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On a Family of Subgroups of the Teichmüller Modular

Group of Genus Two Obtained from the Jones

Representation

By Masanori Morishita

Abstract. We study the image of the reduction of the specialized
Jones representation of the Teichmüller modular group Γ of genus 2.
As a result, we give a family of normal subgroups of Γ with finite
unitary groups as quotients. We also show that they do not contain
the Torelli subgroup of Γ.

0. Introduction

The purpose of the present paper is to give a family of “non-congruence”

subgroups of the Teichmüller modular group of genus 2 by confirming a con-

jecture, posed by Takayuki Oda, on the image of the Jones representation.

In [J], Jones attached to a Young diagram a Hecke algebra representa-

tion of the braid group Bn on n strings. As was shown in [ibid,10], the

Jones representation of B6 corresponding to the three by two rectangular

Young diagram factors through the Teichmüller modular group Γ of genus

2, namely, the mapping class group of a closed orientable surface of genus

2, and we thus get the representation π : Γ −→ GL5(Z[x, x−1]) which is ex-

plicitly given [ibid, p362]. Now, for a certain natural number n, specializing

x to exp(2π
√
−1/n), we get a representation πn : Γ −→ GL5(OK), where

OK is the ring of integers in the n-th cyclotomic field K. Let F be the

maximal real subfield of K and take a non-zero ideal I of OF , the ring of

integers of F . The reduction of πn modulo IK = IOK gives a representation

πn,I : Γ −→ GL5(OK/IK). Then, Oda conjectured that the image of πn,I is

a certain unitary group if I is prime to an ideal of OF containing (n). (For

the precise formulation, see Section 2).

The main result of this paper is to confirm Oda’s conjecture when I is

a product of prime ideals of OF which are inert in K/F (Main Theorem
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4.3). The proof consists of two steps. We first show that πn,℘ is irreducible

under certain conditions on n and a prime ℘, and then investigate the list

of all irreducible subgroups of PSL5(OK/℘K) due to Martino and Wagoner

[M-W]. For the case of a product of inert primes, we apply a criterion

of Weisfeiler [W] on the approximation of a Zariski-dense subgroup in a

semisimple group over a finite ring. This proof is similar to that of Oda and

Terasoma ([O-T]) on the similar problem for the Burau representations,

where they use the induction after working with 2 × 2 matrices (see also

[Be]). Our case is more complicated in the respect that we work with 5× 5

matrices and so the finite group theory is more involved.

We also check that the kernel of πn,I does not contain the Torelli group

using its explicit generator given by Birmann [Bi1].

Since the Teichmüller modular group is the fundamental group of the

moduli space M of compact Riemann surfaces of genus 2, our result gives a

tower of 3-folds, namely, finite Galois coverings of M with the Galois groups

of finite unitary groups.

Finally, we mention that Kasahara ([Ka]) studied the image of the Torelli

group of genus 2 under the specialized Jones representation at the 4-th root

of unity and its abelianization in connection with the Johnson homomor-

phism.
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Notation. For an associative ring R with identity , Mn(R) denotes the

total matrix algebra over R of degree n, and GLn(R) denotes the groups of

invertible elements of Mn(R). We write R× for GL1(R). For A ∈ Mn(R),
tA, tr(A), and det(A) stand for the transpose, trace, and determinant of A,

respectively. We write 0n and 1n for the zero and identity matrix in Mn(R),

respectively, and eij for the matrix unit and diag(·) for the diagonal matrix.
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In Section 3, we shall use the notations in the list of [M-W].

1. The Jones representation of the Teichmüller modular group

of genus 2 and its unitarity

In [J], Jones attached to each Young diagram with n tiles a Hecke algebra

representation of the braid group Bn on n strings. As was shown in [ibid,

Section 10], the representation of B6 corresponding to the three by two

rectangular Young diagram factors through the Teichmüller modular group

Γ of genus 2, namely, the mapping class group of a closed orientable surface

of genus 2. It is known that Γ admits the following presentation ([Bi2],

Theorem 4.8, p 183-4).

generators: θ1, θ2, θ3, θ4, θ5.

defining relations:




θiθi+1θi = θi+1θiθi+1 (1 ≤ i ≤ 4),

θiθj = θjθi (|i− j| ≥ 2, 1 ≤ i, j ≤ 5),

(θ1θ2θ3θ4θ5)
6 = 1,

(θ1θ2θ3θ4θ
2
5θ4θ3θ2θ1)

2 = 1,

θ1θ2θ3θ4θ
2
5θ4θ3θ2θ1 commutes with θi (1 ≤ i ≤ 5).

The Jones representation of Γ mentioned above is given explicitly on

generators as follows ([J], p362).

π : Γ −→ GL5(Z[x, x−1]), x = t1/5;

π(θ1) = x−2




−1 0 0 0 t

0 −1 1 0 0

0 0 t 0 0

0 0 1 −1 0

0 0 0 0 t


 ,

π(θ2) = x−2




t 0 0 0 0

0 t 0 0 0

0 t −1 0 0

1 0 0 −1 0

1 0 0 0 −1


 ,
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π(θ3) = x−2




−1 0 0 t 0

0 −1 1 0 0

0 0 t 0 0

0 0 0 t 0

0 0 1 0 −1


 ,

π(θ4) = x−2




t 0 0 0 0

1 −1 0 0 0

0 0 −1 0 t

1 0 0 −1 0

0 0 0 0 t


 ,

π(θ5) = x−2




−1 t 0 0 0

0 t 0 0 0

0 0 t 0 0

0 0 1 −1 0

0 0 1 0 −1


 .

We see that detπ(θi) = −1, 1 ≤ i ≤ 5.

Let A = A(x) ∈ Mn(Z[x, x−1]), x = t1/5. We write A∗ for tA(x−1) and

call A x-hermitian if A = A∗ and A �= 0n. For an x-hermitian matrix A, we

define the unitary group with respect to A by

Un(A) := {g ∈ GLn(Z[x, x−1])|g∗Ag = A}.

Lemma 1.1. Let π be the representation given in Section 1. Then,

there is an x-hermitian matrix H ∈ M5(Z[x, x−1]) so that the image of π is

contained in U5(H). Moreover, such H is determined up to Q(x)×-multiple.

Proof. Let H = (hij) ∈ M5(Z[x, x−1]). We just write down the

system of linear equations for hij ’s:

π(θi)
∗Hπ(θi) = H, 1 ≤ i ≤ 5.

We then find the following x-hermitian matrix satisfies these equations:


(1 + t)(1 + t−1) −(1 + t) 2 −(1 + t) −(1 + t)
−(1 + t−1) 1 + t + t−1 −(1 + t−1) 1 1

2 −(1 + t) (1 + t)(1 + t−1) −(1 + t) −(1 + t)
−(1 + t−1) 1 −(1 + t−1) 1 + t + t−1 1
−(1 + t−1) 1 −(1 + t−1) 1 1 + t + t−1


 .
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If H ′ is such a matrix, then H−1H ′ commutes with π(θi), 1 ≤ i ≤ 5.

By solving the system of linear equation for aij ’s : Aπ(θi) = π(θi)A,A =

(aij) ∈ M5(Z[x, x−1]), 1 ≤ i ≤ 5, we find A ∈ Q(x)15. �

We write h = ht for the matrix in the proof. We see that det(ht) =

(t + t−1)4(1 + t + t−1).

Remark 1.2. The representation π multiplied by x2 comes from the

representation of Hecke algebra over Z[t, t−1] which is known to be abso-

lutely irreducible over Q(t). So, the uniqueness of H up to Q(x)×-multiple

in Lemma 1.1 follows also from Schur’s lemma.

2. The reduction of the specialized Jones representation at a root

of unity and the conjecture of Oda

Let n be a natural number. We assume that n is bigger than 6 and

prime to 30. Let η = exp(2π
√
−1/n) and ζ = η5. Set K = Q(ζ),OK =

Z[ζ], F = Q(ζ + ζ−1) and OF = Z[ζ + ζ−1].

By specializing t → ζ, x = t1/5 → η in the representation π, we get a

representation

πn : Γ −→ GL5(OK).

Take a non-zero ideal I of OF which is prime to n, and set IK = IOK . The

reduction of πζ modulo IK defines the representation

πn,I : Γ −→ GL5(OK/IK).

Then, πn,I certainly inherits the unitarity from π.

Lemma 2.1. The image of πn,I is contained in

U5(OK/IK ;hn,I) := {g ∈ GL5(OK/IK) | g∗hn,Ig = hn,I},

where hn,I := hζ mod IK and g∗ =t gτ , τ is the involution induced from the

generator of Gal(K/F ).

Proof. This is immediate from Lemma 1.1. �



408 Masanori Morishita

To formulate the conjecture, we twist πI a little bit. Let χ : Γ → O×
K

be the character defined by χ(θi) = −1, and set χI := χ mod IK . We then

consider ρn,I := πn,I ⊗ χI . Since det(πζ(θi)) = −1, by Lemma 2.1, we have

the inclusion

ρn,I(Γ) ⊂ SU5(OK/IK ;hn,I) := {g ∈ U5(OK/IK ;hn,I) | det(g) = 1}.

Then, the conjecture posed by Oda is formulated as follows.

Conjecture 2.2. There is a non-zero ideal C of OF containing (n)

so that the image of ρn,I coincides with SU5(hn,I) if I is prime to C.

3. The inert prime case

In this section, we verify Conjecture 2.2, when I is a maximal ideal ℘

of OF which is inert in K/F . Set F℘ = OF /℘,F = F℘K = OK/℘K for

simplicity. We simply write π℘ and ρ℘ for πn,℘ and ρn,℘, respectively, also

h℘ for hn,℘. As in Section 2, we assume that n is bigger than 6 and prime

to 30. We note that ℘ is prime to an ideal of the form (1 − ζm), m is

prime to n, because 1 − ζm is a unit when n is a composite number and

because ℘ is assumed to be inert and (1 − ζm) is the maximal ideal of K

over a totally ramified prime p when n is a power of p. In particular, hn,℘
is non-degenerate.

First, we show that the representation π℘ is irreducible. This can be

obtained from the irreducibility of the corresponding specialized represen-

tation of the Hecke algebra over a finite field (This was communicated by

the referee). Here, we give an elementary proof based on the observation

that each π℘(θi) is a quasi-reflection given explicitly as follows.

Lemma 3.1. Let V = F⊕5 be the representation space of π℘. For each

1 ≤ i ≤ 5, there are subspaces Xi and Yi of V such that

V = Xi ⊕ Yi, dimXi = 3, dimYi = 2,

π℘(θi)|Xi = −η−2idXi , π℘(θi)|Yi = η3idYi ,

where η denotes a primitive n-th root of 1 in F by abuse of notation. Note

that −η−2 �= η3 for (n, 10) = 1
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Proof. Using the explicit matrix form of each π(θi) given in Section

1, we easily find the eigenspaces Xi and Yi as follows:

X1 = {t(x1, x2, 0, x4, 0)}, Y1 = {t(y1, y2, (1 + ζ)y2, y2, (1 + ζ−1)y1)}
X2 = {t(0, 0, x3, x4, x5)}, Y2 = {t((1 + ζ)y1, (1 + ζ−1)y2, y2, y1, y1)}
X3 = {t(x1, x2, 0, 0, x5)}, Y3 = {t(y1, y2, (1 + ζ)y2, (1 + ζ−1)y1, y2)}
X4 = {t(0, x2, x3, x4, 0)}, Y4 = {t((1 + ζ)y1, y1, y2, y1, (1 + ζ−1)y2)}
X5 = {t(x1, 0, 0, x4, x5)}, Y5 = {t(y1, (1 + ζ−1)y1, (1 + ζ)y2, y2, y2)},

where xi’s and yi’s run over F and ζ = η5. �

Lemma 3.2. The representation π℘ is irreducible.

Proof. Suppose that V has π℘(Γ)-invariant subspace W �= 0, V .

First, assume dim(W ) = 1. Let w be a base of W and write w = x +

y, x ∈ X1, y ∈ Y1. If π℘(θ1)w = αw,α ∈ F×, by Lemma 4.1, we have

(α + η2)x + (α − η3)y = 0, from which we see that w ∈ X1 or w ∈ Y1.

Let w = t(x1, x2, 0, x4, 0) ∈ X1. Then, π℘(θ2)w = η−2 t(ζx1, ζx2, ζx2, x1 −
x4, x1) should be in X1 and so we get w = 0. This is a contradiction.

Similarly, w can not be in Y1. Hence, dim(W ) > 1. We may assume

dim(W ) = 2, since the orthogonal complement of W with respect to hn,℘
is π℘(Γ)-invariant. For this case, consider the exterior square representa-

tion
∧2 π℘ : Γ −→ GL(

∧2 V ). Then,
∧2 W is an invariant subspace of∧2 V and dim(

∧2 W ) = 1, and the similar argument to the above can

be applied. Fix a basis of X1; v1 = t(1, 0, 0, 0, 0), v2 = t(0, 1, 0, 0, 0), v3 =
t(0, 0, 0, 1, 0) and a basis of Y1; v4 = t(1, 0, 0, 0, 1+ζ−1), v5 = t(0, 1, 1+ζ, 1, 0)

and set V1 = Fv1 ∧ v2 + Fv2 ∧ v3 + Fv1 ∧ v3, V2 = Fv4 ∧ v5, and V3 =

Fv1∧v4 +Fv1∧v5 +Fv2∧v4 +Fv2∧v5 +Fv3∧v4 +Fv3∧v5. Then, we get

the decomposition
∧2 V = V1 ⊕ V2 ⊕ V3, and by Lemma 3.1, π℘(θ1) acts on

V1, V2, V3 by the scalar multiples η−4, η6,−η, respectively, from which we see

that
∧2 W sits in one of Vi’s. Suppose W = Fw ⊂ V1. Then,

∧2 π℘(θj)w,

2 ≤ j ≤ 5, should be in V1. We write w as the linear combination of the

above basis of V1 and write down the condition of these coefficients so that∧2 π℘(θj)w = 0, 2 ≤ j ≤ 5. Then, we easily get w = 0. Similarly, W can

not be in V2, V3, where we use the assumption on ℘. We conclude that π℘
is irreducible. �

Now, we shall determine the image of ρ℘ by investigating the list of

irreducible subgroups of PSL5(F) due to Martino and Wagoner [M-W].
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Further, we assume that ℘ is prime to 2. By abuse of notation we write ρ℘
for the associated projective representation and set G = ρ℘(Γ), which is an

irreducible subgroup of PSL5(F) by Lemma 3.2.

First, we have the following

Lemma 3.3. The group G can not be realized over Fpa , a < 2f , where

p2f is the cardinality of F.

Proof. Suppose that G is a subgroup of PSL5(Fpa), a < 2f. Then,

the characteristic polynomial (X − η−2)3(X + η3)2 of ρ℘(θ1) is invariant

under the action of the Galois group Gal(Fp2f /Fpa) = < σ >, where σ =

Frobenius automorphism. Hence, (η−2)σ = η−2pa = η−2 and so pa ≡ 1 mod

n, for (n, 30) = 1. This contradicts to the minimality of 2f so that p2f ≡ 1

mod n. �

By Lemma 3.2, the following groups in the list of Martino-Wagoner can

not be G: (1.3)-(a), (1.5), (1.7), (1.10)-(a), (1.12), (1.13), (1.14)-(a), (1.15),

(1.16), where the numbers are those in [M-W].

Next, since the image of ρ℘ is contained in SU5(OK/℘K ;h℘) � SU5(F),

G can not be PSL5(F), PSO5(F) and PΩ5(F), by comparing the orders.

So, the groups (1.4), (1.8), (1.9) and (1.10)-(b) in [M-W] are excluded.

The following useful lemma was suggested by Eiichi Bannai.

Lemma 3.4. The subgroup of G generated by ρ℘(θ1) and ρ℘(θ3) is iso-

morphic to Z/2nZ × Z/2nZ.

Proof. Using Lemma 3.1, we easily see that the order of ρ℘(θi) is 2n

and < ρ℘(θ1) > ∩ < ρ℘(θ3) >= id. �

The group (1.2) in [M-W] is a subgroup of the group which is an exten-

sion of a cyclic subgroup by Z/5Z. So, by Lemma 3.4, G can not be this

group. Next, (1.11) is PSL2(F) or PGL2(F). We have a list of subgroups of

PSL2(F) due to Dickson, [H], p213, Satz 8.27. Looking at this, by Lemma

3.3, G can not be a subgroup of PSL2(F). Since PGL2(F) is an extension

of PSL2(F) by a cyclic subgroup of order 2, G can not be in PGL2(F).

The similar argument can be applied to the groups (1.3)-(b),(c).

Finally, the group (1.1) in [M-W] can be excluded as follows. The follow-

ing argument was also communicated by E. Bannai. The group (1.1) is an
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irreducible subgroup of A, where A is a global stabilizer in PSL5(F) of a sim-

plex. Note that A is a monomial group and has a normal abelian subgroup

N (diagonal group) so that A/N � S5= the symmetric group on 5 letters.

Assume that G is an irreducible subgroup of A. Then, Ḡ = G/(G ∩ N)

is a subgroup of S5. Let ρi be the image of ρ℘i(θi) in Ḡ. Since the order

of ρ℘i(θi) is 2n and (n, 15) = 1, the order of ρi is 1 or 2. On the other

hand, ρi’s satisfies the relations ρiρi+1ρi = ρi+1ρiρi+1 (1 ≤ i ≤ 4), ρiρj =

ρjρi (|i− j| ≥ 2, 1 ≤ i, j ≤ 5), in particular, ρi’s are conjugate each other.

Suppose all ρi = 1. Then, G ⊂ N . This is not the case. Suppose all ρi’s

are permutations. Then, it is clear that the second relation in the above is

not satisfied. Thus, the group (1.1) is excluded.

Summing up the above, we have

Theorem 3.5. Assume that n is prime to 30 , bigger than 6 and that

a prime ideal ℘ of OF does not divide 2 and is inert in K/F . Then, the

image of ρ℘ coincides with SU5(OK/℘K ;h℘).

4. The case of a product of inert primes

In this section, we extend Theorem 3.5 to the case where the ideal I is a

product of non-split primes. For this, we apply a criterion of Weisfeiler [W]

on the approximation of a Zariski-dense subgroup in a semisimple group

scheme over a finite ring to our situation.

Let I be a product of different prime ideals ℘i of OF , I =
∏r

i=1 ℘
ei
i ,

where each ℘i is inert in K/F and prime to 6. Set A = OF /I and B =

OK/IK , IK = IOK . We also set Ai = OF /℘
ei
i , Bi = OK/℘ei

iK
, ℘iK = ℘iOK ,

and ki = OF /℘i = Fqi ,OK/℘iK = Fq2i
, qi = N℘i. So, we have decomposi-

tions A = ⊕r
i=1Ai, B = ⊕r

i=1Bi. The radical of A is R =
∏r

i=1 ℘i modulo I.

We write B = A ⊕ Aβ, β2 ∈ A. Since each ℘i is inert in K/F , we see that

β ∈ B×.

By the assumption on I, hI := hζ modulo IK defines a non-degenerate

hermitian form on the free B-module M = B⊕5. The following lemma which

assures the existence of a unitary basis is well known for the case where IK
is a prime. For its proof, we refer to Propositions 2.3.1, 2.3.2 of [K-L]. For

our general I, it follows easily by the argument using the decompositions

A = ⊕r
i=1Ai, A

× = ⊕r
i=1A

×
i etc.
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Lemma 4.1. Let J be the hermitian form on M given by the matrix


1

1

1

1

1


 .

Then, we have an isometry of hermitian modules

φ : (M ;hI) � (M ;J).

Let SUh and SUJ be the special unitary group schemes over A with

respect to the hermitian forms hI and J on M , respectively. Our task is to

show SUh(A) = ρn,I(Γ). By Lemma 4.1, it is reduced to show SUJ(A) = Γ′,
where Γ′ = φρn,I(Γ)φ−1.

Now, let us recall Weisfeiler’s criterion for our pair Γ′ ⊂ SUJ(A).

The group A-scheme SUJ is a connected and simply-connected abso-

lutely almost simple and quasi-split over A. Let T be a maximal A-torus

of SUJ contained in a Borel A-subgroup. We say that T (ki) (= prime to

pi-part of T (Ai), pi = char. ki) distinguishes the roots of T on SUJ if for

two roots r1, r2 of T on SUJ , r1|T (ki) = r2|T (ki) implies r1 = r2. For each

i, 1 ≤ i ≤ r, let Ni be the natural number such that if qi = N℘i > Ni then

T (ki) distinguishes the roots of T .

Finally, let suJ be the Lie algebra of SUJ and Ad : SUJ(A) →
GL(suJ(A)) be the adjoint representation.

Lemma 4.2 ([W], Theorem (7.2)). Notation being as above, assume

that

(1) qi ≥ max(10, Ni), 1 ≤ i ≤ r,

(2) The image of Γ′ in SUJ(ki) under the reduction modulo ℘i/℘
ei
i ⊕

⊕j �=iOF /℘
ej
j is the whole SUJ(ki),

(3) Z[trAd(Γ′)mod.R2] = A/R2.

Then, we have the equality Γ′ = SUJ(A).

Remark 4.3. The assumption in (7.1) of [W] that the only proper

ideal of the Lie algebra suJ(ki), 1 ≤ i ≤ r, are central is satisfied for our

suJ (Remark to (7.1) of [W]).
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Let RB/A(Gm,B) be the Weil restriction of scalers from B to A of the

split B-torus Gm,B of dimension 1 and z �→ z̄ is the automorphism of

RB/A(Gm,B) induced from the non-trivial automorphism of B/A. For z =

x + yβ ∈ B× = RB/A(Gm,B)(A), z̄ = x− yβ. Then, a maximal A-torus T

of SUJ is given by

T := {t = diag(t1, t2, t3, t̄2
−1, t̄1

−1)| ti ∈ RB/A(Gm,B), t3 = t−1
1 t̄1t

−1
2 t̄2},

which contains the maximal A-split torus

S := {s = diag(s1, s2, 1, s
−1
2 , s−1

1 )| si ∈ Gm,A}.

Next, a A-basis of the Lie algebra suJ(A) is given as follows:

e11 − e55, e22 − e44, β(e11 + e55 − 2e33), β(e22 + e44 − 2e33), e12 − e45, β(e12 +

e45), e14−e25, β(e14 +e25), e13−e35, β(e13 +e35), e23−e34, β(e23 +e34), e21−
e54, β(e21+e54), e41−e52, β(e41+e52), e31−e53, β(e31+e53), e32−e43, β(e32+

e43), βe15, βe24, βe51, βe42.

Now, by the computation using this basis, we can describe the roots

of T on SUJ . Define the characters εi, 1 ≤ i ≤ 5, of T by the following:

for t = diag(t1, t2, t3, t̄2
−1, t̄1

−1) ∈ T (A), εi(t) = ti, 1 ≤ i ≤ 3, ε4(t) =

t̄2
−1, ε5(t) = t̄1

−1. Then, ±(εi − εj), 1 ≤ i < j ≤ 5, are all roots of T and

positive roots εi−εj , 1 ≤ i ≤ 5, correspond to a Borel A-subgroup consisting

of upper triangular matrices and containing T . The relative roots of S are

±(ε1 − ε2),±εi,±2εi, 1 ≤ i ≤ 2. Then, we first see that each qi > 5 by our

assumptions and so ki is large enough so that S(ki) distinguishes the roots

of S for any i. Next, we also see easily that T (ki) distinguishes 2 roots of

T restricted to the same root of S for each i. Hence, the assumption (1) of

Lemma 4.2 is just qi ≥ 10, 1 ≤ i ≤ r. The assumption (2) is a consequence

of Theorem 3.5.

Finally, using the above basis of suJ(A), a straightforward calculation

shows that tr(Ad(g)) = NB/A(tr(g)) − 1 for g ∈ SUJ(A), where NB/A

is the norm map attached to B/A and NB/A(tr(ρn,I(θ1))) = 13 − 6(ζ +

ζ−1) modulo I. Therefore, the assumption (3) is certified.

Hence, by Lemma 4.2, we have

Main Theorem 4.4. Assume that n is prime to 30, bigger than 6. Let

I be a product of prime ideals ℘i of OF . Assume that each ℘i is inert in

K/F and prime to 6 and N℘i ≥ 10. Then, the image of ρn,I coincides with

SU5(OK/IK , hI).
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5. Comparison with the Torelli group and coverings of the mod-

uli space of compact Riemann surfaces of genus 2

Let Sp2(Z) be the Siegel modular group of degree 4, namely, the group

consisting of all X ∈ GL4(Z) satisfying

X

(
02 12

−12 02

)
tX =

(
02 12

−12 02

)
.

Let θ : Γ → Sp2(Z) be the canonical homomorphism induced by the abelian-

ization map of Γ and the Nielsen isomorphism. We call the kernel of θ

the Torelli group of genus 2 and write Γ(N) for θ−1(Sp2(Z;N)), where

Sp2(Z;N) is the principal congruence subgroup of Sp2(Z) modulo a natu-

ral number N . The following result of Birmann allows us to compare our

groups Γn,I with the “congruence subgroups” Γ(N) of Γ.

Lemma 5.1 ([Bi1], Theorem 2). The Torelli group of genus 2 is gen-

erated by the normal closure of (θ1θ2θ1)
4.

Proposition 5.2. Under the same assumptions in Theorem 4.4, the

group Γn,I does not contain the Torelli group, hence any Γ(N).

Proof. We see that 1-1 entry of ρn,I((θ1θ2θ1)
4) = η6 which is not 1

modulo I by our assumptions. �

The geometrical interpretation of the above result is as follows.

Let T be the Teichmüller space of genus 2 and M = T /Γ be the moduli

space of compact Riemann surfaces of genus 2. Let S be the Siegel upper

half space of degree 4 and A = S/Sp2(Z) be the moduli space of principally

polarized abelian surfaces. The period map T → S is compatible with the

actions of Γ, Sp2(Z) and θ, and thus we obtain the Torelli map M −→ A.

The Galois covering AN = S/Sp2(Z;N) over A with the Galois group

Sp2(Z/NZ) is the moduli space of principally polarized abelian surfaces with

level N -structure. Then, Corollary 5.2 tells us that the spaces T /Γn,I give

a family of Galois coverings over M with the Galois groups SU5(OK/IK),

which can not be obtained by the pull-back of any AN via the Torelli map.
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