On a Zelevinsky Theorem and the Schur Indices of the Finite Unitary Groups

By Zyozyu Ohmori

Abstract

Let G be the finite unitary group $U_{n}\left(\boldsymbol{F}_{q}\right)$ over a finite field \boldsymbol{F}_{q} of characteristic p. Let U be a Sylow p-subgroup of G. We prove that, for any irreducible character χ of G that is contained in a certain class, there is a linear character λ of U such that $\left(\lambda^{G}, \chi\right)_{G}=1$. As an application, we shall determine the local Schur indices of an irreducible character of G which belongs to such class.

1. Introduction

Let \boldsymbol{F}_{q} be a finite field with q elements of characteristic p. In [4] I. M. Gel'fand and M. I. Graev proved:

Theorem A (Gel'fand-Graev [4, Theorems 1, 2]). Let H be the special linear group $S L_{n}\left(\boldsymbol{F}_{q}\right)$ over \boldsymbol{F}_{q}, and let U be the upper-triangular maximal unipotent subgroup of H. Then
(i) For any irreducible character χ of H, there is a linear character λ of U such that $\left(\lambda^{H}, \chi\right)_{H} \neq 0$.
(ii) If λ is a linear character of U in "general position", then λ^{H} is multiplicity-free.

It is well known that the assertion (ii) of Theorem A holds for any finite group of Lie type (T. Yokonuma [22], R. Steinberg [21, Theorem 49]; cf. R. W. Carter [1, Theorem 8.1.3]). But the assertion (i) of Theorem A does not hold generally for a finite group of Lie type (e.g. for $U_{n}\left(\boldsymbol{F}_{q}\right), S p_{2 n}\left(\boldsymbol{F}_{q}\right)$, etc.).

1991 Mathematics Subject Classification. 20G05.

In [23] A. V. Zelevinsky proved:
Theorem B (Zelevinsky [23, 12.5]). Let H be the general linear group $G L_{n}\left(\boldsymbol{F}_{q}\right)$ and let U be the upper-triangular maximal unipotent subgroup of H. Then, for any irreducible character χ of H, there is a linear character λ of U such that $\left(\lambda^{H}, \chi\right)_{H}=1$.

As an application, Zelevinsky proved:
Theorem C (Zelevinsky [23, 12.6], A. A. Kljačko [10]; cf. [15] for $p \neq$ 2). The Schur index $m_{\boldsymbol{Q}}(\chi)$ of any irreducible character χ of $G L_{n}\left(\boldsymbol{F}_{q}\right)$ with respect to \boldsymbol{Q} is equal to one.

The purpose of this paper is to show that Zelevinsky's Theorem B holds for a certain class of irreducible characters of $U_{n}\left(\boldsymbol{F}_{q}\right)$ (Theorem 1), and, as an application, we show that, for any irreducible character χ of $U_{n}\left(\boldsymbol{F}_{q}\right)$ contained in such class, we can determine the local Schur indices of χ in principle (Theorem 4).

As to the Schur indices of the irreducible characters of $G=U_{n}\left(\boldsymbol{F}_{q}\right)$, it is known that $m_{\boldsymbol{Q}}(\chi) \leqq 2$ for any irreducible character χ of G (R. Gow [5]) and that, for any irreducible character χ of G, we have $m_{\boldsymbol{Q}_{l}}(\chi)=1$ for any prime number $l \neq p$ ([16]; for $p=2$, we use some properties of the generalized Gelfand-Graev characters of $G[9])$. For $n \leqq 5$, all the local Schur indices of every irreducible character of G are completely determined ($[17,6]$). Our result here is a certain contribution to the complete determination of the local Schur indices of all the irreducible characters of G. (In another paper [19], we give some sufficient conditions subject for that $m_{\boldsymbol{Q}}(\chi)=1$.)

As to the use of Kawanaka's generalized Gelfand-Graev characters of a finite group of Lie type for the study of the rationality-properties of the irreducible character of such a group, we refer [18].

2. The unipotent values

2.1. Partitions

Let m be a positive integer. Let \mathcal{P}_{m} be the set of all partitions of m. If μ is a partition of m, then we write $|\mu|=m$. We denote by 0 the unique partition of the number $0 . \mathcal{P}_{m}$ has the lexicographical ordering.

If $\mu=\left(m_{1}, \ldots, m_{s}\right)$ is a partition of $m>0$ and $\mu^{\prime}=\left(m_{1}^{\prime}, \ldots, m_{s^{\prime}}^{\prime}\right)$ is a partition of $m^{\prime}>0$, then we denote by $\mu+\mu^{\prime}$ the partition $\left(m_{1}, \ldots, m_{s}\right.$, $\left.m_{1}^{\prime}, \ldots, m_{s^{\prime}}^{\prime}\right)$ of $m+m^{\prime}$. If $\mu=\left(m_{1}, m_{2}, \ldots, m_{s}\right)$ is a partition of m such that $m_{1} \geqq m_{2} \geqq \cdots \geqq m_{s} \geqq 0$ and $\mu^{\prime}=\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{s}^{\prime}\right)$ is a partition of m^{\prime} such that $m_{1}^{\prime} \geqq m_{2}^{\prime} \geqq \cdots \geqq m_{s}^{\prime} \geqq 0$, then we denote by $\mu \cdot \mu^{\prime}$ the partition $\left(m_{1}+m_{1}^{\prime}, m_{2}+m_{2}^{\prime}, \ldots, m_{s}+m_{s}^{\prime}\right)$ of $m+m^{\prime}$. If d, v are positive integers and if $\pi=\left(p_{1}, p_{2}, \ldots, p_{s}\right)$ is a partition of v, then we denote by $d \cdot \pi$ the partition $\left(d p_{1}, d p_{2}, \ldots, d p_{s}\right)$ of $d v$. If μ is a partition of m, then $\tilde{\mu}$ will denote the conjugate partition of μ.

Let S_{m} denote the symmetric group of order $m!$. Then, as is well known, the conjugacy classes of S_{m} and the irreducible characters of S_{m} can be naturally parametrized by the partitions of m. For $\lambda, \rho \in \mathcal{P}_{m}$, let χ_{ρ}^{λ} or $\chi^{\lambda}(\rho)$ denote the value of the irreducible character χ^{λ} of S_{m} corresponding to λ at the class of S_{m} corresponding to ρ. It is well known that $\chi^{(m)}=1_{S_{m}}$, $\chi^{\left(1^{m}\right)}=\operatorname{sgn}$ and $\chi^{\tilde{\lambda}}=\operatorname{sgn} \cdot \chi^{\lambda}$ and it is easy to see by induction on v that $\operatorname{sgn}(d \cdot \pi)=(-1)^{(d-1) v} \operatorname{sgn}(\pi), \pi \in \mathcal{P}_{v}$.

2.2. The irreducible characters of $U_{n}\left(\boldsymbol{F}_{q}\right)$

Let $G=U_{n}\left(\boldsymbol{F}_{q}\right)$. Then, as to the character theory, by thanks to the truth of Ennola conjecture ([3]; R. Hotta and T. A. Springer [8], G. Lusztig and B. Srinivasan [13], G. Lusztig, D. Kazhdan, N. Kawanaka [9]), we can use V. Ennola's formulation in [3].

Let s be a positive integer. Then a set $g=\left\{k, k(-q), k(-q)^{2}, \ldots\right.$, $\left.k(-q)^{s-1}\right\}$ of integers will be called an s-simplex with the roots $k(-q)^{i}, 0 \leqq$ $i \leqq s-1$, if the $k(-q)^{i}$ are all distinct modulo $q-(-1)^{s}$; we write $d(g)=s$. Let \mathcal{Y} be the set of all s-simplexes for $s \geqq 1$. Put $\mathcal{P}=\bigcup_{m \geqq 0} \mathcal{P}_{m}\left(\mathcal{P}_{0}=\{0\}\right)$. Let X be the set of functions $\nu: \mathcal{Y} \rightarrow \mathcal{P}$ such that

$$
\sum_{g \in \mathcal{Y}}|\nu(g)| d(g)=n
$$

For $\nu \in X$, set (formally)

$$
\chi_{\nu}=\left(\cdots g^{\nu(g)} \cdots\right)=\left(g_{1}^{\nu_{1}} \cdots g_{N}^{\nu_{N}}\right)
$$

where g_{1}, \cdots, g_{N} are all the $g \in \mathcal{Y}$ such that $\nu(g) \neq 0$ and, for $1 \leqq i \leqq N$, $\nu_{i}=\nu\left(g_{i}\right)$. Then the $\chi_{\nu}, \nu \in X$, parametrize the irreducible characters of G.

For $\nu \in X$, we identify χ_{ν} with the irreducible character of G corresponding to it.

Let $Q_{\rho}^{\lambda}(q)$ be the Green polynomial of $G L_{n}\left(\boldsymbol{F}_{q}\right)([7])$. For $\pi=$ $\left(1^{r_{1}} 2^{r_{2}} 3^{r_{3}} \cdots\right) \in \mathcal{P}_{v}$, put $z_{\pi}=1^{r_{1}} r_{1}!2^{r_{2}} r_{2}!3^{r_{3}} r_{3}!\cdots$. If n_{1}, \ldots, n_{N} are positive integers, then we put $\mathcal{P}_{\left(n_{1}, \ldots, n_{N}\right)}=\mathcal{P}_{n_{1}} \times \cdots \times \mathcal{P}_{n_{N}}$.

Proposition 1. Let $\chi=\left(g_{1}^{\nu_{1}} \cdots g_{N}^{\nu_{N}}\right)$ be any irreducible character of $G=U_{n}\left(\boldsymbol{F}_{q}\right)$. For $1 \leqq i \leqq N$, put $d_{i}=d\left(g_{i}\right)$ and $v_{i}=\left|\nu_{i}\right|$. Let λ be a partition of n, and let u_{λ} be any unipotent element of G of type λ. Then we have:

$$
\begin{aligned}
\chi\left(u_{\lambda}\right)= & \eta(\chi) \sum_{\left(\pi_{1}, \ldots, \pi_{N}\right) \in \mathcal{P}_{\left(v_{1}, \ldots, v_{N}\right)}} \frac{1}{z_{\pi_{1}} \cdots z_{\pi_{N}}} \chi_{\pi_{1}}^{\nu_{1}} \cdots \chi_{\pi_{N}}^{\nu_{N}} \\
& \times Q_{d_{1} \cdot \pi_{1}+\cdots+d_{N} \cdot \pi_{N}}^{\lambda}(-q)
\end{aligned}
$$

where $\eta(\chi)= \pm 1$ such that $\chi\left(u_{\lambda}\right)>0$ if $\lambda=\left(1^{n}\right)$.
Remark. We remark here about the relation between Ennola's parametrization of the irreducible characters of $G=U_{n}\left(\boldsymbol{F}_{q}\right)$ and G. Lusztig's parametrization ($[11,12]$; also see $\left[1\right.$, pp. 391-2]). Let $\boldsymbol{G}=G L_{n}\left(\overline{\boldsymbol{F}}_{q}\right)$, where $\overline{\boldsymbol{F}}_{q}$ is an algebraic closure of \boldsymbol{F}_{q}, and let $F^{\prime}: \boldsymbol{G} \rightarrow \boldsymbol{G}$ be the endomorphism of \boldsymbol{G} given by $F^{\prime}\left(\left[g_{i j}\right]\right)={ }^{t}\left[g_{i j}^{q}\right]^{-1}$ for $\left[g_{i j}\right] \in \boldsymbol{G}$. Then F^{\prime} is the Frobenius map relative to some \boldsymbol{F}_{q}-structure on \boldsymbol{G}, and the group $\boldsymbol{G}\left(\boldsymbol{F}_{q}\right)=\boldsymbol{G}^{F^{\prime}}$ of F-fixed points of \boldsymbol{G} is isomorphic to G. The dual group \boldsymbol{G} \# of \boldsymbol{G} is isomorphic to \boldsymbol{G}. Let $\chi=\left(g_{1}^{\nu_{1}} \cdots g_{N}^{\nu_{N}}\right)$ be an irreducible character of G. Then χ is a unipotent character of G if and only if $N=1, d\left(g_{1}\right)=1$ and 0 is the root of $g_{1} . \chi$ is a semisimple character of G (i.e. $\left.p \nmid \chi(1)\right)$ if and only if, for $1 \leqq i \leqq N, \nu_{i}=\left(v_{i}\right)\left(v_{i}=\left|\nu_{i}\right|\right)$. And χ is a regular character of G (i.e. an irreducible component of the Gelfand-Graev character Γ_{G} of $G)$ if and only if, for $1 \leqq i \leqq N, \nu_{i}=\left(1^{v_{i}}\right)$. Generally, the dual class $\left(g_{1}^{\left(1^{v_{1}}\right)} \cdots g_{N}^{\left(1^{v_{N}}\right)}\right)$ determines the unique semisimple conjugacy class (s) of $G=\boldsymbol{G}^{\#}\left(\boldsymbol{F}_{q}\right)$ (see $\left[3\right.$, pp. 6-7]). The partitions ν_{1}, \ldots, ν_{N} determine a unique unipotent character ρ of $H(s)=\left(Z_{\boldsymbol{G}^{\#}}(s)\right)^{\#}\left(\boldsymbol{F}_{q}\right)\left(Z_{\boldsymbol{G}^{\#}}(s)\right.$ is the centralizer of s in $\boldsymbol{G}^{\#}$). We see easily that $\chi(1)=\chi_{s}(1) \rho(1)$, where χ_{s} is the semisimple character $\left(g_{1}^{\left(v_{1}\right)} \cdots g_{N}^{\left(v_{N}\right)}\right)$. This may be regarded as the "Jordan decomposition" of χ. Thus we can regard the mapping $(s, \rho) \rightarrow \chi$ as Lusztig's parametrization mapping for the irreducible characters of G (cf. [11]).

3. Linear characters of U

3.1.

We say that a partition μ of n is involutive if the parts of μ are arranged so that $\mu=\left(n_{1}, n_{2}, \ldots, n_{s}, n_{s+1}, n_{s}, \ldots, n_{2}, n_{1}\right)$ (possibly $n_{s+1}=0$). For example, if $n=4$, then $(4),\left(2^{2}\right),\left(21^{2}\right)$ and $\left(1^{4}\right)$ are the involutive partitions of 4 and (31) is not involutive.

Let $\boldsymbol{G}=G L_{n}\left(\overline{\boldsymbol{F}}_{q}\right)$, and let $F: \boldsymbol{G} \rightarrow \boldsymbol{G}$ be the endomorphism of \boldsymbol{G} given by $F\left(\left[g_{i j}\right]\right)=w_{0}^{t}\left[g_{i j}^{q}\right]^{-1} w_{0}$, where $w_{0}=\left[\begin{array}{llll}0 & & & 1 \\ & . & 1 & \\ & . & & \\ 1 & & & 0\end{array}\right]$. Then $G=$ $\boldsymbol{G}^{F} \simeq U_{n}\left(\boldsymbol{F}_{q}\right)$.

Let \boldsymbol{U} be the upper triangular maximal unipotent subgroup of \boldsymbol{G}. Then \boldsymbol{U} is F-stable and $U=\boldsymbol{U}^{F}$ is a Sylow p-subgroup of G. For $1 \leqq k \leqq n-1$, set $\boldsymbol{U}_{k}=\left\{u=\left[u_{i j}\right] \in \boldsymbol{U} \mid u_{i, i+1}=0\right.$ for $i \neq k$ and $u_{i j}=0$ if $\left.j-i \geqq 2\right\}$. Then, for $1 \leqq k \leqq n-1$, we have $F\left(\boldsymbol{U}_{k}\right)=\boldsymbol{U}_{n-k}$, so F acts on $\Delta=$ $\{1,2, \ldots, n-1\}$ by $F\left(\boldsymbol{U}_{k}\right)=\boldsymbol{U}_{F(k)}$. Let I be the set of orbits of F on Δ. Let \boldsymbol{U}. be the derived group of \boldsymbol{U}. Then $\boldsymbol{U} / \boldsymbol{U}$. $=\prod_{k \in \Delta} \boldsymbol{U}_{k}$. For $i \in I$, set $\boldsymbol{U}_{i}=\prod_{k \in i} \boldsymbol{U}_{k}(\subset \boldsymbol{U} / \boldsymbol{U}$.$) . Then we have \boldsymbol{U}^{F} / \boldsymbol{U} .{ }^{F}=(\boldsymbol{U} / \boldsymbol{U} .)^{F}=$ $\prod_{i \in I} \boldsymbol{U}_{i}^{F}$. For $i \in I$, we have $\boldsymbol{U}_{i}^{F} \simeq \boldsymbol{F}_{q^{2}}$ or \boldsymbol{F}_{q}.

Let $\mu=\left(n_{1}, \ldots, n_{s}, n_{s+1}, n_{s}, \ldots, n_{1}\right)$ be any involutive partition of n, and put

$$
\boldsymbol{L}_{\mu}=\left\{\left.\left[\begin{array}{lllllll}
A_{1} & & & & & & \\
& \ddots & & & & & \\
& & A_{s} & & & & \\
& & & A_{s+1} & & & \\
& & & & A_{s}^{\prime} & & \\
& & & & & \ddots & \\
0 & & & & & & A_{1}^{\prime}
\end{array}\right] \right\rvert\, A_{i}, A_{i}^{\prime} \in G L_{n_{i}}\left(\overline{\boldsymbol{F}}_{q}\right),\right.
$$

$\left(A_{s+1}\right.$ does not occur in the above expression if $\left.n_{s+1}=0\right)$. Put $\boldsymbol{P}_{\mu}=\boldsymbol{L}{ }_{\mu} \boldsymbol{U}$. Then \boldsymbol{P}_{μ} is an F-stable parabolic subgroup of \boldsymbol{G} and \boldsymbol{L}_{μ} is an F-stable Levi subgroup of \boldsymbol{P}_{μ}. We put $P_{\mu}=\boldsymbol{P}_{\mu}^{F}$ and $L_{\mu}=\boldsymbol{L}{ }_{\mu}^{F}$.

Let ϕ be a linear character of U. Then ϕ can be regarded as a character of $U / U .\left(U .=\boldsymbol{U} .{ }^{F}\right)$. We say that ϕ is of type μ if, for $i \in I, \phi$ is non-trivial on $U_{i}=\boldsymbol{U}_{i}^{F}$ if $\boldsymbol{U}_{i} \subset \boldsymbol{L}_{\mu}$ and trivial on U_{i} if $\boldsymbol{U}_{i} \not \subset \boldsymbol{L}_{\mu}$. Conversely, it will be clear that if ϕ is any linear character of U, then there is uniquely determined involutive partition μ of n such that ϕ is of type μ.

Let ϕ be any linear character of U of type μ. Let Γ_{μ} be the GelfandGraev character of L_{μ}. Then we have

$$
\phi^{G}=\operatorname{Ind}_{P_{\mu}}^{G}\left(\Gamma_{\mu}\right)
$$

where we regard Γ_{μ} as a character of P_{μ} through the natural map $P_{\mu} \rightarrow$ $P_{\mu} / V_{\mu}=L_{\mu}\left(\boldsymbol{V}_{\mu}\right.$ is the unipotent radical of \boldsymbol{P}_{μ} and $\left.V_{\mu}=\boldsymbol{V}_{\mu}^{F}\right)$.

4. Induced characters of G

4.1.

Let $\boldsymbol{G}=G L_{n}\left(\overline{\boldsymbol{F}}_{q}\right)$ and let $F^{\prime}: \boldsymbol{G} \rightarrow \boldsymbol{G}$ be the endomorphism of \boldsymbol{G} given by $F^{\prime}\left(\left[g_{i j}\right]\right)={ }^{t}\left[g_{i j}^{q}\right]^{-1}$. Then F^{\prime} is the Frobenius map of \boldsymbol{G} corresponding to some \boldsymbol{F}_{q}-rational structure on \boldsymbol{G}. We have $\boldsymbol{G}^{F^{\prime}} \simeq U_{n}\left(\boldsymbol{F}_{q}\right)$.

Let \boldsymbol{T}_{0} be the diagonal maximal torus of \boldsymbol{G}. Then \boldsymbol{T}_{0} is F^{\prime}-stable. Let $W=W_{\boldsymbol{G}}=N_{\boldsymbol{G}}\left(\boldsymbol{T}_{0}\right) / \boldsymbol{T}_{0}$, where $N_{\boldsymbol{G}}\left(\boldsymbol{T}_{0}\right)$ is the normalizer of \boldsymbol{T}_{0} in G. Then F^{\prime} acts on W trivially. W can be naturally identified with the symmetric group S_{n}. The $\boldsymbol{G}^{F^{\prime}}$-conjugacy classes of F-stable maximal tori of \boldsymbol{G} can be parametrized by the conjugacy classes of $W=S_{n}$, and the latter can be parametrized by the partitions of n. For $\rho \in \mathcal{P}_{n}$, let \boldsymbol{T}_{ρ} denote one of the F^{\prime}-stable maximal tori of \boldsymbol{G} corresponding to ρ.

Let ρ be a partition of n, and suppose that $\boldsymbol{T}_{\rho}=y \boldsymbol{T}_{0} y^{-1}, y \in \boldsymbol{G}$. Put $w=y^{-1} F^{\prime}(y) \bmod \boldsymbol{T}_{0} \in W$. Then ad y induces an identification: $\left(F^{\prime}\right.$ on $\left.\boldsymbol{T}_{\rho}\right)=\left(\operatorname{ad} w \circ F^{\prime}\right.$ on $\left.\boldsymbol{T}_{0}\right)$, so we have:

$$
\left|\boldsymbol{T}_{\rho}^{F^{\prime}}\right|=\left|\boldsymbol{T}_{\rho}^{\mathrm{ad} w \circ F^{\prime}}\right|=\left|c_{\rho}(-q)\right|,
$$

where if $\rho=\left(1^{r_{1}} 2^{r_{2}} 3^{r_{3}} \cdots\right)$, then $c_{\rho}(q)=(q-1)^{r_{1}}\left(q^{2}-1\right)^{r_{2}}\left(q^{3}-1\right)^{r_{3}} \cdots$.
In the following, if \boldsymbol{S} is a maximal torus of a connected reductive group \boldsymbol{M}, then we write $W_{\boldsymbol{M}}(\boldsymbol{S})=N_{\boldsymbol{M}}(\boldsymbol{S}) / \boldsymbol{S}$.

Let ρ be a partition of n, and let s_{ρ} be an element of S_{n} contained in the class of S_{n} corresponding to ρ. Then $W_{\boldsymbol{G}}\left(\boldsymbol{T}_{\rho}\right)^{F^{\prime}}$ is isomorphic to $W_{\boldsymbol{G}}\left(\boldsymbol{T}_{0}\right)^{\operatorname{ad} w \circ F^{\prime}}=Z_{S_{n}}\left(s_{\rho}\right)$, so we have

$$
\left|W_{\boldsymbol{G}}\left(\boldsymbol{T}_{\rho}\right)^{F^{\prime}}\right|=\left|Z_{S_{n}}\left(s_{\rho}\right)\right|=z_{\rho}
$$

Let $F: \boldsymbol{G} \rightarrow \boldsymbol{G}$ be as in $\S 3$. Then F acts on W by ad w_{0}, and the \boldsymbol{G}^{F}-conjugacy classes of F-stable maximal tori of \boldsymbol{G} can be parametrized by the F-conjugacy classes in $S_{n}([2$, p. 107]). For $w \in W$, let $\boldsymbol{T}(w)$ denote one of the F-stable maximal tori of \boldsymbol{G} corresponding to w.

Let $w \in W$, and suppose that $\boldsymbol{T}(w)=z \boldsymbol{T}_{0} z^{-1}$ with $z^{-1} F(z) \bmod \boldsymbol{T}_{0}=$ w. Then ad z induces an identification: $(F$ on $\boldsymbol{T}(w))=\left(\operatorname{ad} w \circ F\right.$ on $\left.\boldsymbol{T}_{0}\right)$, so we have

$$
\left|\boldsymbol{T}(w)^{F}\right|=\left|\boldsymbol{T}_{0}^{\text {ad } w \circ F}\right|=\left|\boldsymbol{T}_{0}^{\text {ad } w w_{0} \circ F^{\prime}}\right|=\left|\boldsymbol{T}_{\rho\left(w w_{0}\right)}^{F^{\prime}}\right|
$$

where $\rho\left(w w_{0}\right)$ is the partition of n corresponding to the class of $W=S_{n}$ containing $w w_{0}$.

In the following, if \boldsymbol{M} is an F-stable (resp. F^{\prime}-stable) reductive subgroup of \boldsymbol{G}, then we denote by $\sigma(\boldsymbol{M})$ (resp. by $\sigma^{\prime}(\boldsymbol{M})$) the \boldsymbol{F}_{q}-rank of \boldsymbol{M} with respect to the \boldsymbol{F}_{q}-rational structure on \boldsymbol{M} determined by F (resp. by F^{\prime}). Then it is easy to see that, for $w \in W, \sigma(\boldsymbol{T}(w))=\sigma^{\prime}\left(\boldsymbol{T}_{\rho\left(w w_{0}\right)}\right)$.

Let ρ be any partition of n. Then it is easy to see that $\sigma^{\prime}\left(\boldsymbol{T}_{\rho}\right)$ is equal to the number of even parts of ρ. So we have

$$
(-1)^{\sigma^{\prime}\left(\boldsymbol{T}_{\rho}\right)}=\operatorname{sgn}(\rho)
$$

We have $\sigma(\boldsymbol{G})=\sigma\left(\boldsymbol{T}_{0}\right)=[n / 2]$, the integral part of $n / 2$, so we have

$$
(-1)^{\sigma(\boldsymbol{G})-\sigma(\boldsymbol{T}(w))}=(-1)^{[n / 2]} \operatorname{sgn}\left(\rho\left(w w_{0}\right)\right), \quad w \in W
$$

4.2. Green function

Let \boldsymbol{M} be a connected, reductive algebraic group, defined over \boldsymbol{F}_{q}, and let $F^{\prime \prime}: \boldsymbol{M} \rightarrow \boldsymbol{M}$ be the corresponding Frobenius endomorphism. If \boldsymbol{S} is an $F^{\prime \prime}$-stable maximal torus of \boldsymbol{M} and θ is a character of $S^{F^{\prime \prime}}$, then we denote by $R_{S}^{M}(\theta)$ the Deligne-Lusztig virtual character of $\boldsymbol{M}^{F^{\prime \prime}}$, and by $Q_{S, M}$ the corresponding Green function. We shall often consider $Q_{S, M}$ as a function on all $\boldsymbol{M}^{F^{\prime \prime}}$ by putting $Q_{\boldsymbol{S}, \boldsymbol{M}}(x)=0$ whenever x is not unipotent.

Now assume that $\boldsymbol{M}=\boldsymbol{G}$ with $F^{\prime \prime}=F$ or F^{\prime}. Let x be an element of \boldsymbol{G} such that $x^{-1} F(x)=w_{0}$. Then ad x induces a bijection from $\boldsymbol{G}^{F^{\prime}}$ onto \boldsymbol{G}^{F}, and we have $Q_{\boldsymbol{T}_{\rho\left(w w_{0}\right)}, \boldsymbol{G}}(g)=Q_{\boldsymbol{T}(w), \boldsymbol{G}}(\operatorname{ad} x(g)), g \in \boldsymbol{G}^{F^{\prime}}$. Let λ be a partition of n, and let u_{λ} (resp. u_{λ}^{\prime}) denote a unipotent element of \boldsymbol{G}^{F} (resp. of $\boldsymbol{G}^{F^{\prime}}$) of type λ. Then, by the result of Hotta-Springer-Kawanaka ([8], [9]), we have

$$
Q_{\boldsymbol{T}\left(w w_{0}\right), \boldsymbol{G}}\left(u_{\lambda}\right)=Q_{\rho(w)}^{\lambda}(-q)=Q_{\boldsymbol{T}_{\rho(w)}, \boldsymbol{G}}\left(u_{\lambda}^{\prime}\right), \quad w \in W
$$

4.3. The Gelfand-Graev character

Let Γ_{G} be the Gelfand-Graev character of $\boldsymbol{G}^{F^{\prime}}$ (let ϕ^{\prime} be the linear character of $U^{\prime}=(\operatorname{ad} x)^{-1}(U)$ corresponding (via the bijection ad $x: \boldsymbol{G}^{F^{\prime}} \rightarrow \boldsymbol{G}^{F}$ in 4.2) to a linear character ϕ of U of type (n); then $\left.\Gamma_{\boldsymbol{G}}=\operatorname{Ind}_{U^{\prime}}^{\boldsymbol{G}^{F^{\prime}}}\left(\phi^{\prime}\right)\right)$. Then, by Theorem 10.7 of [2], we have

$$
\Gamma_{\boldsymbol{G}}=\sum_{(\boldsymbol{T}, \theta) \bmod \boldsymbol{G}^{F^{\prime}}} \frac{(-1)^{\sigma^{\prime}(\boldsymbol{G})-\sigma^{\prime}(\boldsymbol{T})}}{\left(R_{\boldsymbol{T}}^{\boldsymbol{G}}(\theta), R_{\boldsymbol{T}}^{\boldsymbol{G}}(\theta)\right)_{\boldsymbol{G}^{F^{\prime}}}} R_{\boldsymbol{T}}^{\boldsymbol{G}}(\theta),
$$

where the sum is taken over all $\boldsymbol{G}^{F^{\prime}}$-conjugacy classes of pairs (\boldsymbol{T}, θ) of F^{\prime} stable maximal tori \boldsymbol{T} of \boldsymbol{G} and characters θ of $\boldsymbol{T}^{F^{\prime}}$. Let ρ be any partition of n. Then, by using [2 , Theorem 6.8], we see that

$$
\sum_{\theta \bmod W_{\boldsymbol{G}}\left(\boldsymbol{T}_{\rho}\right)^{F^{\prime}}} \frac{1}{\left(R_{\boldsymbol{T}_{\rho}}^{\boldsymbol{G}}(\theta), R_{\boldsymbol{T}_{\rho}}^{\boldsymbol{G}}(\theta)\right)_{\boldsymbol{G}^{F^{\prime}}}}=\frac{\left|\boldsymbol{T}_{\rho}^{F^{\prime}}\right|}{z_{\rho}} .
$$

Thus we get

$$
\begin{equation*}
\Gamma_{\boldsymbol{G}}=(-1)^{[n / 2]} \sum_{\rho \in \mathcal{P}_{n}} \operatorname{sgn}(\rho) \frac{\left|\boldsymbol{T}_{\rho}^{F^{\prime}}\right|}{z_{\rho}} Q_{\boldsymbol{T}_{\rho}, \boldsymbol{G}} \tag{1}
\end{equation*}
$$

4.4. Degenerate linear characters

Let $\mu=\left(n_{1}, \ldots, n_{s}, n_{s+1}, n_{s}, \ldots, n_{1}\right)$ be any involutive partition of n, and let ϕ be any linear character of $U=\boldsymbol{U}^{F}$ of type μ. We assume that $\mu \neq(n)$. Let $W_{\mu}=W_{\boldsymbol{L}_{\mu}}\left(\boldsymbol{T}_{0}\right)$ (a subgroup of $W=W_{\boldsymbol{G}}\left(\boldsymbol{T}_{0}\right)$). Then we have

$$
W_{\mu}=S_{\mu}=S_{n_{1}} \times \cdots \times S_{n_{s}} \times S_{n_{s+1}} \times S_{n_{s}} \times \cdots \times S_{n_{1}}
$$

By [2, Theorem 10.7, Proposition 8.2], we have

$$
\phi^{\boldsymbol{G}}=\sum_{\substack{\boldsymbol{T} \bmod _{L_{\mu}} \\\left(\boldsymbol{T} \subset \boldsymbol{L}_{\mu}\right)}}(-1)^{\sigma(\boldsymbol{G})-\sigma(\boldsymbol{T})} \frac{\left|\boldsymbol{T}^{F}\right|}{\left|W_{\boldsymbol{L}_{\mu}}(\boldsymbol{T})^{F}\right|} Q_{\boldsymbol{T}, \boldsymbol{G}}
$$

where the sum is taken over all L_{μ}-conjugacy classes of F-stable maximal tori \boldsymbol{T} of \boldsymbol{L}_{μ}.
F acts on $W_{\boldsymbol{L}_{\mu}}\left(\boldsymbol{T}_{0}\right)=S_{\mu}$ by ad w_{0}. The L_{μ}-conjugacy classes of F stable maximal tori of \boldsymbol{L}_{μ} can be parametrized by the F-conjugacy classes of S_{μ}. S_{μ} acts on $S_{\mu} w_{0}$ by conjugations. We see that, for $w_{1}, w_{2} \in S_{\mu}, w_{1}$ is F-conjugate to w_{2} in S_{μ} if and only if $w_{1} w_{0}$ is S_{μ}-conjugate to $w_{2} w_{0}$ in $S_{\mu} w_{0}$.

Let w be an element of S_{μ}, and suppose that $\boldsymbol{T}(w)=y \boldsymbol{T}_{0} y^{-1}, y \in$ $\boldsymbol{L}_{\mu}\left(y^{-1} F(y) \bmod \boldsymbol{T}_{0}=w\right)$. Then ad y induces an identification: $(F$ on $\left.W_{\boldsymbol{L}_{\mu}}(\boldsymbol{T}(w))\right)=\left(\operatorname{ad} w \circ F\right.$ on $\left.W_{\boldsymbol{L}_{\mu}}\left(\boldsymbol{T}_{0}\right)\right)$. Therefore we have:

$$
\begin{aligned}
\left|W_{\boldsymbol{L}_{\mu}}(\boldsymbol{T}(w))^{F}\right| & =\left|W_{\mu}^{\mathrm{ad}} w \circ F\right| \\
& =\left|W_{\mu}^{\operatorname{ad} w w_{0} \circ F^{\prime}}\right| \\
& =\left|Z_{W_{\mu}}\left(w w_{0}\right)\right| \quad\left(F^{\prime}=\text { id. on } W_{\mu}\right) \\
& =\frac{\left|W_{\mu}\right|}{\left|K_{W_{\mu} w_{0}}\left(w w_{0}\right)\right|},
\end{aligned}
$$

where $K_{W_{\mu} w_{0}}\left(w w_{0}\right)$ is the W_{μ}-orbit of $w w_{0}$ in $W_{\mu} w_{0}$ under the conjugate action of W_{μ}.

Therefore we have

$$
\phi^{\boldsymbol{G}^{F}}=\sum_{\substack{w w_{0} \bmod W \\\left(w \in W_{\mu}\right)}}(-1)^{\sigma(\boldsymbol{G})-\sigma(\boldsymbol{T}(w))} \frac{\left|\boldsymbol{T}(w)^{F}\right|}{\left|W_{\boldsymbol{L}_{\mu}}(\boldsymbol{T}(w))^{F}\right|} Q_{\boldsymbol{T}(w), \boldsymbol{G}}
$$

so, if ϕ^{\prime} is the linear character of $U^{\prime}=(\operatorname{ad} x)^{-1}(U)$ corresponding to the linear character ϕ of U, we have

$$
\begin{aligned}
\phi^{\prime \boldsymbol{G}^{F^{\prime}}}= & \sum_{\substack{w w_{0} \bmod _{\left(w \in W_{\mu}\right)}}}(-1)^{\sigma^{\prime}(\boldsymbol{G})-\sigma^{\prime}\left(\boldsymbol{T}_{\rho\left(w w_{0}\right)}\right)}\left|\boldsymbol{T}_{\rho\left(w w_{0}\right)}^{F^{\prime}}\right| \\
& \times \frac{\left|K_{W_{\mu} w_{0}}\left(w w_{0}\right)\right|}{\left|W_{\mu}\right|} Q_{\boldsymbol{T}_{\rho\left(w w_{0}\right)}, \boldsymbol{G}} \\
= & \sum_{\substack{w^{\prime} \bmod W \\
\left(w^{\prime} \in W\right)}}\left\{\sum_{\substack{w w_{0} \bmod W_{\mu} \\
w w_{0} \sim w^{\prime} \\
\left(w \in W_{\mu}\right)}}(-1)^{\sigma^{\prime}(\boldsymbol{G})-\sigma^{\prime}\left(\boldsymbol{T}_{\rho\left(w^{\prime}\right)}\right)}\right. \\
& \left.\times\left|\boldsymbol{T}_{\rho\left(w^{\prime}\right)}^{F^{\prime}}\right| \frac{\left|K_{W_{\mu} w_{0}}\left(w w_{0}\right)\right|}{\left|W_{\mu}\right|}\right\} Q_{\boldsymbol{T}_{\rho\left(w^{\prime}\right)}, \boldsymbol{G}} \\
= & (" \sim " \operatorname{means} \operatorname{conjugate} \operatorname{in} W) \\
= & \sum_{\rho \in \mathcal{P}_{n}}(-1)^{[n / 2]} \operatorname{sgn}(\rho)\left|\boldsymbol{T}_{\rho}^{F^{\prime}}\right| \frac{\left|K_{S_{n}}\left(s_{\rho}\right) \cap S_{\mu} w_{0}\right|}{\left|S_{\mu}\right|} Q_{\boldsymbol{T}_{\rho}, \boldsymbol{G}},
\end{aligned}
$$

where, for $\rho \in \mathcal{P}_{n}, s_{\rho}$ is an element of S_{n} contained in the class of S_{n} corresponding to ρ and $K_{S_{n}}\left(s_{\rho}\right)$ denotes the class of s_{ρ} in S_{n}.

Let us express the $\left|K_{S_{n}}\left(s_{\rho}\right) \cap S_{\mu} w_{0}\right| /\left|S_{\mu}\right|$ in terms of characters of S_{n}. Let $H=\left\langle S_{\mu}, w_{0}\right\rangle$. Then $\left(H: S_{\mu}\right)=2$ (note that $w_{0} \notin S_{\mu}$ and $w_{0} S_{\mu} w_{0}=S_{\mu}$). Let ξ be the linear character of H defined by

$$
\xi(x)= \begin{cases}1 & \text { if } x \in S_{\mu} \\ -1 & \text { if } x \in H-S_{\mu}\end{cases}
$$

Let

$$
\chi=1_{H}-\xi
$$

Then we have

$$
\chi^{S_{n}}\left(s_{\rho}\right)=\frac{\left|K_{S_{n}}\left(s_{\rho}\right) \cap S_{\mu} w_{0}\right|}{\left|S_{\mu}\right|}\left|Z_{S_{n}}\left(s_{\rho}\right)\right|
$$

It is well known that one has:

$$
1_{S_{\mu}}^{S_{n}}=\chi^{\mu}+\sum_{\nu>\mu} k_{\mu}^{\nu} \chi^{\nu}
$$

where the k_{μ}^{ν} are certain non-negative integers. As $1_{S_{\mu}}^{S_{n}}=1_{H}^{S_{n}}+\xi^{S_{n}}$, we see that the irreducible components of $1_{H}^{S_{n}}$ and $\xi^{S_{n}}$ are contained in $1_{S_{\mu}}^{S_{n}}$; we have

$$
\begin{aligned}
\chi^{S_{n}} & =1_{H}^{S_{n}}-\xi^{S_{n}} \\
& =\epsilon_{\mu} \chi^{\mu}+\sum_{\nu>\mu} c_{\mu}^{\nu} \chi^{\nu}
\end{aligned}
$$

where $\epsilon_{\mu}=1$ or -1 according as χ^{μ} is contained in $1_{H}^{S_{n}}$ or $\xi^{S_{n}}$ respectively and the c_{μ}^{ν} are some integers. Thus we have:

$$
\begin{equation*}
\phi^{\prime \boldsymbol{G}^{F^{\prime}}}=\sum_{\rho \in \mathcal{P}_{n}}(-1)^{[n / 2]} \operatorname{sgn}(\rho)\left(\epsilon_{\mu} \chi_{\rho}^{\mu}+\sum_{\nu>\mu} c_{\mu}^{\nu} \chi_{\rho}^{\nu}\right) \frac{\left|\boldsymbol{T}_{\rho}^{F^{\prime}}\right|}{z_{\rho}} Q_{\boldsymbol{T}_{\rho}, \boldsymbol{G}} \tag{2}
\end{equation*}
$$

5. Inner products

5.1. Some preliminaries

Let m be a positive integer, and let x_{1}, \ldots, x_{m} be m different variables over \boldsymbol{Q}. For a partition $\lambda=\left(l_{1}, \ldots, l_{m}\right)$ of m with $l_{1} \geqq \ldots \geqq l_{m} \geqq 0$, set

$$
s_{\lambda}\left(x_{1}, \ldots, x_{m}\right)=\frac{\operatorname{det}\left[x_{i}^{l_{j}+m-j}\right]_{1 \leqq i, j \leqq m}}{\operatorname{det}\left[x_{i}^{m-j}\right]_{1 \leqq i, j \leqq m}}
$$

which we call the S-function in the variables x_{1}, \ldots, x_{m} corresponding to λ (see Macdonald [14, p. 24]).

Let m_{1}, \ldots, m_{k} be positive integers such that $m_{1}+\cdots+m_{k}=m$, and, for $1 \leqq i \leqq k$, let λ_{i} be a partition of m_{i}. Let $x_{1}, \ldots, x_{m_{1}}, y_{1}, \ldots, y_{m_{2}}, \ldots$, $z_{1}, \ldots, z_{m_{k}}$ be independent variables. Suppose that

$$
\begin{aligned}
& s_{\lambda_{1}}\left(x_{1}, \ldots, x_{m_{1}}\right) s_{\lambda_{2}}\left(y_{1}, \ldots, y_{m_{2}}\right) \cdots s_{\lambda_{k}}\left(z_{1}, \ldots, z_{m_{k}}\right) \\
& \quad=\sum_{\lambda \in \mathcal{P}_{m}} c_{\lambda_{1} \lambda_{2} \cdots \lambda_{k}}^{\lambda} s_{\lambda}\left(x_{1}, \ldots, x_{m_{1}} ; y_{1}, \ldots, y_{m_{2}} ; \ldots ; z_{1}, \ldots, z_{m_{k}}\right)
\end{aligned}
$$

where $c_{\lambda_{1} \lambda_{2} \cdots \lambda_{k}}^{\lambda}$'s are some non-negative integers. Then we have ([14, I, (7.3)]):

$$
\operatorname{Ind}_{S_{m_{1}} \times S_{m_{2}} \times \cdots \times S_{m_{k}}}^{S_{m}}\left(\chi^{\lambda_{1}} \times \chi^{\lambda_{2}} \times \cdots \times \chi^{\lambda_{k}}\right)=\sum_{\lambda \in \mathcal{P}_{m}} c_{\lambda_{1} \lambda_{2} \cdots \lambda_{k}}^{\lambda} \chi^{\lambda}
$$

Lemma 1 (see, e.g., [15, (2.4)]). If $\lambda>\lambda_{1} \cdot \lambda_{2} \cdots \cdot \lambda_{k}$ or $\lambda<\lambda_{1}+$ $\lambda_{2}+\cdots+\lambda_{k}$, then we have $c_{\lambda_{1} \lambda_{2} \cdots \lambda_{k}}^{\lambda_{2}}=0$, and, if $\lambda=\lambda_{1} \cdot \lambda_{2} \cdots \lambda_{k}$ or $\lambda=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}$, then we have $c_{\lambda_{1} \lambda_{2} \cdots \lambda_{k}}^{\lambda}=1$.

By the Frobenius reciprocity law, we get:

$$
\chi^{\lambda} \mid S_{m_{1}} \times \cdots \times S_{m_{k}}=\sum_{\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in \mathcal{P}_{m_{1}} \times \cdots \times \mathcal{P}_{m_{k}}} c_{\lambda_{1} \cdots \lambda_{k}}^{\lambda} \chi^{\lambda_{1}} \times \cdots \times \chi^{\lambda_{k}}
$$

5.2.

Let $G=\boldsymbol{G}^{F^{\prime}} \simeq U_{n}\left(\boldsymbol{F}_{q}\right)$. Let $\chi=\left(g_{1}^{\nu_{1}} \cdots g_{N}^{\nu_{N}}\right)$ be any irreducible character of G. For $1 \leqq i \leqq N$, put $d_{i}=d\left(g_{i}\right), v_{i}=\left|\nu_{i}\right|$. For a partition ρ of n, we put $Q_{\rho, G}=Q_{\boldsymbol{T}_{\rho}, \boldsymbol{G}}$. Then, by Proposition 1, by the formula (1) and by the orthogonality relations for the Green functions of G, we have:

$$
\begin{aligned}
\left(\Gamma_{\boldsymbol{G}}, \chi\right)_{G} & =(-1)^{[n / 2]+\sum_{i=1}^{N}\left(d_{i}-1\right) v_{i}} \eta(\chi) \prod_{i=1}^{N}\left(\chi^{\tilde{\nu}_{i}}, 1_{S_{v_{i}}}\right)_{S_{v_{i}}} \\
& = \begin{cases}1 & \text { if } \nu_{i}=\left(1^{v_{i}}\right) \text { for } 1 \leqq i \leqq N, \\
0 & \text { if } \nu_{i} \neq\left(1^{v_{i}}\right) \text { for some } i .\end{cases}
\end{aligned}
$$

This is a known result (see the remark in $\S 2.2$).
Next, suppose that ϕ is any linear character of $U=\boldsymbol{U}^{F}$, of type μ, and suppose that $\mu \neq(n)$. Let ad $x: G \rightarrow \boldsymbol{G}^{F}$ be an isomorphism as before $\left(x^{-1} F(x)=w_{0}\right)$, and let ϕ^{\prime} be the linear character of $U^{\prime}=(\operatorname{ad} x)^{-1}(U)$ corresponding to ϕ via ad x. Then, by Proposition 1 and the formula (2), we get:

$$
\begin{aligned}
\left(\phi^{\prime G}, \chi\right)_{G}= & (-1)^{[n / 2]} \sum_{\rho \in \mathcal{P}_{n}} \operatorname{sgn}(\rho)\left(\epsilon_{\mu} \chi_{\rho}^{\mu}+\sum_{\nu>\mu} c_{\mu}^{\nu} \chi_{\rho}^{\nu}\right) \frac{\left|c_{\rho}(-q)\right|}{z_{\rho}} \times \eta(\chi) \\
& \times \sum_{\substack{\left(\pi_{1}, \ldots, \pi_{N}\right) \in \mathcal{P}_{\mathcal{P}_{1}} \times \cdots \times \mathcal{P}_{v_{N}} \\
\sigma=d_{1} \cdot \pi_{1}+\cdots+d_{N} \cdot \pi_{N}}} \frac{1}{z_{\pi_{1}} \cdots z_{\pi_{N}}} \chi_{\pi_{1}}^{\nu_{1}} \cdots \chi_{\pi_{N}}^{\nu_{N}}\left(Q_{\rho, G}, Q_{\sigma, G}\right)_{G}
\end{aligned}
$$

By the orthogonality relations for the Green functions, we see that the latter expression of the above equality is equal to

$$
\begin{aligned}
& (-1)^{[n / 2]} \eta(\chi) \sum_{\substack{\pi_{1}, \ldots, \pi_{N} \\
\rho=d_{1} \cdot \pi_{1}+\cdots+d_{N} \cdot \pi_{N}}} \operatorname{sgn}(\rho)\left(\epsilon_{\mu} \chi_{\rho}^{\mu}+\sum_{\nu>\mu} c_{\mu}^{\nu} \chi_{\rho}^{\nu}\right) \\
& \quad \times \frac{1}{z_{\pi_{1}} \cdots z_{\pi_{N}}} \chi_{\pi_{1}}^{\nu_{1}} \cdots \chi_{\pi_{N}}^{\nu_{N}} \\
& =(-1)^{[n / 2]+\sum_{i=1}^{N}\left(d_{i}-1\right) v_{i}} \eta(\chi) \sum_{\substack{\pi_{1}, \ldots, \pi_{N} \\
\rho=d_{1} \cdot \pi_{1}+\cdots+d_{N} \cdot \pi_{N}}}\left(\epsilon_{\mu} \chi_{\rho}^{\mu}+\sum_{\nu>\mu} c_{\mu}^{\nu} \chi_{\rho}^{\nu}\right) \\
& \quad \times \frac{1}{z_{\pi_{1}} \cdots z_{\pi_{N}}} \chi_{\pi_{1}}^{\tilde{\mu}_{1}} \cdots \chi_{\pi_{N}}^{\tilde{\nu}_{N}} .
\end{aligned}
$$

Put $\eta(\chi)^{\prime}=(-1)^{[n / 2]+\sum_{i=1}^{N}\left(d_{i}-1\right) v_{i}} \eta(\chi)$. For $1 \leqq i \leqq N$, put $n_{i}=d_{i} v_{i}$. Then, by a remark in 5.1, we see that the last expression in the above equality is equal to:

$$
\begin{array}{r}
\eta(\chi)^{\prime} \sum_{\pi_{1}, \ldots, \pi_{N}} \sum_{\left(\xi_{1}, \ldots, \xi_{N}\right) \in \mathcal{P}_{n_{1}} \times \cdots \times \mathcal{P}_{n_{N}}}\left(\epsilon_{\mu} c_{\xi_{1} \cdots \xi_{N}}^{\mu}+\sum_{\nu>\mu} c_{\mu}^{\nu} c_{\xi_{1} \cdots \xi_{N}}^{\nu}\right) \\
\times \chi_{d_{1} \cdot \pi_{1}}^{\xi_{1}} \cdots \chi_{d_{N} \cdot \pi_{N}}^{\xi_{N}} \frac{1}{z_{\pi_{1}} \cdots z_{\pi_{N}}} \chi_{\pi_{1}}^{\tilde{\nu}_{1}} \cdots \chi_{\pi_{N}}^{\tilde{\nu}_{N}} \\
=\eta(\chi)^{\prime}\left\{\epsilon_{\mu} \sum_{\xi_{1}, \ldots, \xi_{N}} c_{\xi_{1} \cdots \xi_{N}}^{\mu} \prod_{i=1}^{N}\left(\sum_{\pi_{i} \in \mathcal{P}_{v_{i}}} \frac{1}{z_{\pi_{i}}} \chi_{\pi_{i}}^{\tilde{\nu}_{i}} \chi_{d_{i} \cdot \pi_{i}}^{\xi_{i}}\right)\right. \\
\left.\quad+\sum_{\nu>\mu} c_{\mu}^{\nu} \sum_{\xi_{1}, \ldots, \xi_{N}} c_{\xi_{1} \cdots \xi_{N}}^{\nu} \prod_{i=1}^{N}\left(\sum_{\pi_{i} \in \mathcal{P}_{v_{i}}} \frac{1}{z_{\pi_{i}}} \chi_{\pi_{i}}^{\tilde{\nu}_{i}} \chi_{d_{i} \cdot \pi_{i}}^{\xi_{i}}\right)\right\}
\end{array}
$$

Lemma $2([15,(2.8)])$. Let d, v be positive integers. Then one has

$$
\sum_{\pi \in \mathcal{P}_{v}} \frac{1}{z_{\pi}} \chi_{\pi}^{\nu} \chi_{d \cdot \pi}^{\xi}= \begin{cases}1 & \text { if } \xi=d \cdot \nu \\ 0 & \text { id } \xi>d \cdot \nu\end{cases}
$$

Assume that $\mu=\left(d_{1} \cdot \tilde{\nu}_{1}\right) \cdots\left(d_{N} \cdot \tilde{\nu}_{N}\right)$. Then, by Lemmas 1, 2, we see easily that the last expression in the above equality is equal to $\eta(\chi)^{\prime} \epsilon_{\mu}$. But, as $\left(\phi^{\prime G}, \chi\right)_{G} \geqq 0$, we must have $\left(\phi^{G}, \chi\right)_{G}=1$.

Thus we get

Theorem 1. Let $\chi=\left(g_{1}^{\nu_{1}} \cdots g_{N}^{\nu_{N}}\right)$ be an irreducible character of $G=$ $U_{n}\left(\boldsymbol{F}_{q}\right)$. Suppose that $\mu=\left(d\left(g_{1}\right) \cdot \tilde{\nu}_{1}\right) \cdots \cdot\left(d\left(g_{N}\right) \cdot \tilde{\nu}_{N}\right)$ is an involutive partition of n. Let ϕ be a linear character of a Sylow p-subgroup U^{\prime} of G of "type μ ". Then we have $\left(\phi^{G}, \chi\right)_{G}=1$.

6. The Schur index

6.1.

Let $G=U_{n}\left(\boldsymbol{F}_{q}\right)$. Then the following two results are known:
Theorem 2 (R. Gow [5]). The Schur index $m_{\boldsymbol{Q}}(\chi)$ of any irreducible character χ of G with respect to \boldsymbol{Q} is at most two.

THEOREM 3 (cf. [16] for $p \neq 2$). Let χ be any irreducible character of G. Then, for any prime number $l \neq p$, we have $m_{Q_{l}}(\chi)=1$.

In [16] Theorem 2 is proved for $p \neq 2$. We give here a proof of this theorem which is valid for all p. Let χ be any irreducible character of G. Then, by a result of Kawanaka [9], there is a generalized Gelfand-Graev character γ_{μ} of G such that $\left(\gamma_{\mu}, \chi\right)_{G}=1([9,(3.2 .18),(3.3 .24)(\mathrm{i})]) . \gamma_{\mu}$ is of \boldsymbol{Q}-valued ([9, (3.2.14)]) and is supported by a set of unipotent elements of G (this is clear from the construction of γ_{μ}). Then, by [20, Theorem 34 in p. 145 , Proposition 33 in p. 106], we see that, for any prime number $l \neq p$, γ_{μ} is realizable in \boldsymbol{Q}_{l}. Thus we have $m_{\boldsymbol{Q}_{l}}(\chi)=1$.

6.2.

Let us review some results in $[17, \S 3]$. Let G be as above, and let U be a Sylow p-subgroup of G. Let U. be the derived group of U. If $p=2$, then U / U. is an elementary abelian 2-group, so that any linear character of U is realizable in \boldsymbol{Q}.

Assume that $p \neq 2$. Let ζ_{p} be a fixed primitive p-th root of unity, and let α be a certain generator of $\operatorname{Gal}\left(\boldsymbol{Q}\left(\zeta_{p}\right) / \boldsymbol{Q}\right)$.

First, assume that n is odd. Then there is an element t in $N_{G}(U)$, of order $p-1$, such that $\phi^{t}=\phi^{\alpha}$ for any linear character ϕ of U, where ϕ^{t} is the linear character of U defined by $\phi^{t}(u)=\phi\left(t u t^{-1}\right), u \in U$. Put $M=U\langle t\rangle$. Then we see that, if ϕ is any non-principal linear character of U, ϕ^{M} is an irreducible character of M which is realizable in \boldsymbol{Q}. Therefore, for any linear character ϕ of U, ϕ^{G} is realizable in \boldsymbol{Q}.

Next, assume that n is even $(p \neq 2)$. We use the notation in 3.1. Let $\mu=\left(n_{1}, \ldots, n_{s}, n_{s+1}, n_{s}, \ldots, n_{1}\right)$ be any involutive partition of n, and let ϕ be any linear character of U of type μ. Then we have $\phi^{G}=\operatorname{Ind}_{P_{\mu}}^{G}\left(\Gamma_{\mu}\right)$. We have

$$
L_{\mu} \simeq \prod_{i=1}^{s} G L_{n_{i}}\left(\boldsymbol{F}_{q^{2}}\right) \times U_{n_{s+1}}\left(\boldsymbol{F}_{q}\right)
$$

Therefore, if $n_{s+1}=0$, then, by Gow's theorem ([5]), Γ_{μ} is realizable in \boldsymbol{Q}, so ϕ^{G} is realizable in \boldsymbol{Q}.

Assume that $n_{s+1} \neq 0$. Then, as n is even, n_{s+1} is even. There is an element t^{\prime} in $N_{G}(U)$, of order $(p-1)(q+1)$, such that $\phi^{t^{\prime}}=\phi^{\alpha}$ and $c=t^{\prime p-1}$ is a generator of the centre Z of G. Put $M^{\prime}=U\left\langle t^{\prime}\right\rangle$. For $0 \leqq j \leqq q$, let ϕ_{j} be the extension of ϕ to $U\langle c\rangle$ given by $\phi_{j}(c)=\zeta_{q+1}^{j}$, where ζ_{q+1} is a previously fixed primitive $(q+1)$-th root of unity. For $0 \leqq j \leqq q$, let $\nu_{j}=\phi_{j}^{M^{\prime}}$. Then we see that the ν_{j} are irreducible characters of M^{\prime} and $\phi^{M^{\prime}}=\nu_{0}+\cdots+\nu_{q}$. For $0 \leqq j \leqq q$, let $k_{j}=\boldsymbol{Q}\left(\nu_{j}\right)$, the field generated over \boldsymbol{Q} by the values of ν_{j}. Then we have $k_{j}=\boldsymbol{Q}\left(\zeta_{q+1}^{j}\right), 0 \leqq j \leqq q$. For $0 \leqq j \leqq q$, let A_{j} be the simple component of the group algebra $k_{j}\left[M^{\prime}\right]$ of M^{\prime} over k_{j} associated with ν_{j}. Then, for $0 \leqq j \leqq q$, if $j \neq(q+1) / 2, A_{j}$ splits in k_{j}, and if $j=(q+1) / 2, k_{j}$ has non-zero Hasse invariants $\left(\equiv \frac{1}{2} \bmod 1\right)$ only at the places ∞, p of $k_{j}=\boldsymbol{Q}$.

We have:
THEOREM 4. Let $\chi=\left(g_{1}^{\nu_{1}} \cdots g_{N}^{\nu_{N}}\right)$ be an irreducible character of $G=$ $U_{n}\left(\boldsymbol{F}_{q}\right)$. Let $\mu=\left(d\left(g_{1}\right) \cdot \tilde{\nu}_{1}\right) \cdots \cdots\left(d\left(g_{N}\right) \cdot \tilde{\nu}_{N}\right)$. Assume that μ is an involutive partition of n, and suppose that $\mu=\left(n_{1}, \ldots, n_{s}, n_{s+1}, n_{s}, \ldots, n_{1}\right)$. Then:
(i) If $p=2$, or n is odd, or $n_{s+1}=0$, then we have $m_{\boldsymbol{Q}}(\chi)=1$.
(ii) Assume that $p \neq 2, n$ is even, and $n_{s+1} \neq 0$.

Recall that c is a generator of the centre of G. Then, if $\chi(c) \neq-\chi(1)$, we have $m_{\boldsymbol{Q}}(\chi)=1$. Assume that $\chi(c)=-\chi(1)$. Then we have $m_{\boldsymbol{R}}(\chi)=2$ or 1 according as χ is real or not respectively, and we have $m_{\boldsymbol{Q}_{p}}(\chi)=2$ or

1 according as $\left[\boldsymbol{Q}_{p}(\chi): \boldsymbol{Q}_{p}\right]$ is odd or even respectively $\left(\boldsymbol{Q}_{p}(\chi)\right.$ is the field generated over \boldsymbol{Q}_{p} by the values of $\left.\chi\right)$.

Proof. We use the notation in 3.1. Let ϕ be any linear character of U of type μ. Then, by Theorem 1, we have $\left(\phi^{G}, \chi\right)_{G}=1$. Then, as we have observed above, if $p=2$, or n is odd, or $n_{s+1}=0, \phi^{G}$ is realizable in \boldsymbol{Q}, so we have $m_{\boldsymbol{Q}}(\chi)=1$. Assume therefore that $p \neq 2, n$ is even, and $n_{s+1} \neq 0$. We have $\chi(c)=\zeta_{q+1}^{j} \chi(1)$ for some $j, 0 \leqq j \leqq q$. Then, by Schur's lemma, we must have $\left(\chi, \nu_{j}\right)_{M^{\prime}}=1$. If $j \neq(q+1) / 2$, then ν_{j} is realizable in k_{j} and $\boldsymbol{Q}(\chi) \supset k_{j}$, so we have $m_{\boldsymbol{Q}}(\chi)=m_{k_{j}}(\chi)=1$. Suppose that $j=(q+1) / 2$. Then we have $m_{\boldsymbol{R}}\left(\nu_{j}\right)=m_{\boldsymbol{Q}_{p}}\left(\nu_{j}\right)=2$. Therefore the last assertion follows from properties of Hasse invariants.

References

[1] Carter, R. W., Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, John Wiley and Sons, Chechester, 1985.
[2] Deligne, P. and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. 103 (1976), 103-161.
[3] Ennola, V., On the characters of the finite unitary groups, Ann. Acad. Sci. Fenn. 323 (1963), 1-35.
[4] Gel'fand, I. M. and M. I. Graev, Constructions of irreducible representations of simple algebraic groups over a finite field, Dokl. Akad. Nauk. SSSR 147 (1962), 529-532.
[5] Gow, R., Schur indices of some groups of Lie type, J. Algebra 42 (1976), 102-120.
[6] Gow, R. and Z. Ohmori, Schur indices of the irreducible characters of $U\left(4, q^{2}\right)$ and $U\left(5, q^{2}\right)$, preprint.
[7] Green, J. A., The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402-447.
[8] Hotta, R. and T. A. Springer, A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math. 58 (1980), 113-127.
[9] Kawanaka, N., Generalized Gelfand-Graev representations and Ennola duality, Algebraic Groups and related topics (Advanced Studies in Pure Math., Vol. 6), 175-206, Tokyo: Kinokuniya, and Amsterdam-New York-Oxford: North-Holland, 1985.
[10] Kljačko, A. A., Models for complex representations of the group $G L(n, q)$ and Weyl groups, Dokl. Akad. Nauk. SSSR 261 (1981), 275-278.
[11] Lusztig, G., Classification des représentations irréductibles des groupes classiques finis, C. R. Acad. Sc. Paris t. 284 (29 février 1977), 473-475.
[12] Lusztig, G., Characters of reductive groups over a finite field, Annals of Math. Studies 107 (1984), Princeton University Press.
[13] Lusztig, G. and B. Srinivasan, The characters of the finite unitary groups, J. Algebra 49 (1977), 161-171.
[14] Macdonald, I. G., Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, Oxford University Press, 1979.
[15] Ohmori, Z., On the Schur indices of $G L(n, q)$ and $S L(2 n+1, q)$, J. Math. Soc. Japan 29 (1977), 693-707.
[16] Ohmori, Z., On the Schur indices of the finite unitary groups; its corrections and additions, Osaka J. Math. 15 (1977), 359-363; ibid. 18 (1981), 289.
[17] Ohmori, Z., On the Schur indices of reductive groups II, Quart. J. Math. Oxford (2) 32 (1981), 443-452.
[18] Ohmori, Z., On the upper bounds for the Schur indices of simple finite groups of Lie type, Proceed. Japan Academy 72 Ser. A, No. 7 (1996), 160-161.
[19] Ohmori, Z., On the Schur indices of the irreducible characters of the finite unitary groups, preprint.
[20] Serre, J.-P., Représentations Linéaires des Groupes Finis, 2nd ed., Hermann, Paris, 1971.
[21] Steinberg, R., Lectures on Chevalley Groups, Yale Univ., 1967.
[22] Yokonuma, T., Sur la commutant d'une représentation d'un groupe de Chevalley fini, J. Fac. Sci. Univ. Tokyo 15 (1968), 115-129.
[23] Zelevinsky, A. V., Representations of finite classical groups - a Hoph algebra approach, Lecture Notes in Math. 869, Springer, 1981.
(Received September 25, 1996)
(Revised January 24, 1997)

Iwamizawa College
Hokkaido University of Education
Midorigaoka, Iwamizawa 068
Hokkaido, Japan

