On Gross's Refined Class Number Formula for

Elementary Abelian Extensions

By Joongul Lee

Abstract

In this paper we consider the conjecture of Gross on the special values of abelian L-functions when the Galois group G is an elementary abelian l-group. Under some restrictions, we prove that the conjecture holds when the class number of the base field is prime to l.

1. Introduction

Suppose L / K is an abelian extension of global fields and let $G=$ $\operatorname{Gal}(L / K)$. In [3], B. Gross has conjectured a congruence relation involving the Stickelberger element in $\mathbb{Z}[G]$, class number of K and the generalized regulator. The relation can be thought of as a generalization of the classical class number formula which describes the leading term of the Taylor expansion of $\zeta_{K}(s)$ at $s=0$ in terms of the class number and the regulator of K. In this paper we consider the case when G is an elementary abelian l-group. Our main result is Theorem 3, which states that the conjecture holds when the class number of K is prime to l and (when K contains a primitive l-th root of unity) T contains a place whose degree is prime to l. This improves the result that Gross obtained when G is cyclic of prime order (see [3]).

I would like to thank Benedict Gross, Ki-Seng Tan and Felipe Voloch for helpful discussions and suggestions, and especially my teacher John Tate for continuous support and encouragement. I would also like to thank the referee for valuable comments.

2. The conjecture of Gross

Let L / K be an abelian extension of global fields with Galois group G. Let S be a finite non-empty set of places of K which contains all archimedean places and places ramified in L, and let T be a finite non-empty set of places

[^0]of K which is disjoint from S. Let $n=|S|-1$. For a finite place v of K, let \mathbb{F}_{v} be the residue field of v.

For a complex character $\chi \in \widehat{G}=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$, the associated modified L-function is defined as

$$
\begin{equation*}
L_{S, T}(\chi, s)=\prod_{v \in T}\left(1-\chi\left(g_{v}\right) \boldsymbol{N} v^{1-s}\right) \prod_{v \notin S}\left(1-\chi\left(g_{v}\right) \boldsymbol{N} v^{-s}\right)^{-1} \tag{1}
\end{equation*}
$$

where $g_{v} \in G$ is the Frobenius element for v.
The Fourier inversion formula tells us that there is a unique element $\theta_{G} \in \mathbb{C}[G]$ which satisfies

$$
\begin{equation*}
\chi\left(\theta_{G}\right)=L_{S, T}(\chi, 0) \tag{2}
\end{equation*}
$$

for all $\chi \in \widehat{G}$. In fact, $\theta_{G} \in \mathbb{Z}[G]$ by works of Weil, Siegel, Deligne-Ribet and Cassou-Noguès (see [3] for more information).

Let Y be the free \mathbb{Z}-module generated by the places $v \in S$ and $X=$ $\left\{\sum_{v \in S} a_{v} \cdot v \mid \sum a_{v}=0\right\}$ the subgroup of elements of degree zero in Y. Let U_{T} denote the group of S-units which are congruent to $1(\bmod T)$ (in other words, S-units which are congruent to $1(\bmod v)$ for all $v \in T)$. Then U_{T} is a free \mathbb{Z}-module of rank n if K is a function field, and to ensure that the same is true if K is a number field we require that T either contains places of different residue characteristics or contains a place v whose absolute ramification index e_{v} is strictly less than $(p-1)$, where p is the characteristic of \mathbb{F}_{v}. This assumption makes U_{T} a free \mathbb{Z}-module.

Let J denote the idele group of K, and $f: J \rightarrow G$ be the Artin reciprocity map. Let λ_{G} be the homomorphism

$$
\begin{align*}
\lambda_{G}: U_{T} & \longrightarrow G \otimes X \tag{3}\\
\varepsilon & \longmapsto \sum_{S} f\left(1,1, \ldots, \varepsilon_{v}, \ldots, 1\right) \cdot v
\end{align*}
$$

We choose bases $\left\langle\varepsilon_{1}, \ldots, \varepsilon_{n}\right\rangle$ and $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ for U_{T} and X. With respect to the chosen bases, we obtain an $n \times n$ matrix $\left(\left(g_{i j}\right)\right)$ for λ_{G} with entries in G.

Let $I \subset \mathbb{Z}[G]$ be the augmentation ideal, which is defined as the kernel of the ring homomorphism

$$
\begin{align*}
\mathbb{Z}[G] & \longrightarrow \mathbb{Z} \tag{4}\\
g & \longmapsto 1 .
\end{align*}
$$

It is well known that the map $g \mapsto g-1 \quad\left(\bmod I^{2}\right)$ gives an isomorphism $G \cong I / I^{2}$ of abelian groups. We may therefore consider the matrix for λ_{G} as having entries $\eta_{i j}=g_{i j}-1$ in I / I^{2}. We define

$$
\begin{align*}
\operatorname{det} \lambda_{G} & =\sum_{\sigma \in \operatorname{Sym}(n)} \operatorname{sign}(\sigma) \eta_{1 \sigma(1)} \eta_{2 \sigma(2)} \cdots \eta_{n \sigma(n)} \tag{5}\\
& \in I^{n} / I^{n+1}
\end{align*}
$$

Now we can state the main conjecture.
Conjecture 1 (Gross). $\quad \theta_{G} \equiv m \cdot \operatorname{det} \lambda_{G} \quad\left(\bmod I^{n+1}\right)$.
Here $m= \pm h_{S, T}$ is the modified class number of the S-integers of K and the sign depends on the choice of ordered bases of X and U_{T} (see [3]).

We summarize some basic facts on Conjecture 1 .
Proposition 2. (a) Suppose $S \subset S^{\prime}$ and $T \subset T^{\prime}$. If Conjecture 1 holds for the set S and T, it holds for S^{\prime} and T^{\prime}.
(b) Suppose H is a subgroup of G. The natural map $\mathbb{Z}[G] \rightarrow \mathbb{Z}[G / H]$ maps θ_{G} and $\operatorname{det} \lambda_{G}$ to $\theta_{G / H}$ and $\operatorname{det} \lambda_{G / H}$ respectively. Hence Conjecture 1 holds for G / H if it holds for G.
(c) Conjecture 1 holds for G if and only if it holds for all its p-Sylow quotients.
(d) If S contains a place v that splits completely in L, then $\theta_{G} \equiv m \cdot \operatorname{det} \lambda_{G} \equiv$ $0\left(\bmod I^{n+1}\right)$.
(e) If $n=0$ then $\operatorname{det} \lambda_{G}=1, m=h_{S, T}, I^{n} / I^{n+1}=\mathbb{Z}$, and conjecture 1 holds because it is equivalent to the classical class number formula.

See $[3,8]$ for (a) and (b). (c) was pointed out by J. Tate. For (d) we note that the Euler factor for v is zero, so $\theta_{G}=0$, and also the row of the matrix of λ_{G} which correspond to v is zero and hence $\operatorname{det} \lambda_{G} \equiv 0\left(\bmod I^{n+1}\right)$. (e) follows from the definitions of the related quantities.

In [3], B. Gross proved that the Conjecture 1 holds when S consists of the archimedean places of K. He also treated the case when $G \cong \mathbb{Z} / l \mathbb{Z}$ is cyclic of prime order. In this case, $I^{n} / I^{n+1} \cong \mathbb{Z} / l \mathbb{Z}$ for $n \geq 1$, and Gross proved that his conjecture is true up to an element of $(\mathbb{Z} / l \mathbb{Z})^{*}$, in the sense that θ_{G} always belongs to I^{n} (hence we are comparing two elements in I^{n} / I^{n+1}) and that $\theta_{G} \in I^{n+1}$ if and only if $m \cdot \operatorname{det} \lambda_{G} \in I^{n+1}$. In [9],
M. Yamagishi treated the case when $K=\mathbb{Q}$ and got some partial result, and N. Aoki proved that the conjecture is true for $K=\mathbb{Q}$ in [1]. D. Hayes proved a refined version of the Stark conjecture (conjectured by Gross) for function fields in [4], which implies Conjecture 1 for $n=1$. In [6], K.-S. Tan proved the case when K is a function field of characteristic p and G is a p-group.

3. The main theorem

Let l be a prime. Our goal is to prove the following theorem.
Theorem 3. Suppose G is an elementary abelian l-group. If K is a function field suppose also that h_{K}, the number of divisor classes of degree 0 of K, is prime to l, and, in case K contains a primitive l-th root of unity, that T contains a place whose degree is prime to l. Then conjecture 1 holds.

If K is a number field, the existence of the archimedean places assures that Conjecture 1 is true when $l \geq 3$ since the archimedean places split completely in L, and when $l=2$ Conjecture 1 follows from the work of Gross and corollary 5 below. Therefore we may assume that K is a function field. Also, since Tan proved Conjecture 1 for p-groups ([6]), we may assume that l is different from the characteristic of K. Hence we will be dealing only with tame ramification. Also we may assume that T consists of a single place whose degree is prime to l if K contains a primitive l-th root of unity, via proposition 2.

Let $S=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}, n=|S|-1$, and $T=\left\{v_{T}\right\}$. Let K_{S} be the maximal extension of K unramified outside of S whose Galois group is an elementary abelian l-group. Let $G_{S}=\operatorname{Gal}\left(K_{S} / K\right)$, and for $i=0, \ldots, n$, let $I_{i} \subset G_{S}$ be the inertia group of v_{i}. Let D_{T} be the decomposition group of v_{T}. Notice that I_{i} is cyclic because K_{S} / K has only tame ramification, and that D_{T} is also cyclic because v_{T} is unramified in K_{S} and its residue field is finite. It follows from proposition 2 that we may assume that $n \geq 1$. We can also assume without loss of generality that $L=K_{S}$, and that all the places in S are ramified in K_{S}.

Here is our strategy for proving Theorem 3. We first discuss the structure of I^{n} / I^{n+1}, and we find a homogeneous polynomial f of degree n with
coefficients in \mathbb{F}_{l} which may be viewed as a function on $\widehat{G_{S}}$ with values in \mathbb{F}_{l}, such that the validity of the conjecture is equivalent to the vanishing of f on $\widehat{G_{S}}$. Next we study the structure of G_{S} in section 5 ., and we show that I_{0}, \ldots, I_{n} generate a subgroup of G_{S} of rank n or $n+1$, depending on whether K contains a primitive l-th root of unity or not. We also show that $I_{0}, \ldots, I_{n}, D_{T}$ generate a subgroup of G_{S} of rank $n+1$ when K contains a primitive l-th root of unity. In section 6 . we prove that if a polynomial function on $\widehat{G_{S}}$ vanishes on $n+1$ linearly independent subspaces of codimension 1 and its degree is bounded by n, then it must vanish on $\widehat{G_{S}}$. It turns out that this is exactly what we need in order to make the induction on $n=|S|-1$ work, and the induction is carried out in section 7 ..

4. The structure of I^{n} / I^{n+1}

Choose a primitive l-th root of unity $\zeta_{l} \in \mathbb{C}^{*}$, and let $\lambda=\zeta_{l}-1$. (λ) is a prime ideal in $\mathbb{Z}\left[\zeta_{l}\right]$ whose residue field is isomorphic to $\mathbb{Z} / l \mathbb{Z}$, and we have $(l)=(\lambda)^{l-1}$. Also note that a character $\chi \in \widehat{G}$ can be extended by linearity to a ring homomorphism $\chi: \mathbb{Z}[G] \longrightarrow \mathbb{C}$.

Lemma 4 (Passi-Vermani). Suppose G is an elementary abelian l group. If $\xi \in I$, then, for each integer $k \geq 1, \xi \in I^{k}$ if and only if $\lambda^{k} \mid \chi(\xi)$ for every complex character $\chi \in \widehat{G}$.

Proof. See [3] for the case when $G \cong \mathbb{Z} / l \mathbb{Z}$, and [5, 7] for elementary abelian case.

As we discussed in section 2., Gross proved that both θ_{G} and $m \cdot \operatorname{det} \lambda_{G}$ are in I^{n} when G is cyclic of prime order, which, together with Lemma 4, implies that both θ_{G} and $m \cdot \operatorname{det} \lambda_{G}$ are in I^{n} when G is an elementary abelian group.

Corollary 5. Suppose $G=\operatorname{Gal}(L / K)$ is an elementary abelian lgroup. Then the conjecture holds for L / K if and only if it holds for L^{\prime} / K for all cyclic subextensions L^{\prime} / K of L / K.

Proof. Set $\xi=\theta_{G}-m \cdot \operatorname{det} \lambda_{G}$ and apply lemma 4 .

Let $N=\operatorname{dim}_{\mathbb{F}_{l}} \widehat{G}-1$ and choose a basis $\left\{\chi_{0}, \ldots, \chi_{N}\right\}$ of \widehat{G}. In general, we have

$$
\begin{equation*}
\zeta_{l}^{m}-1=\left(\zeta_{l}-1\right)\left(\zeta_{l}^{m-1}+\ldots+1\right) \equiv m\left(\zeta_{l}-1\right) \quad\left(\bmod \lambda^{2}\right) \tag{6}
\end{equation*}
$$

Hence, given $\chi=\prod_{i=0}^{N} \chi_{i}^{m_{i}} \in \widehat{G}$ and $\sigma \in G$, we may write

$$
\begin{equation*}
\chi(\sigma-1)=\zeta_{l}^{\sum a_{i} m_{i}}-1 \equiv \sum a_{i} m_{i} \cdot \lambda \quad\left(\bmod \lambda^{2}\right) \tag{7}
\end{equation*}
$$

where $a_{i} \in \mathbb{F}_{l}$ is defined by $\chi_{i}(\sigma)=\zeta_{l}^{a_{i}}$.
If $\xi \in I^{n}$, then since ξ can be written as a linear combination of $\prod_{j=1}^{n}\left(\tau_{j}-1\right)$ where $\tau_{j} \in G$ for all j, we have

$$
\begin{equation*}
\chi(\xi) \equiv p\left(m_{0}, \ldots, m_{N}\right) \cdot \lambda^{n} \quad\left(\bmod \lambda^{n+1}\right) \tag{8}
\end{equation*}
$$

where $p\left(X_{0}, \ldots, X_{N}\right) \in \mathbb{F}_{l}\left[X_{0}, \ldots, X_{N}\right]$ is a homogeneous polynomial of degree n. We can see from Lemma 4 that $\xi \in I^{n+1}$ if and only if $p=0$ as a function on \widehat{G}.

For $\chi \in \widehat{G}$, define

$$
\begin{equation*}
f(\chi)=\frac{\chi\left(\theta_{G}-m \cdot \operatorname{det} \lambda_{G}\right)}{\lambda^{n}} \quad(\bmod \lambda) \tag{9}
\end{equation*}
$$

The above argument shows that f can be represented by a homogeneous polynomial of degree n. Let K_{χ} be the fixed field of ker χ. Then $f(\chi)=0$ if and only if the conjecture holds for K_{χ} / K with respect to S and T.

We also note that if K contains an l-th root of unity and T contains a place v that splits completely in L, then the modifying Euler factor for v is $(1-\boldsymbol{N} v)$ which is divisible by l. Since $l \cdot \xi \in I^{m+(l-1)}$ whenever $\xi \in I^{m}$, which follows from lemma $4, \theta_{G}$ will be in I^{n+1}. With the work of Gross, that implies $m \cdot \operatorname{det} \lambda_{G} \in I^{n+1}$. As a result, Conjecture 1 holds trivially (in the sense that the conjecture becomes $0=0$) when K contains an l-th root of unity and T contains a place that splits completely in L.

5. The structure of G_{S}

In this section, we study the structure of G_{S} and the inertia groups of S in G_{S} using class field theory. (reference:[2])

Let \mathbb{F}_{q} be the exact field of constants of K. For each place v of K, let K_{v} be the completion of K at v, U_{v} the set of local units in K_{v}, and $U_{v}^{1} \subset U_{v}$ the local units which are congruent to $1(\bmod v)$.

Let J_{0} be the set of ideles of degree 0 . It is easy to see that J is (noncanonically) isomorphic to $\mathbb{Z} \times J_{0}$, because K is known to have a divisor (not necessarily prime) of degree 1 .

There is an exact sequence

$$
\begin{equation*}
0 \rightarrow\left(\prod_{v \in S} \mathbb{F}_{v}^{*}\right) / \mathbb{F}_{q}^{*} \rightarrow J / K^{*} \cdot \prod_{v \notin S} U_{v} \cdot \prod_{v \in S} U_{v}^{1} \rightarrow J / K^{*} \cdot \prod_{v} U_{v} \rightarrow 0 \tag{10}
\end{equation*}
$$

If we let $K_{u n r}$ be the maximal unramified abelian extension of K, and K_{S}^{\prime} the maximal abelian extension of K unramified outside of S and tamely ramified in S, then $J / K^{*} \cdot \prod_{v \notin S} U_{v} \cdot \prod_{v \in S} U_{v}^{1}$ and $J / K^{*} \cdot \prod_{v} U_{v}$ have dense images in $\operatorname{Gal}\left(K_{S}^{\prime} / K\right)$ and $\operatorname{Gal}\left(K_{u n r} / K\right)$ respectively, via the Artin reciprocity map.

Observe that $J / K^{*} \cdot \prod_{v} U_{v}$ is isomorphic to $\mathbb{Z} \times H$, where $H=J_{0} / K^{*}$. $\prod_{v} U_{v}$ and since we assume that $h_{K}=|H|$ is not divisible by l, we have $(\mathbb{Z} \times H) \otimes \mathbb{Z} / l \mathbb{Z}=\mathbb{Z} / l \mathbb{Z}$ and $\operatorname{Tor}(\mathbb{Z} \times H, \mathbb{Z} / l \mathbb{Z})=0$. Hence tensoring the exact sequence with $\mathbb{Z} / l \mathbb{Z}$ preserves the exactness;

$$
\begin{equation*}
0 \rightarrow\left(\prod_{v \in S} \mathbb{F}_{v}^{*} / \mathbb{F}_{v}^{* l}\right) / \widetilde{\mathbb{F}_{q}^{*}} \rightarrow J / J^{l} \cdot K^{*} \cdot \prod_{v \notin S} U_{v} \cdot \prod_{v \in S} U_{v}^{1} \rightarrow \mathbb{Z} / l \mathbb{Z} \rightarrow 0 \tag{11}
\end{equation*}
$$

where $\widetilde{\mathbb{F}_{q}^{*}}$ is the image of \mathbb{F}_{q}^{*} in $\prod_{v \in S} \mathbb{F}_{v}^{*} / \mathbb{F}_{v}^{* l}$. Class field theory tells us that G_{S} is isomorphic to the middle term of the exact sequence, hence G_{S} is isomorphic to $\mathbb{Z} / l \mathbb{Z} \times\left(\prod_{v \in S} \mathbb{F}_{v}^{*} / \mathbb{F}_{v}^{* l}\right) / \widetilde{\mathbb{F}_{q}^{*}}$ and I_{i} is the image of $\mathbb{F}_{v_{i}}^{*} / \mathbb{F}_{v_{i}}^{* l}$ in G_{S}.

If we look at the map

$$
\begin{equation*}
\mathbb{F}_{q}^{*} \hookrightarrow \prod_{v \in S} \mathbb{F}_{v}^{*} \rightarrow \prod_{v \in S} \mathbb{F}_{v}^{*} / \mathbb{F}_{v}^{* l} \tag{12}
\end{equation*}
$$

then since \mathbb{F}_{q}^{*} is cyclic and $\prod_{v \in S} \mathbb{F}_{v}^{*} / \mathbb{F}_{v}^{* l}$ is killed by $l, \widetilde{\mathbb{F}}_{q}^{*}$ is either 0 or cyclic of order l. It is clear that $\widetilde{\mathbb{F}_{q}^{*}}=0$ when $q \not \equiv 1 \quad(\bmod l)$. When $q \equiv 1(\bmod l)$, we can see, for example by using Kummer theory, that \mathbb{F}_{q}^{*} is contained in $\left(\mathbb{F}_{v}^{*}\right)^{l}$ if and only if $\operatorname{deg} v$ is divisible by l. Hence $\widetilde{\mathbb{F}_{q}^{*}}$ is non-trivial only when $q \equiv 1 \quad(\bmod l)$ and there is a place $v \in S$ such that l does not divide $\operatorname{deg} v$.

For each $i=0, \ldots, n$, let $\sigma_{i} \in G_{S}$ be a generator of I_{i}, and σ_{T} a generator of D_{T}. When $\widetilde{\mathbb{F}_{q}^{*}}=0,\left\{\sigma_{i}\right\}_{i=0}^{n}$ are linearly independent, viewing G_{S} as a vector space over \mathbb{F}_{l}, and $\operatorname{dim}_{\mathbb{F}_{l}} G_{S}=n+2$. On the other hand, when $\widetilde{\mathbb{F}_{q}^{*}} \neq 0$, it gives a non-trivial linear relation among σ_{j} 's for j such that $l \nmid \operatorname{deg} v_{j}$, and hence $\operatorname{dim}_{\mathbb{F}_{l}} G_{S}=n+1$. As we have seen before, this case happens only when K contains a primitive l-th root of unity and there is a place in S whose degree is prime to l. In that case, we may assume that l does not divide $\operatorname{deg} v_{0}$, then $\left\{\sigma_{i}\right\}_{i=1}^{n}$ are linearly independent. Furthermore, with the assumption $l \nmid \operatorname{deg} v_{T}, v_{T}$ does not split completely in $K \cdot \mathbb{F}_{q^{l}}$, which is the maximal unramified extension in K_{S} by class field theory and the assumption $l \nmid h$. Hence $\sigma_{T} \notin\left\langle\sigma_{0}, \ldots, \sigma_{n}\right\rangle$, which implies that $\left\{\sigma_{T}, \sigma_{1}, \ldots, \sigma_{n}\right\}$ are linearly independent. Hence we have proved the following theorem.

THEOREM 6. (a) If K does not contain a primitive l-th root of unity, then the inertia groups of places in S are linearly independent in G_{S}.
(b) If K contains a primitive l-th root of unity, then the inertia groups of places in S generate a subgroup of G_{S} of rank at least n, and the decomposition group of v_{T} is not contained in the subgroup as long as $\operatorname{deg} v_{T}$ is prime to l.

REmARk. This argument shows that the assumption on T is necessary only when $\widetilde{\mathbb{F}_{q}^{*}}$ is non-trivial, i.e. when K contains an l-th root of unity and S contains a place whose degree is prime to l.

6. Functions on the \mathbb{F}_{l}-vector space

Let V be a \mathbb{F}_{l}-vector space of dimension $N+1$. Choose a basis $\left\{w_{0}, \ldots\right.$, $\left.w_{N}\right\}$ of V, and for $i=0, \ldots, N$ define $X_{i} \in \operatorname{Hom}\left(V, \mathbb{F}_{l}\right)$ by $X_{i}\left(w_{j}\right)=\delta_{i j}$. We may view a polynomial $f \in \mathbb{F}_{l}\left[X_{0}, \ldots, X_{N}\right]$ as a function on V via the above identification.

The goal of this section is to prove the following theorem, which will be used in proving Theorem 3.

TheOrem 7. Suppose $f \in \mathbb{F}_{l}\left[X_{0}, \ldots, X_{N}\right]$ is a polynomial of degree $\leq n$, which we view as a function on V, and $\left\{V_{i}\right\}_{i=0}^{n}$ are $n+1$ linearly independent subspaces of codimension 1 in V. If f vanishes on V_{i} for all i, then f vanishes on V.

Definition. We say that a polynomial $p\left(X_{0}, \ldots, X_{N}\right) \in \mathbb{F}_{l}\left[X_{0}, \ldots\right.$, $\left.X_{N}\right]$ is reduced if for each $X_{i}, \operatorname{deg}_{X_{i}} p\left(X_{0}, \ldots, X_{N}\right)<l$.

Lemma 8. Every function on V with values in \mathbb{F}_{l} can be uniquely expressed as a reduced polynomial in $\mathbb{F}_{l}\left[X_{0}, \ldots, X_{N}\right]$.

Proof. This is a well-known result, and we give a short proof here.
Observe that for $a_{i} \in \mathbb{F}_{l}, i=0, \ldots, N$, we have

$$
\prod_{i=0}^{N}\left(1-\left(x_{i}-a_{i}\right)^{l-1}\right)= \begin{cases}1 & \text { if } x_{i}=a_{i} \text { for all } i \tag{13}\\ 0 & \text { otherwise }\end{cases}
$$

By taking linear combination, we see that any function on V can be represented by a reduced polynomial. Uniqueness follows from counting such polynomials.

For each polynomial $p\left(X_{0}, \ldots, X_{N}\right) \in \mathbb{F}_{l}\left[X_{0}, \ldots, X_{N}\right]$, we can associate the reduced polynomial $p_{r}\left(X_{0}, \ldots, X_{N}\right)$ of $p\left(X_{0}, \ldots, X_{N}\right)$, which is reduced and defines the same function on V as $p\left(X_{0}, \ldots, X_{N}\right)$. We can get $p_{r}\left(X_{0}, \ldots, X_{N}\right)$ from $p\left(X_{0}, \ldots, X_{N}\right)$ by using the relations $X_{i}^{l}=X_{i}$ for all i to replace X_{i}^{m} by $X_{i}^{m-(l-1)}$ until $m<l$. Notice that for each i, $\operatorname{deg}_{X_{i}} p_{r} \leq \operatorname{deg}_{X_{i}} p$, and hence $\operatorname{deg} p_{r} \leq \operatorname{deg} p$.

Lemma 9. Suppose $p\left(X_{0}, \ldots, X_{N}\right)$ is a reduced polynomial. If $p\left(0, x_{1}, \ldots, x_{N}\right)=0$ for all $\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{F}_{l}^{N}$, then $X_{0} \mid p\left(X_{0}, \ldots, X_{N}\right)$.

Proof. Write $p\left(X_{0}, \ldots, X_{N}\right)=X_{0} \cdot q\left(X_{0}, \ldots, X_{N}\right)+r\left(X_{1}, \ldots, X_{N}\right)$. For all $\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{F}_{l}^{N}, r\left(x_{1}, \ldots, x_{N}\right)=p\left(0, x_{1}, \ldots, x_{N}\right)-0 \cdot q\left(0, x_{1}, \ldots\right.$, $\left.x_{N}\right)=0$. Since r is also reduced, we conclude that $r=0$.

Proof of Theorem 7. By change of coordinates, we may assume that for each $i=0, \ldots, n, V_{i}$ is given by the equation $X_{i}=0$. Let f_{r} be the reduced polynomial of f. According to Lemma $9, f_{r}$ is divisible by X_{i} for all i and since we have unique factorization, it follows that f_{r} is divisible by $\prod_{i=0}^{n} X_{i}$. Since we have $\operatorname{deg} f_{r} \leq \operatorname{deg} f \leq n$, it follows that $f_{r}=0$, and hence f vanishes on V.

7. The induction step

We prove Theorem 3 by induction on n. When $n=0$, the conjecture holds as noted in Proposition 2.

Suppose $n \geq 2$. For each $i=0, \ldots, n$, let $S_{i}=S \backslash\left\{v_{i}\right\}$. Then $\widehat{G_{S_{i}}}$ is the orthogonal of I_{i}, hence is a subspace of codimension 1 in $\widehat{G_{S}}$ since we assumed that v_{i} is ramified in K_{S}. Note that v_{i} is unramified in $K_{S_{i}}$.

By induction we can assume that for all $i=0, \ldots, n$, Conjecture 1 holds for $K_{S_{i}} / K$ with respect to S_{i} and T. Then Proposition 2 shows that Conjecture 1 holds for $K_{S_{i}} / K$ with respect to S and T. Hence $\left.f\right|_{\widehat{G_{S_{i}}}}=0$. When K does not contain a primitive l-th root of unity, it follows from Theorem 6 and Theorem 7 that $f=0$ on $\widehat{G_{S}}$.

If K contains a primitive l-th root of unity, we let $G_{T}=G_{S} / D_{T}$. Then the place v_{T} will split completely in K_{χ} for all $\chi \in \widehat{G_{T}}$ which implies, as we discussed at the end of section 4., that we have $\left.f\right|_{\widehat{G_{T}}}=0$. Again, it follows from Theorem 6 and Theorem 7 that $f=0$ on $\widehat{G_{S}}$, and hence $\theta_{G_{S}} \equiv m \cdot \operatorname{det} \lambda_{G_{S}} \quad\left(\bmod I^{n+1}\right)$ in all cases.

References

[1] Aoki, N., Gross' conjecture on the special values of abelian L-functions at $s=0$, Comment. Math. Univ. St. Paul. 40 (1991), No. 1, 101-124.
[2] Cassels, J. W. S. and A. Fröhlich, Algebraic number theory, Academic Press, 1967.
[3] Gross, B., On the values of abelian L-functions at $s=0$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), 177-197.
[4] Hayes, D., The refined \mathfrak{p}-adic abelian Stark conjecture in function fields, Invent. Math. 94 (1988), No. 3, 505-527.
[5] Passi, I. B. S. and L. R. Vermani, The associated graded ring of an integral group ring, Math. Proc. Camb. Phil. Soc. 82 (1977), 25-33.
[6] Tan, K.-S., On the special values of abelian L-functions, J. Math. Sci. Univ. Tokyo 1 (1994), No. 2, 305-319.
[7] Tan, K.-S., Refined theorems of the Birch and Swinnerton-Dyer type, Ann. Inst. Fourier (Grenoble) 45 (1995), No. 2, 317-374.
[8] Tate, J., Les Conjectures de Stark sur les Fonctions L d'Artin en $s=0$, Birkhäuser, Basel-Boston, 1984.
[9] Yamagishi, M., On a conjecture of Gross on special values of L-functions, Math. Z. 201 (1989), 391-400.
(Received July 18, 1996)
Department of Mathematics The Ohio State University Columbus, OH 43210 U.S.A.

E-mail: jlee@math.ohio-state.edu

[^0]: 1991 Mathematics Subject Classification. Primary 11S40; Secondary 11R29, 11R37.

