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A Remark on a Limiting Behaviour of the Occupation

Times on Unbounded Domains of Brownian Motion

By Atsushi Atsuji

Abstract. We remark on a limitting behaviour of occupation
times on unbounded domains of Brownian motions. It is a partial
extention of the works by Mountford and Meyre.

1. Introduction

Let D be an unbounded domain with smooth boundary in Rn and

assume that Dc; complement of D be unbounded. We consider a lim-

iting behaviour of the mean occupation time of D; Lt = 1
t

∫ t
0 1D(Bs)ds.

T. S. Mountford and T. Meyre considered the case that D is a cone. Meyre

showed the following. ([3]).

Theorem (Meyre [3]). Let CF be a cone in Rn defined by

CF = {rx : x ∈ F, F is an open subset of Sn−1 and r ≥ 0}.

If q ≤ ξ,

lim inf
t→∞

(log t)q
1

t

∫ t

0
1CF

(Bs)ds = 0,

and if q > ξ,

lim inf
t→∞

(log t)q
1

t

∫ t

0
1CF

(Bs)ds = ∞,

where ξ = 2

−(n−2)2+

√
λFc+

(n−2)2

4

and λF c is the first eigenvalue of Laplacian

−∆ of Dirichlet problem on F c.

Mountford in [4] gave the result in case of R2 with Cα = {reiθ : r ≥
0, θ ∈ (−α/2, α/2)} and ξ = 2

π (2π − α) before the statement of the above

style was given by Meyre and also discussed the behaviour of Lt as t tends
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to zero. In this note we treat the case that D is a more general domain than

a cone and give such asymptotics of Lt as t → ∞ as Meyre. The power ξ of

log t appeared in the above Theorem reflects a geometric character of D or

Dc. Instead of ξ we employ βD(a, r) and ηD(a, r) defined as the following

manner.

βD(a, r) =

∫ νr

κa
αrdr (0 < ν < 1, 1 < κ and κa < νr)

with αr = −n− 2

2r
+

√
λDr +

(n− 2)2

4r2
,

where λDr is the first eigenvalue of the Laplacian −∆S(r) with Dirichlet

boundary condition on D∩S(r), S(r): the boundary of B(r). We note that

if D is a cone, limr→∞ β(a, r)/ log r = ξ−1.

ηD(a, r) = inf
φ∈Γ(a,r)

c

∫ r

0

|φ̇(t)|
ρ(t)

dt,

where ρ(t) is the distance from φ(t) to ∂D, c is a constant satisfying that

c(log c− 1) = 1 if n = 2 and (n− 1)
n−1
n−2 if n ≥ 3, and

Γ(a, r) = {φ : [0, r] → Dr, simple smooth curve,

φ(r) ∈ D ∩ S(r) and φ(0) = a}.

We choose some growth orders of βD(a, r) and ηD(a, r) in r to make them

play the ξ’s role. Our concern in this choice means chiefly that the domains

are shaped asymptotically like a cone. We can show the following theorem

in the similar way to the above Theorem. We say that an increasing function

f(x) is moderately increasing if there exists a constant M > 0 such that

f(x + y) ≤ M(f(x) + f(y)) for any x, y ∈ R.

Theorem 1. If an increasing function Φ(r) is satisfying that

lim sup
r/a→∞

1

log Φ( ra)
ηDc(a, r) = 1,

lim inf
V ol(Sr ∩Dc)

rn−1
> 0,
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and Ψ(r) which is the inverse function of Φ is moderately increasing and

satisfying that

lim sup
t→∞

(log t)2

Ψ(t log t)
< ∞,

then we have

lim inf
t→∞

Ψ(log t)
1

t

∫ t

0
1D(Bs)ds = 0.

Theorem 2. Let D̃ be a subdomain of D satisfying that D̃ ⊂ D. If

0 < lim sup
r/a→∞

1

log r/a
ηD(a, r) < ∞,

and

q > 2(lim inf
r/a→∞

1

log r/a
βD̃c(a, r))

−1 + 2,

then

lim inf
t→∞

(log t)q
1

t

∫ t

0
1D(Bs)ds = ∞.

In Theorem 2 q is larger than one expected from the result of Mountford

and Meyre. It is because in our case the domains are lacking of some

uniformity property unlike cones. With the following condition on D we

can shorten this diference. Define D∗
δ for δ > 0 which is swelled from D by

D∗
δ = {x; d(x,D) < δ|x|} ∪D.

Theorem 3. Assume that there exist D̃ ⊂ D and δ > 0 such that

D̃∗
δ ⊂ D. If

q > 2(lim inf
r/a→∞

1

log r/a
βD̃c(a, r))

−1,

then

lim inf
t→∞

(log t)q
1

t

∫ t

0
1D(Bs)ds = ∞.

Our results are weaker than Mountford’s and Meyre’s. Their method

depends on skew product representation of Euclidean Brownian moitions.
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We point out that in our method we only use estimates on hitting probabil-

ity and do not use the other properties of Brownian motion. Then it is not

essential that the process is a Brownian motion. We can obtain some vari-

ants of the above results for some diffusions and more general state spaces

than Euclidean space, for example, some Riemannian manifolds ([1]).

We here give some simple examples of domains to which the above re-

sults is applicable. It seems difficult to treat them using the skew product

representation of Brownian motions.

We first introduce asymptotic cones. For simplicity we consider the case

that n = 2. We define an asymptotic cone by

C = {x = (r, θ) : 0 < r < ∞, −θr/2 < θ < θr/2 with

θr = α + o(1) as r → ∞.}

Let Dc = C with 0 < α < π. In this case we have ηC(a, r) = c
∫ r
a

dt
t sin θt/2

and βC(a, r) = π
∫ νr
κa

dt
tθt

where c is a root of c(log c − 1) = 1. It is easy to

see that

lim
r/a→∞

ηC(a, r)/ log
r

a
= c sinα/2 and lim

r/a→∞
βC(a, r)/ log

r

a
= απ.

In this case the assumptions of Theorem 1 and Theorem 3 are all satisfied.

We note that if we set C∗
δ = {x = (r, θ) : −(θr + δ)/2 < θ < (θr + δ)/2}, it

plays the same role as D∗
δ in Theorem 3. Then we have a similar result to

the usual cone case.

Second example is a case to which Theorem 1 can easily be applied and

which we call a modified cone. Let ϕ(t) (0 ≤ t < ∞) be a simple smooth

divergent curve and k(t) a continuous increasing function. Define a modified

cone C by

C = {x ∈ Rd : d(x, ϕ(t)) < k(t)|ϕ̇(t)|}.

If

lim inf
t→∞

k(t)|ϕ̇(t)|
|ϕ(t)| > 0 and k(t) = αt + O(1) as t → ∞,

then the assumptions of Theorem 1 are all satisfied and we can take Φ(r) =

rα, that is to say, Ψ(r) = r1/α.
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2. Proof of Theorem 1

First we note key estimates of hitting probabilities. Let τD denote

inf{t > 0 : Bt /∈ D} throughout this paper.

Lemma 2.1. Let D be an unbounded domain in Rn with smooth bound-

ary. If x ∈ Dr = B(r) ∩D, then we have the following etimates.

i) Px(BτDr
∈ D ∩ S(r)) ≤ c1 exp(−β(|x|, r)).

ii) Px(BτDr
∈ D ∩ S(r)) ≥ c2 exp(−η(|x|, r)).

We can see the proofs of these estimates in case of n = 2 in Nevanlinna’s

and Tsuji’s book ([5],[6]). We remark that they can be extended and we

use them to see other properties of the first exit times of Brownian motion

([1]).

We define some notations. Let

rn = e2n(logn+log Ψ(n)) and φ(rn) =
1

ε
rnΨ(log rn).

In this setting we note that for n large enough

rn < φ(rn) < rn+1 and
φ(rn)

rn+1
→ 0 as n → ∞.

We show that

Lemma 2.2.

τDc ◦ θτrn ≥ τφ(rn) ◦ θτrn for infinitely many n, a.s.,

where θt is a shift defined by (ω ◦ θt)(s) = ω(t + s).

Proof. Set En = {τDc ◦ θτrn ≥ τφ(rn) ◦ θτrn}.
We have only to check that Chung’s Borell-Cantelli type lemma ([2]) is

available for our case. Let m > n. By strong Markov property

P (En ∩ Em) = E[1EnP (Em|Fτφ(rn)
)]

= E
[
1EnEBτφ(rn)

[PBτrm
(τD ≥ τφ(rm))]

]
.
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It is easy to see that if f(x) is a bounded measurable function, then, by

considering Poisson kernel,

EBτr
[f(BτR)] = (1 + h(

r

R
))E[f(BτR)] for r < R,

where h(t) satisfies that h(t) → 0 as t → 0.

Then we have

P (En ∩ Em) = (1 + h(
φ(rn)

rm
))P (En)P (Em),

that is to say,

lim
m,n→∞

P (En ∩ Em)

P (En)P (Em)
= 1.

By Lemma 2.1 and the assumption

P (En) = E[PBτrn
(τDc ≥ τφ(rn))]

≥ const.Φ(
φ(rn)

rn
)−1P (Bτrn ∈ Dc)

≥ const.(log rn)−1.

Then ΣnP (En) = ∞ and we have known that Chung’s Borel-Cantelli type

lemma is usable in our case.

Hence there exists a subsequence {r̃n} of {rn} such that the Brownian

motion is not in D from τr̃n to τφ(r̃n). Then making the same argument as

[3] we have

Lτφ(r̃n)
≤ τr̃n

τφ(r̃n)
.

We note, as used later in §3,

P (τr > t) ≤ const.e−
π2

r2
t and P (τr < t) ≤ const.e−

r2

4t .

Hence we have

ΣnP (τrn > r2
n log n) ≤ Σne

−π2 logn < ∞

and

ΣnP (τφ(rn) ≤ 8φ(rn)2/ log n) ≤ Σne
−2 logn < ∞.
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In the same way log τr/2 log r → 1 as r → ∞.

By Borel-Cantelli lemma

Ψ(log τφ(r̃n))Lτφ(r̃n)
≤ Ψ(log τφ(r̃n))

τr̃n
τφ(r̃n)

≤ {Ψ(log φ(r̃n)2) + Ψ(log logn)}(log n)2

Ψ(log r̃n)2
.

Assumption that Ψ is moderately increasing and the assumption on the

growth of Ψ imply that

the last term ≤ const.{Ψ(log r̃2
n) + Ψ(log Ψ(r̃n)2) + Ψ(log logn)}(log n)2

Ψ(log r̃n)2

≤ const.ε a.s.

This completes the proof of Theorem 1. �

3. Proof of Theorem 2 and 3

Let D̃ ⊂⊂ D and o ∈ D̃. Take p < lim infr→∞
1

log r/aβD̃(a, r) and

q/2 > p−1. Tn be the first hitting time to (B(rn) \ B(t1/2)) ∩ D̃, tn = 2n

and rn = t
1/2
n (log tn)q/2. Define Sn = τDc ◦ θTn + Tn.

Γ = S(t
1/2
n ) ∩ D̃c.

Lemma 3.1. As n → ∞

Tn ≤ tn(log tn)q(log log tn) a.s.

Proof. For a Brownian motion starting from a point on Γ Tn ∧ τrn is

the first exit time from the domain B(rn) \ ((B(rn) \B(t1/2)) ∩ D̃).

By Lemma 2.1 we have

P (Tn ≥ τrn) = P (Bτ
t
1/2
n

∈ Γ, τD > τrn)

≤ E[PBτ
t
1/2
n

(τDc ≥ τrn)]

≤ const.(
rn

t
1/2
n

)−p

≤ const.(log tn)−pq.
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Then ΣP (Tn ≥ τrn) < ∞. By Borel-Cantelli lemma there exists n0(ω) such

that for any n > n0(ω), Tn ≤ τrn . It is known that

P (τr > t) ∼ e−
π2t
2r2 .

Hence

P (τrn > tn(log tn)q(log log tn)) ∼ (log tn)−π2/2.

Then we have

ΣnP (τrn > tn(log tn)q(log log tn)) < ∞.

There exists n1(ω) such that for any n > n1(ω),

τrn ≤ tn(log tn)q(log log tn).

We have

Tn ≤ tn(log tn)q(log log tn). �

Lemma 3.2. As n → ∞ we have

Sn − Tn ≥ tn(log tn)−2(log log tn)−3 a.s.

Proof. We may assume that c2 appeared in Lemma 2.1 is less than

1. Choose c such that c−η = c2. Let αn = t
1/2
n (log tn)−1(log log tn)−2.

On the other side hand

P (Sn − Tn ≤ τc(|BTn |+αn) − Tn) = E[PBTn
(τD ≤ τc(|B0|+αn))]

= 1 − E[PBTn
(τD ≥ τc(|B0|+αn))]

≤ 1 − E[(1 +
αn

|BTn |
)−η]

= O(
αn

r
1/2
n

) = O(
1

n(log n)2
).

Using the same estimate for one dimensional Brownian motion as a few lines

above; P (σr < t) ≤ const.e−r2/2t, where σr = inf{t > 0; |Bt| = r} with Bt
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is a one dimensional Brownian motion starting from zero,

P (τrn+αn − Tn ≤ 1

8
α2
n(log log tn)−1)

≤ E[PBTn
(τrn+αn ≤ 1

8
α2
n(log log tn)−1)]

≤ P0(ταn ≤ 1

8
α2
n(log log tn)−1)

≤ P0(σαn/
√

2 ≤ 1

8
α2
n(log log tn)−1)

≤ const.(log tn)−2 = O(
1

n2
).

Since τrn+αn ≤ τc(|BTn |+αn), by Borel-Cantelli lemma again

there exists n2(ω) such that for any n > n2(ω),

Sn − Tn ≥ α2
n(log log tn)−1). �

Now we can make the same argument as [3] to end the proof of Theorem

2. Choose a sequence of integers {n(m)} satisfying that

tm(n) ≤
tn

2(log tn)q(log log tn)
≤ 2tm(n).

Then from Lemma 3.1 it is easy to check that Tm(n) ≤ tn
2 .

We first note that

tnLtn ≥ Sm(n) ∧ tn − Tm(n).

If Sm(n) ≥ tn, then Ltn ≥ 1
2 .

If Sm(n) < tn, from Lemma 3.2 we have

tnLtn ≥ Sm(n) − Tm(n)

≥ tm(n)(log tm(n))
−2(log log tm(n))

−3

≥ tn
4(log tn)q(log log tn)

(log
tn

2(log tn)q(log log tn)
)−2

×(log log
tn

2(log tn)q(log log tn)
)−3.
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Hence if q′ > q − 2, we have

there exists n3(ω) such that for any n > n3(ω),

(log tn)q
′
Ltn ≥ const. > 0. �

As for Theorem 3 we have only to note the following lemma playing the

same role to Lemma 3.2.

Lemma 3.3. Under the assumption of Theorem 3 we have

Sn − Tn ≥ tn(log log tn)−2 as n → ∞ a.s.

The proof is same as Lemma 3.4 in [3].
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