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Continuity of Topological Entropy of One

Dimensional Maps with Degenerate Critical Points

By Keiichiro Iwai

Abstract. One dimensional maps with degenerate critical points
are studied and we give a larger class of Cr functions whose topological
entropy is continuous.

§Introduction

There are many studies of topological entropy of one dimensional maps.

M. Misiurewicz and W. Szlenk [7] showed that topological entropy is lower

semi-continuous for piecewise monotone C0 maps with C0 topology. More-

over, if none of the critical points of a C1 map are degenerate, its entropy

is continuous with C1 topology [4] [7]. But when critical points are degen-

erate, there is a counter example of Cr(r ≥ 1) functions whose topological

entropy is not continuous [7].

Our aim in this paper is to show the continuity of topological entropy

for maps with finitely degenerate critical points. In this paper I means an

interval [0, 1].

Theorem. Let r ≥ 2 and Fr be a set of Cr functions which have non

zero k-th derivative and k is smaller than or equal to r at every point in I,

i.e.

Fr = {f ∈ Cr(I, I);∀x ∈ I, 1 < ∃k ≤ r such that f (k)(x) 
= 0}.

Then the topological entropy is continuous in Fr.
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Considering the counter example by Misiurewicz and Szlenk [7], Fr is

the widest class whose topological entropy is continuous.

To study topological entropy of one dimensional maps, the kneading

theory due to J. Milnor and W. Thurston [4] is useful. But when degener-

ation occurs, we can not apply this theory directly because the lap number

changes. There are essentially two types of degeneration and every degener-

ation is written by a combination of these two types. One is a degeneration

of critical points into one critical point, and the other is that into a saddle.

We improve the kneading theory to be applied to the functions with degen-

erate critical points and show that the topological entropy is continuous in

Fr.

§0. Preliminaries

Here we give fundamental theorems and definitions about the kneading

theory. See [3] or [4] for proofs and details.

In this paper, I denotes the closed interval [0, 1]. We name the critical

points of f c1, · · · , cl−1 and c0 = 0, cl = 1.

Definition 0.1. Let f : I → I be continuous, piecewise monotone. A

lap of f is a maximal interval on which f is monotonous, the lap number

l of f is the number of laps of f , i.e.,

l(f) = #{J ⊂ I;J is a maximal interval on which f is monotonous}

and the growth rate of f is defined by

s(f) = lim
N→∞

l
1
N (fN )

where fN = f ◦ fN−1 and f0 = id, the identity map.

When the lap number of f is l, we use I1, · · · , Il to denote laps of f .

Theorem 0.2 (Misiurewicz and Szlenk [7]). The topological entropy

h(f) of f is equal to log(s(f)).
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Definition 0.3. Let ε0(x) = 1 and εn(x) = ε(x) × · · · × ε(fn−1(x))

where ε(x) is the sign of x, i.e.,

ε(x) =




1 if x ∈ Ii and f is increasing on Ii

−1 if x ∈ Ii and f is decreasing on Ii

0 if x ∈ {c1, · · · , cl−1}.

The invariant coordinate of x ∈ I is a formal power series

θi(x; t) = a0 + a1t + a2t
2 + · · ·

and ak is defined as the sign

ak =




1 fk(x) ∈ IntIi and εk(x) = 1

−1 fk(x) ∈ IntIi and εk(x) = −1
1
2 fk(x) = ci−1 or ci and εk(x) = 1

−1
2 fk(x) = ci−1 or ci and εk(x) = −1

0 otherwise

and

θ(x; t) = (θ1(x; t), · · · , θl(x; t)).

Thus in particular, θ(ci) = (0, · · · , 0, 1
2 ,

1
2 , 0, · · · , 0).

Definition 0.4. The kneading matrix [N j
i (t; f)]1≤i≤l−1

1≤j≤l
of f is de-

fined by

N j
i (t; f) = θj(c+i ; t) − θj(c−i ; t)

where

θj(c+i ; t) = lim
x→ci+0

θj(x; t)

θj(c−i ; t) = lim
x→ci−0

θj(x; t) with formal power series topology.

From the previous definition, every coefficient of N j
i (t)’s is in {0,±1,

±2}, and we define the kneading increment νi by

νi = N1
i I1 + · · · + N l

iIl i = 1, 2, · · · , l − 1.
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We also use l-dimensional vector Ni as

Ni = (N1
i , · · · , N l

i ).

Lemma 0.5.

θj(c+i ; t) = θj(ci; t) +
1

2
N j

i (t)

θj(c−i ; t) = θj(ci; t) −
1

2
N j

i (t).

Lemma 0.6 [3, Chp. II, Lemma 8.1]. For every x in I we have

l+1∑
k=1

(1 − ε(Ik)t)θ
k(x; t) = 1

where ε(Ik) = 1 when f |Ik is increasing and where ε(Ik) = −1 when f |Ik is

decreasing.

Lemma 0.7. Let Dj(t) be the determinant of the matrix obtained from

the kneading matrix deleting the j-th column, and εj = ε(Ij). Then Df (t) =

(−1)j+1 Dj(t)

1 − εjt
j = 1, · · · , l is independent of j. Furthermore, Df (t) satis-

fies the following conditions:

1) Df (t) is holomorphic on the unit disk in C,

2) Df (0) = 1.

We call Df in Lemma 0.7 the kneading determinant of f .

Lemma 0.8. Let s be the growth rate of f . Then Df (t) 
= 0 for every t

satisfying |t| < 1

s
, and t =

1

s
is a zero of Df (t).

Now let us define the degeneration of critical points.

Definition 0.9. Let f be a Cr(r ≥ 2) function on I. We say that a

point x on I is a k-degenerate point if there is an integer k larger than

1 and smaller than r such that x satisfies

f ′(x) = · · · = f (k)(x) = 0, f (k+1)(x) 
= 0
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and we call x a non-degenerate critical point if k = 1.

Our aim is to show the continuity of the topological entropy for maps

with k-degenerate points. To avoid an infinite degeneration of the critical

points, we restrict a class of Cr maps to those which have k-degenerate

points and k is smaller than or equal to r. This class is endowed with Cr

topology and denoted by Fr in this paper. (In particular, Fr consists of

piecewise monotone maps.)

Note that all the critical points of f in Fr are isolated. Otherwise, there

is a sequence c1, · · · , cn, · · · converges to c such that f ′(ci) = 0 holds for

every i = 1, 2, · · · , n, · · · and f ′(c) = 0. So by the mean value theorem, for

every interval ]ci, ci+1[, there is di satisfying f ′′(di) = 0. Repeating these

operations for f (k), we conclude f (r)(x) = 0, and this is a contradiction.

Proposition 0.10. Every critical point of f in Fr splits at most r−1

critical points by small Cr-perturbation.

Proof. First we note that if there is an open subinterval J of I satis-

fying that f ′(x) = 0 for every x in J then f (k)(x) = 0 also holds for every x

in J . So we assume that every critical point of f is isolated. Thus it suffice

to show that if c in I, a neighbourhood U of c in I, and some constant A

satisfy f ′(c) = · · · = f (k)(c) = 0, |f (k+1)(x)| > A 
= 0 for every x in U and

f ′(x) 
= 0 in U then there is a neighbourhood N of f in Fr such that every

g in N has at most k critical points on U . We show this by induction.

Let n be an positive integer smaller than k. Suppose g(k−n)(x) has n

zeros in U . If g(k−n−1)(x) has (n + 2) zeros in U , say c1, c2, · · · , cn+2 in

this order, then by the mean value theorem we conclude that there are di
in ]ci, ci+1[, i = 1, 2, · · · , n + 1, satisfying g(k−n)(di) = 0. Since ci’s are in

U , di’s are also in U . This contradicts to the supposition.

Next we will show that g(k−1)(x) has at most one critical point in U .

Suppose that g(k−1)(x) has two zeros, say c1 and c2 in this order, in U .

Then by the mean value theorem there is d in ]c1, c2[ such that g(k)(d) = 0.

But since g is ε close to f by Cr topology, |g(k)(x)| > A− ε holds and this

is contradiction. �

From now on, a function f is supposed to be in Fr.



24 Keiichiro Iwai

§1. Degenerate Systems with No Saddles

We consider the case three critical points are degenerate into one critical

point.

Definition 1.1. Suppose f is a piecewise monotone map on I. We

call a point x0 a n-saddle of f if and only if x0 is 2n-degenerate point.

Definition 1.2. Let us choose a 3-degenerate critical point ci, and

make formal critical points d1 and d2 on ci, and formal interval Ji and Ji+1

such that Ji = [d1, ci] and Ji+1 = [ci, d2]. Then length(Ji) = length(Ji+1) =

0 holds. We define the i-divided kneading matrix [Ñ j
i (t)] = [ν̃i] by

ν̃k(t) = νk(t) if k 
= i

νd1(t) = −2θ(d−1 ) + Ji + Ii

νc̃i(t) = 2θ(c̃+i ) − Ji − Ji+1

νd2(t) = 2θ(d+
2 ) − Ii+1 − Ji+1

and

(1.2.1) θ(d−1 ) + θ(d+
2 ) = Ii+1 + Ii.

Moreover, since d1, d2, c̃i and ci are the same point,

θ(d−1 ) = θ(c−i ) = −θ(c+i ) + Ii + Ii+1

θ(c̃+i ) = −θ(c+i ) + Ji+1 + Ii+1

θ(d+
2 ) = θ(c+i ).

Especially when ci is periodic with period p and no other critical points are

contained in this orbit, then one of θ(d−1 ) or θ(d+
2 ) is periodic with period

p and the other two be fallen in this periodic orbit.

Lemma 1.3. Let Dj(t) be the determinant of (l + 1) × (l + 1) matrix

obtained from the renumbered i-divided kneading matrix by deleting the j-th

column. Then

D̃f (t) = (−1)j+1 Dj(t)

1 − ε(Ij)t
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is independent of j. Furthermore D̃f (t) satisfies the following conditions:

1) D̃f is holomorphic on the unit disk in C,

2) D̃f (0) = 1.

Proof. We will go back to the definition of the kneading matrix. First

we claim

Claim. Let every lap and critical point be renumbered. For i-divided

kneading matrix,
l+2∑
k=1

(1 − ε(Ik)t)N
k
j = 0

for every j = 1, 2, · · · , l + 1 holds.

Proof of Claim. From Lemma 0.6, we have

l+2∑
k=1

(1 − ε(Ik)t)θ
k(x; t) = 1

for every x in I. So we get

l+2∑
k=1

(1 − ε(Ik)t)θ
k(c+p ; t) −

l+2∑
k=1

(1 − ε(Ik)t)θ
k(c−p ; t)

=
l+2∑
k=1

(1 − ε(Ik)t)(θ
k(c+p ; t) − θk(c−p ; t))

=
l+2∑
k=1

(1 − ε(Ik)t)N
k
p

=0. �

Now from the Claim, we have

(1 − ε(Ir)t)N
r
j = −

∑
k �=r

(1 − ε(Ik)t)N
k
j

for every r = 1, 2, · · · , l + 2.
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Let [N i] denote [N i
j ]j=1,··· ,l+3 then we have

(−1)l+3 Dl+2(t)

1 − ε(Il+2)t

=
(−1)l+3

1 − ε(Il+2)t
det[N1, · · · , N j , · · · , N l+1, N̂ l+2]

=
(−1)l+3

1 − ε(Il+2)t

1

1 − ε(Ir)t
det[N1, · · · ,−

∑
k �=r

(1 − ε(Ik)t)N
k, · · · , N l+1, N̂ l+2]

=
(−1)r

1 − ε(Il+2)t

1

1 − ε(Ir)t
det[N1, · · · , N̂ r, · · · , N l+1,−

∑
k �=r

(1 − ε(Ik)t)N
k]

=
(−1)r+1

1 − ε(Il+2)t

1

1 − ε(Ir)t
det[N1, · · · , N̂ r, · · · , N l+1,

∑
k �=r

(1 − ε(Ik)t)N
k]

=
(−1)r+1

1 − ε(Il+2)t

1

1 − ε(Ir)t
det[N1, · · · , N̂ r, · · · , N l+1, (1 − ε(Il+2)t)N

l+2]

=
(−1)r+1

1 − ε(Ir)t
det[N1, N2, · · · , N̂ r, · · · , N l+2]

and we are done.

Next, we show that this determinant satisfies the rest properties of the

kneading matrix, that is:

1) D̃f is holomorphic on the unit disk in C,

2) D̃f (0) = 1.

1) is clearly holds. 2) is also true because [N j(0)] is lower triangular

with a 1 in each term in the diagonal. �

Lemma 1.4. Dividing never changes the kneading determinant.

Proof. From the definition of the kneading increments of d1, c̃i and
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d2, we can write the i-divided kneading matrix explicitly as

[Ñ j
i ] =




N1
1 N2

1 · · · N i
1 0 0 N i+1

1 · · · N l
1

...
... · · · ...

...
...

... · · · ...

N1
i N2

i · · · N i
i + 1 −1 0 N i+1

i · · · N l
i

−N1
i −N2

i · · · −N i
i 1 −1 −N i+1

i · · · −N l
i

N1
i N2

i · · · N i
i 0 1 N i+1

i − 1 · · · N l
i

...
... · · · ...

...
...

... · · · ...

N1
l−1 N2

l−1 · · · N i
l−1 0 0 N i+1

l−1 · · · N l
l−1



.

Let us calculate the kneading determinant. Deleting the (l + 2)-th column

and we have

(1 − ε(Il)t)(−1)l+3D̃f (t)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N1
1 N2

1 · · · N i
1 0 0 N i+1

1 · · · N l−1
1

...
... · · · ...

...
...

... · · · ...

N1
i N2

i · · · N i
i 1 0 N i+1

i − 1 · · · N l−1
i

0 0 · · · 1 0 −1 0 · · · 0

0 0 · · · −1 1 1 −1 · · · 0
...

... · · · ...
...

...
... · · · ...

N1
l−1 N2

l−1 · · · N i
l−1 0 0 N i+1

l−1 · · · N l−1
l−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N1
1 N2

1 · · · N i
1 0 0 N i+1

1 · · · N l−1
1

...
... · · · ...

...
...

... · · · ...

N1
i N2

i · · · N i
i 1 0 N i+1

i − 1 · · · N l−1
i

0 0 · · · 1 0 −1 0 · · · 0

0 0 · · · 0 1 0 −1 · · · 0
...

... · · · ...
...

...
... · · · ...

N1
l−1 N2

l−1 · · · N i
l−1 0 0 N i+1

l−1 · · · N l−1
l−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N1
1 N2

1 · · · N i
1 0 0 N i+1

1 · · · N l−1
1

...
... · · · ...

...
...

... · · · ...

N1
i N2

i · · · N i
i 0 0 N i+1

i · · · N l−1
i

0 0 · · · 1 0 −1 0 · · · 0

0 0 · · · 0 1 0 −1 · · · 0
...

... · · · ...
...

...
... · · · ...

N1
l−1 N2

l−1 · · · N i
l−1 0 0 N i+1

l−1 · · · N l−1
l−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=(1 − ε(Il)t)(−1)l+1Df (t)

and we are done. �

§2. Degenerate Systems with Saddles

In Definition 1.2, we define the i-divided kneading matrix which is useful

for degenerate systems. Here we will expand the definition of the i-divided

kneading matrix for the systems with saddles. For simplicity, we call a

1-saddle of f a “saddle”.

Definition 2.1. Let f be in Fr and with saddles. We choose one lap

Ii with a saddle and divide Ii into two laps IiL and IiR at the saddle. Then

make two formal critical points d1 and d2 on the saddle, and define null

interval J = [d1, d2], that is, length(J) = 0. We define the lap-divided

kneading matrix [Ñ j
i (t)] = [ν̃i] by

ν̃k(t) = νk(t) ( if we identify IiR and IiL with Ii)

ν̃d1(t) = −2θ(d−1 ) + J + IiL

ν̃d2(t) = 2θ(d+
2 ) − J − IiR

and

θ(d+
2 ) = θ(d−1 ) − IiL + IiR.

Note that when the orbit of some turning point cj contains this saddle,

since we take the limit of invariant coordinate, the new kneading increment

of cj is equal to the original when we identify IiL and IiR with Ii.

Lemma 2.2. Let Dj(t) be a determinant of the l × l matrix obtained

from the renumbered lap-divided kneading matrix by deleting the j-th col-

umn. Then

D̃f (t) = (−1)j+1 Dj(t)

1 − ε(Ij)t

is independent of j. Further more, D̃f (t) satisfies the following conditions:

1) D̃f is holomorphic on the unit disk in C,

2) D̃f (0) = 1.
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Proof. The proof is just the same as Lemma 1.3, so we omit to show

here. �

Lemma 2.3. Lap-division never changes zeros of the kneading deter-

minant.

Proof. Let Ii be a lap with a saddle. For simplification, we suppose
that f is monotone increasing on Ii. We divide Ii into two laps IiL and IiR,

and define M j
iL and M j

iR as coefficients of IiL and IiR of ν̃j respectively.

Then M iL
k + M iR

k = N i
k for every k = 1, 2, · · · , l − 1. From Definition 2.1,

we can write the kneading matrix of the lap-divided system as

[Ñ j
i ] =




N1
1 N2

1 · · · M iL
1 0 M iR

1 N i+1
1 · · · N l

1
...

... · · ·
...

...
...

... · · ·
...

N1
i−1 N2

i−1 · · · M iL
i−1 0 M iR

i−1 N i+1
i−1 · · · N l

i−1

N1
d N2

d · · · N iL
d + 1 −1 N iR

d N i+1
d · · · N l

d

−N1
d −N2

d · · · −N iL
d 1 −N iR

d − 1 −N i+1
d · · · −N l

d

N1
i N2

i · · · M iL
i 0 M iR

i N i+1
i · · · N l

i
...

... · · ·
...

...
...

... · · ·
...

N1
l−1 N2

l−1 · · · M iL
l−1 0 M iR

l−1 N i+1
l−1 · · · N l

l−1



.

If we delete the Il+2 column, we have the kneading determinant as

(−1)l+3(1 − ε(Il)t)D̃f

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N1
1 N2

1 · · · M iL
1 0 M iR

1 N i+1
1 · · · N l−1

1
...

... · · ·
...

...
...

... · · ·
...

N1
i−1 N2

i−1 · · · M iL
i−1 0 M iR

i−1 N i+1
i−1 · · · N l−1

i−1

N1
d N2

d · · · N iL
d −1 N iR

d N i+1
d · · · N l−1

d
0 0 · · · 1 0 −1 0 · · · 0
N1

i N2
i · · · M iL

i 0 M iR
i N i+1

i · · · N l−1
i

...
... · · ·

...
...

...
... · · ·

...
N1

l−1 N2
l−1 · · · M iL

l−1 0 M iR
l−1 N i+1

l−1 · · · N l−1
l−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N1
1 N2

1 · · · M iL
1 + M iR

1 0 M iR
1 N i+1

1 · · · N l−1
1

...
... · · ·

...
...

...
... · · ·

...
N1

i−1 N2
i−1 · · · M iL

i−1 + M iR
i−1 0 M iR

i−1 N i+1
i−1 · · · N l−1

i−1

N1
d N2

d · · · N iL
d + N iR

d −1 N iR
d N i+1

d · · · N l−1
d

0 0 · · · 0 0 −1 0 · · · 0
N1

i N2
i · · · M iL

i + M iR
i 0 M iR

i N i+1
i · · · N l−1

i
...

... · · ·
...

...
...

... · · ·
...

N1
l−1 N2

l−1 · · · M iL
l−1 + M iR

l−1 0 M iR
l−1 N i+1

l−1 · · · N l−1
l−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N1
1 N2

1 · · · M iL
1 + M iR

1 0 M iR
1 N i+1

1 · · · N l−1
1

...
... · · ·

...
...

...
... · · ·

...
N1

i−1 N2
i−1 · · · M iL

i−1 + M iR
i−1 0 M iR

i−1 N i+1
i−1 · · · N l−1

i−1
0 0 · · · 0 −1 0 0 · · · 0
0 0 · · · 0 0 −1 0 · · · 0
N1

i N2
i · · · M iL

i + M iR
i 0 M iR

i N i+1
i · · · N l−1

i
...

... · · ·
...

...
...

... · · ·
...

N1
l−1 N2

l−1 · · · M iL
l−1 + M iR

l−1 0 M iR
l−1 N i+1

l−1 · · · N l−1
l−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=(−1)l+1(1 − ε(Il)t)Df

Thus we are done. �

§3. Continuity of Entropy

In this section, we use the same discussion as J. Milnor and W. Thurston

[12][13] although their discussion is restricted to the C1 functions with fixed

critical points. For every f in Fr, we name the critical points and laps

of f as c1, · · · , cl−1 and c0 = 0, cl = 1, and I1, · · · , Il, where l is the lap

number of f . We use f̃ for divided system of f and c̃i or dj for formal

non-degenerate critical points of f̃ . We also use c′i and Ĩ ′i for g in Fr. For

simplification, the critical point ci of f is supposed to be a 3-degenerate

critical point.

Lemma 3.1. If fn(ci) /∈ {c1, · · · , cl−1} for every n ≥ 1 and every i =

1, · · · , l−1 then the ij-element of the kneading matrix N j
i (t; f̃) is continuous

at f̃ for every j = 1, 2, · · · , l. So the kneading determinant Df̃ (t) of f̃ is

also continuous at f̃ .



Continuity of Topological Entropy of One Dimensional Maps 31

Proof. First we note that N j
i (t; f̃) is a holomorphic function on the

unit disc D = {z ∈ C; |z| < 1}.
For any ε > 0 and every compact set K, we can choose ρ and N such

that |t| < ρ for every t ∈ K and 4
|ρ|N+1

1 − |ρ| < ε holds. Choose N as a Cr

neighbourhood of f̃ satisfying that for every g ∈ N , the lap number of g is

equal to that of f̃ and itineraries of ck and c′k coincide up to the order N

for every k = 1, 2, · · · , l − 1. Considering all the coefficients of the power

series N j
i (t; f̃) are in {0,±1,±2}, we have

|N j
i (t; f̃) −N j

i (t; g)| ≤
∞∑

k=N+1

4|t|k = 4
|t|N+1

1 − |t| < ε

for every t ∈ K. �

Lemma 3.2. If ci is not periodic or pre-periodic, the kneading determi-

nant Df̃ (t) is continuous at f̃ .

Proof. For simplification, we suppose that fp(cj) = ci and there is

no other turning point in the forward orbit of ck(k 
= j). Moreover, we

suppose that fp(c+j ) > ci. Other cases are just the same. When g has the

same number of turning points as f̃ , we claim

Claim. For every ε > 0, take a compact set K as in Lemma 3.1. Then

there is δ > 0 such that following conditions are satisfied for g satisfying

d(f̃ , g) < δ and every t ∈ K:

1) |Nm
k (t; f̃) −Nm

k (t; g)| < ε for every k 
= i and every m = 1, 2, · · · , l,
2) For every m = 1, · · · , l, one of the following holds.

|Nm
j (t; f̃)−Nm

j (t; g)| < ε

or |Nm
j (t; f̃)−2tpNm

d2
(t; f̃) −Nm

j (t; g)| < ε

or |Nm
j (t; f̃)−2tp(Nm

d2
(t; f̃) + Nm

c̃i (t; f̃)) −Nm
j (t; g)| < ε

or |Nm
j (t; f̃)−2tp(Nm

d2
(t; f̃) + Nm

c̃i (t; f̃) + Nm
d1

(t; f̃)) −Nm
j (t; g)| < ε

Proof. 1) is obvious from the last lemma. 2) is shown from a direct

calculation. Because Nm
j (t; f̃) and Nm

j (t; g) coincide at least up to order p,
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one of gp(c′j) = c′i, g
p(c′j) ∈ I ′i, g

p(c′j) ∈ J ′
i , g

p(c′j) ∈ J ′
i+1 or gp(c′j) ∈ I ′i+1

holds. In the first and the last cases, since f(c+j ) > ci,

Nm
j (t; f̃) ≡ Nm

j (t; g) mod tN

holds. In the second case, since every term of Nm
j (t; g) higher than p has

the other sign of that of Nm
j (t; f̃), we add the term 2tpNm

d2
(t; f̃) and the

effect of ‘anti-sign’ can be canceled. The third case can be shown by using

the method of the second case twice. The other cases can be got by the

same reason. �

Now noting that elementary row operations of the matrix never change

the value of its determinant, the continuity of the kneading determinant at

f is easily shown from this Claim. �

Lemma 3.3. If ci is periodic with period p then for every g in the neigh-

bourhood of f̃ , gnp(c′i) − c′i have the same sign for every n ≥ 1, and also

gnp(d′j) − d′j have the same sign for every n ≥ 1 and for every j = 1, 2.

Proof. Because the differential coefficient of fp(x) at ci is 0, we can

suppose ∣∣∣∣ ddxgp(x)

∣∣∣∣ < 1

for every x in a neighbourhood of c′i. So there exists an attractive fixed point

x0 in this neighbourhood such that gnp(c′i) converges to x0 monotonically

as n goes to infinity. So gnp(c′i)− c′i has the same sign for every n ≥ 1. The

same discussions hold for d′j . �

Lemma 3.4. Let ci be a periodic point of period p of f and suppose that

the orbit of ci contains no other turning points. Then:

1. the i-th kneading vector Ni(t; f) is of the form 1
1−tpP (t) where P : C →

C
l is a polynomial map of degree p;

2. if g is close enough to f̃ then the i-th kneading vector Ni(t; g) of g is

equal to

Ni(t; f̃) or to
1 − tp

1 + tp
Ni(t; f̃).
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Proof. As we have seen before,

N j
i (t) = θj(c+i ; t) − θj(c−i ; t) = 2θj(c+i ; t)

for j ≥ 1. Moreover, since fp(ci) = ci we get from the previous lemma that

the coefficients θj(c±i ), j = 1, 2, · · · have period p for x close to ci. More

precisely, we have that

Nd1(t; f̃) =

(
0, · · · ,−1 − 2tp

1 − tp
, 1, 0, 0, · · · , 0

)
+

t

1 − tp
Q̃(t)

Nci(t; f̃) =

(
0, · · · , 2tp

1 − tp
,−1, 1, 0, · · · , 0

)
− t

1 − tp
Q̃(t)

Nd2(t; f̃) =

(
0, · · · , − 2tp

1 − tp
, 0,−1, 1, · · · , 0

)
+

t

1 − tp
Q̃(t)

when fp has a local maximum at ci and

Nd1(t; f̃) =

(
0, · · · ,−1, 1, 0, − 2tp

1 − tp
, 0, · · · , 0

)
+

t

1 − tp
Q̃(t)

Nci(t; f̃) =

(
0, · · · , 0,−1, 1,

2tp

1 − tp
, 0, · · · , 0

)
− t

1 − tp
Q̃(t)

Nd2(t; f̃) =

(
0, · · · , 0, 0,−1, 1 +

2tp

1 − tp
, 0, · · · , 0

)
+

t

1 − tp
Q̃(t)

when fp has a local minimum at ci, where Q̃(t) is a Cl+1 valued polynomial

of degree p− 2. If fp has a local maximum at ci then for each g sufficiently

close to f̃ ,

Nd1(t; g) = Nd1(t; f̃)

Nci(t; g) = Nci(t; f̃)

Nd2(t; g) = Nd2(t; f̃)

when gp(d+
1 ) ∈ IntIi, or

Nd1(t; g) =

(
0, · · · , 0, − 1, 1 − 2tp

1 + tp
, 0, 0, · · · , 0

)

+
t

1 + tp
Q̃(t)
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Nci(t; g) =

(
0, · · · , 0, 2tp(1 − tnp)

1 − t
,−1 +

2t(n+1)p

1 + tp
, 1, 0, · · · , 0

)

− t

1 + tp
Q̃(t)

Nd2(t; g) =

(
0, · · · , 0, 0, − 2tp

1 + tp
,−1, 1, · · · , 0

)

+
t

1 + tp
Q̃(t)

when gp(d+
1 ) ∈ IntJi, or

Nd1(t; g) =

(
0, · · · , 0,−1, 1, − 2tp

1 − tp
, 0, · · · , 0

)
+

t

1 − tp
Q̃(t)

Nci(t; g) =

(
0, · · · , 0, 0,−1, 1 +

2tp

1 − tp
, 0, · · · , 0

)
− t

1 − tp
Q̃(t)

Nd2(t; g) =

(
0, · · · , 0, 0, 0,−1 − 2tp

1 − tp
, 1, · · · , 0

)
+

t

1 − tp
Q̃(t)

when gp(d+
1 ) ∈ IntJi+1, or

Nd1(t; g) =

(
0, · · · , 0,−1, 1, 0, − 2tp

1 + tp
, 0, · · · , 0

)

+
t

1 + tp
Q̃(t)

Nci(t; g) =

(
0, · · · , 0, 0,−1, 1 +

2tp(1 − tnp)

1 − t
,

2t(n+1)p

1 + tp
, 0, · · · , 0

)

− t

1 + tp
Q̃(t)

Nd2(t; g) =

(
0, · · · , 0, 0, 0, − 1, 1 − 2tp

1 + tp
, 0, · · · , 0

)

+
t

1 + tp
Q̃(t)

when gp(d+
1 ) ∈ IntIi+1. A similar statement holds when fp has a local min-

imum at ci and when we apply the elementary deformations of matrices to
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these formulae, we can calculate the kneading determinant of g. Statements

1) and 2) follow immediately from this. �

From this Lemma, we can show that

|Dg(t) −Df̃ (t)| < ε

or ∣∣∣∣∣Dg(t) −
(∏

p

1 − tp

1 + tp

)
Df̃ (t)

∣∣∣∣∣ < ε.

Here p takes all the period of the periodic critical points. Thus from Cauchy

integral formula, we can conclude that zeros of Dg and Df̃ are close to each

other in the unit disk D.

Lemma 3.5. Let ci(1) be a periodic point of period p of f and sup-

pose that the orbit of ci(1) contains the turning points ci(1), ci(2), · · · , ci(k),

ci(k+1) = ci(1) (in this order). Then for g sufficiently close enough to f one

has 


Ni(0)(t; g)

Ni(1)(t; g)
...

Ni(k)(t; g)


 = B(t)




Ni(0)(t; f̃)

Ni(1)(t; f̃)
...

Ni(k)(t; f̃)


 ,

where B(t) is k × k regular matrix with rational coefficients.

Proof. From the same reason as in Lemma 3.2, the j-th coefficient of

the i-th kneading vector of g (i 
= j) changes as the sign of ga(j)(ci(j)) −

ci(j+1). So the (i, j)-th coefficient of B(t) is equal to 0,
±2tb(i,j)

1 − tp
or to

±2tb(i,j) , where b(i, j) > 0 is the smallest integer so that f b(i,j)(ci) =

cj . Moreover, considering the periodic effect, with the same reason as in

Lemma3.4, the (i, i)-th coefficient of B(t) is equal to 1 or
1 + tp

1 − tp
. When we

exchange the role between f̃ and g, we have that B(t) is invertible and has

non zero determinant. �

Thus we conclude that when |f − g| < δ and the orbit of a critical point

ci of f contains other critical points,

|detB(t)Df̃ (t) −Dg(t)| < ε
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and topological entropy of g is close to that of f .

Lemma 3.6. When f has a saddle and this saddle is p-periodic, and

suppose that the orbit of this saddle contains no other turning points. Let

d1 and d2 be formal critical points of f̃ . Then:

1. the kneading vector Ndi(t; f̃) is of the form 1
1−tpP (t) where P : C → C

l

is a polynomial map of degree p;

2. if g is close enough to f̃ then the kneading determinant of g is also close

to that of f̃ .

Proof. For simplification, we suppose that fp(d+
2 ) > d2. The other

case is shown by just the same method. From the definition of the kneading

matrix, we have that

Nd1(t; f̃) =

(
0, · · · ,−1 − 2tp

1 − tp
, 1, 0, 0, · · · , 0

)
+

t

1 − tp
Q̃(t)

Nd2(t; f̃) =

(
0, · · · , 0,−1, 1 +

2tp

1 − tp
, 0, · · · , 0

)
− t

1 − tp
Q̃(t)

when fp is increasing near the saddle and

Nd1(t; f̃) =

(
0, · · · ,−1 − 2t2p

1 − t2p
, 1,

2tp

1 − t2p
, · · · , 0

)
+

t

1 − tp
Q̃(t)

Nd2(t; f̃) =

(
0, · · · , − 2tp

1 − t2p
,−1, 1 +

2t2p

1 − t2p
, · · · , 0

)
− t

1 − tp
Q̃(t)

when fp is decreasing near the saddle, where Q̃(t) is a Cl+1 valued poly-

nomial of degree p − 2. Then for each g sufficiently close to f̃ , when f̃ is

increasing near the saddle,

Nd1(t; g) =

(
0, · · · , 0,−1 − 2tp

1 − tp
, 1, 0, · · · , 0

)
+

t

1 − tp
Q̃(t)

Nd2(t; g) =

(
0, · · · , 0, 2tp

1 − tp
,−1, 1, · · · , 0

)
− t

1 − tp
Q̃(t)

when gp(d+
1 ) ∈ IntIiL, or

Nd1(t; g) =

(
0, · · · , 0,−1, 1 − 2t(n+1)p

1 + tp
,
2tp(1 − tnp)

1 − tp
, · · · , 0

)
+

t

1 + tp
Q̃(t)
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Nd2(t; g) =

(
0, · · · , 0, 0,−1 +

2tp

1 + tp
, 1, · · · , 0

)
− t

1 + tp
Q̃(t)

when gp(d+
1 ) ∈ IntJ and gkp(d+

1 ) ∈ IntIiR for k = 1, · · · , n and gkp(d+
1 ) ∈

IntJ for k > n, or

Nd1(t; g) =

(
0, · · · , 0, − 1, 1 − 2tp

1 + tp
, 0, · · · , 0

)
+

t

1 + tp
Q̃(t)

Nd2(t; g) =

(
0, · · · , 0, 2tp(1 − tnp)

1 − tp
,−1 +

2t(n+1)p

1 + tp
, 1, · · · , 0

)
− t

1 + tp
Q̃(t)

when gp(d+
1 ) ∈ IntJ and gkp(d+

1 ) ∈ IntIiL for k = 1, · · · , n and gkp(d+
1 ) ∈

IntJ for k > n, or

Nd1(t; g) =

(
0, · · · , 0,−1, 1,− 2tp

1 − tp
, 0, · · · , 0

)
+

t

1 − tp
Q̃(t)

Nd2(t; g) =

(
0, · · · , 0, 0,−1, 1 +

2tp

1 − tp
, 0, · · · , 0

)
− t

1 − tp
Q̃(t)

when gp(d+
1 ) ∈ IntIiR, where n ≥ 0 is the number of times the itinerary

goes before it comes in the lap J .

When f̃ is decreasing near the saddle,

Nd1(t; g) =

(
0, · · · , 0,−1 +

2tp

1 + tp
, 1, 0, · · · , 0

)
+

t

1 + tp
Q̃(t)

Nd2(t; g) =

(
0, · · · , 0, − 2tp

1 + tp
,−1, 1, · · · , 0

)
− t

1 + tp
Q̃(t)

when gp(d+
1 ) ∈ IntIiL, or

Nd1(t; g) =

(
0, · · · , 0,−1, 1 +

2tp

1 − tp
, 0, · · · , 0

)
+

t

1 − tp
Q̃(t)

Nd2(t; g) =

(
0, · · · , 0, 0,−1 − 2tp

1 − tp
, 1, · · · , 0

)
− t

1 − tp
Q̃(t)
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when gp(d+
1 ) ∈ IntJ , or

Nd1(t; g) =

(
0, · · · , 0,−1, 1 +

2tp(1 − tnp)

1 − tp
,
2t(n+1)p

1 + tp
, 0, · · · , 0

)

+
t

1 + tp
Q̃(t)

Nd2(t; g) =

(
0, · · · , 0, 0, − 1, 1 − 2tp

1 + tp
, · · · , 0

)

− t

1 + tp
Q̃(t)

when gp(d+
1 ) ∈ IntIiR. For the every case, each of Nd1(t; g) and Nd2(t; g)

is expressed by the linear combination of Nd1(t; f̃) and Nd2(t; f̃) and from

this expression, statements 1) and 2) follows. �

Lemma 3.7. Let ci(1) be a periodic point of period p of f and suppose

that the orbit of ci(1) contains a saddle and all the turning points of f̃ in

this orbit are ci(1), ci(2), · · · , ci(k), ci(k+1) = ci(1) (in this order). Then for g

sufficiently close enough to f̃ one has




Ni(0)(t; g)

Ni(1)(t; g)
...

Ni(k)(t; g)


 = B(t)




Ni(0)(t; f̃)

Ni(1)(t; f̃)
...

Ni(k)(t; f̃)


 ,

where B(t) is k × k regular matrix with rational coefficients.

Proof. With the same discussion as Lemma 3.5 for lemmas 3.2 and

3.6, we have the same conclusion. �

Now we can prove the following proposition from previous lemmas and

Lemma 0.8.

Theorem 3.8. The topological entropy is continuous in Fr.

Proof. Note that every degenerate critical point is written by a finite

combination of 3-degenerate critical points and 1-saddles. Suppose g is the
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Cr-perturbation of f and the number of critical points of g is more than

f by 2n. Let || · ||r be a Cr norm and suppose ||g − f ||r < δ. Let us

take a sequence of functions fi (i = 0, 1, · · · ,m) which satisfy the following

conditions:


f0 = f

0 ≤ #(critical points of fi+1) − #(critical points of fi) ≤ 2

||fi+1 − fi||r < δ

fm = g

m < C · n for some constant C > 0.

From the previous lemmas, we can suppose that the difference of the topo-

logical entropy of fi and fi+1 is less than ε for each i. Then we have

|h(g) − h(f)| ≤
m∑
i=0

|h(fi+1) − h(fi)| < mε

and we have that the topologcal entropy is continuous between f and g. �
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