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On a Zelevinsky Theorem and the Schur

Indices of the Finite Unitary Groups

By Zyozyu Ohmori

Abstract. Let G be the finite unitary group Un(Fq) over a finite
field Fq of characteristic p. Let U be a Sylow p-subgroup of G. We prove
that, for any irreducible character χ of G that is contained in a certain
class, there is a linear character λ of U such that (λG, χ)G = 1. As an
application, we shall determine the local Schur indices of an irreducible
character of G which belongs to such class.

1. Introduction

Let F q be a finite field with q elements of characteristic p. In [4] I. M.

Gel’fand and M. I. Graev proved:

Theorem A (Gel’fand-Graev [4, Theorems 1, 2]). Let H be the special

linear group SLn(F q) over F q, and let U be the upper-triangular maximal

unipotent subgroup of H. Then

(i) For any irreducible character χ of H, there is a linear character λ of

U such that (λH , χ)H �= 0.

(ii) If λ is a linear character of U in “general position”, then λH is

multiplicity-free.

It is well known that the assertion (ii) of Theorem A holds for any finite

group of Lie type (T. Yokonuma [22], R. Steinberg [21, Theorem 49]; cf. R.

W. Carter [1, Theorem 8.1.3]). But the assertion (i) of Theorem A does

not hold generally for a finite group of Lie type (e.g. for Un(F q), Sp2n(F q),

etc.).
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In [23] A. V. Zelevinsky proved:

Theorem B (Zelevinsky [23, 12.5]). Let H be the general linear group

GLn(F q) and let U be the upper-triangular maximal unipotent subgroup of

H. Then, for any irreducible character χ of H, there is a linear character

λ of U such that (λH , χ)H = 1.

As an application, Zelevinsky proved:

Theorem C (Zelevinsky [23, 12.6], A. A. Kljačko [10]; cf. [15] for p �=
2). The Schur index mQ (χ) of any irreducible character χ of GLn(F q)

with respect to Q is equal to one.

The purpose of this paper is to show that Zelevinsky’s Theorem B holds

for a certain class of irreducible characters of Un(F q) (Theorem 1), and,

as an application, we show that, for any irreducible character χ of Un(F q)

contained in such class, we can determine the local Schur indices of χ in

principle (Theorem 4).

As to the Schur indices of the irreducible characters of G = Un(F q), it is

known that mQ (χ) � 2 for any irreducible character χ of G (R. Gow [5]) and

that, for any irreducible character χ of G, we have mQ l
(χ) = 1 for any prime

number l �= p ([16]; for p = 2, we use some properties of the generalized

Gelfand-Graev characters of G [9]). For n � 5, all the local Schur indices of

every irreducible character of G are completely determined ([17, 6]). Our

result here is a certain contribution to the complete determination of the

local Schur indices of all the irreducible characters of G. (In another paper

[19], we give some sufficient conditions subject for that mQ (χ) = 1.)

As to the use of Kawanaka’s generalized Gelfand-Graev characters of a

finite group of Lie type for the study of the rationality-properties of the

irreducible character of such a group, we refer [18].

2. The unipotent values

2.1. Partitions

Let m be a positive integer. Let Pm be the set of all partitions of m. If

µ is a partition of m, then we write |µ| = m. We denote by 0 the unique

partition of the number 0. Pm has the lexicographical ordering.
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If µ = (m1, . . . ,ms) is a partition of m > 0 and µ′ = (m′
1, . . . ,m

′
s′) is

a partition of m′ > 0, then we denote by µ + µ′ the partition (m1, . . . ,ms,

m′
1, . . . ,m

′
s′) of m + m′. If µ = (m1,m2, . . . ,ms) is a partition of m such

that m1 � m2 � · · · � ms � 0 and µ′ = (m′
1,m

′
2, . . . ,m

′
s) is a partition

of m′ such that m′
1 � m′

2 � · · · � m′
s � 0, then we denote by µ · µ′ the

partition (m1 + m′
1,m2 + m′

2, . . . ,ms + m′
s) of m + m′. If d, v are positive

integers and if π = (p1, p2, . . . , ps) is a partition of v, then we denote by

d · π the partition (dp1, dp2, . . . , dps) of dv. If µ is a partition of m, then µ̃

will denote the conjugate partition of µ.

Let Sm denote the symmetric group of order m!. Then, as is well known,

the conjugacy classes of Sm and the irreducible characters of Sm can be

naturally parametrized by the partitions of m. For λ, ρ ∈ Pm, let χλρ or

χλ(ρ) denote the value of the irreducible character χλ of Sm corresponding

to λ at the class of Sm corresponding to ρ. It is well known that χ(m) = 1Sm ,

χ(1m) = sgn and χλ̃ = sgn ·χλ and it is easy to see by induction on v that

sgn(d · π) = (−1)(d−1)v sgn(π), π ∈ Pv.

2.2. The irreducible characters of Un(F q)

Let G = Un(F q). Then, as to the character theory, by thanks to the

truth of Ennola conjecture ([3]; R. Hotta and T. A. Springer [8], G. Lusztig

and B. Srinivasan [13], G. Lusztig, D. Kazhdan, N. Kawanaka [9]), we can

use V. Ennola’s formulation in [3].

Let s be a positive integer. Then a set g = {k, k(−q), k(−q)2, . . . ,

k(−q)s−1} of integers will be called an s-simplex with the roots k(−q)i, 0 �
i � s−1, if the k(−q)i are all distinct modulo q− (−1)s; we write d(g) = s.

Let Y be the set of all s-simplexes for s � 1. Put P =
⋃
m�0 Pm(P0 = {0}).

Let X be the set of functions ν : Y → P such that

∑
g∈Y

|ν(g)|d(g) = n.

For ν ∈ X, set (formally)

χν = (· · · gν(g) · · · ) = (gν11 · · · gνNN ),

where g1, · · · , gN are all the g ∈ Y such that ν(g) �= 0 and, for 1 � i � N ,

νi = ν(gi). Then the χν , ν ∈ X, parametrize the irreducible characters of G.
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For ν ∈ X, we identify χν with the irreducible character of G corresponding

to it.

Let Qλρ(q) be the Green polynomial of GLn(F q) ([7]). For π =

(1r12r23r3 · · · ) ∈ Pv, put zπ = 1r1r1!2
r2r2!3

r3r3! · · · . If n1, . . . , nN are posi-

tive integers, then we put P(n1,... ,nN ) = Pn1 × · · · × PnN .

Proposition 1. Let χ = (gν11 · · · gνNN ) be any irreducible character of

G = Un(F q). For 1 � i � N , put di = d(gi) and vi = |νi|. Let λ be a

partition of n, and let uλ be any unipotent element of G of type λ. Then

we have:

χ(uλ) = η(χ)
∑

(π1,... ,πN )∈P(v1,... ,vN )

1

zπ1 · · · zπN
χν1π1 · · ·χ

νN
πN

×Qλd1·π1+···+dN ·πN (−q),

where η(χ) = ±1 such that χ(uλ) > 0 if λ = (1n).

Remark. We remark here about the relation between Ennola’s pa-

rametrization of the irreducible characters of G = Un(F q) and G. Lusztig’s

parametrization ([11, 12]; also see [1, pp. 391–2]). Let G = GLn(F̄ q), where

F̄ q is an algebraic closure of F q, and let F ′ : G → G be the endomorphism

of G given by F ′([gij ]) = t[gqij ]
−1 for [gij ] ∈ G . Then F ′ is the Frobenius

map relative to some F q-structure on G , and the group G (F q) = G F ′

of F -fixed points of G is isomorphic to G. The dual group G# of G is

isomorphic to G . Let χ = (gν11 · · · gνNN ) be an irreducible character of G.

Then χ is a unipotent character of G if and only if N = 1, d(g1) = 1 and

0 is the root of g1. χ is a semisimple character of G (i.e. p � χ(1)) if and

only if, for 1 � i � N , νi = (vi) (vi = |νi|). And χ is a regular character

of G (i.e. an irreducible component of the Gelfand-Graev character ΓG of

G) if and only if, for 1 � i � N , νi = (1vi). Generally, the dual class

(g
(1v1 )
1 · · · g(1vN )

N ) determines the unique semisimple conjugacy class (s) of

G = G#(F q) (see [3, pp. 6–7]). The partitions ν1, . . . , νN determine a

unique unipotent character ρ of H(s) = (ZG#(s))#(F q) (ZG#(s) is the

centralizer of s in G#). We see easily that χ(1) = χs(1)ρ(1), where χs

is the semisimple character (g
(v1)
1 · · · g(vN )

N ). This may be regarded as the

“Jordan decomposition” of χ. Thus we can regard the mapping (s, ρ) → χ

as Lusztig’s parametrization mapping for the irreducible characters of G

(cf. [11]).
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3. Linear characters of U

3.1.

We say that a partition µ of n is involutive if the parts of µ are arranged

so that µ = (n1, n2, . . . , ns, ns+1, ns, . . . , n2, n1) (possibly ns+1 = 0). For

example, if n = 4, then (4), (22), (212) and (14) are the involutive partitions

of 4 and (31) is not involutive.

Let G = GLn(F̄ q), and let F : G → G be the endomorphism of G

given by F ([gij ]) = wt0[g
q
ij ]

−1w0, where w0 =



0

1

1
...

1 0


. Then G =

G F  Un(F q).

Let U be the upper triangular maximal unipotent subgroup of G . Then

U is F -stable and U = U F is a Sylow p-subgroup of G. For 1 � k � n− 1,

set U k = {u = [uij ] ∈ U | ui,i+1 = 0 for i �= k and uij = 0 if j − i � 2}.
Then, for 1 � k � n − 1, we have F (U k) = U n−k, so F acts on ∆ =

{1, 2, . . . , n − 1} by F (U k) = U F (k). Let I be the set of orbits of F on

∆. Let U . be the derived group of U . Then U /U . =
∏
k∈∆ U k. For

i ∈ I, set U i =
∏
k∈iU k(⊂ U /U .). Then we have U F /U .F = (U /U .)F =∏

i∈I U
F
i . For i ∈ I, we have U Fi  F q2 or F q.

Let µ = (n1, . . . , ns, ns+1, ns, . . . , n1) be any involutive partition of n,

and put

L µ =







A1 0.. .

As
As+1

A′
s

. . .

0 A′
1



| Ai, A′

i ∈ GLni(F̄ q),

1 � i � s,As+1 ∈ GLns+1(F̄ q)

}

(As+1 does not occur in the above expression if ns+1 = 0). Put P µ = L µU .

Then P µ is an F -stable parabolic subgroup of G and L µ is an F -stable

Levi subgroup of P µ. We put Pµ = P Fµ and Lµ = L Fµ .
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Let φ be a linear character of U . Then φ can be regarded as a character

of U/U. (U. = U .F ). We say that φ is of type µ if, for i ∈ I, φ is non-trivial

on Ui = U Fi if U i ⊂ L µ and trivial on Ui if U i �⊂ L µ. Conversely, it

will be clear that if φ is any linear character of U , then there is uniquely

determined involutive partition µ of n such that φ is of type µ.

Let φ be any linear character of U of type µ. Let Γµ be the Gelfand-

Graev character of Lµ. Then we have

φG = IndGPµ(Γµ),

where we regard Γµ as a character of Pµ through the natural map Pµ →
Pµ/Vµ = Lµ (V µ is the unipotent radical of P µ and Vµ = V Fµ ).

4. Induced characters of G

4.1.

Let G = GLn(F̄ q) and let F ′ : G → G be the endomorphism of G given

by F ′([gij ]) = t[gqij ]
−1. Then F ′ is the Frobenius map of G corresponding

to some F q-rational structure on G . We have G F ′  Un(F q).

Let T 0 be the diagonal maximal torus of G . Then T 0 is F ′-stable.

Let W = WG = NG (T 0)/T 0, where NG (T 0) is the normalizer of T 0 in

G . Then F ′ acts on W trivially. W can be naturally identified with the

symmetric group Sn. The G F ′
-conjugacy classes of F -stable maximal tori

of G can be parametrized by the conjugacy classes of W = Sn, and the

latter can be parametrized by the partitions of n. For ρ ∈ Pn, let T ρ denote

one of the F ′-stable maximal tori of G corresponding to ρ.

Let ρ be a partition of n, and suppose that T ρ = yT 0y
−1, y ∈ G .

Put w = y−1F ′(y) mod T 0 ∈ W . Then ad y induces an identification:

(F ′ on T ρ) = (ad w ◦ F ′ on T 0), so we have:

|T F ′
ρ | = |T ad w◦F ′

ρ | = |cρ(−q)|,

where if ρ = (1r12r23r3 · · · ), then cρ(q) = (q − 1)r1(q2 − 1)r2(q3 − 1)r3 · · · .
In the following, if S is a maximal torus of a connected reductive group

M , then we write WM (S ) = NM (S )/S .
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Let ρ be a partition of n, and let sρ be an element of Sn contained

in the class of Sn corresponding to ρ. Then WG (T ρ)
F ′

is isomorphic to

WG (T 0)
ad w◦F ′

= ZSn(sρ), so we have

|WG (T ρ)
F ′ | = |ZSn(sρ)| = zρ.

Let F : G → G be as in §3. Then F acts on W by ad w0, and the

G F -conjugacy classes of F -stable maximal tori of G can be parametrized

by the F -conjugacy classes in Sn ([2, p. 107]). For w ∈ W , let T (w) denote

one of the F -stable maximal tori of G corresponding to w.

Let w ∈ W , and suppose that T (w) = zT 0z
−1 with z−1F (z) mod T 0 =

w. Then ad z induces an identification: (F on T (w)) = (ad w ◦ F on T 0),

so we have

|T (w)F | = |T ad w◦F
0 | = |T ad ww0◦F ′

0 | = |T F ′
ρ(ww0)|,

where ρ(ww0) is the partition of n corresponding to the class of W = Sn
containing ww0.

In the following, if M is an F -stable (resp. F ′-stable) reductive subgroup

of G , then we denote by σ(M ) (resp. by σ′(M )) the F q-rank of M with

respect to the F q-rational structure on M determined by F (resp. by F ′).
Then it is easy to see that, for w ∈ W , σ(T (w)) = σ′(T ρ(ww0)).

Let ρ be any partition of n. Then it is easy to see that σ′(T ρ) is equal

to the number of even parts of ρ. So we have

(−1)σ
′(T ρ) = sgn(ρ).

We have σ(G ) = σ(T 0) = [n/2], the integral part of n/2, so we have

(−1)σ(G )−σ(T (w)) = (−1)[n/2] sgn(ρ(ww0)), w ∈ W.

4.2. Green function

Let M be a connected, reductive algebraic group, defined over F q, and

let F ′′ : M → M be the corresponding Frobenius endomorphism. If S is an

F ′′-stable maximal torus of M and θ is a character of SF
′′
, then we denote

by RM
S (θ) the Deligne-Lusztig virtual character of M F ′′

, and by QS ,M the

corresponding Green function. We shall often consider QS ,M as a function

on all M F ′′
by putting QS ,M (x) = 0 whenever x is not unipotent.
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Now assume that M = G with F ′′ = F or F ′. Let x be an element of

G such that x−1F (x) = w0. Then ad x induces a bijection from G F ′
onto

G F , and we have QT ρ(ww0),G (g) = QT (w),G (ad x(g)), g ∈ G F ′
. Let λ be

a partition of n, and let uλ (resp. u′λ) denote a unipotent element of G F

(resp. of G F ′
) of type λ. Then, by the result of Hotta-Springer-Kawanaka

([8], [9]), we have

QT (ww0),G (uλ) = Qλρ(w)(−q) = QT ρ(w),G (u′λ), w ∈ W.

4.3. The Gelfand-Graev character

Let ΓG be the Gelfand-Graev character of G F ′
(let φ′ be the lin-

ear character of U ′ = (ad x)−1(U) corresponding (via the bijection ad

x : G F ′ → G F in 4.2) to a linear character φ of U of type (n); then

ΓG = IndG F ′

U ′ (φ′)). Then, by Theorem 10.7 of [2], we have

ΓG =
∑

(T ,θ) mod G F ′

(−1)σ
′(G )−σ′(T )

(RG
T (θ), RG

T (θ))
G F ′

RG
T (θ),

where the sum is taken over all G F ′
-conjugacy classes of pairs (T , θ) of F ′-

stable maximal tori T of G and characters θ of T F
′
. Let ρ be any partition

of n. Then, by using [2, Theorem 6.8], we see that

∑
θ mod WG (T ρ)F

′

1

(RG
T ρ

(θ), RG
T ρ

(θ))
G F ′

=
|T F ′
ρ |
zρ

.

Thus we get

(1) ΓG = (−1)[n/2]
∑
ρ∈Pn

sgn(ρ)
|T F ′
ρ |
zρ

QT ρ,G .
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4.4. Degenerate linear characters

Let µ = (n1, . . . , ns, ns+1, ns, . . . , n1) be any involutive partition of n,

and let φ be any linear character of U = U F of type µ. We assume that

µ �= (n). Let Wµ = WL µ(T 0) (a subgroup of W = WG (T 0)). Then we

have

Wµ = Sµ = Sn1 × · · · × Sns × Sns+1 × Sns × · · · × Sn1 .

By [2, Theorem 10.7, Proposition 8.2], we have

φG F

=
∑

T mod Lµ

(T⊂L µ)

(−1)σ(G )−σ(T ) |T F |
|WL µ(T )F |QT ,G ,

where the sum is taken over all Lµ-conjugacy classes of F -stable maximal

tori T of L µ.

F acts on WL µ(T 0) = Sµ by ad w0. The Lµ-conjugacy classes of F -

stable maximal tori of L µ can be parametrized by the F -conjugacy classes

of Sµ. Sµ acts on Sµw0 by conjugations. We see that, for w1, w2 ∈ Sµ, w1

is F -conjugate to w2 in Sµ if and only if w1w0 is Sµ-conjugate to w2w0 in

Sµw0.

Let w be an element of Sµ, and suppose that T (w) = yT 0y
−1, y ∈

L µ (y−1F (y) mod T 0 = w). Then ad y induces an identification: (F on

WL µ(T (w))) = (ad w ◦ F on WL µ(T 0)). Therefore we have:

|WL µ(T (w))F | = |W ad w◦F
µ |

= |W ad ww0◦F ′
µ |

= |ZWµ(ww0)| (F ′ = id. on Wµ)

=
|Wµ|

|KWµw0(ww0)|
,

where KWµw0(ww0) is the Wµ-orbit of ww0 in Wµw0 under the conjugate

action of Wµ.

Therefore we have

φG F

=
∑

ww0 mod W
(w∈Wµ)

(−1)σ(G )−σ(T (w)) |T (w)F |
|WL µ(T (w))F |QT (w),G ,
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so, if φ′ is the linear character of U ′ = (ad x)−1(U) corresponding to the

linear character φ of U , we have

φ′G F ′
=

∑
ww0 mod Wµ

(w∈Wµ)

(−1)σ
′(G )−σ′(T ρ(ww0))|T F ′

ρ(ww0)|

× |KWµw0(ww0)|
|Wµ|

QT ρ(ww0),G

=
∑

w′ mod W
(w′∈W )

{ ∑
ww0 mod Wµ

ww0∼w′
(w∈Wµ)

(−1)σ
′(G )−σ′(T ρ(w′))

× |T F ′
ρ(w′)|

|KWµw0(ww0)|
|Wµ|

}
QT ρ(w′),G

(“∼” means conjugate in W )

=
∑
ρ∈Pn

(−1)[n/2] sgn(ρ)|T F ′
ρ | |KSn(sρ) ∩ Sµw0|

|Sµ|
QT ρ,G ,

where, for ρ ∈ Pn, sρ is an element of Sn contained in the class of Sn
corresponding to ρ and KSn(sρ) denotes the class of sρ in Sn.

Let us express the |KSn(sρ)∩Sµw0|/|Sµ| in terms of characters of Sn. Let

H = 〈Sµ, w0〉. Then (H : Sµ) = 2 (note that w0 /∈ Sµ and w0Sµw0 = Sµ).

Let ξ be the linear character of H defined by

ξ(x) =

{
1 if x ∈ Sµ,

−1 if x ∈ H − Sµ.

Let

χ = 1H − ξ.

Then we have

χSn(sρ) =
|KSn(sρ) ∩ Sµw0|

|Sµ|
|ZSn(sρ)|.

It is well known that one has:

1SnSµ = χµ +
∑
ν>µ

kνµχ
ν ,
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where the kνµ are certain non-negative integers. As 1SnSµ = 1SnH + ξSn , we see

that the irreducible components of 1SnH and ξSn are contained in 1SnSµ ; we

have

χSn = 1SnH − ξSn

= εµχ
µ +

∑
ν>µ

cνµχ
ν ,

where εµ = 1 or −1 according as χµ is contained in 1SnH or ξSn respectively

and the cνµ are some integers. Thus we have:

(2) φ′G F ′
=
∑
ρ∈Pn

(−1)[n/2] sgn(ρ)

(
εµχ

µ
ρ +

∑
ν>µ

cνµχ
ν
ρ

)
|T F ′
ρ |
zρ

QT ρ,G .

5. Inner products

5.1. Some preliminaries

Let m be a positive integer, and let x1, . . . , xm be m different variables

over Q . For a partition λ = (l1, . . . , lm) of m with l1 � · · · � lm � 0, set

sλ(x1, . . . , xm) =
det[x

lj+m−j
i ]1�i,j�m

det[xm−j
i ]1�i,j�m

,

which we call the S-function in the variables x1, . . . , xm corresponding to

λ (see Macdonald [14, p. 24]).

Let m1, . . . ,mk be positive integers such that m1 + · · ·+ mk = m, and,

for 1 � i � k, let λi be a partition of mi. Let x1, . . . , xm1 , y1, . . . , ym2 , . . . ,

z1, . . . , zmk
be independent variables. Suppose that

sλ1(x1, . . . , xm1)sλ2(y1, . . . , ym2) · · · sλk(z1, . . . , zmk
)

=
∑
λ∈Pm

cλλ1λ2···λksλ(x1, . . . , xm1 ; y1, . . . , ym2 ; . . . ; z1, . . . , zmk
),

where cλλ1λ2···λk ’s are some non-negative integers. Then we have ([14, I,

(7.3)]):

IndSmSm1×Sm2×···×Smk
(χλ1 × χλ2 × · · · × χλk) =

∑
λ∈Pm

cλλ1λ2···λkχ
λ.
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Lemma 1 (see, e.g., [15, (2.4)]). If λ > λ1 · λ2 · · · · · λk or λ < λ1 +

λ2 + · · · + λk, then we have cλλ1λ2···λk = 0, and, if λ = λ1 · λ2 · · · · · λk or

λ = λ1 + λ2 + · · · + λk, then we have cλλ1λ2···λk = 1.

By the Frobenius reciprocity law, we get:

χλ | Sm1 × · · · × Smk
=

∑
(λ1,... ,λk)∈Pm1×···×Pmk

cλλ1···λkχ
λ1 × · · · × χλk .

5.2.

Let G = G F ′  Un(F q). Let χ = (gν11 · · · gνNN ) be any irreducible

character of G. For 1 � i � N , put di = d(gi), vi = |νi|. For a partition

ρ of n, we put Qρ,G = QT ρ,G . Then, by Proposition 1, by the formula (1)

and by the orthogonality relations for the Green functions of G, we have:

(ΓG , χ)G = (−1)[n/2]+
∑N

i=1(di−1)viη(χ)
N∏
i=1

(χν̃i , 1Svi )Svi

=

{
1 if νi = (1vi) for 1 � i � N,

0 if νi �= (1vi) for some i.

This is a known result (see the remark in §2.2).

Next, suppose that φ is any linear character of U = U F , of type µ, and

suppose that µ �= (n). Let ad x : G → G F be an isomorphism as before

(x−1F (x) = w0), and let φ′ be the linear character of U ′ = (ad x)−1(U)

corresponding to φ via ad x. Then, by Proposition 1 and the formula (2),

we get:

(φ′G, χ)G = (−1)[n/2]
∑
ρ∈Pn

sgn(ρ)

(
εµχ

µ
ρ +

∑
ν>µ

cνµχ
ν
ρ

)
|cρ(−q)|

zρ
× η(χ)

×
∑

(π1,... ,πN )∈Pv1×···×PvN
σ=d1·π1+···+dN ·πN

1

zπ1 · · · zπN
χν1π1 · · ·χ

νN
πN

(Qρ,G, Qσ,G)G.
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By the orthogonality relations for the Green functions, we see that the latter

expression of the above equality is equal to

(−1)[n/2]η(χ)
∑

π1,... ,πN
ρ=d1·π1+···+dN ·πN

sgn(ρ)

(
εµχ

µ
ρ +

∑
ν>µ

cνµχ
ν
ρ

)

× 1

zπ1 · · · zπN
χν1π1 · · ·χ

νN
πN

= (−1)[n/2]+
∑N

i=1(di−1)viη(χ)
∑

π1,... ,πN
ρ=d1·π1+···+dN ·πN

(
εµχ

µ
ρ +

∑
ν>µ

cνµχ
ν
ρ

)

× 1

zπ1 · · · zπN
χν̃1π1 · · ·χ

ν̃N
πN

.

Put η(χ)′ = (−1)[n/2]+
∑N

i=1(di−1)viη(χ). For 1 � i � N , put ni = divi.

Then, by a remark in 5.1, we see that the last expression in the above

equality is equal to:

η(χ)′
∑

π1,... ,πN

∑
(ξ1,... ,ξN )∈Pn1×···×PnN

(
εµc
µ
ξ1···ξN +

∑
ν>µ

cνµc
ν
ξ1···ξN

)

× χξ1d1·π1 · · ·χ
ξN
dN ·πN

1

zπ1 · · · zπN
χν̃1π1 · · ·χ

ν̃N
πN

= η(χ)′
{
εµ

∑
ξ1,... ,ξN

cµξ1···ξN

N∏
i=1


 ∑
πi∈Pvi

1

zπi
χν̃iπiχ

ξi
di·πi




+
∑
ν>µ

cνµ
∑
ξ1,... ,ξN

cνξ1···ξN

N∏
i=1


 ∑
πi∈Pvi

1

zπi
χν̃iπiχ

ξi
di·πi


}.

Lemma 2 ([15, (2.8)]). Let d, v be positive integers. Then one has

∑
π∈Pv

1

zπ
χνπχ

ξ
d·π =

{
1 if ξ = d · ν,
0 id ξ > d · ν.
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Assume that µ = (d1 · ν̃1) · · · · · (dN · ν̃N ). Then, by Lemmas 1, 2, we

see easily that the last expression in the above equality is equal to η(χ)′εµ.
But, as (φ′G, χ)G � 0, we must have (φ′G, χ)G = 1.

Thus we get

Theorem 1. Let χ = (gν11 · · · gνNN ) be an irreducible character of G =

Un(F q). Suppose that µ = (d(g1) · ν̃1) · · · · · (d(gN ) · ν̃N ) is an involutive

partition of n. Let φ be a linear character of a Sylow p-subgroup U ′ of G of

“type µ”. Then we have (φG, χ)G = 1.

6. The Schur index

6.1.

Let G = Un(F q). Then the following two results are known:

Theorem 2 (R. Gow [5]). The Schur index mQ (χ) of any irreducible

character χ of G with respect to Q is at most two.

Theorem 3 (cf. [16] for p �= 2). Let χ be any irreducible character of

G. Then, for any prime number l �= p, we have mQ l
(χ) = 1.

In [16] Theorem 2 is proved for p �= 2. We give here a proof of this

theorem which is valid for all p. Let χ be any irreducible character of G.

Then, by a result of Kawanaka [9], there is a generalized Gelfand-Graev

character γµ of G such that (γµ, χ)G = 1 ([9, (3.2.18), (3.3.24)(i)]). γµ is of

Q -valued ([9, (3.2.14)]) and is supported by a set of unipotent elements of

G (this is clear from the construction of γµ). Then, by [20, Theorem 34 in

p. 145, Proposition 33 in p. 106], we see that, for any prime number l �= p,

γµ is realizable in Q l. Thus we have mQ l
(χ) = 1.

6.2.

Let us review some results in [17, §3]. Let G be as above, and let U be

a Sylow p-subgroup of G. Let U. be the derived group of U . If p = 2, then

U/U. is an elementary abelian 2-group, so that any linear character of U is

realizable in Q .

Assume that p �= 2. Let ζp be a fixed primitive p-th root of unity, and

let α be a certain generator of Gal(Q (ζp)/Q ).
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First, assume that n is odd. Then there is an element t in NG(U), of

order p−1, such that φt = φα for any linear character φ of U , where φt is the

linear character of U defined by φt(u) = φ(tut−1), u ∈ U . Put M = U〈t〉.
Then we see that, if φ is any non-principal linear character of U , φM is

an irreducible character of M which is realizable in Q . Therefore, for any

linear character φ of U, φG is realizable in Q .

Next, assume that n is even (p �= 2). We use the notation in 3.1. Let

µ = (n1, . . . , ns, ns+1, ns, . . . , n1) be any involutive partition of n, and let

φ be any linear character of U of type µ. Then we have φG = IndGPµ(Γµ).

We have

Lµ 
s∏
i=1

GLni(F q2) × Uns+1(F q).

Therefore, if ns+1 = 0, then, by Gow’s theorem ([5]), Γµ is realizable in Q ,

so φG is realizable in Q .

Assume that ns+1 �= 0. Then, as n is even, ns+1 is even. There is an

element t′ in NG(U), of order (p−1)(q+1), such that φt
′
= φα and c = t′p−1

is a generator of the centre Z of G. Put M ′ = U〈t′〉. For 0 � j � q, let φj be

the extension of φ to U〈c〉 given by φj(c) = ζjq+1, where ζq+1 is a previously

fixed primitive (q + 1)-th root of unity. For 0 � j � q, let νj = φM
′

j . Then

we see that the νj are irreducible characters of M ′ and φM
′
= ν0 + · · ·+ νq.

For 0 � j � q, let kj = Q (νj), the field generated over Q by the values

of νj . Then we have kj = Q (ζjq+1), 0 � j � q. For 0 � j � q, let Aj be

the simple component of the group algebra kj [M
′] of M ′ over kj associated

with νj . Then, for 0 � j � q, if j �= (q + 1)/2, Aj splits in kj , and if

j = (q + 1)/2, kj has non-zero Hasse invariants (≡ 1
2 mod 1) only at the

places ∞, p of kj = Q .

We have:

Theorem 4. Let χ = (gν11 · · · gνNN ) be an irreducible character of G =

Un(F q). Let µ = (d(g1)·ν̃1)·· · ··(d(gN )·ν̃N ). Assume that µ is an involutive

partition of n, and suppose that µ = (n1, . . . , ns, ns+1, ns, . . . , n1). Then:

(i) If p = 2, or n is odd, or ns+1 = 0, then we have mQ (χ) = 1.

(ii) Assume that p �= 2, n is even, and ns+1 �= 0.

Recall that c is a generator of the centre of G. Then, if χ(c) �= −χ(1), we

have mQ (χ) = 1. Assume that χ(c) = −χ(1). Then we have mR (χ) = 2

or 1 according as χ is real or not respectively, and we have mQ p
(χ) = 2 or
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1 according as [Q p(χ) : Q p] is odd or even respectively (Q p(χ) is the field

generated over Q p by the values of χ).

Proof. We use the notation in 3.1. Let φ be any linear character of

U of type µ. Then, by Theorem 1, we have (φG, χ)G = 1. Then, as we have

observed above, if p = 2, or n is odd, or ns+1 = 0, φG is realizable in Q , so

we have mQ (χ) = 1. Assume therefore that p �= 2, n is even, and ns+1 �= 0.

We have χ(c) = ζjq+1χ(1) for some j, 0 � j � q. Then, by Schur’s lemma,

we must have (χ, νj)M ′ = 1. If j �= (q+1)/2, then νj is realizable in kj and

Q (χ) ⊃ kj , so we have mQ (χ) = mkj (χ) = 1. Suppose that j = (q + 1)/2.

Then we have mR (νj) = mQ p
(νj) = 2. Therefore the last assertion follows

from properties of Hasse invariants. �
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