁ),u(oz)doz‘ < elfle="& for |18]] < ¢||B]|. Let

9oy (@ +i6) = g(c||Blla +ic|| 3]|3). Then

F(2) = 9(0) = 9,05,0) = [ pla+i8)g(c] Bl + ic) 3] 8)dads

1 13 .m .
= 5 — + S ~+ 1n)dEdn.
(cllﬁll)%/ p<cllﬁ|| chmr)g(& sy

Observe that since ¢||3|| < 1, we get for every |v| < k:

(24)

dw [ & 1 9\ : M
GGy )| = G 1 (Ba) et +9)] < g

with some M < oo (depending on k but independent of &,m). Now fix

k
n |l < %é” < % and let o(&,n) = —(C‘]Iélcp p(ﬁ—l—zﬁ) Then

©)See e.g. [L].
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[ g(& +in)o(&,n)de < elFle=F&. Hence we deduce from (24) that [F(2)| <
c —k-&
1]+

choice of & + ZB e+ il . U

, where the constants ¢ < oo, k€ Np do not depend on the

By Propositions 2 and 3 we get

THEOREM 2. Let I' be an open cone in H.%", GdeR", keR", Q=&+
R" and let W be a complex neighbourhood of Q. Let F € O((Q+iT)NW).
Then the following assertions are equivalent:

(1) There is u € L’(H)(Q) with w = bp(F).

(i1) F e 203 ([2+:T)).

3. Laplace Hyperfunctions and Distributions

Throughout this section W = W7 x --- x W,, is a polytubular neigh-
bourhood of @i such that Im (; is bounded for ; € W; (j =1,... ,n). We
shall denote by v; a regular curve in W \ R, encircling R, once in the
anticlockwise direction (j =1,...,n) and put vy =y X -+ X .

Let G € S(w)(W%ﬁi), ¢ € Lw) (R"}). By the definition of such functions
given in Section 1, in every polytubular set V' = V; x - -- x V,, in which both
of them are defined there exist a < kK < w and C' < oo such that

(25) |p(2)G(2)] < Cem (ol tie,

When considering the integral fv G(z)¢(z)dz we shall always assume that
yCV.

Let A(C,w) = [Tj—y Aj(¢wy) with Aj(Gwy) = e~ O /(G — wy)
(j =1,...,n). In vector notation we write

A(Gw) = e (¢ —w) !
and call it a modified Cauchy kernel.

PROPOSITION 4. Fix a polytubular neighbourhood W D R:LL and a poly-

"N

tubular set V! € W%@z Choose a polytubular set V? : R, C View
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such that dist(le,VjQ) =n;>0(=1,...,n) and let a € R". Then there

exists C < oo such that

(26) sup sup |e*CTIA(C, w)| < C.
weV?2 (eVl

In particular for a fized ¢ € W%Ki with dist(Cj,ij) >mn >0 (G =
1,...,n) we have sup,ey2 [e”*A((, w)| < oo which means that A((,-) €
La(V?).

The proof follows from the estimate:

sup sup \e“'(cﬂ”)A(C,w)] < C sup sup eRe(¢—w)(a—Re((-w))

weV? ¢evl weV?2 eVt

n
< C’H sup e84 8) < oo,

LEMMA 2. Let G € L) (WYRY). Then G € Y7 £, (W¥R}) if
and only if

(27) [G@reez =0 for o€ Ly @),

Proor. To simplify the notation take G € Q(w)(W%nﬁi) and put
2V = (21,... ,2n-1), ' =71 X -+- X Yp_1. Then for all ¢ € Q(w)(ﬁi) the
function G(z!,-)p(2!,-) is holomorphic in the domain bounded by ~,,, hence
by (25) f% G(2', 2,) (21, 21)dz, = 0 and consequently we get (27). For the

proof of the second part of Lemma 2 let P - _+ C W; \ R, be a domain

Vi Y
bounded by an inner curve o and an outer curve 'yj+, both rectifiable and
encircling Ry, dist(v,, ’y;“) >0, dist(y;,Ry) > 0,95 = an{ﬁf = ’yf =5

(j=1,...,n). By (27), the Cauchy formula and Proposition 4 we have

G(z) = Z H,(z) for ZGP:Pf’ﬁx-uxP, .
U€{+77}n
(28) oA ()

1
here Hg(z) = o [ GOA(G, 2)dCy - - dp.
where (2) nsgna/%n [yl (OA(C, 2)d¢y

(27i)
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Observe that every summand in (28) extends holomorphically to the carte-

sian product of a number p > 1 of sets V7+ and n — p of sets Wy \ Vvk_’
J

where V,lect denotes the domain bounded by the curve ’y,:ct. Since the curves

7y, can be taken arbitrarily close to Ry and 7? arbitrarily close to OW;
(j=1,...,n), wesee that G € 3 7_ (’)(W%@Ri). To prove the desired es-
timates we observe that by Prop081t10n 4 the function G(({)A((, z) satisfies
estimates (25) and hence applying the Cauchy formula we can write H, as
a linear combination of integrals taken only over the curves 'y;“. Consider
for instance the integral

(29) Gp(z) = G(zl,Cn)An(Cn, zp)d(, for (zl,zn) =zc W%nﬁi

o

Clearly G, € O(W¥,R)). To prove that G, € L) (WhR V) we take
a polytubular set V = V! xV,, where V! is a polytubular set in (W7 \
Ry) x - x (W,_1 \ Ry) and V,, is contained inside ~;", dist(V;,,7;) > 0.
Take arb1trar1ly a < w. Let a = (a*,a,), b = (a!, b ), an < by, < wy. By
the assumptlon on G we have |G(z!, )| < Cle=@"# ~bnén| for 2! € V1,
Gn € vt and some C' < oco. Hence by (29) and (26) we get, with some
C < oo, sup,cy |e**Gy, ( )| < C‘f+e (brn—an) ReCn g ‘ < 00, which proves

that G, € £(, (W%n ) The proof of Lemma 2 follows by the consecutive
application of the above reasoning. []

PROPOSITION 5. The space 3 7, S(w)(W%jﬁi) is a closed subspace
of L) (WHRY).

PrROOF. Let 3 7 | £ o (Wi;R N ERC —>G in £, (W%R ). Hence
by Lemma 2 for ¢ € L, (R RY), v C W%Ri we have f7 G"(2)p(2)dz =0
(v = 1,2,...), and to prove that G € Z;L:1 S(w)(W%jRi) it suffices to
show that the same is true for G. Take any ¢ € L) (@:L_) and a < w such
that ¢ € La(@i) Then for 0 < 6 < w — a we get the estimate

JECECIERICED (2)dz

< Couple 4(G(2) - 6" ()] - | [ e

zey
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in Which the right-hand side converges to zero as v — oo. Hence

fG z)dz =0. 0

DEFINITION 2. The quotient space(”)
000)(R}) = L0 (WHR] /Zs (WHRY)

is called the space of Laplace hyperfunctions on Ri of type w € R". By
Proposition 5 it is a Hausdorff topological space. A function F €

w)(W%ﬁi) is called a defining function for the Laplace hyperfunction
f=F+37, L) (W¥,R’,) denoted shortly f = [F].

DEFINITION 3. We say that a sequence f, € Q) R}) (v =1,2,...)

is convergent if there exist defining functions F, such that {F}} converges

in £ (W%R ) to some F. We set lim,_.o f, = f & [F].

We intend to provide an n-dimensional version of the well-known Kéthe
theorem [K6] and Martineau—-Harvey theorem [M], [H] for the case of
Laplace hyperfunctions. To this aim we need Lemma 3 below.

LEMMA 3. Let ¥ € £, (W%R) WoORL, y=m %X, and
define U*(z) = (2m) f \Il A(w, z)dw, where v; leaves z; on the right.
Then ¥* € £, (WSR") and

(30) U—T* e L, (WyRY).
j=1

PROOF. Observe first that U* € O(WR}). To prove that ¥* ¢
S(w)(W%Ei) take a polytubular set W; € W; \ Ry (j = 1,...,n), an
a < w and choose 0 < p < w — a and a curve v; encircling R, in the

(M The correctness of this symbol (i.e. the independence from W) will be clear from
Theorem 3 below.
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anticlockwise direction and leaving Wj on the right (j = 1,...,n). Then
by assumption on ¥ and Proposition 4 we get

sup [e**W¥*(z)| < C sup sup‘e“'(sz)A(z,w)‘ . ‘/ep'Rewdw| < 00
zeW 2EW wWEY Y

and thus ¥* € £, (WRY). For the proof of (30) we apply Lemma 2.

To this aim take ¢ € L) (Rz) and the curves v and 7 verifying the usual

conditions and moreover such that for every j = 1,... ,n the curve 7; leaves
7; on the left, dist(7;, ;) = n; > 0.
Fix arbitrarily a point w € « and let M > Rew; for j = 1,... ,n,

split the curve 7; into two curves: a bounded %IM and an unbounded
ﬁf’M having a common bounded segment with the line Rez; = M (j =
1,...,n). Clearly by the Cauchy formula applied to the function f,,(z) =
o(z)e==®)* we have p(w) = Wf'?“” o(2)A(z,w)dz for every M >
Rewj, j = 1,... ,n. By the standard estimation |p(2)A(z,w)| < Ce P Re=
with some p € R}, C'= C(w) < oo and hence f%;,M o(2)A(z,w)dz; EOO,

7=1,...,n. Thus

1

(31) Pl) = o

A 0(2)A(z, w)dz

and, by the standard estimation we get [ U*(2)p(z)dz = W |, ¥(w) x

(f:y cp(z)A(z,w)dz)dw = [, ¥(w)p(w)dw = [ ¥(2)p(z)dz for every ¢ €
L) (RY), which by Lemma 2 yields (30). O

THEOREM 3. There exists a natural topological isomorphism
Q(w) (R—l-) = L/(w) (@T—:—)v w € R",

given by the assignment

n

Q(w)(ﬁi) > f = [F] — If € ‘L,(w)(ﬁ-‘r)v
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where F € i‘,w (W%@n) and the functional Zf is given by Zflp] =
f F(2)p(2)dz for ¢ € Lw )(Ri). The inverse mapping J is the
asszgnment

Li,([RY) > Tr5[ChT) = @+Z£ (WRY),

where
e_(c_w)Q
(C—w)t

belongs to £, (W%R ) for every tubular neighbourhood W of Ki.

QO =v0 % ()"T|

271

] for C € C”%@i

Proor. By the assumptions on F| ¢, v there exists a polytubular neigh-
bourhood V > R} and a < w such that UyF(z)gp(z)dz‘ < Cpa,v(p) and
Tf(p) is independent of the choice of 7 encircling R in V. Thus the func-
tional Zf € L’ )(@ ) and by Lemma 2 it does not depend on the choice of
a defining functlon F.

Let T € Q’(w)(ﬁi) and let W, V1, V5 be defined as in Proposition 4. Take
a < w. Then T € L/ (Va), A((,:) € La(V2) for every ¢ € Vi and hence
V() = (52)"TIA(C,-)] is well defined for ¢ € V1. By point 2 in Section 1

27

and (26) we get

sup [e*CW(¢)| < (27m) "Cy v, sUp ‘ea'c sup |e”""A(¢, w)] |
4% e weVy

< (2m) " "Cy,v, sup sup e CA (¢, w)| < C < oo,
eV weVs

Recall that V7 was an arbitrary polytubular set & W%@i and a < w was
also arbitrary. Thus ¥ € £, (W%R ) since (as it can be shown directly)
it is holomorphic on W%R Thus the transformation J in Theorem 3 is
well defined and CAT' € £, (W%R ). The equality J = Z~! can be shown
by (31) in the following way: (Z o JT)[p] = (i)nf7 o(2)T[A(z,w)]dz =

27
T[(ﬁ)nfy ¢(2)A(27w)d2] = TJp] for ¢ € L(w)(@i). To prove that J o
1f =7 for f [ ] € Qu (_n) observe that by Lemma 3: (CA(Zf))(¢) =

(2m) f F(z z)dz = F*(C) and JoZf =[CA(Zf)]=[F*]=F.
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n

To prove the continuity of Z assume that lim, .o f, = f in Q) (R )
(cf. Definition 3), note that |Z f,[¢] —Z f[p]| = | fW(Fy(z) — F(2))p(z)dz| for
v € L) (@Z) and end the proof as in Proposition 5. The continuity of the
mapping J follows from the Banach-Steinhaus and the Vitali theorems. []

By Theorem 3 and point 4. in Section 1 we deduce immediately:

COROLLARY 2 (Imbedding of Laplace distributions in Laplace hyper-
functions). There exists a natural topological imbedding:

n

L/(w) (EK)C%Q(W) (RY).

Now we pass to the description of the image of L’(w) (@i) under the
imbedding.

The space SE:C;)(Q +4I') of Section 2 turns out however to be unsuit-
able for our purpose, namely we need to control the way we approach the
boundary of the cone I'. Therefore we proceed as follows. We consider
local wedges at infinity Q = Q + i}, with profile I' C R (cf. Definition 1)
and edge 2 C R™ having (up to a permutation) one of the following forms:
(My,00) X -+ X (My,00) (i.e. as in Definition 1 if Q@ = M + R, M =
(My,... , M) € R") or wys X (Mp—jy1,00) XX (My,00),j=1,... ,n—1;
here o/ = (Q1,... ,Qn—j)s Wai = Way X =+ X Way_ ;) Way, are open bounded
neighbourhoods of ay in R.

k

DEFINITION 4. Let V' C C" be open and [V] be its germ near R"
(cf. Definition 1). Let k € Ny, k € R”. We define the space ££([V]) by

SE(V]) ={H € O(V) : qo(H) < o0
for every local wedge Q@ = Q +i['|, C V and

P
q(H) = sup |H(a+if)|- (dist(8,bd F))k exp(z ay;Ki;)}-
a+ifeq) J=1

The exponential factor in the definition of qg(H) appears every time the
cartesian product € contains unbounded intervals (M, o0),... ,
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(M, 00).®) By £ ([V]) we denote lim £([V]).

R<K

We shall often write £%(V') instead of £E([V]).

LEMMA 4. Let k € No, k € R", and G € £8) (WSR}). Fiz j, 1 <
Jj <n, take z; € Wj and let v; C W; \ Ry be a regular curve encircling R
in the anticlockwise direction and leaving the point z; on the left. Define

Gj(Z) = G(Zl, e ,ijl, Cj; Zj+1, e ,Zn)Aj(Cj, Zj)de

Vi
N
for z € WiyR,.

Then Gj € L‘(%) (W,RY).

PrROOF. We have to control at the same time the behaviour of the
estimates as Re z — oo as in Lemma 3 and moreover the way we approach
R™. To simplify the formulae assume j = n and thus G, is given by (29)
with 2, € Wy, 2t = (21,... ,2n-1) € W1 \R) x - -+ x (Wp—1 \R). Let ol =
Rez!', B! = Im z!'. We have to show that for any local wedge Q C W, R"
and any K < k the inequality ¢o(G,) < oo holds. We distinguish some
types of local wedges:

(i) Let &' € Riﬁl, G&n € W, NR, and wg1, wg, be their bounded neigh-
bourhoods. Take 2 = wg1 X wg,, and® Q. = Q+i(R7 ' xR)|. C W%nﬁi

In this case we have to show that for some C < oo the following inequal-
ity holds for € sufficiently small:

|Gn(a+if)]| <C( min B;)7% for a+if € Q..
1<jsn—1

Take o~ < ¢~ < 0 such that [a~,+00) C W,, NR, wg, C (¢, +00). Let
{w1,w2} be an open covering of [a~, +o0) in R, where w; is a bounded
neighbourhood of a~. Let w,1 be an open bounded neighbourhood of a! €

®)We may equivalently define the topology assuming qg with the exponential factor
2?21 ajrk; in all the cases.

)T simplify the notation we select the case I' = ]Ri_l X R instead of the general
one: '=Ryy X+ xRy, { xR, 0g€{+,—}forg=1,... ,n—1.
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R"! and denote Q' = w1 x w1, 0 = w1 X wy. Let I'! = ]RTJF_1 x R,
(T%)* =R} x Ry and r* > 0 small enough that Q' +T'}|,. C W%nﬁi,
02 +i(IH*),. C W%nﬁi Take 0 < e < r < r* and consider two strips:

1) P* bounded by the half-lines [T = (o~ +s) £ir (0 < s < c0) and

the segment [a™ —ir,a” + ir],

2) P~ bounded by (¢~ +s) £ic (0 < s < o0) and [¢™ —ig,c™ + ig].
Let v, = 0P and let z, € wg, + iR|.. Then there exists p > 0 such that
|zn — Cu| = p if ¢ € 7, and, by the estimate verified by G on the wedge
Q! 4+ il there exists C' < oo such that

GGl < C(_min 8)

1<j<n—

for 2! e wgt + iRTf:lw, Ch=a +1it, - r<t<r.

Hence with €7 < oo we get the estimate:

o +ir
(32) / G2, C)An(Cos 2)dCn] < Co( min )",

— 1<j<n—1

If ¢, € I* and ||BY < e we have dist((6',Im¢,),bd(R ! x Ry)) =
mini<;j<,—13;. Note that by the estimate verified by G' on the wedge
Q2 +i(I'2)%|,. there exists C' < oo such that

1 < —Re(n-%n 3 . —k
gy [GEGN SO in )
for ¢, el*, 2te wg1 —|—iR7}r_1\E,

and hence by the assumption that Rez, ranges over the bounded set
wg, we get with some Cp < oo: Uli G(2Y, G A (Cn, Zn)an’ <
CQ(minlgjgn—lﬁj)fh since e~ ReGnFn—(Re(Cn—2n))? < p—Reln(ReCutFn—2Rezn)
is integrable over [*.

Thus by (29), (32) we get the desired assertion for ||3|| < e.

Consider now the following case:

(i) &' € R}, My, € R, Q = w1 X (M, +00), Qe = Q+i(R? xR)|, C
W%nRi (or more generally in the spirit of foot-note(*)).

Thus we have to show that to every k, < k, there exist C < 0o, € > 0
such that ‘Gn(Oé + Zﬁ)‘ < Ce—anEn (minlSan_l 5j)_k for z € Q + Z(Riil X
R)|..
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To this aim fix f’:“i < kp, and take Mn < M,, € < r such that @i =
(wgr +iRY.) X ((Mn, +00) + iR4l,) C Wi, R, Let P*, P~ be defined
as in the case (i) with a= = M,, ¢ = M, and let 7, = OPT. Let
Kn < b, < Knp. By the assumption on G there exists a constant C; < oo
such that

1 : N—Fk_—bnReln
G < m
Gz, G)l < 01(1§jsl7?_1ﬁ1) e

for ¢, eltul, zle wgt —i—iRZL__HE

and similarly as in the proof of Proposition 4, we get the following estimates
with some new constants Cy < oo, C3 < oo:

G(2', 6 A (Cos 20) e RE*ndC,

< i Dr
< Cz(lgrjnglg_lﬂg)

’li

y ‘ / ¢~ Relen—Cu)(Re(zn—Ga)=n) . ~(bn—Fn)Cn g,
1=

< i )k
- 03(13?1312—1@)

To estimate the integral over the interval [Mn — ir, My, + ir] we observe
that by the assumption on G there exists Cy < oo such that |G(z}, ()| <
Cy(mini<j<p1 3;)7F on (wgr +iR™™),) x (wyz, +iR},) C Wi RY. Hence
we get the following estimates with some new constants Cs < 0o, Cg < oo:

Mn+ir ~
[ G Gz g,

n—ir

< 27"05(1;;1;5_1 ﬁj)fkefan(anszn—nn) < 06(5%13_1 ﬂj)fk.
This together with (34) and (29) gives the desired estimate.

(iii) & > 0,...,8m > 0, &me1 < 0,...,8,-1 < 0. Write 2* =
(Zmt1y -+ s 2n-1); & = (&mt1,-.- ,8n—1) and observe that the function
Gy (215 y2my2n) = G(21,. .., Zm, 2%, z5) is holomorphic with respect to
the parameter z* in a complex neighbourhood of &* € R*~™~1. Select the
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cases (i) or (ii) for the function G« of m + 1 variables z1,... , 2y, 2, and
prove the adequate estimates uniformly with respect to the parameter z*.

(iv) The case where  is a cartesian product of more than one un-
bounded intervals, for instance 2 = wg2 x (M —1,00) X (M, 00). Then we
have to show that for every %, 1 < kn_1, kn < kn there exists C' < oo
such that |Gp(a+i6)] < C(mini<j<n—1 ﬁj)_k exp(—ap—1Rn—1 — Qpky,) for
z=a+if € Q+ iR x R).. This can be derived from the esti-
mate |G (22, 2,_1,C)| < C(minj<j<p—1 @)‘k exp(—ap_1Rp—1 — apby,) for
Cp €T UL, 22 € wg2 + z']R’}L_2|5, Zn—1 € (Mp—1,+00) + iR, |, where
I*,17,b, are defined as in (ii), and from the estimate |G(2%, 2z,-1,¢)| <
C(minlgjgn_l ﬁj)_k eXp(—Ozn_lgn_l) on (w&z X (Mn_1,+oo) X an) +
i(R™! X R)|. where M, < M,. ]

LEMMA 5. Ifue€ L’w) (R%) then the function Cyu(z) a (52)"u[A(z, )]

2
for z € C"§R belongs to £ (C"%RY) a Jim _ h—m>k€No 2%(@”%@?_)
(cf. Definition 4).

PROOF. By point 4. of Section 1 and by Theorem 3 Cyu € O(C"R’,).
On the other hand for any K < w there exist C = C(k) < oo, m = m(k) €
No such that (with vz, defined in Section 1) |u[p]| < C' 32}, <, V() for

pe Lz (Ri) Hence by Proposition 4 we get the estimate

Rz 0 Ve—(z—x)2
lv|<m TER L
Take first {2 = wy x --- X wy,, where w; are open bounded intervals in R

with dist(w;,Ry) > p>0(j=1,...,n). Let Q = Q+iR",, 0 < r < cc.
Then by (35) there exist Cy = Ca(r), C3 = C3(r) such that [Chu(z)| <
Cop™™ " < (3 < oo for z € @ since () is bounded.

Let now Q = wy X -+ X wp—1 X (M, +00) where w; are open bounded
intervalsin Ry, j =1,... ,n—1, M, e R, ' =R}, Q = Q+I',. Then
dist(8,bdI') = mini<j<, B;. Take an arbitrary x < w and let k < k < w.
Then by the standard estimation (e.g. as in (34)) we derive from (35)

C
(8,bd T))mn

‘erm ReZ"CAU,(Z)‘ < (dist for z € Q+1,
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with some C' < oo, m = m(k), 0 < r < oco. In an analogous way we
establish the pertinent estimates in other wedges and hence deduce that
the function Cyu € )3 ) (CP%RY ). O

LEMMA 6. Under the mnotation of Lemma 4, a function G €
S(L’fi) (WSRY), k € Ng, & € R, is such that fv G(2)p(z)dz =0 for ¢ €

L) (Ei) if and only if G € 2 E(L’,Z) (W%jﬁi) Hence if G € S(% (W%@i)

then G belongs to Z 2 ) (W3R V) if and only if fv G(z)p(z)dz = 0 for
¢ € L (RY).

Proor. Let G € 2 W%R f G(2)p(2)dz = 0 for p € L, )(R ).
Then following the proof of Lemma 2 we can wrlte G as a linear combination
of integrals taken only over the curves ’y+. By Lemma 4 the function G,

given by (29) belongs to ,8 ) (WinR V). O

LEMMA 7. Let ¢ € 2(%0) (W%@n), w 6 R™. Then the functz’onal v
given by L. RY) 2 p— (- f W(2)p(2)dz, where v =41 X -+ X vy, 18

n

as tn Theorem 3, extends umquely to a dzstmbutzon by e L’(w) (R+).

PrROOF. By Theorem 3 v € L( )( V). The further proof is divided into
two steps.

Step I. n =1. For ¢ € L,)(Ry) and ¢ € 2(%0) (W \ R, ) there exists
e > 0 such that ¢ € O((R4).), ¥ € )3(%0) ((R1)e \ Ry). Moreover for some
¢ < W SUPem,). le=p(¢)| < oo and for any x € w there exists k(x) € Ny

such that ¢ € £8((R,). \ Ry). Using the estimates satisfied by 1 and ¢
one can prove the relation

+o0o
—/w(z)w(z)dz: Bhrgl Yo+ if)p(a)da
5 —Y+J—¢/2
(36) +o0
— ﬁlg& " ¢(o¢ - Zﬁ) ( )

for ¢ € L (R,). Take now ¢ € L) (Ry) and its extension » € C®(R),
o(a) = 0 for a < —¢/2. We shall prove that the right-hand side of (36)
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makes sense for such @ and defines a functional T' € L’(w) (R,), in fact
T = bp. Assume first w < 0 and fix arbitrarily ¢ < w. Next take
a < k < w, choose a base point Z‘ = —p, where 0 < p < ¢, and define
an operation J¢(() = f% Y(w)dw, where ¢ is a curve joining ¢ with

¢ € (Ry): \ Ry. After k + 1 iterations of the operation J we arrive
at the function T+ € O((E,). \ By), |71 (a +i8)] < Cemo® for
korl

a+if € (Ry)e, S5 T"p = 1 and such that limg_o, T" ¢ (a£if) ex-

ist locally uniformly and define continuous functions on (—¢,00): 14 («) &

limg_o, J* (e £iB), Yi(a) = ¢Y_(a) for a < 0, s (a)] < Ce @ for
a > —e. Now if ¢ € Ly(Ry) (and @ is its extension), we get easily by
integrating by parts

+00
Jm [ e+ i) - va - i8)pla)da
—V+J—e/2
o) dk+1
(37) = (0 [T (w(0) = ¥ (@) Joreladda = Tigl,

korl o
where T' = -~ (¥4(a) — ¥-(a)) € Lo(R4).

Since a < w < 0 was arbitrary, we have T" € L/(w) (Ry).
Assume now that ¢ € 2%’) ((Ry): \ Ry) with w > 0. Then T* defined

by (37), with *(¢) = ¥(¢)eS* instead of 1, belongs to L’(O) (Ry) and T &

e~“T™* belongs to L’(w). Moreover for ¢ € Lo(Ry), a < w, Tle] = T[]
given by the right-hand side of (36).

Step II. Let ¢ € 2(%0) (WSR'). Consider v on functions ¢ € Lw) (R")
in the product form ¢(2) = p1(21) - ... - pn(2n) with ¢; € L(wj)(EJF), Jj=
1,...,n, and apply a parameter version of the one-dimensional assertion
(36) proved above:

— [ bz, 20,0 2z)e1(21)da
71

= g sgnoq  lim (a1 + 0151, 225« -« 2n)p(a1)day
B1—04
o1€{+,—}
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with v1 C Wi encircling R.}r. Let W/ = Wy x --- x W,,. We note the
following result:

the function
=n—1
WNSR, 2 (22,... 5 20) — Y1(22, ... 5 2n)
= —/ Y(z1,22, ..., 2n)p1(21)d21
Y1

belongs to 2 (W' %R ), = (wa,... ,wn)

whose proof is done in the spirit of the proof of Lemma 4.
Hence we deduce that

el =07 [ pEme) e
= Z sgno  lim ( ( lim /1/1 a+iocf)e(a )dal)...>dan.

ce{+,—}" P04 =0y

Next we prove that

Z sgno  lim ( ( lim /w a+iof)e(a )dal)...)dan

oef{+,—}" O hm0s
(38)
= Z sgno lim [ Y(a+ioB)p(a)da.
B—04

U€{+7_}n

This is clear for ¥ which extends continously to the boundary from every
local wedge €2 + iaﬁi C W. In the general case we use the fact that every
(S Sl (W%R ) can be represented (cf. e.g. (7)) as a finite sum over
mult11nd1ces k= (k... k)

where Fj have the above property. Thus the proof reduces to proving a
series of identities (38) with ¢ replaced by Fj and ¢ by (%)kgo.
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The result follows by the density of the space (cf. [Mi]) L(w1)(R}) ®

n

- @ L(wn)(Ry) in L(w)(RY). O

THEOREM 4. The isomorphism L of Theorem 3 extends to a topological
isomorphism of the spaces

&5 (WHRY) /Zs(w (WER}) = L, (R}), weR"

PROOF. Let w € 2 (W%R ). Then by Lemma 7 the functional
L) (En) S (— f 1/} z)dz extends uniquely to a distribution
by € L (]R ) and in view of Lemma 6 the mapping Z:

39) 28 (W%ﬁi)/ S L8 WY 3 (¢ by € L, (R
=1

is well defined.
On the other hand Lemma 5 provides a mapping J

(40) Ly ([®) 5w € 285 (WHRY) /3 28 (R,
j=1

which turns out to be the inverse of 7.
Indeed, take u € L’( )(]R") and observe that by (39), (40) Zo Ju —u €
(w) (R"}). By point 4. from Section 1 and by Theorem 3 (Z o Ju—u)[p] = 0
for v € L) (R+). Thus by point 3. from Section 1 (Z o Ju — u)[p] = 0 for
¢ € L, )(Kn) and hence 7 o Ju = u.
Next take ¢ € £ (WR}). By (39) and Lemma 5 Cy(Z[¢]) €
(w) (WSR") and hence F 4 CA(TlY]) — v € 2 (W%R ). Since
2%0) (WSRY) C S(w)(W%ﬁi) by Theorem 3 F € z L) (W R RY) and
j=1
hence by Lemmas 2 and 6 F' € > 2%0) (W,;RY). O
j=1

Note that the last fragment of the proof amounts in fact to the statement:



Laplace Distributions and Hyperfunctions 71

REMARK 2. We have the canonical imbedding
28 (WRRY) /3 285 (W3 R)) s 00 (B,
j=1

4. Martineau—Harvey Theorems

Let K1,..., K, be compact sets in R and let K = Ky x --- x K,,. For
every open bounded set V in C" containing K denote by H (V) the space
of continuous functions in V' which are holomorphic in V with ||F|y =
sup,cy |[F(z)|. Let A(K) = l.inﬂ/)l( H(V). The elements of the dual space
of A(K), denoted by A’(K), are called analytic functionals carried by K.

Denote by Bg (R™) the space of hyperfunctions with support contained

in K. The standard realization of Bx(R"™) can be represented in the form
Bx = Br(R") = O(UMK) / 3 OUyK),
j=1
where U = Uy x --+ x Uy, Uj—a connected domain in C containing K
(= Loee o), UK = (UKD X x Uy X (U \ ) (G = L, ).
THEOREM 5 (Martineau-Harvey, [M], [H]|). There exists a natural

topological isomorphism
Bg = A/(K)

given by the assignment
Bg > f=[F]—1Ife A(K),

where F' € O(UXK). The functional Zf is given by
I = (1" [ F@eEds for ¢ e AK)
VXX

and for j =1,...,n, v; is a closed curve in U; \ K; encircling K; in the
anticlockwise direction and contained in an open set V; O K; (provided ¢
extends holomorphically to Vi x ... x Vy,). The inverse mapping I~' is the
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assignment A'(K) > g — I~ 1g = [Cg] where Cg(z) = (%)ng[(z -0 e
O(C"%K).

Theorem 5 leads to a distributional version of Martineau—Harvey theo-
rem in a way similar to that of deriving Theorem 4 from Theorem 3. The
situation now is however simpler since it does not involve the estimates at
infinity. Therefore we only restrict ourselves to introducing pertinent spaces
and formulating final results.

Q will stand now for a bounded open set in R™. As before, I' denotes
the non-empty open cone in ]1.%“, I'|,—its intersection with a ball of radius
r, 0 <r < oo, and ) = Q4+ il'|,—the corresponding local wedge.

Let V' C C™ be an open set and [V] its germ near R™. Let k € Ny.
Define the space O%([V]) by

oE(v)) = {HeO(V): qo(H) < oo for every local wedge Q C V
where gg(H) & sup [H(z)| - (dist(Im z, bd I‘))k}
z€Q
and let
O=([V]) = lim O¥([V]).
keNg

Finally, we denote by D’ (R™) the space of distributions on R™ with support
in K.

THEOREM 6 (cf. [M]). The isomorphism I of Theorem 5 extends to a
topological isomorphism of the spaces

(41) o (UNK) / ZOL UM K) 2 D) (RM).

Observe that for k,p € Ng, k <p, F' € O@(U%K) the mapping?) &:

F+ znj O Uy K) -5 F + f: OB(U%,K)

j=1 j=1

(10 For the proof observe that a function F € OIE(U%K) satisfies f'le"'X'Yn X

F({)p(¢)d¢ = 0 for ¢ € A(K) and 1 X -+ X y, as in Theorem 5, if and only if
F el 1 O(Uk;K) (cf. Lemma 6).



Laplace Distributions and Hyperfunctions 73

is a well defined 1-1 mapping and hence we can write (41) in the following

form
(41) lim (O(U%K) | - OMU;K)) = Die(R).
keNg j=1

Similarly, if F' € OIE(U%K), k € No, the mapping &

F4 Y OXU%K) = F + ) OU%K)
j=1 j=1
is 1-1, which gives the imbedding

limy (OHURK) [ 3 OHUR ) ) g2
keNg j=1 Z:l O(U%jK)

Hence (41) leads to a natural imbedding of distributions in hyperfunctions:

D (R")C. Bi(R"), K compact in R".
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