
J. Math. Sci. Univ. Tokyo
4 (1997), 649–662.

Essential Conformal Fields in

Pseudo-Riemannian Geometry. II

By W. Kühnel and H.-B. Rademacher

Abstract. We study conformal vector fields on pseudo-
Riemannian manifolds. In the case of conformally flat manifolds, the
main tool is the conformal development map into the projective quadric.
On the other hand, we show that there exists a pseudo-Riemannian man-
ifold carrying a complete and essential vector field which is not confor-
mally flat. The example implies that there is no finite dimensional mod-
uli space for such manifolds. Therefore, a pseudo-Riemannian analogue
of Alekseevskii’s theorem on the classification of essential conformal vec-
tor fields cannot be expected.

1. Introduction

Conformal mappings and conformal vector fields were intensively stud-

ied in both Riemannian and pseudo-Riemannian geometry. Conformally flat

spaces have been characterized by Cotton, Finzi and Schouten in the early

20th century. In General Relativity conformal aspects are of importance.

For global conformal geometry, the conformal development map was intro-

duced by Kuiper in 1949, after earlier work by Brinkmann in the 1920’s.

Essential conformal vector fields on Riemannian spaces have been studied

by Obata, Lelong-Ferrand and Alekseevskii [A1], [La2]. Conformal gradient

fields are essentially solutions of the differential equation ∇2ϕ = ∆ϕ
n · g .

This equation has been studied since the 1920’s by Brinkmann, Fialkow,

Yano, Obata, Kerbrat and others. In the Riemannian case the results are

quite complete. In the pseudo-Riemannian case we started in part I of
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this paper [KR2] a systematic approach including a conformal classifica-

tion theorem. In this part II we discuss the global structure of conformal

vector fields in pseudo-Riemannian geometry using the conformal develop-

ment map into the conformal compactification of pseudo-Euclidean space.

Furthermore we show that there exists a manifold carrying a complete con-

formal vector field with zeros which is not conformally flat.

2. Conformal vector fields

From the view-point of infinitesimal transformations [Ya], a vector field

V is said to preserve a certain geometric quantity if the Lie derivative LV of

this quantity vanishes. On a pseudo-Riemannian manifold (M, g) a vector

field V is called isometric if it preserves the metric in the sense of LV g =

0. Recall that by definition (LV g)(X,Y ) = g(∇XV, Y ) + g(X,∇Y V ) for

arbitrary tangent vectors X,Y where ∇ denotes the Levi-Civita connection.

V is called conformal if it preserves the conformal class of the metric in the

sense that LV g = 2ϕ · g holds for some function ϕ . Necessarily this

function is ϕ = 1
ndivV in this case. This is equivalent to saying that for

the flow (Φt) of local diffeomorphisms defined by V each Φt is conformal. A

vector field is called complete if the flow is globally defined as a 1-parameter

group of diffeomorphisms Φ: R ×M →M . V is called homothetic if ϕ is

constant. In the particular case of a gradient field V = grad f we have

LV g = 2∇2f , hence grad f is conformal if and only if ∇2f = ϕ ·g where

n · ϕ = ∆f = div(grad f) is the Laplacian. If the symbol ( )◦ denotes

the traceless part of a (0, 2)-tensor, then grad f is conformal if and only

if (∇2f)◦ ≡ 0 . This equation (∇2f)◦ = 0 has been extensively studied in

many papers, for Riemannian as well as for pseudo-Riemannian manifolds.

It arises in various contexts, in particular in connection with the behavior

of the Ricci tensor Ricg in a conformal class of metrics. In a similar

context, Ricci solitons have been considered as solutions of the equation

LV g = 2Ric(g), in particular gradient solitons as solutions of ∇2f = Ric(g)

[Iv]. A vector field V is called concircular if the local flow (Φt) consists of

concircular mappings, i.e. conformal mappings preserving geodesic circles.

A transformation of the metric g �→ ḡ = 1
ψ2 g is concircular if and only

if (∇2ψ)◦ = 0 , see [T], equivalently if Ric◦ḡ = Ric◦g, see [KR1]. The

local structure of all solutions of (∇2ϕ)◦ = 0 for any function ϕ is well

understood at least in the case where gradϕ is not a null vector on an
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open set. We recall the following lemma from [KR2]. (i) is originally due

to Fialkow [Fi], in the Riemannian case (ii) was observed by Tashiro [T].

2.1 Lemma. Let (M, g) be a pseudo-Riemannian manifold admitting

a non-constant solution ϕ of the equation (∇2ϕ)◦ = 0 (or admitting a

non-trivial conformal gradient field). Then the following holds:

(i) In a neighborhood of any point with ‖gradϕ‖2 	= 0 g is a warped

product g = ηdt2+ϕ′2(t)·g∗ (η = ±1 is the sign of ‖gradϕ‖2 ), ϕ

is a function depending only on t , the trajectories of

gradϕ/‖gradϕ‖ are geodesics, and ϕ satisfies ϕ′′ = η · ∆ϕ
n along

these trajectories.

(ii) The zeros of grad ϕ are isolated. In a neighborhood of such a zero

the metric is a warped product in polar coordinates g = η dt2 +
ϕ′2
η (t)

ϕ′′2
η (0)

gη where gη denotes the induced metric on the ‘unit sphere’

S(η) = {x | ‖x‖2 = η} in the pseudo-euclidean space of the same

signature as g. In particular, near a critical point of ϕ the metric

g is conformally flat.

3. The conformal compactification of E
n
k

In the case of Euclidean space E
n there are the following key examples

of complete conformal vector fields

1. the radial vector field V1(x) = x,

2. the constant vector field V2(x) = x0.

The corresponding 1-parameter groups of conformal diffeomorphisms are

1. Φ
(1)
t (x) = exp(t) · x,

2. Φ
(2)
t (x) = x+ t · x0,

respectively. On the conformal compactification Sn = E
n ∪ {∞} with the

standard conformal structure these two vector fields are essential meaning

that they are not isometric with respect to any conformally equivalent met-

ric. V1 has two zeros at 0,∞. It is the gradient of a globally defined function

on the sphere whereas V2 is not a gradient and has only one zero at ∞. The

standard metric on Sn is characterized by the existence of a conformal gra-

dient field gradϕ such that ∇2
gϕ + c2ϕ · g = 0, see [T], [Ob1]. Any simply
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connected and conformally flat Riemannian manifold M of dimension n

admits a conformal immersion δ:M → Sn, see 3.4. Vice versa, for getting

examples of conformally flat spaces one can take the preimage under δ of

any open subset A ⊂ Sn or its universal covering. This includes the exam-

ple R ×Hn−1 as the covering of Sn \ Sn−2, called a Mercator-manifold in

[KP]. Unfortunately, there are no nontrivial coverings which are compatible

with complete and essential conformal vector fields. Compare 4.3 for the

indefinite case.

3.1 Theorem (Alekseevskii [A1], [Fe1], [Fe2], [Yo]). Assume that

(M, g) is a Riemannian manifold of dimension n admitting a complete and

essential conformal vector field. Then (M, g) is conformally diffeomorphic

with either the sphere Sn or the Euclidean space E
n.

In the compact case this result was obtained also by Obata and Lelong-

Ferrand [La2]. Note that under the hypotheses of 3.1 the conformal devel-

opment map is injective which provides an important step in the proof. No

analogous result seems to be known in the case of a pseudo-Riemannian

manifold with an indefinite metric. However, an analogue of the conformal

development map has been studied already quite early.

We denote by E
n
k the pseudo-Euclidean space with the metric g =

−
∑

i≤k dx
2
i +

∑
i>k dx

2
i . A pseudo-Riemannian metric of the same signa-

ture is called (locally) conformally flat if it is locally conformally equivalent

to the metric of E
n
k . For the determination of all conformal transformations

of pseudo-Euclidean space see [Ha].

3.2 Lemma (Brinkmann [Br1]). For any conformally flat pseudo-

Riemannian manifold (Mn
k , g) there exists locally an isometric immersion

into E
n+2
k+1 .

Proof. Locally the metric has the form ϕ2(−
∑

i≤k dx
2
i +

∑
i>k dx

2
i )

where x1, . . . , xn are cartesian coordinates and ϕ 	= 0 is a scalar function.

Let 〈x, x〉 denote the pseudo-Euclidean scalar product of the point x =

(x1, . . . , xn). We define the following mapping

x �→ y = (y0, . . . , yn+1) :=
(
ϕ
2

(
〈x, x〉 + 1

)
, ϕx1, . . . , ϕxn,

ϕ
2

(
〈x, x〉 − 1

))
.
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Then the following conditions are easily checked:

1. (y0, . . . , yn+1) 	= (0, . . . , 0),

2. y lies in the null cone {y | 〈y, y〉 = 0},
3. the induced metric of this immersion is

−
∑

i≤k dy
2
i +

∑
i>k dy

2
i = ϕ2

(
−
∑

i≤k dx
2
i +

∑
i>k dx

2
i

)
.

The sphere inversion appears essentially as the mapping yn+1 �→ −yn+1.

Note that the Riemannian case k = 0 is included; in this case the image

does not meet the hyperplane y0 = 0. However, the ambient space is E
n+2
1 .

With respect to the pseudo-Euclidean metric, the mapping x �→ y is

conformal in any case, independent of ϕ. For this aspect of conformal ge-

ometry in cosmology see [Hu]. The conformal interpretation of the pseudo-

Euclidean metric on (n + 2)-space is quite classical, see [Be], [Bô]. This

motivates the following definition of a conformal development map into the

real projective space RPn+1. �

3.3 Definition ([Kui], see also [AD]). The conformal development

map on a conformally flat pseudo-Riemannian manifold (Mn
k , g) is defined

locally by x �→ y �→ [y0, . . . , yn+1] ∈ RPn+1. If M is simply connected this

induces a conformal immersion δ:M → Qnk ⊂ RPn+1, the conformal devel-

opment. Here Qnk denotes the projective quadric {y | 〈y, y〉 = 0}. Qnk can

also be regarded as the conformal compactification of E
n
k , see [Bô], [Cox].

One observes that δ(Enk) = {[y0, y, yn+1] ∈ Q | yn+1 	= y0}. The ‘points at

infinity’ {yn+1 = y0} can be seen as follows: If Cnk denotes the null cone

in E
n
k which is represented by δ(Cnk ) = {+1} × Cnk × {−1} in Qnk , then

{+1} × Cnk × {+1} is a second copy of the null cone after inversion, and

{0}× (Cnk ∩Sn−1)×{0} is the ‘null cone at infinity’. Projectively the latter

is nothing but a lower dimensional quadric Qn−2
k−1 ⊂ RPn−1.

Since the real projective space RPn+1 can be regarded as the sphere

Sn+1 modulo identification of antipodal pairs of points, we observe that

Qnk is diffeomorphic with {〈y, y〉 = 0} ∩ Sn+1 ∼= Sk × Sn−k modulo the

identification of antipodal pairs of points. Topologically, Qnk can also be

regarded as a sphere bundle over RP k if k ≤ n − k [CK], an Euclidean

model is the tensor product Sk ⊗ Sn−k ⊂ R
(k+1)(n−k+1).

3.4 Remark (Complex structure in two complex variables). In the

case of E
4
1 there is the following complex version, using unitary groups
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(see [BDP]). If we multiply the classical Pauli Spin matrices by the factor

i, we obtain a basis for the Lie algebra su(2). Together with the identity

matrix (multiplied by i) we get a basis for u(2) ∼= E
4
1 in a natural way

such that su(2) appears as the spacelike 3-space. Then the Lie group U(2)

turns out to be the conformal compactification of u(2) via the Cayley map

δ:u(2) → U(2), δ(x) = (1+x)(1−x)−1. Here 1 denotes the identity matrix.

Note that U(2) ∼= Q4
1 appears as a two-fold quotient of S1×SU(2) ∼= S1×S3

which is again diffeomorphic to S1 × S3.

3.5 Proposition. The conformal transformations of the projective

quadric Qnk are in 1-1-correspondence with those projective transformations

of RPn+1 preserving Qnk .

This lemma is essentially due to Möbius for the classical case k = 0, n = 2

(Möbius geometry). For arbitrary dimensions it is stated in [Kui].

3.6 Theorem (Kuiper [Kui]). If M is simply connected and confor-

mally flat then δ:M → Qnk is globally defined. If moreover M is compact

then δ is either a diffeomorphism between M and Sn (if k = 0) or a two-fold

covering (if 2 ≤ k ≤ n− 2). For k = 1 or k = n− 1 the universal covering

is non-compact.

A conformally flat manifold M is called developable if the conformal

development map δ is globally defined. Any simply connected conformally

flat manifold is developable. Compare [AD] for a Riemannian interpretation

for isometric immersions.

4. Conformal vector fields on conformally flat spaces

4.1 Examples. The key examples of conformal vector fields on pseudo-

Euclidean space are again the vector fields V1 and V2 above, extended to

Qnk by taking limits of the flow.

The fixed points of the flow Φ
(1)
t are the two isolated points [1, 0,−1]

(the origin) and [1, 0, 1] (its image under the inversion at the unit sphere)

and the null cone at infinity {0} ×Qn−2
k−1 × {0}.

The fixed point set of Φ
(2)
t depends on the type of the translation vector

x0: If 〈x0, x0〉 	= 0 then the only fixed point is [1, 0, 1] = ∞. This is a perfect
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analogue of the conformal flow on the standard sphere with one fixed point.

If 〈x0, x0〉 = 0 then the fixed point set contains in addition the null cone at

infinity and the inversion of the ordinary null cone.

4.2 Corollary. On the conformal compactification Qnk there exists a

conformal vector field V 2 with one zero, and on Qnk \ Qn−2
k−1 there exists a

conformal vector field V 1 with two zeros. These vector fields are essential

and complete. V 1 is a local gradient field, V 2 is not a gradient field near

the zero.

Qnk\Qn−2
k−1 is nothing but the union of δ(En) and its image under inversion

at the ‘unit sphere’. This inversion transforms V 1 into −V 1. This spaceQnk\
Qn−2
k−1 is not simply connected. In fact, its fundamental group is isomorphic

to the integers Z if 2 ≤ k ≤ n− 2, leading to a Z-sheeted universal covering

which carries a conformal vector field with infinitely many zeros.

4.3 Corollary [KR2]. For 2 ≤ k ≤ n − 2 the universal covering of

Qnk \Qn−2
k−1 defines a manifold M(Z) together with a conformal structure such

that δ:M(Z) → Qnk \ Qn−2
k−1 becomes a conformal covering. The conformal

vector field V 1 can be lifted to a vector field V
(Z)
1 with infinitely many zeros.

These zeros are in natural bijection to (2Z)∪ (2Z+1) ∼= Z. Similarly, there

are intermediate coverings with any even number of zeros of the vector field.

Recall that M(Z) together with a particular metric g in this conformal

class is also characterized by the pendulum equation ∇2
gϕ+sinϕ · g = 0, see

[KR3].

For 2 ≤ k ≤ n − 2 the universal covering of the quadric Qnk itself is

diffeomorphic to Sk × Sn−k. The metric can be chosen as the product of

two metrics of constant curvature with opposite signs. This space carries a

conformal vector field V
(2)
2 with two zeros as the lift of V 2 via the conformal

covering δ:Sk×Sn−k → Qnk . Even if we remove one of the zeros, the vector

field is still complete. The punctured Sk×Sn−k carries a complete conformal

vector field with one zero.

In a neighborhood of a zero of a conformal gradient field the metric is

conformally flat by Lemma 2.1. By using geodesic polar coordinates one

can extend this to a global result, under the additional assumption that

(M, g) is C-complete with respect to the gradient field, meaning that every
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point on the manifold can be joined by a geodesic with at least one critical

point of the function and that every geodesic through a critical point is

defined on R.

4.4 Theorem [KR2]. Assume that a C-complete pseudo-Riemannian

manifold is given carrying a non-isometric conformal gradient field with at

least one zero. Then the manifold is (locally) conformally flat.

As a consequence, under the same assumptions on M the conformal

development map δ is well defined on the universal covering M̃ of M . If

δ: M̃ → δ(M̃) itself is a covering map then we are either in the situation of

M(Z) or of M(Z)\2Z, the preimage under δ of Qnk \Qn−2
k−1 minus one of the

zeros. This holds for signature 2 ≤ k ≤ n− 2 by 4.2 and 4.3.

If in addition the metric is geodesically complete and the conformal

gradient field is complete, then the conformal type is determined by the

number N of zeros, N ∈ N ∪ {N} ∪ {Z}, see [KR2;Thm.C]. There it is

claimed that the conformal type is uniquely determined by N . This is true

only for N = Z and for finite odd numbers N . In the other cases, there are

two types in general, depending on the two possibilities of ends. Therefore,

the formulation of Theorem C should be slightly modified as follows.

4.5 Theorem. Let Mn
k be a geodesically complete pseudo-Riemannian

manifold of signature (k, n) with 2 ≤ k ≤ n − 2 carrying a non-trivial

conformal gradient field with at least one zero.

1. There are at most two diffeomorphism types of Mn
k for given number

N of zeros. Here in the case of infinitely many zeros we have to distinguish

between N and Z.

2. Every manifold is conformally equivalent to a standard manifold

M(J)(α, β) defined at the end of [KR2;Sect.4].

3. If in addition the vector field is complete then the conformal type is

uniquely determined by the diffeomorphism type.

The proof given in [KR2] is going through with only slight modifications.

In any case, the manifold can be decomposed into N + 1 building blocks

with one (+)-end and one (−)-end each. Depending on the types of the

ends, the diffeomorphism type of the manifold is uniquely determined. If

N is odd then there is no choice, if N is even we have the two cases (+)(+)

and (−)(−).
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Without the completeness of the metric but still under the assumption

of the completeness of the vector field we obtain a huge variety of examples

as follows:

4.6 Theorem. There are uncountably many distinct pairs (M,V ) of

conformally flat pseudo-Riemannian manifolds M and conformal and com-

plete gradient fields V with zeros.

Here ‘distinct’ means that there is no conformal diffeomorphism preserv-

ing the trajectories of the corresponding flows of the vector fields.

Proof. We start with M(Z) and consider an arbitrary subset A of the

set Z of zeros. The vector field V 1 is still complete on M(Z) \A for any A,

it has still at least one zero if A 	= Z, and M is still C-complete if A does

not contain two subsequent integers x, x+ 1. Two such subsets A1, A2 lead

to distinct examples if A1, A2 are inequivalent under translation x �→ x+ 1

and reflection x �→ −x. There are uncountably many possibilities left. �

5. Non-conformally flat spaces admitting complete conformal

vector fields

The same construction as in 4.6 leads to non-conformally flat examples if

we drop the condition of C-completeness. Locally it is easy to get examples

as warped products of a real interval with an arbitrary (M∗, g∗), just by

applying Lemma 2.1 (i).

5.1 Theorem. For 2 ≤ k ≤ n−2 there is an infinite-dimensional space

of non-conformally flat pseudo-Riemannian manifolds admitting a complete

conformal gradient field with at least one zero.

Proof. We start with M(Z)\A as in 4.6 but now assume that A does

contain two subsequent numbers x, x + 1. The trajectories between these

two points in the manifold are still defined over R but do not converge to

a point of the manifold for t → ±∞. The metric on the part covered by

all those geodesics is a warped product (−r, r)×ϕ′ S(η) where S(η) denotes

the induced metric of the ‘unit sphere’ in E
n
k of dimension at least 2, see

Lemma 2.1. If we perturb this induced metric in a small neighborhood of an

arbitrary point lying on one of those trajectories between x and x+1, then
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the corresponding warped product with the same function will still admit

a complete conformal gradient field by 2.1. But this perturbation will -

in general - destroy the conformal flatness of the warped product because

generically a metric in dimension > 2 is not conformally flat. Again there

are uncountably many essentially distinct possibilities for such an A, and

for each one there is an infinite-dimensional space of possibilities for the

perturbation of the metric. �

In the Riemannian case this type of perturbation is impossible unless

one cuts out all the zeros of the vector field because there are at most

two. In this case the warped product (−r, r) ×ϕ′ M∗ admits an inessential

conformal gradient field for any Riemannian manifold M∗, i.e., one without

a zero. This includes examples which are non-standard Einstein spaces if

one starts with a non-standard Einstein metric on M∗ = Sn−1. By adding

the two ‘poles’ one obtains an Einstein metric on the sphere Sn with two

metrical (but not topological) singularities.

6. Conformally closed vector fields

Given a metric g, a vector field V is called closed if is locally a gradient

field or, equivalently, if the associated 1-form ω is closed: dω = 0. Closed

conformal vector fields can be classified in the same way as gradient fields.

Compare [Bo] for a version of Theorem 3.1 for closed conformal vector

fields. Unfortunately, the closedness is not conformally invariant. Therefore

it seems to be more natural to find an appropriate notion which is invariant

under conformal changes of the metric. In terms of 1-forms, we observe that

a conformal change of the metric induces a conformal change of the 1-form:

we replace ω by ω = efω. The equation d(ω) = d(efω) = ef (dω + df ∧ ω)

leads to the following definition [Ob2]:

6.1 Definition. A vector field V is called conformally closed if (lo-

cally) it is closed after a certain conformal change of the metric. An equiv-

alent formulation is that the associated 1-form ω satisfies dω + df ∧ ω = 0

for a certain function f . Locally this is equivalent to dω + η ∧ ω = 0 for a

certain closed 1-form η. Note that the conformal closedness is a local notion

just as conformal flatness. It is much weaker than the corresponding global

notion where the conformal change would have to be globally defined.
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6.2 Theorem. Assume that V is a conformally closed conformal vector

field on a manifold M with a fixed conformal structure. Assume that V has

at least one zero. Then the following hold:

1. In a neighborhood of the zero the manifold is conformally flat.

2. If V is complete then M admits a globally defined conformal immersion

E
n
k →M.

3. If in addition M is compact then the metric must be positive or nega-

tive definite. Consequently, M is conformally equivalent with the standard

sphere.

Proof. 1. After a conformal change of the metric, V is a gradient field

in a neighborhood of the zero p0. By Proposition 2.1 it is conformally flat

in that neighborhood. Moreover, the metric is a warped product in polar

coordinates, and V is the radial vector field in these polar coordinates.

2. The warped product structure of the metric near the zero of V cannot

change along the trajectories of V as long as V 	= 0. By the completeness

of V this does not happen in finite time of the flow Φt. Therefore, we can

extend the polar coordinates globally. This defines a conformal immersion

of the (pseudo-)euclidean space into M , mapping the origin to p0, and the

radial straight lines onto the trajectories of V which are geodesics in M . It

also follows that the exponential map from p0 is globally defined. However,

the metric need not be complete, as the example of the quadric Qnk in 3.3

shows. A limit point of the trajectories for t → ∞ does not have to be in

M .

3. If we assume the compactness of M then M must contain limit points

of the trajectories, and V has a zero at such limit points because they are

fixed points of the flow. This implies that V has at least two zeros p0 and

p1 such that there is an open set of trajectories from one to the other. If we

apply the argument of 2. to p1 then we find that −V is the radial vector field

in polar coordinates around p1. Moreover, there are conformal immersions

F0, F1: E
n
k → M with Fi(0) = pi. The composition F−1

1 F0 is the inversion

at the ’unit sphere’. So we are precisely in the position of Corollary 4.2.

If the metric is indefinite then we find limit points of the trajectories also

in the direction of the null cone. By the same argument as before, V has

a zero at each of these limit points. On the other hand, these limit points

are not a discrete set. This contradicts the conformal closedness of V if we

consider a neighborhood of such a limit point. Therefore the metric cannot
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be indefinite, and the conclusion follows from 3.1. �
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pseudo-Riemannian manifolds, Tôhoku Math. J. 48 (1996), 601–612.

[Kui] Kuiper, N. H., Conformally flat spaces in the large, Ann. Math. (2) 50
(1949), 916–924.

[KP] Kulkarni, R. and U. Pinkall, A canonical metric for Möbius structures and
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