Continuity of Topological Entropy of One Dimensional Maps with Degenerate Critical Points

By Keiichiro Iwai

Abstract. One dimensional maps with degenerate critical points are studied and we give a larger class of C^r functions whose topological entropy is continuous.

§Introduction

There are many studies of topological entropy of one dimensional maps. M. Misiurewicz and W. Szlenk [7] showed that topological entropy is lower semi-continuous for piecewise monotone C^0 maps with C^0 topology. Moreover, if none of the critical points of a C^1 map are degenerate, its entropy is continuous with C^1 topology [4] [7]. But when critical points are degenerate, there is a counter example of $C^r (r \ge 1)$ functions whose topological entropy is not continuous [7].

Our aim in this paper is to show the continuity of topological entropy for maps with finitely degenerate critical points. In this paper I means an interval [0, 1].

THEOREM. Let $r \geq 2$ and \mathcal{F}^r be a set of \mathcal{C}^r functions which have non zero k-th derivative and k is smaller than or equal to r at every point in I, *i.e.*

$$\mathcal{F}^r = \{ f \in \mathcal{C}^r(I, I); \forall x \in I, 1 < \exists k \le r \text{ such that } f^{(k)}(x) \neq 0 \}.$$

Then the topological entropy is continuous in \mathcal{F}^r .

¹⁹⁹¹ Mathematics Subject Classification. 58F03.

Considering the counter example by Misiurewicz and Szlenk [7], \mathcal{F}^r is the widest class whose topological entropy is continuous.

To study topological entropy of one dimensional maps, the kneading theory due to J. Milnor and W. Thurston [4] is useful. But when degeneration occurs, we can not apply this theory directly because the lap number changes. There are essentially two types of degeneration and every degeneration is written by a combination of these two types. One is a degeneration of critical points into one critical point, and the other is that into a saddle. We improve the kneading theory to be applied to the functions with degenerate critical points and show that the topological entropy is continuous in \mathcal{F}^r .

$\S 0.$ Preliminaries

Here we give fundamental theorems and definitions about the kneading theory. See [3] or [4] for proofs and details.

In this paper, I denotes the closed interval [0, 1]. We name the critical points of $f c_1, \dots, c_{l-1}$ and $c_0 = 0, c_l = 1$.

DEFINITION 0.1. Let $f: I \to I$ be continuous, piecewise monotone. A **lap** of f is a maximal interval on which f is monotonous, the **lap number** l of f is the number of laps of f, i.e.,

 $l(f) = \#\{J \subset I; J \text{ is a maximal interval on which } f \text{ is monotonous}\}$

and the **growth rate** of f is defined by

$$s(f) = \lim_{N \to \infty} l^{\frac{1}{N}}(f^N)$$

where $f^N = f \circ f^{N-1}$ and $f^0 = id$, the identity map.

When the lap number of f is l, we use I_1, \dots, I_l to denote laps of f.

THEOREM 0.2 (Misiurewicz and Szlenk [7]). The topological entropy h(f) of f is equal to $\log(s(f))$.

DEFINITION 0.3. Let $\epsilon_0(x) = 1$ and $\epsilon_n(x) = \epsilon(x) \times \cdots \times \epsilon(f^{n-1}(x))$ where $\epsilon(x)$ is the sign of x, i.e.,

$$\epsilon(x) = \begin{cases} 1 \text{ if } x \in I_i \text{ and } f \text{ is increasing on } I_i \\ -1 \text{ if } x \in I_i \text{ and } f \text{ is decreasing on } I_i \\ 0 \text{ if } x \in \{c_1, \cdots, c_{l-1}\}. \end{cases}$$

The **invariant coordinate of** $x \in I$ is a formal power series

$$\theta^i(x;t) = a_0 + a_1t + a_2t^2 + \cdots$$

and a_k is defined as the sign

$$a_{k} = \begin{cases} 1 & f^{k}(x) \in \operatorname{Int} I_{i} \text{ and } \epsilon_{k}(x) = 1 \\ -1 & f^{k}(x) \in \operatorname{Int} I_{i} \text{ and } \epsilon_{k}(x) = -1 \\ \frac{1}{2} & f^{k}(x) = c_{i-1} \text{ or } c_{i} \text{ and } \epsilon_{k}(x) = 1 \\ -\frac{1}{2} & f^{k}(x) = c_{i-1} \text{ or } c_{i} \text{ and } \epsilon_{k}(x) = -1 \\ 0 & \text{otherwise} \end{cases}$$

and

$$\theta(x;t) = (\theta^1(x;t), \cdots, \theta^l(x;t)).$$

Thus in particular, $\theta(c_i) = (0, \dots, 0, \frac{1}{2}, \frac{1}{2}, 0, \dots, 0).$

DEFINITION 0.4. The **kneading matrix** $[N_i^j(t; f)]_{\substack{1 \le i \le l-1 \\ 1 \le j \le l}}$ of f is defined by

$$N_i^j(t;f) = \theta^j(c_i^+;t) - \theta^j(c_i^-;t)$$

where

$$\begin{split} \theta^{j}(c_{i}^{+};t) &= \lim_{x \to c_{i}+0} \theta^{j}(x;t) \\ \theta^{j}(c_{i}^{-};t) &= \lim_{x \to c_{i}-0} \theta^{j}(x;t) \text{ with formal power series topology.} \end{split}$$

From the previous definition, every coefficient of $N_i^j(t)$'s is in $\{0, \pm 1, \pm 2\}$, and we define the **kneading increment** ν_i by

$$\nu_i = N_i^1 I_1 + \dots + N_i^l I_l$$
 $i = 1, 2, \dots, l-1.$

We also use *l*-dimensional vector N_i as

$$N_i = (N_i^1, \cdots, N_i^l).$$

Lemma 0.5.

$$\theta^{j}(c_{i}^{+};t) = \theta^{j}(c_{i};t) + \frac{1}{2}N_{i}^{j}(t)$$

$$\theta^{j}(c_{i}^{-};t) = \theta^{j}(c_{i};t) - \frac{1}{2}N_{i}^{j}(t).$$

LEMMA 0.6 [3, Chp. II, Lemma 8.1]. For every x in I we have

$$\sum_{k=1}^{l+1} (1 - \epsilon(I_k)t)\theta^k(x;t) = 1$$

where $\epsilon(I_k) = 1$ when $f|I_k$ is increasing and where $\epsilon(I_k) = -1$ when $f|I_k$ is decreasing.

LEMMA 0.7. Let $D_j(t)$ be the determinant of the matrix obtained from the kneading matrix deleting the j-th column, and $\epsilon_j = \epsilon(I_j)$. Then $D_f(t) =$ $(-1)^{j+1} \frac{D_j(t)}{1-\epsilon_j t} \ j = 1, \cdots, l$ is independent of j. Furthermore, $D_f(t)$ satisfies the following conditions: 1) $D_f(t)$ is holomorphic on the unit disk in \mathbb{C} ,

2) $D_f(0) = 1$.

We call D_f in Lemma 0.7 the kneading determinant of f.

LEMMA 0.8. Let s be the growth rate of f. Then $D_f(t) \neq 0$ for every t satisfying $|t| < \frac{1}{s}$, and $t = \frac{1}{s}$ is a zero of $D_f(t)$.

Now let us define the degeneration of critical points.

DEFINITION 0.9. Let f be a $C^r(r \ge 2)$ function on I. We say that a point x on I is a k-degenerate point if there is an integer k larger than 1 and smaller than r such that x satisfies

$$f'(x) = \dots = f^{(k)}(x) = 0, f^{(k+1)}(x) \neq 0$$

and we call x a non-degenerate critical point if k = 1.

Our aim is to show the continuity of the topological entropy for maps with k-degenerate points. To avoid an infinite degeneration of the critical points, we restrict a class of C^r maps to those which have k-degenerate points and k is smaller than or equal to r. This class is endowed with C^r topology and denoted by \mathcal{F}^r in this paper. (In particular, \mathcal{F}^r consists of piecewise monotone maps.)

Note that all the critical points of f in \mathcal{F}^r are isolated. Otherwise, there is a sequence c_1, \dots, c_n, \dots converges to c such that $f'(c_i) = 0$ holds for every $i = 1, 2, \dots, n, \dots$ and f'(c) = 0. So by the mean value theorem, for every interval $]c_i, c_{i+1}[$, there is d_i satisfying $f''(d_i) = 0$. Repeating these operations for $f^{(k)}$, we conclude $f^{(r)}(x) = 0$, and this is a contradiction.

PROPOSITION 0.10. Every critical point of f in \mathcal{F}^r splits at most r-1 critical points by small \mathcal{C}^r -perturbation.

PROOF. First we note that if there is an open subinterval J of I satisfying that f'(x) = 0 for every x in J then $f^{(k)}(x) = 0$ also holds for every x in J. So we assume that every critical point of f is isolated. Thus it suffice to show that if c in I, a neighbourhood U of c in I, and some constant A satisfy $f'(c) = \cdots = f^{(k)}(c) = 0$, $|f^{(k+1)}(x)| > A \neq 0$ for every x in U and $f'(x) \neq 0$ in U then there is a neighbourhood N of f in \mathcal{F}^r such that every g in N has at most k critical points on U. We show this by induction.

Let n be an positive integer smaller than k. Suppose $g^{(k-n)}(x)$ has n zeros in U. If $g^{(k-n-1)}(x)$ has (n+2) zeros in U, say c_1, c_2, \dots, c_{n+2} in this order, then by the mean value theorem we conclude that there are d_i in $]c_i, c_{i+1}[$, $i = 1, 2, \dots, n+1$, satisfying $g^{(k-n)}(d_i) = 0$. Since c_i 's are in U, d_i 's are also in U. This contradicts to the supposition.

Next we will show that $g^{(k-1)}(x)$ has at most one critical point in U. Suppose that $g^{(k-1)}(x)$ has two zeros, say c_1 and c_2 in this order, in U. Then by the mean value theorem there is d in $]c_1, c_2[$ such that $g^{(k)}(d) = 0$. But since g is ε close to f by \mathcal{C}^r topology, $|g^{(k)}(x)| > A - \varepsilon$ holds and this is contradiction. \Box

From now on, a function f is supposed to be in \mathcal{F}^r .

$\S1$. Degenerate Systems with No Saddles

We consider the case three critical points are degenerate into one critical point.

DEFINITION 1.1. Suppose f is a piecewise monotone map on I. We call a point x_0 a *n*-saddle of f if and only if x_0 is 2n-degenerate point.

DEFINITION 1.2. Let us choose a 3-degenerate critical point c_i , and make formal critical points d_1 and d_2 on c_i , and formal interval J_i and J_{i+1} such that $J_i = [d_1, c_i]$ and $J_{i+1} = [c_i, d_2]$. Then length $(J_i) = \text{length}(J_{i+1}) =$ 0 holds. We define **the** *i*-divided kneading matrix $[\tilde{N}_i^j(t)] = [\tilde{\nu}_i]$ by

$$\tilde{\nu}_{k}(t) = \nu_{k}(t) \quad \text{if } k \neq i
\nu_{d_{1}}(t) = -2\theta(d_{1}^{-}) + J_{i} + I_{i}
\nu_{\tilde{c}_{i}}(t) = 2\theta(\tilde{c}_{i}^{+}) - J_{i} - J_{i+1}
\nu_{d_{2}}(t) = 2\theta(d_{2}^{+}) - I_{i+1} - J_{i+1}$$

and

(1.2.1)
$$\theta(d_1^-) + \theta(d_2^+) = I_{i+1} + I_i.$$

Moreover, since d_1, d_2, \tilde{c}_i and c_i are the same point,

$$\theta(d_1^-) = \theta(c_i^-) = -\theta(c_i^+) + I_i + I_{i+1} \\ \theta(\tilde{c}_i^+) = -\theta(c_i^+) + J_{i+1} + I_{i+1} \\ \theta(d_2^+) = \theta(c_i^+).$$

Especially when c_i is periodic with period p and no other critical points are contained in this orbit, then one of $\theta(d_1^-)$ or $\theta(d_2^+)$ is periodic with period p and the other two be fallen in this periodic orbit.

LEMMA 1.3. Let $D_j(t)$ be the determinant of $(l + 1) \times (l + 1)$ matrix obtained from the renumbered *i*-divided kneading matrix by deleting the *j*-th column. Then

$$\tilde{D}_f(t) = (-1)^{j+1} \frac{D_j(t)}{1 - \epsilon(I_j)t}$$

24

is independent of j. Furthermore $\tilde{D}_f(t)$ satisfies the following conditions: 1) \tilde{D}_f is holomorphic on the unit disk in \mathbb{C} , 2) $\tilde{D}_f(0) = 1$.

PROOF. We will go back to the definition of the kneading matrix. First we claim

CLAIM. Let every lap and critical point be renumbered. For *i*-divided kneading matrix,

$$\sum_{k=1}^{l+2} (1 - \epsilon(I_k)t) N_j^k = 0$$

for every $j = 1, 2, \cdots, l+1$ holds.

PROOF OF CLAIM. From Lemma 0.6, we have

$$\sum_{k=1}^{l+2} (1 - \epsilon(I_k)t)\theta^k(x;t) = 1$$

for every x in I. So we get

$$\sum_{k=1}^{l+2} (1 - \epsilon(I_k)t)\theta^k(c_p^+; t) - \sum_{k=1}^{l+2} (1 - \epsilon(I_k)t)\theta^k(c_p^-; t)$$

=
$$\sum_{k=1}^{l+2} (1 - \epsilon(I_k)t)(\theta^k(c_p^+; t) - \theta^k(c_p^-; t))$$

=
$$\sum_{k=1}^{l+2} (1 - \epsilon(I_k)t)N_p^k$$

= 0. \Box

Now from the Claim, we have

$$(1 - \epsilon(I_r)t)N_j^r = -\sum_{k \neq r} (1 - \epsilon(I_k)t)N_j^k$$

for every $r = 1, 2, \dots, l + 2$.

Let $[N^i]$ denote $[N^i_j]_{j=1,\cdots,l+3}$ then we have

$$\begin{split} &(-1)^{l+3} \frac{D_{l+2}(t)}{1 - \epsilon(I_{l+2})t} \\ &= \frac{(-1)^{l+3}}{1 - \epsilon(I_{l+2})t} \det[N^1, \cdots, N^j, \cdots, N^{l+1}, \hat{N}^{l+2}] \\ &= \frac{(-1)^{l+3}}{1 - \epsilon(I_{l+2})t} \frac{1}{1 - \epsilon(I_r)t} \det[N^1, \cdots, -\sum_{k \neq r} (1 - \epsilon(I_k)t)N^k, \cdots, N^{l+1}, \hat{N}^{l+2}] \\ &= \frac{(-1)^r}{1 - \epsilon(I_{l+2})t} \frac{1}{1 - \epsilon(I_r)t} \det[N^1, \cdots, \hat{N}^r, \cdots, N^{l+1}, -\sum_{k \neq r} (1 - \epsilon(I_k)t)N^k] \\ &= \frac{(-1)^{r+1}}{1 - \epsilon(I_{l+2})t} \frac{1}{1 - \epsilon(I_r)t} \det[N^1, \cdots, \hat{N}^r, \cdots, N^{l+1}, \sum_{k \neq r} (1 - \epsilon(I_k)t)N^k] \\ &= \frac{(-1)^{r+1}}{1 - \epsilon(I_{l+2})t} \frac{1}{1 - \epsilon(I_r)t} \det[N^1, \cdots, \hat{N}^r, \cdots, N^{l+1}, (1 - \epsilon(I_k)t)N^{l+2}] \\ &= \frac{(-1)^{r+1}}{1 - \epsilon(I_r)t} \det[N^1, N^2, \cdots, \hat{N}^r, \cdots, N^{l+2}] \end{split}$$

and we are done.

Next, we show that this determinant satisfies the rest properties of the kneading matrix, that is:

- 1) \tilde{D}_f is holomorphic on the unit disk in \mathbb{C} ,
- 2) $\tilde{D}_f(0) = 1.$

1) is clearly holds. 2) is also true because $[N^j(0)]$ is lower triangular with a 1 in each term in the diagonal. \Box

LEMMA 1.4. Dividing never changes the kneading determinant.

PROOF. From the definition of the kneading increments of d_1 , \tilde{c}_i and

 d_2 , we can write the *i*-divided kneading matrix explicitly as

$$[\tilde{N}_{i}^{j}] = \begin{bmatrix} N_{1}^{1} & N_{1}^{2} & \cdots & N_{1}^{i} & 0 & 0 & N_{1}^{i+1} & \cdots & N_{1}^{l} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ N_{i}^{1} & N_{i}^{2} & \cdots & N_{i}^{i}+1 & -1 & 0 & N_{i}^{i+1} & \cdots & N_{i}^{l} \\ -N_{i}^{1} & -N_{i}^{2} & \cdots & -N_{i}^{i} & 1 & -1 & -N_{i}^{i+1} & \cdots & -N_{i}^{l} \\ N_{i}^{1} & N_{i}^{2} & \cdots & N_{i}^{i} & 0 & 1 & N_{i}^{i+1}-1 & \cdots & N_{i}^{l} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ N_{l-1}^{1} & N_{l-1}^{2} & \cdots & N_{l-1}^{i} & 0 & 0 & N_{l-1}^{i+1} & \cdots & N_{l-1}^{l} \end{bmatrix}.$$

Let us calculate the kneading determinant. Deleting the (l+2)-th column and we have

$$\begin{split} (1-\epsilon(I_l)t)(-1)^{l+3}\tilde{D}_f(t) \\ &= \begin{vmatrix} N_1^1 & N_1^2 & \cdots & N_1^i & 0 & 0 & N_1^{i+1} & \cdots & N_1^{l-1} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ N_i^1 & N_i^2 & \cdots & N_i^i & 1 & 0 & N_i^{i+1}-1 & \cdots & N_i^{l-1} \\ 0 & 0 & \cdots & 1 & 0 & -1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & -1 & 1 & 1 & -1 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ N_{l-1}^1 & N_{l-1}^2 & \cdots & N_{l-1}^i & 0 & 0 & N_{l-1}^{i+1} & \cdots & N_{l-1}^{l-1} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ N_i^1 & N_i^2 & \cdots & N_i^i & 1 & 0 & N_i^{i+1}-1 & \cdots & N_i^{l-1} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ N_i^1 & N_i^2 & \cdots & N_{l-1}^i & 0 & 0 & N_{l-1}^{i+1} & \cdots & N_l^{l-1} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ N_{l-1}^1 & N_{l-1}^2 & \cdots & N_{l-1}^i & 0 & 0 & N_{l-1}^{i+1} & \cdots & N_l^{l-1} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ N_i^1 & N_i^2 & \cdots & N_i^i & 0 & 0 & N_i^{i+1} & \cdots & N_l^{l-1} \\ 0 & 0 & \cdots & 1 & 0 & -1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ N_{l-1}^1 & N_{l-1}^2 & \cdots & N_{l-1}^i & 0 & 0 & N_{l-1}^{i+1} & \cdots & N_{l-1}^{l-1} \\ \end{pmatrix} \end{split}$$

$$= (1 - \epsilon(I_l)t)(-1)^{l+1}D_f(t)$$

and we are done. \Box

$\S 2.$ Degenerate Systems with Saddles

In Definition 1.2, we define the *i*-divided kneading matrix which is useful for degenerate systems. Here we will expand the definition of the *i*-divided kneading matrix for the systems with saddles. For simplicity, we call a 1-saddle of f a "saddle".

DEFINITION 2.1. Let f be in \mathcal{F}^r and with saddles. We choose one lap I_i with a saddle and divide I_i into two laps I_{iL} and I_{iR} at the saddle. Then make two formal critical points d_1 and d_2 on the saddle, and define null interval $J = [d_1, d_2]$, that is, length(J) = 0. We define **the lap-divided kneading matrix** $[\tilde{N}_i^j(t)] = [\tilde{\nu}_i]$ by

$$\begin{split} \tilde{\nu}_k(t) &= \nu_k(t) \qquad (\text{ if we identify } I_{iR} \text{ and } I_{iL} \text{ with } I_i) \\ \tilde{\nu}_{d_1}(t) &= -2\theta(d_1^-) + J + I_{iL} \\ \tilde{\nu}_{d_2}(t) &= 2\theta(d_2^+) - J - I_{iR} \end{split}$$

and

$$\theta(d_2^+) = \theta(d_1^-) - I_{iL} + I_{iR}$$

Note that when the orbit of some turning point c_j contains this saddle, since we take the limit of invariant coordinate, the new kneading increment of c_j is equal to the original when we identify I_{iL} and I_{iR} with I_i .

LEMMA 2.2. Let $D_j(t)$ be a determinant of the $l \times l$ matrix obtained from the renumbered lap-divided kneading matrix by deleting the j-th column. Then

$$\tilde{D}_f(t) = (-1)^{j+1} \frac{D_j(t)}{1 - \epsilon(I_j)t}$$

is independent of j. Further more, $\tilde{D}_f(t)$ satisfies the following conditions: 1) \tilde{D}_f is holomorphic on the unit disk in \mathbb{C} , 2) $\tilde{D}_f(0) = 1$.

28

PROOF. The proof is just the same as Lemma 1.3, so we omit to show here. \Box

LEMMA 2.3. Lap-division never changes zeros of the kneading determinant.

PROOF. Let I_i be a lap with a saddle. For simplification, we suppose that f is monotone increasing on I_i . We divide I_i into two laps I_{iL} and I_{iR} , and define M_{iL}^j and M_{iR}^j as coefficients of I_{iL} and I_{iR} of $\tilde{\nu}_j$ respectively. Then $M_k^{iL} + M_k^{iR} = N_k^i$ for every $k = 1, 2, \dots, l-1$. From Definition 2.1, we can write the kneading matrix of the lap-divided system as

$$[\tilde{N}_{i}^{j}] = \begin{bmatrix} N_{1}^{1} & N_{1}^{2} & \cdots & M_{1}^{iL} & 0 & M_{1}^{iR} & N_{1}^{i+1} & \cdots & N_{1}^{l} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ N_{i-1}^{1} & N_{i-1}^{2} & \cdots & M_{i-1}^{iL} & 0 & M_{i-1}^{iR} & N_{i-1}^{i+1} & \cdots & N_{i-1}^{l} \\ N_{d}^{1} & N_{d}^{2} & \cdots & N_{d}^{iL} + 1 & -1 & N_{d}^{iR} & N_{d}^{i+1} & \cdots & N_{d}^{l} \\ -N_{d}^{1} & -N_{d}^{2} & \cdots & -N_{d}^{iL} & 1 & -N_{d}^{iR} - 1 & -N_{d}^{i+1} & \cdots & -N_{d}^{l} \\ N_{i}^{1} & N_{i}^{2} & \cdots & M_{i}^{iL} & 0 & M_{i}^{iR} & N_{i}^{i+1} & \cdots & N_{i}^{l} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ N_{l-1}^{1} & N_{l-1}^{2} & \cdots & M_{l-1}^{iL} & 0 & M_{l-1}^{iR} & N_{l-1}^{i+1} & \cdots & N_{l-1}^{l} \end{bmatrix}$$

If we delete the I_{l+2} column, we have the kneading determinant as

$$(-1)^{l+3} (1-\epsilon(I_l)t) \tilde{D}_f$$

$$= \begin{vmatrix} N_1^1 & N_1^2 & \cdots & M_1^{iL} & 0 & M_1^{iR} & N_1^{i+1} & \cdots & N_1^{l-1} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ N_{i-1}^1 & N_{i-1}^2 & \cdots & M_{i-1}^{iL} & 0 & M_{i-1}^{iR} & N_{i-1}^{i+1} & \cdots & N_{i-1}^{l-1} \\ N_d^1 & N_d^2 & \cdots & N_d^{iL} & -1 & N_d^{iR} & N_d^{i+1} & \cdots & N_d^{l-1} \\ 0 & 0 & \cdots & 1 & 0 & -1 & 0 & \cdots & 0 \\ N_i^1 & N_i^2 & \cdots & M_i^{iL} & 0 & M_i^{iR} & N_i^{i+1} & \cdots & N_i^{l-1} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ N_{l-1}^1 & N_{l-1}^2 & \cdots & M_{l-1}^{iL} & 0 & M_{l-1}^{iR} & N_{l-1}^{i+1} & \cdots & N_{l-1}^{l-1} \end{vmatrix}$$

Keiichiro Iwai

$$= \begin{vmatrix} N_1^1 & N_1^2 & \cdots & M_1^{iL} + M_1^{iR} & 0 & M_1^{iR} & N_1^{i+1} & \cdots & N_1^{l-1} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ N_{i-1}^1 & N_{i-1}^2 & \cdots & M_{i-1}^{iL} + M_{i-1}^{iR} & 0 & M_{i-1}^{iR} & N_{i-1}^{i+1} & \cdots & N_{i-1}^{l-1} \\ N_d^1 & N_d^2 & \cdots & N_d^{iL} + N_d^{iR} & -1 & N_d^{iR} & N_d^{i+1} & \cdots & N_d^{l-1} \\ 0 & 0 & \cdots & 0 & 0 & -1 & 0 & \cdots & 0 \\ N_i^1 & N_i^2 & \cdots & M_i^{iL} + M_i^{iR} & 0 & M_i^{iR} & N_i^{i+1} & \cdots & N_i^{l-1} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ N_{l-1}^1 & N_{l-1}^2 & \cdots & M_{l-1}^{iL} + M_{l-1}^{iR} & 0 & M_{l-1}^{iR} & N_{l-1}^{i+1} & \cdots & N_{l-1}^{l-1} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ N_{i-1}^1 & N_{i-1}^2 & \cdots & M_{i-1}^{iL} + M_{i-1}^{iR} & 0 & M_{i-1}^{iR} & N_{i-1}^{i+1} & \cdots & N_{l-1}^{l-1} \\ 0 & 0 & \cdots & 0 & -1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & -1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & -1 & 0 & 0 & \cdots & 0 \\ N_i^1 & N_i^2 & \cdots & M_i^{iL} + M_i^{iR} & 0 & M_i^{iR} & N_i^{i+1} & \cdots & N_{l-1}^{l-1} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ N_{l-1}^1 & N_{l-1}^2 & \cdots & M_{l-1}^{iL} + M_{l-1}^{iR} & 0 & M_{l-1}^{iR} & N_{l-1}^{i+1} & \cdots & N_{l-1}^{l-1} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ N_{l-1}^1 & N_{l-1}^2 & \cdots & M_{l-1}^{iL} + M_{l-1}^{iR} & 0 & M_{l-1}^{iR} & N_{l-1}^{i+1} & \cdots & N_{l-1}^{l-1} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ N_{l-1}^1 & N_{l-1}^2 & \cdots & M_{l-1}^{iL} + M_{l-1}^{iR} & 0 & M_{l-1}^{iR} & N_{l-1}^{i+1} & \cdots & N_{l-1}^{l-1} \\ \end{vmatrix} = (-1)^{l+1} (1 - \epsilon(I_l)t) D_f$$

Thus we are done. \Box

\S **3.** Continuity of Entropy

In this section, we use the same discussion as J. Milnor and W. Thurston [12][13] although their discussion is restricted to the C^1 functions with fixed critical points. For every f in \mathcal{F}^r , we name the critical points and laps of f as c_1, \dots, c_{l-1} and $c_0 = 0$, $c_l = 1$, and I_1, \dots, I_l , where l is the lap number of f. We use \tilde{f} for divided system of f and \tilde{c}_i or d_j for formal non-degenerate critical points of \tilde{f} . We also use c'_i and \tilde{I}'_i for g in \mathcal{F}^r . For simplification, the critical point c_i of f is supposed to be a 3-degenerate critical point.

LEMMA 3.1. If $f^n(c_i) \notin \{c_1, \dots, c_{l-1}\}$ for every $n \ge 1$ and every $i = 1, \dots, l-1$ then the *ij*-element of the kneading matrix $N_i^j(t; \tilde{f})$ is continuous at \tilde{f} for every $j = 1, 2, \dots, l$. So the kneading determinant $D_{\tilde{f}}(t)$ of \tilde{f} is also continuous at \tilde{f} .

PROOF. First we note that $N_i^j(t; \tilde{f})$ is a holomorphic function on the unit disc $\mathbb{D} = \{z \in \mathbb{C}; |z| < 1\}.$

For any $\varepsilon > 0$ and every compact set K, we can choose ρ and N such that $|t| < \rho$ for every $t \in K$ and $4\frac{|\rho|^{N+1}}{1-|\rho|} < \varepsilon$ holds. Choose \mathcal{N} as a \mathcal{C}^r neighbourhood of \tilde{f} satisfying that for every $g \in \mathcal{N}$, the lap number of g is equal to that of \tilde{f} and itineraries of c_k and c'_k coincide up to the order N for every $k = 1, 2, \dots, l-1$. Considering all the coefficients of the power series $N_i^j(t; \tilde{f})$ are in $\{0, \pm 1, \pm 2\}$, we have

$$|N_i^j(t; \tilde{f}) - N_i^j(t; g)| \le \sum_{k=N+1}^\infty 4|t|^k = 4\frac{|t|^{N+1}}{1-|t|} < \varepsilon$$

for every $t \in K$. \Box

LEMMA 3.2. If c_i is not periodic or pre-periodic, the kneading determinant $D_{\tilde{f}}(t)$ is continuous at \tilde{f} .

PROOF. For simplification, we suppose that $f^p(c_j) = c_i$ and there is no other turning point in the forward orbit of $c_k (k \neq j)$. Moreover, we suppose that $f^p(c_j^+) > c_i$. Other cases are just the same. When g has the same number of turning points as \tilde{f} , we claim

CLAIM. For every $\varepsilon > 0$, take a compact set K as in Lemma 3.1. Then there is $\delta > 0$ such that following conditions are satisfied for g satisfying $d(\tilde{f},g) < \delta$ and every $t \in K$: 1) $|N_k^m(t;\tilde{f}) - N_k^m(t;g)| < \varepsilon$ for every $k \neq i$ and every $m = 1, 2, \cdots, l$,

2) For every $m = 1, \dots, l$, one of the following holds.

$$\begin{split} |N_{j}^{m}(t;\tilde{f}) - N_{j}^{m}(t;g)| &< \varepsilon \\ \text{or} \quad |N_{j}^{m}(t;\tilde{f}) - 2t^{p}N_{d_{2}}^{m}(t;\tilde{f}) - N_{j}^{m}(t;g)| < \varepsilon \\ \text{or} \quad |N_{j}^{m}(t;\tilde{f}) - 2t^{p}(N_{d_{2}}^{m}(t;\tilde{f}) + N_{\tilde{c}_{i}}^{m}(t;\tilde{f})) - N_{j}^{m}(t;g)| < \varepsilon \\ \text{or} \quad |N_{j}^{m}(t;\tilde{f}) - 2t^{p}(N_{d_{2}}^{m}(t;\tilde{f}) + N_{\tilde{c}_{i}}^{m}(t;\tilde{f}) + N_{d_{1}}^{m}(t;\tilde{f})) - N_{j}^{m}(t;g)| < \varepsilon \end{split}$$

PROOF. 1) is obvious from the last lemma. 2) is shown from a direct calculation. Because $N_i^m(t; \tilde{f})$ and $N_i^m(t; g)$ coincide at least up to order p,

Keiichiro Iwai

one of $g^p(c'_j) = c'_i$, $g^p(c'_j) \in I'_i$, $g^p(c'_j) \in J'_i$, $g^p(c'_j) \in J'_{i+1}$ or $g^p(c'_j) \in I'_{i+1}$ holds. In the first and the last cases, since $f(c^+_i) > c_i$,

$$N_j^m(t; \tilde{f}) \equiv N_j^m(t; g) \mod t^N$$

holds. In the second case, since every term of $N_j^m(t;g)$ higher than p has the other sign of that of $N_j^m(t;\tilde{f})$, we add the term $2t^p N_{d_2}^m(t;\tilde{f})$ and the effect of 'anti-sign' can be canceled. The third case can be shown by using the method of the second case twice. The other cases can be got by the same reason. \Box

Now noting that elementary row operations of the matrix never change the value of its determinant, the continuity of the kneading determinant at f is easily shown from this Claim. \Box

LEMMA 3.3. If c_i is periodic with period p then for every g in the neighbourhood of \tilde{f} , $g^{np}(c'_i) - c'_i$ have the same sign for every $n \ge 1$, and also $g^{np}(d'_i) - d'_i$ have the same sign for every $n \ge 1$ and for every j = 1, 2.

PROOF. Because the differential coefficient of $f^p(x)$ at c_i is 0, we can suppose

$$\left|\frac{d}{dx}g^p(x)\right| < 1$$

for every x in a neighbourhood of c'_i . So there exists an attractive fixed point x_0 in this neighbourhood such that $g^{np}(c'_i)$ converges to x_0 monotonically as n goes to infinity. So $g^{np}(c'_i) - c'_i$ has the same sign for every $n \ge 1$. The same discussions hold for d'_j . \Box

LEMMA 3.4. Let c_i be a periodic point of period p of f and suppose that the orbit of c_i contains no other turning points. Then:

1. the *i*-th kneading vector $N_i(t; f)$ is of the form $\frac{1}{1-t^p}P(t)$ where $P: \mathbb{C} \to \mathbb{C}^l$ is a polynomial map of degree p;

2. if g is close enough to \tilde{f} then the *i*-th kneading vector $N_i(t;g)$ of g is equal to

$$N_i(t; \tilde{f})$$
 or to $\frac{1-t^p}{1+t^p}N_i(t; \tilde{f}).$

PROOF. As we have seen before,

$$N_{i}^{j}(t) = \theta^{j}(c_{i}^{+};t) - \theta^{j}(c_{i}^{-};t) = 2\theta^{j}(c_{i}^{+};t)$$

for $j \ge 1$. Moreover, since $f^p(c_i) = c_i$ we get from the previous lemma that the coefficients $\theta^j(c_i^{\pm})$, $j = 1, 2, \cdots$ have period p for x close to c_i . More precisely, we have that

$$N_{d_1}(t;\tilde{f}) = \left(0, \cdots, -1 - \frac{2t^p}{1 - t^p}, 1, 0, 0, \cdots, 0\right) + \frac{t}{1 - t^p}\tilde{Q}(t)$$
$$N_{c_i}(t;\tilde{f}) = \left(0, \cdots, \frac{2t^p}{1 - t^p}, -1, 1, 0, \cdots, 0\right) - \frac{t}{1 - t^p}\tilde{Q}(t)$$
$$N_{d_2}(t;\tilde{f}) = \left(0, \cdots, -\frac{2t^p}{1 - t^p}, 0, -1, 1, \cdots, 0\right) + \frac{t}{1 - t^p}\tilde{Q}(t)$$

when f^p has a local maximum at c_i and

$$N_{d_1}(t;\tilde{f}) = \left(0, \dots, -1, 1, 0, -\frac{2t^p}{1-t^p}, 0, \dots, 0\right) + \frac{t}{1-t^p}\tilde{Q}(t)$$

$$N_{c_i}(t;\tilde{f}) = \left(0, \dots, 0, -1, 1, \frac{2t^p}{1-t^p}, 0, \dots, 0\right) - \frac{t}{1-t^p}\tilde{Q}(t)$$

$$N_{d_2}(t;\tilde{f}) = \left(0, \dots, 0, 0, -1, 1 + \frac{2t^p}{1-t^p}, 0, \dots, 0\right) + \frac{t}{1-t^p}\tilde{Q}(t)$$

when f^p has a local minimum at c_i , where $\tilde{Q}(t)$ is a \mathcal{C}^{l+1} valued polynomial of degree p-2. If f^p has a local maximum at c_i then for each g sufficiently close to \tilde{f} ,

$$N_{d_1}(t;g) = N_{d_1}(t;\tilde{f})$$
$$N_{c_i}(t;g) = N_{c_i}(t;\tilde{f})$$
$$N_{d_2}(t;g) = N_{d_2}(t;\tilde{f})$$

when $g^p(d_1^+) \in \text{Int}I_i$, or

$$N_{d_1}(t;g) = \left(0, \cdots, 0, \quad -1, \quad 1 - \frac{2t^p}{1+t^p}, \quad 0, 0, \cdots, 0\right) + \frac{t}{1+t^p} \tilde{Q}(t)$$

Keiichiro Iwai

$$N_{c_i}(t;g) = \left(0, \cdots, 0, \frac{2t^p(1-t^{np})}{1-t}, -1 + \frac{2t^{(n+1)p}}{1+t^p}, -1, 0, \cdots, 0\right)$$
$$-\frac{t}{1+t^p}\tilde{Q}(t)$$
$$N_{d_2}(t;g) = \left(0, \cdots, 0, 0, -\frac{2t^p}{1+t^p}, -1, 1, \cdots, 0\right)$$
$$+\frac{t}{1+t^p}\tilde{Q}(t)$$

when $g^p(d_1^+) \in \text{Int}J_i$, or

$$N_{d_1}(t;g) = \left(0, \dots, 0, -1, 1, -\frac{2t^p}{1-t^p}, 0, \dots, 0\right) + \frac{t}{1-t^p}\tilde{Q}(t)$$
$$N_{c_i}(t;g) = \left(0, \dots, 0, 0, -1, 1+\frac{2t^p}{1-t^p}, 0, \dots, 0\right) - \frac{t}{1-t^p}\tilde{Q}(t)$$
$$N_{d_2}(t;g) = \left(0, \dots, 0, 0, -1-\frac{2t^p}{1-t^p}, 1, \dots, 0\right) + \frac{t}{1-t^p}\tilde{Q}(t)$$

when $g^p(d_1^+) \in \operatorname{Int} J_{i+1}$, or

$$N_{d_1}(t;g) = \left(0, \cdots, 0, -1, 1, 0, -\frac{2t^p}{1+t^p}, 0, \cdots, 0\right) \\ + \frac{t}{1+t^p} \tilde{Q}(t) \\ N_{c_i}(t;g) = \left(0, \cdots, 0, 0, -1, 1 + \frac{2t^p(1-t^{np})}{1-t}, \frac{2t^{(n+1)p}}{1+t^p}, 0, \cdots, 0\right) \\ - \frac{t}{1+t^p} \tilde{Q}(t) \\ N_{d_2}(t;g) = \left(0, \cdots, 0, 0, 0, -1, 1 - \frac{2t^p}{1+t^p}, 0, \cdots, 0\right) \\ + \frac{t}{1+t^p} \tilde{Q}(t)$$

when $g^p(d_1^+) \in \text{Int}I_{i+1}$. A similar statement holds when f^p has a local minimum at c_i and when we apply the elementary deformations of matrices to

34

these formulae, we can calculate the kneading determinant of g. Statements 1) and 2) follow immediately from this. \Box

From this Lemma, we can show that

$$|D_g(t) - D_{\tilde{f}}(t)| < \varepsilon$$

or

$$\left| D_g(t) - \left(\prod_p \frac{1-t^p}{1+t^p} \right) D_{\tilde{f}}(t) \right| < \varepsilon.$$

Here p takes all the period of the periodic critical points. Thus from Cauchy integral formula, we can conclude that zeros of D_g and $D_{\tilde{f}}$ are close to each other in the unit disk \mathbb{D} .

LEMMA 3.5. Let $c_{i(1)}$ be a periodic point of period p of f and suppose that the orbit of $c_{i(1)}$ contains the turning points $c_{i(1)}, c_{i(2)}, \dots, c_{i(k)}, c_{i(k+1)} = c_{i(1)}$ (in this order). Then for g sufficiently close enough to f one has

$$\begin{pmatrix} N_{i(0)}(t;g) \\ N_{i(1)}(t;g) \\ \vdots \\ N_{i(k)}(t;g) \end{pmatrix} = B(t) \begin{pmatrix} N_{i(0)}(t;f) \\ N_{i(1)}(t;\tilde{f}) \\ \vdots \\ N_{i(k)}(t;\tilde{f}) \end{pmatrix},$$

where B(t) is $k \times k$ regular matrix with rational coefficients.

PROOF. From the same reason as in Lemma 3.2, the *j*-th coefficient of the *i*-th kneading vector of g $(i \neq j)$ changes as the sign of $g^{a(j)}(c_{i(j)}) - c_{i(j+1)}$. So the (i,j)-th coefficient of B(t) is equal to $0, \frac{\pm 2t^{b_{(i,j)}}}{1-t^p}$ or to $\pm 2t^{b_{(i,j)}}$, where b(i,j) > 0 is the smallest integer so that $f^{b_{(i,j)}}(c_i) = c_j$. Moreover, considering the periodic effect, with the same reason as in Lemma3.4, the (i,i)-th coefficient of B(t) is equal to 1 or $\frac{1+t^p}{1-t^p}$. When we exchange the role between \tilde{f} and g, we have that B(t) is invertible and has non zero determinant. \Box

Thus we conclude that when $|f - g| < \delta$ and the orbit of a critical point c_i of f contains other critical points,

$$|\det B(t)D_{\tilde{f}}(t) - D_g(t)| < \varepsilon$$

and topological entropy of g is close to that of f.

LEMMA 3.6. When f has a saddle and this saddle is p-periodic, and suppose that the orbit of this saddle contains no other turning points. Let d_1 and d_2 be formal critical points of \tilde{f} . Then:

1. the kneading vector $N_{d_i}(t; \tilde{f})$ is of the form $\frac{1}{1-t^p}P(t)$ where $P : \mathbb{C} \to \mathbb{C}^l$ is a polynomial map of degree p;

2. if g is close enough to \tilde{f} then the kneading determinant of g is also close to that of \tilde{f} .

PROOF. For simplification, we suppose that $f^p(d_2^+) > d_2$. The other case is shown by just the same method. From the definition of the kneading matrix, we have that

$$N_{d_1}(t;\tilde{f}) = \left(0, \cdots, -1 - \frac{2t^p}{1 - t^p}, 1, 0, 0, \cdots, 0\right) + \frac{t}{1 - t^p}\tilde{Q}(t)$$
$$N_{d_2}(t;\tilde{f}) = \left(0, \cdots, 0, -1, 1 + \frac{2t^p}{1 - t^p}, 0, \cdots, 0\right) - \frac{t}{1 - t^p}\tilde{Q}(t)$$

when f^p is increasing near the saddle and

$$N_{d_1}(t;\tilde{f}) = \left(0, \cdots, -1 - \frac{2t^{2p}}{1 - t^{2p}}, 1, \frac{2t^p}{1 - t^{2p}}, \cdots, 0\right) + \frac{t}{1 - t^p}\tilde{Q}(t)$$
$$N_{d_2}(t;\tilde{f}) = \left(0, \cdots, -\frac{2t^p}{1 - t^{2p}}, -1, 1 + \frac{2t^{2p}}{1 - t^{2p}}, \cdots, 0\right) - \frac{t}{1 - t^p}\tilde{Q}(t)$$

when f^p is decreasing near the saddle, where $\tilde{Q}(t)$ is a \mathcal{C}^{l+1} valued polynomial of degree p-2. Then for each g sufficiently close to \tilde{f} , when \tilde{f} is increasing near the saddle,

$$N_{d_1}(t;g) = \left(0, \cdots, 0, -1 - \frac{2t^p}{1 - t^p}, 1, 0, \cdots, 0\right) + \frac{t}{1 - t^p} \tilde{Q}(t)$$
$$N_{d_2}(t;g) = \left(0, \cdots, 0, \frac{2t^p}{1 - t^p}, -1, 1, \cdots, 0\right) - \frac{t}{1 - t^p} \tilde{Q}(t)$$

when $g^p(d_1^+) \in \operatorname{Int} I_{iL}$, or

$$N_{d_1}(t;g) = \left(0, \cdots, 0, -1, \quad 1 - \frac{2t^{(n+1)p}}{1+t^p}, \frac{2t^p(1-t^{np})}{1-t^p}, \cdots, 0\right) + \frac{t}{1+t^p}\tilde{Q}(t)$$

$$N_{d_2}(t;g) = \left(0, \cdots, 0, \quad 0, -1 + \frac{2t^p}{1+t^p} \quad , \qquad \qquad 1, \cdots, 0\right) - \frac{t}{1+t^p}\tilde{Q}(t)$$

when $g^p(d_1^+) \in \text{Int}J$ and $g^{kp}(d_1^+) \in \text{Int}I_{iR}$ for $k = 1, \dots, n$ and $g^{kp}(d_1^+) \in \text{Int}J$ for k > n, or

$$N_{d_1}(t;g) = \left(0, \cdots, 0, -1, 1 - \frac{2t^p}{1+t^p}, 0, \cdots, 0\right) + \frac{t}{1+t^p}\tilde{Q}(t)$$
$$N_{d_2}(t;g) = \left(0, \cdots, 0, \frac{2t^p(1-t^{np})}{1-t^p}, -1 + \frac{2t^{(n+1)p}}{1+t^p}, 1, \cdots, 0\right) - \frac{t}{1+t^p}\tilde{Q}(t)$$

when $g^p(d_1^+) \in \text{Int}J$ and $g^{kp}(d_1^+) \in \text{Int}I_{iL}$ for $k = 1, \dots, n$ and $g^{kp}(d_1^+) \in \text{Int}J$ for k > n, or

$$N_{d_1}(t;g) = \left(0, \cdots, 0, -1, \quad 1, -\frac{2t^p}{1-t^p}, 0, \cdots, 0\right) + \frac{t}{1-t^p}\tilde{Q}(t)$$
$$N_{d_2}(t;g) = \left(0, \cdots, 0, 0, -1, 1 + \frac{2t^p}{1-t^p}, 0, \cdots, 0\right) - \frac{t}{1-t^p}\tilde{Q}(t)$$

when $g^p(d_1^+) \in \operatorname{Int} I_{iR}$, where $n \geq 0$ is the number of times the itinerary goes before it comes in the lap J.

When \tilde{f} is decreasing near the saddle,

$$N_{d_1}(t;g) = \left(0, \cdots, 0, -1 + \frac{2t^p}{1+t^p}, -1, 0, \cdots, 0\right) + \frac{t}{1+t^p}\tilde{Q}(t)$$
$$N_{d_2}(t;g) = \left(0, \cdots, 0, -\frac{2t^p}{1+t^p}, -1, 1, \cdots, 0\right) - \frac{t}{1+t^p}\tilde{Q}(t)$$

when $g^p(d_1^+) \in \operatorname{Int} I_{iL}$, or

$$N_{d_1}(t;g) = \left(0, \dots, 0, -1, \quad 1 + \frac{2t^p}{1 - t^p}, 0, \dots, 0\right) + \frac{t}{1 - t^p}\tilde{Q}(t)$$
$$N_{d_2}(t;g) = \left(0, \dots, 0, \quad 0, -1 - \frac{2t^p}{1 - t^p}, 1, \dots, 0\right) - \frac{t}{1 - t^p}\tilde{Q}(t)$$

when $g^p(d_1^+) \in \text{Int}J$, or

$$N_{d_1}(t;g) = \left(0, \cdots, 0, -1, 1 + \frac{2t^p(1-t^{np})}{1-t^p}, \frac{2t^{(n+1)p}}{1+t^p}, 0, \cdots, 0\right) \\ + \frac{t}{1+t^p} \tilde{Q}(t) \\ N_{d_2}(t;g) = \left(0, \cdots, 0, 0, -1, 1 - \frac{2t^p}{1+t^p}, \cdots, 0\right) \\ - \frac{t}{1+t^p} \tilde{Q}(t)$$

when $g^p(d_1^+) \in \text{Int}I_{iR}$. For the every case, each of $N_{d_1}(t;g)$ and $N_{d_2}(t;g)$ is expressed by the linear combination of $N_{d_1}(t;\tilde{f})$ and $N_{d_2}(t;\tilde{f})$ and from this expression, statements 1) and 2) follows. \Box

LEMMA 3.7. Let $c_{i(1)}$ be a periodic point of period p of f and suppose that the orbit of $c_{i(1)}$ contains a saddle and all the turning points of \tilde{f} in this orbit are $c_{i(1)}, c_{i(2)}, \dots, c_{i(k)}, c_{i(k+1)} = c_{i(1)}$ (in this order). Then for gsufficiently close enough to \tilde{f} one has

$$\begin{pmatrix} N_{i(0)}(t;g) \\ N_{i(1)}(t;g) \\ \vdots \\ N_{i(k)}(t;g) \end{pmatrix} = B(t) \begin{pmatrix} N_{i(0)}(t;\tilde{f}) \\ N_{i(1)}(t;\tilde{f}) \\ \vdots \\ N_{i(k)}(t;\tilde{f}) \end{pmatrix},$$

where B(t) is $k \times k$ regular matrix with rational coefficients.

PROOF. With the same discussion as Lemma 3.5 for lemmas 3.2 and 3.6, we have the same conclusion. \Box

Now we can prove the following proposition from previous lemmas and Lemma 0.8.

THEOREM 3.8. The topological entropy is continuous in \mathcal{F}^r .

PROOF. Note that every degenerate critical point is written by a finite combination of 3-degenerate critical points and 1-saddles. Suppose g is the

 \mathcal{C}^r -perturbation of f and the number of critical points of g is more than f by 2n. Let $|| \cdot ||_r$ be a \mathcal{C}^r norm and suppose $||g - f||_r < \delta$. Let us take a sequence of functions f_i $(i = 0, 1, \dots, m)$ which satisfy the following conditions:

$$\begin{cases} f_0 = f \\ 0 \le \#(\text{critical points of } f_{i+1}) - \#(\text{critical points of } f_i) \le 2 \\ ||f_{i+1} - f_i||_r < \delta \\ f_m = g \\ m < C \cdot n \text{ for some constant } C > 0. \end{cases}$$

From the previous lemmas, we can suppose that the difference of the topological entropy of f_i and f_{i+1} is less than ε for each *i*. Then we have

$$|h(g) - h(f)| \le \sum_{i=0}^{m} |h(f_{i+1}) - h(f_i)| < m\varepsilon$$

and we have that the topological entropy is continuous between f and g. \Box

Acknowledgements. The author would like to thank his advisor, Koichi Yano, for his encouragement and helpful suggestions.

References

- Block, L. S. and W. A. Coppel, Dynamics in One Dimension, Springer Lecture Notes in Mathematics 1513, Springer: Berlin, 1992.
- [2] Collet, P. and J. P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Birkhäuser: Basel, 1980.
- [3] de Melo, W. and S. J. van Strien, One-Dimensional Dynamics, Springer: Berlin, 1993.
- [4] Milnor, J. and W. Thurston, On Iterated Maps of the Interval, in *Dynamical Systems*, Springer Lecture Note in Mathematics 1342, Springer: Berlin, 1988, 465–563.
- [5] Misiurewicz, M., Jumps of entropy in one dimension, Fund. Math. 132 (1989), 215–226.
- [6] Misiurewicz, M. and S. V. Shlyachkov, Entropy of piecewise continuous interval maps, European Conference of Iteration Theory, '89, World Scientific: Singapore, 1991, pp. 239–245.

Keiichiro Iwai

- [7] Misiurewicz, M. and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67 (1980), 45–63.
- [8] Zdunik, A., Entropy of transformations of the unit interval, Fund. Math. 124 (1984), 235–241.

(Received June 19, 1995) (Revised July 14, 1997)

> Graduate School of Mathematical Sciences University of Tokyo Komaba, Tokyo 153 Japan

40