On a Zelevinsky Theorem and the Schur Indices of the Finite Unitary Groups

By Zyozyu Ohmori

Abstract. Let G be the finite unitary group $U_n(\mathbf{F}_q)$ over a finite field \mathbf{F}_q of characteristic p. Let U be a Sylow p-subgroup of G. We prove that, for any irreducible character χ of G that is contained in a certain class, there is a linear character λ of U such that $(\lambda^G, \chi)_G = 1$. As an application, we shall determine the local Schur indices of an irreducible character of G which belongs to such class.

1. Introduction

Let \mathbf{F}_q be a finite field with q elements of characteristic p. In [4] I. M. Gel'fand and M. I. Graev proved:

THEOREM A (Gel'fand-Graev [4, Theorems 1, 2]). Let H be the special linear group $SL_n(\mathbf{F}_q)$ over \mathbf{F}_q , and let U be the upper-triangular maximal unipotent subgroup of H. Then

(i) For any irreducible character χ of H, there is a linear character λ of U such that $(\lambda^H, \chi)_H \neq 0$.

(ii) If λ is a linear character of U in "general position", then λ^H is multiplicity-free.

It is well known that the assertion (ii) of Theorem A holds for any finite group of Lie type (T. Yokonuma [22], R. Steinberg [21, Theorem 49]; cf. R. W. Carter [1, Theorem 8.1.3]). But the assertion (i) of Theorem A does not hold generally for a finite group of Lie type (e.g. for $U_n(\mathbf{F}_q)$, $Sp_{2n}(\mathbf{F}_q)$, etc.).

¹⁹⁹¹ Mathematics Subject Classification. 20G05.

In [23] A. V. Zelevinsky proved:

THEOREM B (Zelevinsky [23, 12.5]). Let H be the general linear group $GL_n(\mathbf{F}_q)$ and let U be the upper-triangular maximal unipotent subgroup of H. Then, for any irreducible character χ of H, there is a linear character λ of U such that $(\lambda^H, \chi)_H = 1$.

As an application, Zelevinsky proved:

THEOREM C (Zelevinsky [23, 12.6], A. A. Kljačko [10]; cf. [15] for $p \neq 2$). The Schur index $m_{\mathbf{Q}}(\chi)$ of any irreducible character χ of $GL_n(\mathbf{F}_q)$ with respect to \mathbf{Q} is equal to one.

The purpose of this paper is to show that Zelevinsky's Theorem B holds for a certain class of irreducible characters of $U_n(\mathbf{F}_q)$ (Theorem 1), and, as an application, we show that, for any irreducible character χ of $U_n(\mathbf{F}_q)$ contained in such class, we can determine the local Schur indices of χ in principle (Theorem 4).

As to the Schur indices of the irreducible characters of $G = U_n(\mathbf{F}_q)$, it is known that $m_{\mathbf{Q}}(\chi) \leq 2$ for any irreducible character χ of G (R. Gow [5]) and that, for any irreducible character χ of G, we have $m_{\mathbf{Q}_l}(\chi) = 1$ for any prime number $l \neq p$ ([16]; for p = 2, we use some properties of the generalized Gelfand-Graev characters of G [9]). For $n \leq 5$, all the local Schur indices of every irreducible character of G are completely determined ([17, 6]). Our result here is a certain contribution to the complete determination of the local Schur indices of all the irreducible characters of G. (In another paper [19], we give some sufficient conditions subject for that $m_{\mathbf{Q}}(\chi) = 1$.)

As to the use of Kawanaka's generalized Gelfand-Graev characters of a finite group of Lie type for the study of the rationality-properties of the irreducible character of such a group, we refer [18].

2. The unipotent values

2.1. Partitions

Let *m* be a positive integer. Let \mathcal{P}_m be the set of all partitions of *m*. If μ is a partition of *m*, then we write $|\mu| = m$. We denote by 0 the unique partition of the number 0. \mathcal{P}_m has the lexicographical ordering.

If $\mu = (m_1, \ldots, m_s)$ is a partition of m > 0 and $\mu' = (m'_1, \ldots, m'_{s'})$ is a partition of m' > 0, then we denote by $\mu + \mu'$ the partition $(m_1, \ldots, m_s, m'_1, \ldots, m'_{s'})$ of m + m'. If $\mu = (m_1, m_2, \ldots, m_s)$ is a partition of m such that $m_1 \ge m_2 \ge \cdots \ge m_s \ge 0$ and $\mu' = (m'_1, m'_2, \ldots, m'_s)$ is a partition of m' such that $m'_1 \ge m'_2 \ge \cdots \ge m'_s \ge 0$, then we denote by $\mu \cdot \mu'$ the partition $(m_1 + m'_1, m_2 + m'_2, \ldots, m_s + m'_s)$ of m + m'. If d, v are positive integers and if $\pi = (p_1, p_2, \ldots, p_s)$ is a partition of v, then we denote by $d \cdot \pi$ the partition $(dp_1, dp_2, \ldots, dp_s)$ of dv. If μ is a partition of m, then $\tilde{\mu}$ will denote the conjugate partition of μ .

Let S_m denote the symmetric group of order m!. Then, as is well known, the conjugacy classes of S_m and the irreducible characters of S_m can be naturally parametrized by the partitions of m. For $\lambda, \rho \in \mathcal{P}_m$, let χ^{λ}_{ρ} or $\chi^{\lambda}(\rho)$ denote the value of the irreducible character χ^{λ} of S_m corresponding to λ at the class of S_m corresponding to ρ . It is well known that $\chi^{(m)} = 1_{S_m}$, $\chi^{(1^m)} = \text{sgn and } \chi^{\tilde{\lambda}} = \text{sgn} \cdot \chi^{\lambda}$ and it is easy to see by induction on v that $\text{sgn}(d \cdot \pi) = (-1)^{(d-1)v} \text{sgn}(\pi), \pi \in \mathcal{P}_v.$

2.2. The irreducible characters of $U_n(\mathbf{F}_q)$

Let $G = U_n(\mathbf{F}_q)$. Then, as to the character theory, by thanks to the truth of Ennola conjecture ([3]; R. Hotta and T. A. Springer [8], G. Lusztig and B. Srinivasan [13], G. Lusztig, D. Kazhdan, N. Kawanaka [9]), we can use V. Ennola's formulation in [3].

Let s be a positive integer. Then a set $g = \{k, k(-q), k(-q)^2, \ldots, k(-q)^{s-1}\}$ of integers will be called an s-simplex with the roots $k(-q)^i, 0 \leq i \leq s-1$, if the $k(-q)^i$ are all distinct modulo $q - (-1)^s$; we write d(g) = s. Let \mathcal{Y} be the set of all s-simplexes for $s \geq 1$. Put $\mathcal{P} = \bigcup_{m \geq 0} \mathcal{P}_m(\mathcal{P}_0 = \{0\})$. Let X be the set of functions $\nu \colon \mathcal{Y} \to \mathcal{P}$ such that

$$\sum_{g\in\mathcal{Y}}|\nu(g)|d(g)=n.$$

For $\nu \in X$, set (formally)

$$\chi_{\nu} = (\cdots g^{\nu(g)} \cdots) = (g_1^{\nu_1} \cdots g_N^{\nu_N}),$$

where g_1, \dots, g_N are all the $g \in \mathcal{Y}$ such that $\nu(g) \neq 0$ and, for $1 \leq i \leq N$, $\nu_i = \nu(g_i)$. Then the $\chi_{\nu}, \nu \in X$, parametrize the irreducible characters of G.

For $\nu \in X$, we identify χ_{ν} with the irreducible character of G corresponding to it.

Let $Q_{\rho}^{\lambda}(q)$ be the Green polynomial of $GL_n(\mathbf{F}_q)$ ([7]). For $\pi = (1^{r_1}2^{r_2}3^{r_3}\cdots) \in \mathcal{P}_v$, put $z_{\pi} = 1^{r_1}r_1!2^{r_2}r_2!3^{r_3}r_3!\cdots$ If n_1,\ldots,n_N are positive integers, then we put $\mathcal{P}_{(n_1,\ldots,n_N)} = \mathcal{P}_{n_1} \times \cdots \times \mathcal{P}_{n_N}$.

PROPOSITION 1. Let $\chi = (g_1^{\nu_1} \cdots g_N^{\nu_N})$ be any irreducible character of $G = U_n(\mathbf{F}_q)$. For $1 \leq i \leq N$, put $d_i = d(g_i)$ and $v_i = |\nu_i|$. Let λ be a partition of n, and let u_{λ} be any unipotent element of G of type λ . Then we have:

$$\chi(u_{\lambda}) = \eta(\chi) \sum_{(\pi_{1},...,\pi_{N})\in\mathcal{P}_{(v_{1},...,v_{N})}} \frac{1}{z_{\pi_{1}}\cdots z_{\pi_{N}}} \chi_{\pi_{1}}^{\nu_{1}}\cdots \chi_{\pi_{N}}^{\nu_{N}} \times Q_{d_{1}\cdot\pi_{1}+\cdots+d_{N}\cdot\pi_{N}}^{\lambda}(-q),$$

where $\eta(\chi) = \pm 1$ such that $\chi(u_{\lambda}) > 0$ if $\lambda = (1^n)$.

REMARK. We remark here about the relation between Ennola's parametrization of the irreducible characters of $G = U_n(\mathbf{F}_q)$ and G. Lusztig's parametrization ([11, 12]; also see [1, pp. 391–2]). Let $\boldsymbol{G} = GL_n(\bar{\boldsymbol{F}}_q)$, where \bar{F}_q is an algebraic closure of F_q , and let $F' \colon G \to G$ be the endomorphism of G given by $F'([g_{ij}]) = {}^t[g_{ij}^q]^{-1}$ for $[g_{ij}] \in G$. Then F' is the Frobenius map relative to some F_q -structure on G, and the group $G(F_q) = G^{F'}$ of F-fixed points of G is isomorphic to G. The dual group $G^{\#}$ of G is isomorphic to **G**. Let $\chi = (g_1^{\nu_1} \cdots g_N^{\nu_N})$ be an irreducible character of G. Then χ is a unipotent character of G if and only if N = 1, $d(q_1) = 1$ and 0 is the root of g_1 . χ is a semisimple character of G (i.e. $p \nmid \chi(1)$) if and only if, for $1 \leq i \leq N$, $\nu_i = (v_i)$ $(v_i = |\nu_i|)$. And χ is a regular character of G (i.e. an irreducible component of the Gelfand-Graev character Γ_G of G) if and only if, for $1 \leq i \leq N$, $\nu_i = (1^{v_i})$. Generally, the dual class $(g_1^{(1^{v_1})} \cdots g_N^{(1^{v_N})})$ determines the unique semisimple conjugacy class (s) of $G = G^{\#}(F_q)$ (see [3, pp. 6–7]). The partitions ν_1, \ldots, ν_N determine a unique unipotent character ρ of $H(s) = (Z_{C^{\#}}(s))^{\#}(F_q) (Z_{C^{\#}}(s))$ is the centralizer of s in $G^{\#}$). We see easily that $\chi(1) = \chi_s(1)\rho(1)$, where χ_s is the semisimple character $(g_1^{(v_1)} \cdots g_N^{(v_N)})$. This may be regarded as the "Jordan decomposition" of χ . Thus we can regard the mapping $(s, \rho) \to \chi$ as Lusztig's parametrization mapping for the irreducible characters of G(cf. [11]).

3. Linear characters of U

3.1.

We say that a partition μ of n is involutive if the parts of μ are arranged so that $\mu = (n_1, n_2, \ldots, n_s, n_{s+1}, n_s, \ldots, n_2, n_1)$ (possibly $n_{s+1} = 0$). For example, if n = 4, then (4), (2²), (21²) and (1⁴) are the involutive partitions of 4 and (31) is not involutive.

Let $\boldsymbol{G} = GL_n(\bar{\boldsymbol{F}}_q)$, and let $F: \boldsymbol{G} \to \boldsymbol{G}$ be the endomorphism of \boldsymbol{G} given by $F([g_{ij}]) = w_0^t [g_{ij}^q]^{-1} w_0$, where $w_0 = \begin{bmatrix} 0 & 1 \\ & 1 \\ & \ddots & \\ 1 & & 0 \end{bmatrix}$. Then $\boldsymbol{G} = \mathbf{G} \cdot \mathbf{F}$

 $\boldsymbol{G}^{F} \simeq U_n(\boldsymbol{F}_q).$

Let \boldsymbol{U} be the upper triangular maximal unipotent subgroup of \boldsymbol{G} . Then \boldsymbol{U} is F-stable and $\boldsymbol{U} = \boldsymbol{U}^F$ is a Sylow p-subgroup of \boldsymbol{G} . For $1 \leq k \leq n-1$, set $\boldsymbol{U}_k = \{\boldsymbol{u} = [u_{ij}] \in \boldsymbol{U} \mid u_{i,i+1} = 0 \text{ for } i \neq k \text{ and } u_{ij} = 0 \text{ if } j - i \geq 2\}$. Then, for $1 \leq k \leq n-1$, we have $F(\boldsymbol{U}_k) = \boldsymbol{U}_{n-k}$, so F acts on $\Delta = \{1, 2, \ldots, n-1\}$ by $F(\boldsymbol{U}_k) = \boldsymbol{U}_{F(k)}$. Let I be the set of orbits of F on Δ . Let \boldsymbol{U} . be the derived group of \boldsymbol{U} . Then $\boldsymbol{U}/\boldsymbol{U} = \prod_{k \in \Delta} \boldsymbol{U}_k$. For $i \in I$, set $\boldsymbol{U}_i = \prod_{k \in i} \boldsymbol{U}_k (\subset \boldsymbol{U}/\boldsymbol{U})$. Then we have $\boldsymbol{U}^F/\boldsymbol{U}$. $F = (\boldsymbol{U}/\boldsymbol{U})^F = \prod_{i \in I} \boldsymbol{U}_i^F$. For $i \in I$, we have $\boldsymbol{U}_i^F \simeq \boldsymbol{F}_{q^2}$ or \boldsymbol{F}_q .

Let $\mu = (n_1, \ldots, n_s, n_{s+1}, n_s, \ldots, n_1)$ be any involutive partition of n, and put

$$\boldsymbol{L}_{\mu} = \begin{cases} \begin{bmatrix} A_{1} & & & & 0 \\ & \ddots & & & \\ & & A_{s} & & \\ & & & A_{s+1} & & \\ & & & & A'_{s} & & \\ 0 & & & & & \ddots & \\ 0 & & & & & A'_{1} \end{bmatrix} \mid A_{i}, A'_{i} \in GL_{n_{i}}(\bar{\boldsymbol{F}}_{q}), \\ 1 \leq i \leq s, A_{s+1} \in GL_{n_{s+1}}(\bar{\boldsymbol{F}}_{q}) \end{cases}$$

 $(A_{s+1} \text{ does not occur in the above expression if } n_{s+1} = 0)$. Put $P_{\mu} = L_{\mu}U$. Then P_{μ} is an *F*-stable parabolic subgroup of *G* and L_{μ} is an *F*-stable Levi subgroup of P_{μ} . We put $P_{\mu} = P_{\mu}^{F}$ and $L_{\mu} = L_{\mu}^{F}$. Let ϕ be a linear character of U. Then ϕ can be regarded as a character of U/U. $(U = U \cdot F)$. We say that ϕ is of type μ if, for $i \in I$, ϕ is non-trivial on $U_i = U_i^F$ if $U_i \subset L_{\mu}$ and trivial on U_i if $U_i \not\subset L_{\mu}$. Conversely, it will be clear that if ϕ is any linear character of U, then there is uniquely determined involutive partition μ of n such that ϕ is of type μ .

Let ϕ be any linear character of U of type μ . Let Γ_{μ} be the Gelfand-Graev character of L_{μ} . Then we have

$$\phi^G = \operatorname{Ind}_{P_\mu}^G(\Gamma_\mu),$$

where we regard Γ_{μ} as a character of P_{μ} through the natural map $P_{\mu} \rightarrow P_{\mu}/V_{\mu} = L_{\mu} (V_{\mu} \text{ is the unipotent radical of } P_{\mu} \text{ and } V_{\mu} = V_{\mu}^{F}).$

4. Induced characters of G

4.1.

Let $\mathbf{G} = GL_n(\bar{\mathbf{F}}_q)$ and let $F': \mathbf{G} \to \mathbf{G}$ be the endomorphism of \mathbf{G} given by $F'([g_{ij}]) = {}^t[g_{ij}^q]^{-1}$. Then F' is the Frobenius map of \mathbf{G} corresponding to some \mathbf{F}_q -rational structure on \mathbf{G} . We have $\mathbf{G}^{F'} \simeq U_n(\mathbf{F}_q)$.

Let \mathbf{T}_0 be the diagonal maximal torus of \mathbf{G} . Then \mathbf{T}_0 is F'-stable. Let $W = W_{\mathbf{G}} = N_{\mathbf{G}}(\mathbf{T}_0)/\mathbf{T}_0$, where $N_{\mathbf{G}}(\mathbf{T}_0)$ is the normalizer of \mathbf{T}_0 in \mathbf{G} . Then F' acts on W trivially. W can be naturally identified with the symmetric group S_n . The $\mathbf{G}^{F'}$ -conjugacy classes of F-stable maximal tori of \mathbf{G} can be parametrized by the conjugacy classes of $W = S_n$, and the latter can be parametrized by the partitions of n. For $\rho \in \mathcal{P}_n$, let \mathbf{T}_ρ denote one of the F'-stable maximal tori of \mathbf{G} corresponding to ρ .

Let ρ be a partition of n, and suppose that $\mathbf{T}_{\rho} = y\mathbf{T}_{0}y^{-1}, y \in \mathbf{G}$. Put $w = y^{-1}F'(y) \mod \mathbf{T}_{0} \in W$. Then ad y induces an identification: $(F' \text{ on } \mathbf{T}_{\rho}) = (\text{ad } w \circ F' \text{ on } \mathbf{T}_{0})$, so we have:

$$|\boldsymbol{T}_{\rho}^{F'}| = |\boldsymbol{T}_{\rho}^{\mathrm{ad}\ w \circ F'}| = |c_{\rho}(-q)|,$$

where if $\rho = (1^{r_1} 2^{r_2} 3^{r_3} \cdots)$, then $c_{\rho}(q) = (q-1)^{r_1} (q^2-1)^{r_2} (q^3-1)^{r_3} \cdots$.

In the following, if S is a maximal torus of a connected reductive group M, then we write $W_M(S) = N_M(S)/S$.

Let ρ be a partition of n, and let s_{ρ} be an element of S_n contained in the class of S_n corresponding to ρ . Then $W_{\boldsymbol{G}}(\boldsymbol{T}_{\rho})^{F'}$ is isomorphic to $W_{\boldsymbol{G}}(\boldsymbol{T}_0)^{\mathrm{ad}\ w \circ F'} = Z_{S_n}(s_{\rho})$, so we have

$$|W_{\boldsymbol{G}}(\boldsymbol{T}_{\rho})^{F'}| = |Z_{S_n}(s_{\rho})| = z_{\rho}.$$

Let $F: \mathbf{G} \to \mathbf{G}$ be as in §3. Then F acts on W by ad w_0 , and the \mathbf{G}^F -conjugacy classes of F-stable maximal tori of \mathbf{G} can be parametrized by the F-conjugacy classes in S_n ([2, p. 107]). For $w \in W$, let $\mathbf{T}(w)$ denote one of the F-stable maximal tori of \mathbf{G} corresponding to w.

Let $w \in W$, and suppose that $T(w) = zT_0z^{-1}$ with $z^{-1}F(z) \mod T_0 = w$. Then ad z induces an identification: $(F \text{ on } T(w)) = (\text{ad } w \circ F \text{ on } T_0)$, so we have

$$|\boldsymbol{T}(w)^{F}| = |\boldsymbol{T}_{0}^{\mathrm{ad}\ w \circ F}| = |\boldsymbol{T}_{0}^{\mathrm{ad}\ w w_{0} \circ F'}| = |\boldsymbol{T}_{\rho(w w_{0})}^{F'}|$$

where $\rho(ww_0)$ is the partition of *n* corresponding to the class of $W = S_n$ containing ww_0 .

In the following, if M is an F-stable (resp. F'-stable) reductive subgroup of G, then we denote by $\sigma(M)$ (resp. by $\sigma'(M)$) the F_q -rank of M with respect to the F_q -rational structure on M determined by F (resp. by F'). Then it is easy to see that, for $w \in W$, $\sigma(T(w)) = \sigma'(T_{\rho(ww_0)})$.

Let ρ be any partition of n. Then it is easy to see that $\sigma'(\mathbf{T}_{\rho})$ is equal to the number of even parts of ρ . So we have

$$(-1)^{\sigma'(\boldsymbol{T}_{\rho})} = \operatorname{sgn}(\rho).$$

We have $\sigma(\mathbf{G}) = \sigma(\mathbf{T}_0) = [n/2]$, the integral part of n/2, so we have

$$(-1)^{\sigma(G)-\sigma(T(w))} = (-1)^{[n/2]} \operatorname{sgn}(\rho(ww_0)), \quad w \in W.$$

4.2. Green function

Let M be a connected, reductive algebraic group, defined over F_q , and let $F'': M \to M$ be the corresponding Frobenius endomorphism. If S is an F''-stable maximal torus of M and θ is a character of $S^{F''}$, then we denote by $R_S^M(\theta)$ the Deligne-Lusztig virtual character of $M^{F''}$, and by $Q_{S,M}$ the corresponding Green function. We shall often consider $Q_{S,M}$ as a function on all $M^{F''}$ by putting $Q_{S,M}(x) = 0$ whenever x is not unipotent. Now assume that $\mathbf{M} = \mathbf{G}$ with F'' = F or F'. Let x be an element of \mathbf{G} such that $x^{-1}F(x) = w_0$. Then ad x induces a bijection from $\mathbf{G}^{F'}$ onto \mathbf{G}^{F} , and we have $Q_{\mathbf{T}_{\rho(ww_0)},\mathbf{G}}(g) = Q_{\mathbf{T}(w),\mathbf{G}}(\operatorname{ad} x(g)), g \in \mathbf{G}^{F'}$. Let λ be a partition of n, and let u_{λ} (resp. u'_{λ}) denote a unipotent element of \mathbf{G}^{F} (resp. of $\mathbf{G}^{F'}$) of type λ . Then, by the result of Hotta-Springer-Kawanaka ([8], [9]), we have

$$Q_{\boldsymbol{T}(ww_0),\boldsymbol{G}}(u_{\lambda}) = Q_{\rho(w)}^{\lambda}(-q) = Q_{\boldsymbol{T}_{\rho(w)},\boldsymbol{G}}(u_{\lambda}'), \quad w \in W.$$

4.3. The Gelfand-Graev character

Let $\Gamma_{\boldsymbol{G}}$ be the Gelfand-Graev character of $\boldsymbol{G}^{F'}$ (let ϕ' be the linear character of $U' = (\operatorname{ad} x)^{-1}(U)$ corresponding (via the bijection ad $x: \boldsymbol{G}^{F'} \to \boldsymbol{G}^F$ in 4.2) to a linear character ϕ of U of type (n); then $\Gamma_{\boldsymbol{G}} = \operatorname{Ind}_{U'}^{\boldsymbol{G}^{F'}}(\phi')$). Then, by Theorem 10.7 of [2], we have

$$\Gamma_{\boldsymbol{G}} = \sum_{(\boldsymbol{T},\boldsymbol{\theta}) \bmod \boldsymbol{G}^{F'}} \frac{(-1)^{\sigma'(\boldsymbol{G}) - \sigma'(\boldsymbol{T})}}{(R_{\boldsymbol{T}}^{\boldsymbol{G}}(\boldsymbol{\theta}), R_{\boldsymbol{T}}^{\boldsymbol{G}}(\boldsymbol{\theta}))_{\boldsymbol{G}^{F'}}} R_{\boldsymbol{T}}^{\boldsymbol{G}}(\boldsymbol{\theta}),$$

where the sum is taken over all $\boldsymbol{G}^{F'}$ -conjugacy classes of pairs (\boldsymbol{T}, θ) of F'stable maximal tori \boldsymbol{T} of \boldsymbol{G} and characters θ of $\boldsymbol{T}^{F'}$. Let ρ be any partition
of n. Then, by using [2, Theorem 6.8], we see that

$$\sum_{\theta \mod W_{\boldsymbol{G}}(\boldsymbol{T}_{\rho})^{F'}} \frac{1}{(R_{\boldsymbol{T}_{\rho}}^{\boldsymbol{G}}(\theta), R_{\boldsymbol{T}_{\rho}}^{\boldsymbol{G}}(\theta))_{\boldsymbol{G}^{F'}}} = \frac{|\boldsymbol{T}_{\rho}^{F'}|}{z_{\rho}}.$$

Thus we get

(1)
$$\Gamma_{\boldsymbol{G}} = (-1)^{[n/2]} \sum_{\rho \in \mathcal{P}_n} \operatorname{sgn}(\rho) \frac{|\boldsymbol{T}_{\rho}^{F'}|}{z_{\rho}} Q_{\boldsymbol{T}_{\rho},\boldsymbol{G}}.$$

4.4. Degenerate linear characters

Let $\mu = (n_1, \ldots, n_s, n_{s+1}, n_s, \ldots, n_1)$ be any involutive partition of n, and let ϕ be any linear character of $U = \mathbf{U}^F$ of type μ . We assume that $\mu \neq (n)$. Let $W_{\mu} = W_{\boldsymbol{L}_{\mu}}(\boldsymbol{T}_0)$ (a subgroup of $W = W_{\boldsymbol{G}}(\boldsymbol{T}_0)$). Then we have

$$W_{\mu} = S_{\mu} = S_{n_1} \times \cdots \times S_{n_s} \times S_{n_{s+1}} \times S_{n_s} \times \cdots \times S_{n_1}.$$

By [2, Theorem 10.7, Proposition 8.2], we have

$$\phi^{\boldsymbol{G}^{F}} = \sum_{\substack{\boldsymbol{T} \mod L_{\mu} \\ (\boldsymbol{T} \subset \boldsymbol{L}_{\mu})}} (-1)^{\sigma(\boldsymbol{G}) - \sigma(\boldsymbol{T})} \frac{|\boldsymbol{T}^{F}|}{|W_{\boldsymbol{L}_{\mu}}(\boldsymbol{T})^{F}|} Q_{\boldsymbol{T},\boldsymbol{G}},$$

where the sum is taken over all L_{μ} -conjugacy classes of F-stable maximal tori T of L_{μ} .

F acts on $W_{L_{\mu}}(T_0) = S_{\mu}$ by ad w_0 . The L_{μ} -conjugacy classes of Fstable maximal tori of L_{μ} can be parametrized by the F-conjugacy classes of S_{μ} . S_{μ} acts on $S_{\mu}w_0$ by conjugations. We see that, for $w_1, w_2 \in S_{\mu}, w_1$ is F-conjugate to w_2 in S_{μ} if and only if w_1w_0 is S_{μ} -conjugate to w_2w_0 in $S_{\mu}w_0$.

Let w be an element of S_{μ} , and suppose that $\mathbf{T}(w) = y\mathbf{T}_{0}y^{-1}, y \in \mathbf{L}_{\mu} (y^{-1}F(y) \mod \mathbf{T}_{0} = w)$. Then ad y induces an identification: (F on $W_{\mathbf{L}_{\mu}}(\mathbf{T}(w))$) = (ad $w \circ F$ on $W_{\mathbf{L}_{\mu}}(\mathbf{T}_{0})$). Therefore we have:

$$|W_{L_{\mu}}(T(w))^{F}| = |W_{\mu}^{\text{ad } w \circ F}|$$

= $|W_{\mu}^{\text{ad } w w_{0} \circ F'}|$
= $|Z_{W_{\mu}}(ww_{0})|$ (F' = id. on W_{μ})
= $\frac{|W_{\mu}|}{|K_{W_{\mu}w_{0}}(ww_{0})|}$,

where $K_{W_{\mu}w_0}(ww_0)$ is the W_{μ} -orbit of ww_0 in $W_{\mu}w_0$ under the conjugate action of W_{μ} .

Therefore we have

$$\phi^{G^{F}} = \sum_{\substack{ww_{0} \mod W \\ (w \in W_{\mu})}} (-1)^{\sigma(G) - \sigma(T(w))} \frac{|T(w)^{F}|}{|W_{L_{\mu}}(T(w))^{F}|} Q_{T(w),G},$$

so, if ϕ' is the linear character of $U' = (\text{ad } x)^{-1}(U)$ corresponding to the linear character ϕ of U, we have

where, for $\rho \in \mathcal{P}_n$, s_ρ is an element of S_n contained in the class of S_n corresponding to ρ and $K_{S_n}(s_\rho)$ denotes the class of s_ρ in S_n .

Let us express the $|K_{S_n}(s_{\rho}) \cap S_{\mu}w_0|/|S_{\mu}|$ in terms of characters of S_n . Let $H = \langle S_{\mu}, w_0 \rangle$. Then $(H : S_{\mu}) = 2$ (note that $w_0 \notin S_{\mu}$ and $w_0 S_{\mu}w_0 = S_{\mu}$). Let ξ be the linear character of H defined by

$$\xi(x) = \begin{cases} 1 & \text{if } x \in S_{\mu}, \\ -1 & \text{if } x \in H - S_{\mu}. \end{cases}$$

Let

$$\chi = 1_H - \xi.$$

Then we have

$$\chi^{S_n}(s_\rho) = \frac{|K_{S_n}(s_\rho) \cap S_\mu w_0|}{|S_\mu|} |Z_{S_n}(s_\rho)|.$$

It is well known that one has:

$$1_{S_{\mu}}^{S_{n}} = \chi^{\mu} + \sum_{\nu > \mu} k_{\mu}^{\nu} \chi^{\nu},$$

where the k^{ν}_{μ} are certain non-negative integers. As $1^{S_n}_{S_{\mu}} = 1^{S_n}_{H} + \xi^{S_n}$, we see that the irreducible components of $1^{S_n}_{H}$ and ξ^{S_n} are contained in $1^{S_n}_{S_{\mu}}$; we have

$$\chi^{S_n} = 1_H^{S_n} - \xi^{S_n}$$
$$= \epsilon_\mu \chi^\mu + \sum_{\nu > \mu} c_\mu^\nu \chi^\nu$$

where $\epsilon_{\mu} = 1$ or -1 according as χ^{μ} is contained in $1_{H}^{S_{n}}$ or $\xi^{S_{n}}$ respectively and the c_{μ}^{ν} are some integers. Thus we have:

(2)
$$\phi'^{G^{F'}} = \sum_{\rho \in \mathcal{P}_n} (-1)^{[n/2]} \operatorname{sgn}(\rho) \left(\epsilon_\mu \chi_\rho^\mu + \sum_{\nu > \mu} c_\mu^\nu \chi_\rho^\nu \right) \frac{|T_\rho^{F'}|}{z_\rho} Q_{T_\rho,G}$$

5. Inner products

5.1. Some preliminaries

Let *m* be a positive integer, and let x_1, \ldots, x_m be *m* different variables over Q. For a partition $\lambda = (l_1, \ldots, l_m)$ of *m* with $l_1 \ge \cdots \ge l_m \ge 0$, set

$$s_{\lambda}(x_1,\ldots,x_m) = \frac{\det[x_i^{l_j+m-j}]_{1 \leq i,j \leq m}}{\det[x_i^{m-j}]_{1 \leq i,j \leq m}},$$

which we call the S-function in the variables x_1, \ldots, x_m corresponding to λ (see Macdonald [14, p. 24]).

Let m_1, \ldots, m_k be positive integers such that $m_1 + \cdots + m_k = m$, and, for $1 \leq i \leq k$, let λ_i be a partition of m_i . Let $x_1, \ldots, x_{m_1}, y_1, \ldots, y_{m_2}, \ldots, z_1, \ldots, z_{m_k}$ be independent variables. Suppose that

$$s_{\lambda_1}(x_1,\ldots,x_{m_1})s_{\lambda_2}(y_1,\ldots,y_{m_2})\cdots s_{\lambda_k}(z_1,\ldots,z_{m_k})$$

= $\sum_{\lambda\in\mathcal{P}_m}c_{\lambda_1\lambda_2\cdots\lambda_k}^\lambda s_\lambda(x_1,\ldots,x_{m_1};y_1,\ldots,y_{m_2};\ldots;z_1,\ldots,z_{m_k}),$

where $c_{\lambda_1 \lambda_2 \cdots \lambda_k}^{\lambda}$'s are some non-negative integers. Then we have ([14, I, (7.3)]):

$$\operatorname{Ind}_{S_{m_1}\times S_{m_2}\times\cdots\times S_{m_k}}^{S_m}(\chi^{\lambda_1}\times\chi^{\lambda_2}\times\cdots\times\chi^{\lambda_k})=\sum_{\lambda\in\mathcal{P}_m}c_{\lambda_1\lambda_2\cdots\lambda_k}^\lambda\chi^\lambda.$$

LEMMA 1 (see, e.g., [15, (2.4)]). If $\lambda > \lambda_1 \cdot \lambda_2 \cdots \lambda_k$ or $\lambda < \lambda_1 + \lambda_2 + \cdots + \lambda_k$, then we have $c_{\lambda_1 \lambda_2 \cdots \lambda_k}^{\lambda} = 0$, and, if $\lambda = \lambda_1 \cdot \lambda_2 \cdots \lambda_k$ or $\lambda = \lambda_1 + \lambda_2 + \cdots + \lambda_k$, then we have $c_{\lambda_1 \lambda_2 \cdots \lambda_k}^{\lambda} = 1$.

By the Frobenius reciprocity law, we get:

$$\chi^{\lambda} \mid S_{m_1} \times \dots \times S_{m_k} = \sum_{(\lambda_1, \dots, \lambda_k) \in \mathcal{P}_{m_1} \times \dots \times \mathcal{P}_{m_k}} c^{\lambda}_{\lambda_1 \dots \lambda_k} \chi^{\lambda_1} \times \dots \times \chi^{\lambda_k}.$$

5.2.

Let $G = \mathbf{G}^{F'} \simeq U_n(\mathbf{F}_q)$. Let $\chi = (g_1^{\nu_1} \cdots g_N^{\nu_N})$ be any irreducible character of G. For $1 \leq i \leq N$, put $d_i = d(g_i)$, $v_i = |\nu_i|$. For a partition ρ of n, we put $Q_{\rho,G} = Q_{\mathbf{T}_{\rho},\mathbf{G}}$. Then, by Proposition 1, by the formula (1) and by the orthogonality relations for the Green functions of G, we have:

$$(\Gamma_{\boldsymbol{G}}, \chi)_{G} = (-1)^{[n/2] + \sum_{i=1}^{N} (d_{i}-1)v_{i}} \eta(\chi) \prod_{i=1}^{N} (\chi^{\tilde{\nu}_{i}}, 1_{S_{v_{i}}})_{S_{v_{i}}}$$
$$= \begin{cases} 1 & \text{if } \nu_{i} = (1^{v_{i}}) \text{ for } 1 \leq i \leq N, \\ 0 & \text{if } \nu_{i} \neq (1^{v_{i}}) \text{ for some } i. \end{cases}$$

This is a known result (see the remark in $\S 2.2$).

Next, suppose that ϕ is any linear character of $U = U^F$, of type μ , and suppose that $\mu \neq (n)$. Let ad $x: G \to G^F$ be an isomorphism as before $(x^{-1}F(x) = w_0)$, and let ϕ' be the linear character of $U' = (\text{ad } x)^{-1}(U)$ corresponding to ϕ via ad x. Then, by Proposition 1 and the formula (2), we get:

$$(\phi'^G, \chi)_G = (-1)^{[n/2]} \sum_{\rho \in \mathcal{P}_n} \operatorname{sgn}(\rho) \left(\epsilon_\mu \chi^\mu_\rho + \sum_{\nu > \mu} c^\nu_\mu \chi^\nu_\rho \right) \frac{|c_\rho(-q)|}{z_\rho} \times \eta(\chi) \\ \times \sum_{\substack{(\pi_1, \dots, \pi_N) \in \mathcal{P}_{v_1} \times \dots \times \mathcal{P}_{v_N} \\ \sigma = d_1 \cdot \pi_1 + \dots + d_N \cdot \pi_N}} \frac{1}{z_{\pi_1} \cdots z_{\pi_N}} \chi^{\nu_1}_{\pi_1} \cdots \chi^{\nu_N}_{\pi_N} (Q_{\rho, G}, Q_{\sigma, G})_G.$$

By the orthogonality relations for the Green functions, we see that the latter expression of the above equality is equal to

$$(-1)^{[n/2]} \eta(\chi) \sum_{\substack{\rho = d_1 \cdot \pi_1 + \dots + d_N \cdot \pi_N \\ \rho = d_1 \cdot \pi_1 + \dots + d_N \cdot \pi_N}} \operatorname{sgn}(\rho) \left(\epsilon_\mu \chi_\rho^\mu + \sum_{\nu > \mu} c_\mu^\nu \chi_\rho^\nu \right) \\ \times \frac{1}{z_{\pi_1} \cdots z_{\pi_N}} \chi_{\pi_1}^{\nu_1} \cdots \chi_{\pi_N}^{\nu_N} \\ = (-1)^{[n/2] + \sum_{i=1}^N (d_i - 1)v_i} \eta(\chi) \sum_{\substack{\rho = d_1 \cdot \pi_1 + \dots + d_N \cdot \pi_N \\ \rho = d_1 \cdot \pi_1 + \dots + d_N \cdot \pi_N}} \left(\epsilon_\mu \chi_\rho^\mu + \sum_{\nu > \mu} c_\mu^\nu \chi_\rho^\nu \right) \\ \times \frac{1}{z_{\pi_1} \cdots z_{\pi_N}} \chi_{\pi_1}^{\tilde{\nu}_1} \cdots \chi_{\pi_N}^{\tilde{\nu}_N}.$$

Put $\eta(\chi)' = (-1)^{[n/2] + \sum_{i=1}^{N} (d_i - 1)v_i} \eta(\chi)$. For $1 \leq i \leq N$, put $n_i = d_i v_i$. Then, by a remark in 5.1, we see that the last expression in the above equality is equal to:

$$\eta(\chi)' \sum_{\pi_{1},...,\pi_{N}} \sum_{(\xi_{1},...,\xi_{N})\in\mathcal{P}_{n_{1}}\times\cdots\times\mathcal{P}_{n_{N}}} \left(\epsilon_{\mu}c_{\xi_{1}\cdots\xi_{N}}^{\mu} + \sum_{\nu>\mu}c_{\mu}^{\nu}c_{\xi_{1}\cdots\xi_{N}}^{\nu} \right) \\ \times \chi_{d_{1}\cdot\pi_{1}}^{\xi_{1}}\cdots\chi_{d_{N}\cdot\pi_{N}}^{\xi_{N}} \frac{1}{z_{\pi_{1}}\cdots z_{\pi_{N}}} \chi_{\pi_{1}}^{\tilde{\nu}_{1}}\cdots\chi_{\pi_{N}}^{\tilde{\nu}_{N}} \\ = \eta(\chi)' \Biggl\{ \epsilon_{\mu} \sum_{\xi_{1},...,\xi_{N}} c_{\xi_{1}\cdots\xi_{N}}^{\mu} \prod_{i=1}^{N} \left(\sum_{\pi_{i}\in\mathcal{P}_{v_{i}}} \frac{1}{z_{\pi_{i}}} \chi_{\pi_{i}}^{\tilde{\nu}_{i}} \chi_{d_{i}\cdot\pi_{i}}^{\xi_{i}} \right) \\ + \sum_{\nu>\mu} c_{\mu}^{\nu} \sum_{\xi_{1},...,\xi_{N}} c_{\xi_{1}\cdots\xi_{N}}^{\nu} \prod_{i=1}^{N} \left(\sum_{\pi_{i}\in\mathcal{P}_{v_{i}}} \frac{1}{z_{\pi_{i}}} \chi_{\pi_{i}}^{\tilde{\nu}_{i}} \chi_{d_{i}\cdot\pi_{i}}^{\xi_{i}} \right) \Biggr\}.$$

LEMMA 2 ([15, (2.8)]). Let d, v be positive integers. Then one has

$$\sum_{\pi \in \mathcal{P}_v} \frac{1}{z_\pi} \chi^{\nu}_{\pi} \chi^{\xi}_{d \cdot \pi} = \begin{cases} 1 & \text{if } \xi = d \cdot \nu, \\ 0 & \text{id } \xi > d \cdot \nu. \end{cases}$$

Assume that $\mu = (d_1 \cdot \tilde{\nu}_1) \cdot \cdots \cdot (d_N \cdot \tilde{\nu}_N)$. Then, by Lemmas 1, 2, we see easily that the last expression in the above equality is equal to $\eta(\chi)' \epsilon_{\mu}$. But, as $(\phi'^G, \chi)_G \geq 0$, we must have $(\phi'^G, \chi)_G = 1$.

Thus we get

THEOREM 1. Let $\chi = (g_1^{\nu_1} \cdots g_N^{\nu_N})$ be an irreducible character of $G = U_n(\mathbf{F}_q)$. Suppose that $\mu = (d(g_1) \cdot \tilde{\nu}_1) \cdot \cdots \cdot (d(g_N) \cdot \tilde{\nu}_N)$ is an involutive partition of n. Let ϕ be a linear character of a Sylow p-subgroup U' of G of "type μ ". Then we have $(\phi^G, \chi)_G = 1$.

6. The Schur index

6.1.

Let $G = U_n(\mathbf{F}_q)$. Then the following two results are known:

THEOREM 2 (R. Gow [5]). The Schur index $m_{\mathbf{Q}}(\chi)$ of any irreducible character χ of G with respect to \mathbf{Q} is at most two.

THEOREM 3 (cf. [16] for $p \neq 2$). Let χ be any irreducible character of G. Then, for any prime number $l \neq p$, we have $m_{Q_l}(\chi) = 1$.

In [16] Theorem 2 is proved for $p \neq 2$. We give here a proof of this theorem which is valid for all p. Let χ be any irreducible character of G. Then, by a result of Kawanaka [9], there is a generalized Gelfand-Graev character γ_{μ} of G such that $(\gamma_{\mu}, \chi)_G = 1$ ([9, (3.2.18), (3.3.24)(i)]). γ_{μ} is of Q-valued ([9, (3.2.14)]) and is supported by a set of unipotent elements of G (this is clear from the construction of γ_{μ}). Then, by [20, Theorem 34 in p. 145, Proposition 33 in p. 106], we see that, for any prime number $l \neq p$, γ_{μ} is realizable in Q_l . Thus we have $m_{Q_l}(\chi) = 1$.

6.2.

Let us review some results in [17, §3]. Let G be as above, and let U be a Sylow p-subgroup of G. Let U. be the derived group of U. If p = 2, then U/U is an elementary abelian 2-group, so that any linear character of U is realizable in \mathbf{Q} .

Assume that $p \neq 2$. Let ζ_p be a fixed primitive *p*-th root of unity, and let α be a certain generator of $\operatorname{Gal}(\boldsymbol{Q}(\zeta_p)/\boldsymbol{Q})$.

First, assume that n is odd. Then there is an element t in $N_G(U)$, of order p-1, such that $\phi^t = \phi^{\alpha}$ for any linear character ϕ of U, where ϕ^t is the linear character of U defined by $\phi^t(u) = \phi(tut^{-1})$, $u \in U$. Put $M = U\langle t \rangle$. Then we see that, if ϕ is any non-principal linear character of U, ϕ^M is an irreducible character of M which is realizable in \mathbf{Q} . Therefore, for any linear character ϕ of U, ϕ^G is realizable in \mathbf{Q} .

Next, assume that n is even $(p \neq 2)$. We use the notation in 3.1. Let $\mu = (n_1, \ldots, n_s, n_{s+1}, n_s, \ldots, n_1)$ be any involutive partition of n, and let ϕ be any linear character of U of type μ . Then we have $\phi^G = \operatorname{Ind}_{P_{\mu}}^G(\Gamma_{\mu})$. We have

$$L_{\mu} \simeq \prod_{i=1}^{s} GL_{n_i}(\boldsymbol{F}_{q^2}) \times U_{n_{s+1}}(\boldsymbol{F}_{q}).$$

Therefore, if $n_{s+1} = 0$, then, by Gow's theorem ([5]), Γ_{μ} is realizable in \boldsymbol{Q} , so ϕ^{G} is realizable in \boldsymbol{Q} .

Assume that $n_{s+1} \neq 0$. Then, as n is even, n_{s+1} is even. There is an element t' in $N_G(U)$, of order (p-1)(q+1), such that $\phi^{t'} = \phi^{\alpha}$ and $c = t'^{p-1}$ is a generator of the centre Z of G. Put $M' = U\langle t' \rangle$. For $0 \leq j \leq q$, let ϕ_j be the extension of ϕ to $U\langle c \rangle$ given by $\phi_j(c) = \zeta_{q+1}^j$, where ζ_{q+1} is a previously fixed primitive (q+1)-th root of unity. For $0 \leq j \leq q$, let $\nu_j = \phi_j^{M'}$. Then we see that the ν_j are irreducible characters of M' and $\phi^{M'} = \nu_0 + \cdots + \nu_q$. For $0 \leq j \leq q$, let $k_j = \mathbf{Q}(\nu_j)$, the field generated over \mathbf{Q} by the values of ν_j . Then we have $k_j = \mathbf{Q}(\zeta_{q+1}^j)$, $0 \leq j \leq q$. For $0 \leq j \leq q$, let A_j be the simple component of the group algebra $k_j[M']$ of M' over k_j associated with ν_j . Then, for $0 \leq j \leq q$, if $j \neq (q+1)/2$, A_j splits in k_j , and if j = (q+1)/2, k_j has non-zero Hasse invariants ($\equiv \frac{1}{2} \mod 1$) only at the places ∞ , p of $k_j = \mathbf{Q}$.

We have:

THEOREM 4. Let $\chi = (g_1^{\nu_1} \cdots g_N^{\nu_N})$ be an irreducible character of $G = U_n(\mathbf{F}_q)$. Let $\mu = (d(g_1) \cdot \tilde{\nu}_1) \cdots (d(g_N) \cdot \tilde{\nu}_N)$. Assume that μ is an involutive partition of n, and suppose that $\mu = (n_1, \ldots, n_s, n_{s+1}, n_s, \ldots, n_1)$. Then:

(i) If p = 2, or n is odd, or $n_{s+1} = 0$, then we have $m_{\mathbf{Q}}(\chi) = 1$.

(ii) Assume that $p \neq 2$, n is even, and $n_{s+1} \neq 0$.

Recall that c is a generator of the centre of G. Then, if $\chi(c) \neq -\chi(1)$, we have $m_{\mathbf{Q}}(\chi) = 1$. Assume that $\chi(c) = -\chi(1)$. Then we have $m_{\mathbf{R}}(\chi) = 2$ or 1 according as χ is real or not respectively, and we have $m_{\mathbf{Q}_{p}}(\chi) = 2$ or

1 according as $[\boldsymbol{Q}_{p}(\chi) : \boldsymbol{Q}_{p}]$ is odd or even respectively $(\boldsymbol{Q}_{p}(\chi)$ is the field generated over \boldsymbol{Q}_{p} by the values of χ).

PROOF. We use the notation in 3.1. Let ϕ be any linear character of U of type μ . Then, by Theorem 1, we have $(\phi^G, \chi)_G = 1$. Then, as we have observed above, if p = 2, or n is odd, or $n_{s+1} = 0$, ϕ^G is realizable in \mathbf{Q} , so we have $m_{\mathbf{Q}}(\chi) = 1$. Assume therefore that $p \neq 2$, n is even, and $n_{s+1} \neq 0$. We have $\chi(c) = \zeta_{q+1}^j \chi(1)$ for some j, $0 \leq j \leq q$. Then, by Schur's lemma, we must have $(\chi, \nu_j)_{M'} = 1$. If $j \neq (q+1)/2$, then ν_j is realizable in k_j and $\mathbf{Q}(\chi) \supset k_j$, so we have $m_{\mathbf{Q}}(\chi) = m_{k_j}(\chi) = 1$. Suppose that j = (q+1)/2. Then we have $m_{\mathbf{R}}(\nu_j) = m_{\mathbf{Q}_p}(\nu_j) = 2$. Therefore the last assertion follows from properties of Hasse invariants. \Box

References

- [1] Carter, R. W., Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, John Wiley and Sons, Chechester, 1985.
- [2] Deligne, P. and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. 103 (1976), 103–161.
- [3] Ennola, V., On the characters of the finite unitary groups, Ann. Acad. Sci. Fenn. 323 (1963), 1–35.
- [4] Gel'fand, I. M. and M. I. Graev, Constructions of irreducible representations of simple algebraic groups over a finite field, Dokl. Akad. Nauk. SSSR 147 (1962), 529–532.
- [5] Gow, R., Schur indices of some groups of Lie type, J. Algebra 42 (1976), 102–120.
- [6] Gow, R. and Z. Ohmori, Schur indices of the irreducible characters of $U(4, q^2)$ and $U(5, q^2)$, preprint.
- [7] Green, J. A., The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402–447.
- [8] Hotta, R. and T. A. Springer, A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math. 58 (1980), 113–127.
- [9] Kawanaka, N., Generalized Gelfand-Graev representations and Ennola duality, Algebraic Groups and related topics (Advanced Studies in Pure Math., Vol. 6), 175–206, Tokyo: Kinokuniya, and Amsterdam-New York-Oxford: North-Holland, 1985.
- [10] Kljačko, A. A., Models for complex representations of the group GL(n,q) and Weyl groups, Dokl. Akad. Nauk. SSSR **261** (1981), 275–278.

- [11] Lusztig, G., Classification des représentations irréductibles des groupes classiques finis, C. R. Acad. Sc. Paris t. 284 (29 février 1977), 473–475.
- [12] Lusztig, G., Characters of reductive groups over a finite field, Annals of Math. Studies 107 (1984), Princeton University Press.
- [13] Lusztig, G. and B. Srinivasan, The characters of the finite unitary groups, J. Algebra 49 (1977), 161–171.
- [14] Macdonald, I. G., Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, Oxford University Press, 1979.
- [15] Ohmori, Z., On the Schur indices of GL(n,q) and SL(2n+1,q), J. Math. Soc. Japan **29** (1977), 693–707.
- [16] Ohmori, Z., On the Schur indices of the finite unitary groups; its corrections and additions, Osaka J. Math. 15 (1977), 359–363; ibid. 18 (1981), 289.
- [17] Ohmori, Z., On the Schur indices of reductive groups II, Quart. J. Math. Oxford (2) 32 (1981), 443–452.
- [18] Ohmori, Z., On the upper bounds for the Schur indices of simple finite groups of Lie type, Proceed. Japan Academy 72 Ser. A, No. 7 (1996), 160–161.
- [19] Ohmori, Z., On the Schur indices of the irreducible characters of the finite unitary groups, preprint.
- [20] Serre, J.-P., Représentations Linéaires des Groupes Finis, 2nd ed., Hermann, Paris, 1971.
- [21] Steinberg, R., Lectures on Chevalley Groups, Yale Univ., 1967.
- [22] Yokonuma, T., Sur la commutant d'une représentation d'un groupe de Chevalley fini, J. Fac. Sci. Univ. Tokyo 15 (1968), 115–129.
- [23] Zelevinsky, A. V., Representations of finite classical groups—a Hoph algebra approach, Lecture Notes in Math. 869, Springer, 1981.

(Received September 25, 1996) (Revised January 24, 1997)

> Iwamizawa College Hokkaido University of Education Midorigaoka, Iwamizawa 068 Hokkaido, Japan