A Base Point Free Theorem of Reid Type

By Shigetaka Fukuda

Abstract. Assume that X is a normal projective variety over \mathbb{C} , of dimension ≤ 3 , and that (X, Δ) is a log variety that is weakly Kawamata log terminal. Let L be a nef Cartier divisor such that $aL - (K_X + \Delta)$ is nef and log big on (X, Δ) for some $a \in \mathbb{N}$. Then $\operatorname{Bs}|mL| = \emptyset$ for every $m \gg 0$.

Introduction

We generally use the notation and terminology of [Utah].

Let X be a normal projective variety over \mathbb{C} . Let (X, Δ) be a log variety which is log canonical. We assume that $K_X + \Delta$ is a \mathbb{Q} -Cartier \mathbb{Q} -divisor.

Let $\Theta = \sum_{i=1}^{s} \Theta_i$ be a reduced divisor with only simple normal crossings on an *n*-dimensional non-singular complete variety over \mathbb{C} . We denote **Strata**(Θ) := { $\Gamma \mid 1 \leq k \leq n, 1 \leq i_1 < i_2 < \cdots < i_k \leq s, \Gamma$ is an irreducible component of $\Theta_{i_1} \cap \Theta_{i_2} \cap \cdots \cap \Theta_{i_k} \neq \emptyset$ }.

First we recall the famous base point free theorem of Kawamata and Shokurov.

THEOREM 0. (Theorem 3-1-1 of [KMM]) Assume that (X, Δ) is weakly Kawamata log terminal (wklt). Let L be a nef Cartier divisor such that $aL - (K_X + \Delta)$ is ample for some $a \in \mathbb{N}$. Then $\operatorname{Bs}|mL| = \emptyset$ for every $m \gg 0$.

We note that, if $aL - (K_X + \Delta)$ is nef and big but not ample, there exists a counterexample (cf. Remark 3-1-2 of [KMM]).

In [Rd], Reid introduced the notion of "log big" and suggested that, if $aL - (K_X + \Delta)$ is nef and log big on (X, Δ) , then the theorem holds.

¹⁹⁹¹ Mathematics Subject Classification. Primary 14C20; Secondary 14J10.

DEFINITION. (due to Reid [Rd]) Let $f: Y \to X$ be a log resolution such that $K_Y = f^*(K_X + \Delta) + \sum a_j E_j$ (where $a_j \ge -1$). Let L be a Cartier divisor on X. L is called *nef and log big* on (X, Δ) if L is nef and big and $(L|_{f(\Gamma)})^{\dim f(\Gamma)} > 0$ for any member Γ of **Strata** $(\sum_{a_j=-1} E_j)$.

REMARK. The definition of the notion of "nef and log big" does not depend on the choice of the log resolution f (Claim of [Fu]).

Now we state the main theorem of this paper.

MAIN THEOREM. Assume that dim $X \leq 3$ and that (X, Δ) is weakly Kawamata log terminal (wklt). Let L be a nef Cartier divisor such that $aL - (K_X + \Delta)$ is nef and log big on (X, Δ) for some $a \in \mathbb{N}$. Then $Bs|mL| = \emptyset$ for every $m \gg 0$.

REMARK. In [Fu0], the author proved the theorem under the conditions that X is non-singular, Δ is a simple normal crossing divisor and dim X is arbitrary.

1. Preliminaries

We collect some results needed for the proof of Main Theorem.

PROPOSITION 1. (Reid Type Vanishing, cf. [Fu]) Assume that (X, Δ) is wklt. Let D be a Q-Cartier integral Weil divisor. If $D - (K_X + \Delta)$ is nef and log big on (X, Δ) , then $H^i(X, \mathcal{O}_X(D)) = 0$ for every i > 0.

PROOF. The proof is analogous to that of the main theorem of [Fu]. But, when we read [Fu], we must take notice of the facts below.

FACT 1. For real numbers a and b, $\lceil a+b \rceil \ge \lfloor a \rfloor + \lceil b \rceil$. Hence $\lceil f^*D + E \rceil \ge \lfloor f^*D \rfloor + \lceil E \rceil$. Thus $f_*\mathcal{O}_Y(\lceil f^*D + E \rceil) = \mathcal{O}_X(D)$.

FACT 2. $\lceil f^*D + E \rceil - (K_Y + f_*^{-1}\lfloor\Delta\rfloor + \{-f^*D - E\})$ is nef and log big on $(Y, f_*^{-1}\lfloor\Delta\rfloor + \{-f^*D - E\})$. \Box

PROPOSITION 2. (Kawamata, cf. the proofs of Lemma 3 of [Ka] and Theorem 3-1-1 of [KMM]) Assume that (X, Δ) is whit. Let L be a nef Cartier divisor such that $aL - (K_X + \Delta)$ is nef and big for some $a \in \mathbb{N}$. If $\operatorname{Bs}[mL] \cap [\Delta] = \emptyset$ for every $m \gg 0$, then $\operatorname{Bs}[mL] = \emptyset$ for every $m \gg 0$.

2. Proof of Main Theorem

We prove the main theorem by induction on $\dim X$.

Step 0. Let $f: Y \to X$ be a log resolution of (X, Δ) such that the following conditions are satisfied:

(1) Y is projective (from the assumption that X is projective and the definition of the notion of wklt),

(2) $\operatorname{Exc}(f)$ consists of divisors,

(3) $K_Y + f_*^{-1}\Delta + F = f^*(K_X + \Delta) + E,$

(4) E and F are f-exceptional effective \mathbb{Q} -divisors such that $\operatorname{Supp}(E)$ and $\operatorname{Supp}(F)$ do not have common irreducible components,

(5) |F| = 0.

Note that, for any member $G \in \mathbf{Strata}(f_*^{-1}\lfloor\Delta\rfloor)$, $\mathrm{Exc}(f)$ does not include G (from an argument in p. 99 of [Sh], cf. the proof of Proposition of [Fu]).

Step 1. We shall show that we may assume that X is \mathbb{Q} -factorial.

Apply the relative log minimal model program to $f: (Y, f_*^{-1}\Delta + F) \to X$. We end up with a Q-factorial weakly Kawamata log terminal variety

(over X) $\mu: (Z, \mu_*^{-1}\Delta + (F)_Z) \to X$ such that $K_Z + \mu_*^{-1}\Delta + (F)_Z$ is μ -nef. Because $K_Z + \mu_*^{-1}\Delta + (F)_Z = \mu^*(K_X + \Delta) + (E)_Z$, $(E)_Z$ is μ -nef.

Because $K_Z + \mu_* \Delta + (F)_Z = \mu^*(K_X + \Delta) + (E)_Z$, $(E)_Z$ is μ -nef. Thus $(E)_Z$ is a μ -exceptional μ -nef effective divisor. Applying 1.1 of [Sh] to $-(E)_Z$, we obtain the fact that $(E)_Z = 0$. Hence $\mu^*(K_X + \Delta) = K_Z + \mu_*^{-1}\Delta + (F)_Z$.

We put $M := aL - (K_X + \Delta)$. Here we prove that $\mu^* M$ is nef and log big on $(Z, \mu_*^{-1}\Delta + (F)_Z)$. Let G_0 be a divisor of $\mathbb{C}(X)$ whose discrepancy with respect to $(Z, \mu_*^{-1}\Delta + (F)_Z)$ is -1. Let W be a non-singular projective variety and $f_1 : W \to Y$ and $\mu_1 : W \to Z$ birational morphisms, such that G_0 is a non-singular prime divisor on W and that $ff_1 = \mu\mu_1$. Then $f_1(G_0) \in \mathbf{Strata}(f_*^{-1}\lfloor\Delta\rfloor)$ (cf. the proof of Claim of [Fu]). So $\operatorname{Exc}(f)$ does not include $f_1(G_0)$.

Put $B := f(\operatorname{Exc}(f))$. By Zariski's Main Theorem, the set-theoretical inverse image $f^{-1}(B) = \operatorname{Exc}(f)$. We note that $Y \setminus \operatorname{Exc}(f) \cong Z \setminus \mu^{-1}(B)$.

Because $\mu_1(G_0) \cap (Z \setminus \mu^{-1}(B)) \cong f_1(G_0) \cap (Y \setminus \text{Exc}(f)) \neq \emptyset$, $\mu_1(G_0)$ and $f_1(G_0)$ are birationally equivalent.

Thus $\mu_1(G_0)$ and $f(f_1(G_0))$ are birationally equivalent. Hence μ^*M is nef and big on $\mu_1(G_0)$. Therefore μ^*M is nef and log big on $(Z, \mu_*^{-1}\Delta + (F)_Z)$.

Thus we may assume that X is \mathbb{Q} -factorial.

Step 2. From 3.8 of [Sh], every irreducible component of $\lfloor \Delta \rfloor$ is normal. Let S be an irreducible component of $\lfloor \Delta \rfloor$.

We put $S_0 := f_*^{-1}S$, $\text{Diff}(0) := (f \mid_{S_0})_*(f^*(K_X + S) \mid_{S_0} - (K_Y + S_0) \mid_{S_0})$ and $\text{Diff}(\Delta - S) := \text{Diff}(0) + (\Delta - S) \mid_S$. We note that $\text{Diff}(0) \ge 0$ (the Subadjunction Lemma, 3.2.2 of [Sh], cf. 5-1-9 of [KMM]). Then $K_{S_0} + (f_*^{-1}\Delta - S_0) \mid_{S_0} + F \mid_{S_0} = f^*(K_S + \text{Diff}(\Delta - S)) + E \mid_{S_0}$.

Because $(f \mid_{S_0})_*((f_*^{-1}\Delta - S_0) \mid_{S_0} + F \mid_{S_0} - E \mid_{S_0}) = \text{Diff}(\Delta - S)$ and Diff $(\Delta - S) = \text{Diff}(0) + (\Delta - S) \mid_{S} \ge 0$, $[\text{Diff}(\Delta - S)]$ is reduced. Here $M \mid_S$ is nef and big. And, for any member Γ of **Strata** $((f_*^{-1}\lfloor\Delta\rfloor - S_0) \mid_{S_0})$, $M \mid_{f(\Gamma)}$ is nef and big. Hence $(S, \text{Diff}(\Delta - S))$ is log terminal and $M \mid_S$ is nef and log big on $(S, \text{Diff}(\Delta - S))$.

We note that $\operatorname{Exc}(f \mid_{S_0})$ may not consist of divisors. But, because $\operatorname{Exc}(f) \cap S_0$ includes $\operatorname{Exc}(f \mid_{S_0})$, $\operatorname{Exc}(f \mid_{S_0})$ does not include any member of $\operatorname{Strata}((f_*^{-1}\lfloor\Delta\rfloor - S_0) \mid_{S_0})$. Hence, by a finite composition of blowing ups with centers included in $\operatorname{Exc}(f \mid_{S_0})$, we get a log resolution of $(S, \operatorname{Diff}(\Delta - S))$ such that the exceptional locus consists of divisors with discrepancies > -1 (because, for every divisor $\nu \in \mathbb{C}(S)$ whose discrepancy with respect to $(S, \operatorname{Diff}(\Delta - S))$ is -1, $\operatorname{center}_{S_0}(\nu) \in \operatorname{Strata}((f_*^{-1}\lfloor\Delta\rfloor - S_0) \mid_{S_0}))$. Therefore $(S, \operatorname{Diff}(\Delta - S))$ is what (Lemma 4 of [Ka], [Sz]).

Thus $|mL|_S|$ is base point free for $m \gg 0$, by induction hypothesis.

Step 3. We consider the exact sequence:

$$0 \to \mathcal{O}_X(-S) \to \mathcal{O}_X \to \mathcal{O}_S \to 0.$$

Tensoring with $\mathcal{O}_X(mL)$ for $m \geq a$, we have an exact sequence

$$0 \to \mathcal{O}_X(mL - S) \to \mathcal{O}_X(mL) \to \mathcal{O}_S(mL) \to 0$$

(Since the sheaf $\mathcal{O}_X(mL)$ is invertible, $\mathcal{O}_X(mL) \otimes \mathcal{O}_X(-S) = \mathcal{O}_X(mL-S)$).

Because $mL - S - (K_X + \Delta - S)$ is nef and log big on $(X, \Delta - S)$, $H^1(X, \mathcal{O}_X(mL - S)) = 0$ from Proposition 1. Hence the linear system |mL| on X cuts out a complete linear system $|mL|_S |$ on S. Therefore $\operatorname{Bs}|mL| \cap |\Delta| = \emptyset$ for $m \gg 0$.

Thus Proposition 2 implies the assertion. \Box

REMARK. The proof above implies that the main theorem holds also under the conditions that dim X = 4 and that X is Q-factorial.

More generally our proof shows the following implication:

If the log minimal model program works in all dimensions, then the main theorem holds without the condition that dim $X \leq 3$.

References

- [Fu] Fukuda, S., A generalization of the Kawamata-Viehweg vanishing theorem after Reid, Comm. Algebra **24(10)** (1996), 3265–3268.
- [Fu0] Fukuda, S., On base point free theorem, Kodai Math. J. 19 (1996), 191– 199.
- [Ka] Kawamata, Y., Log canonical models of algebraic 3-folds, Internat. J. Math. 3 (1992), 351–357.
- [KMM] Kawamata, Y., Matsuda, K. and K. Matsuki, Introduction to the Minimal Model Problem, Algebraic Geometry, Sendai, 1985, Adv. St. Pure Math. 10 (1987), 283–360.
- [Rd] Reid, M., Commentary by M. Reid (§10 of Shokurov's paper "3-fold logflips"), Russian Acad. Sci. Izv. Math. 40 (1993), 195–200.
- [Sh] Shokurov, V. V., 3-fold log-flips, Russian Acad. Sci. Izv. Math. 40 (1993), 95–202.
- [Sz] Szabó, E., Divisorial log terminal singularities, J. Math. Sci. Univ. Tokyo 1 (1994), 631–639.
- [Utah] Kollár, J. *et al.*, Flips and Abundance for Algebraic Threefolds, Astérisque **211** (1992).

(Received September 3, 1996)

Suzuka National College of Technology (Suzuka Kōsen) Shiroko-chō, Suzuka City Mie Prefecture 510-02 Japan E-mail: fukuda@genl.suzuka-ct.ac.jp