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Calculation of the Hall Conductivity

by Adiabatic Approximation

By Fumihiko Nakano

Abstract. We consider the two dimensional electron system un-
der a constant magnetic field perpendicular to the plane, and present
a simple definition of the Hall conductivity which is the non-diagonal
component of the conductivity tensor. To calculate the Hall conductiv-
ity, we adopt the adiabatic approximation and derive that it is equal
to the Chern character modulo the order of any inverse power of the
adiabatic parameter. Finite temperature correction is also considered
and estimated to be exponentially small.

§1. Introduction

When the electric field E is applied to a very thin metallic plate subject

to a perpendicular magnetic field, a current in the direction perpendicu-

lar to E is observed. The current is called the Hall current and the Hall

conductivity is the ratio σH of the current to the electric potential. A re-

markable fact first observed by von Klitzing and others[Kl] is that σH is

quantized at very low temperature, viz. σH is an integral multiple of e2/h.

This is called the integer quantum Hall effect.

There is a large body of mathematical and physical literature on the

integer quantum Hall effect. In these works the authors deduce the quan-

tization of the Hall conductivity as follows: They take certain models and

compute the Hall conductivity σH and show that σH is equal to a suitable

topological invariant up to a constant; therefore, σH is quantized. There

are, however, various possible models to be employed and various methods

to compute the Hall conductivity.
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For example, in many physics literature (e.g., [TKNN]), the linear re-

sponse theory is used to calculate the Hall conductivity. This is the stan-

dard method in theoretical physics and the product obtained is called

“Kubo formula”. And it is shown that the Hall conductivity is equal to

the first Chern class over the torus. As the mathematical research, in

[ASY, KS], the model is N-particle time-dependent Schrödinger operator

on a 2-dimensional bounded domain. They used the method called “adi-

abatic switching” to calculate the Hall conductivity and showed that it is

equal to the first Chern class over the torus. In [B2,N], the model is one-

particle time-dependent Schrödinger operator with random kick rotor term

on R2. They used the relaxation time approximation to calculate the Hall

conductivity and showed that it is equal to the second Chern character first

introduced by Connes in the non-commutative geometry[C].

In this paper, we present a simple approach to calculate the Hall con-

ductivity. We adopt Bellissard’s setting of one-particle ergodic Schrödinger

operator, and consider a natural definition of the Hall conductivity. Then

we calculate the Hall conductivity by using the adiabatic approximation

and prove that it is equal to the Chern character which is the same as what

appears in [B2]. The error of the adiabatic approximation is estimated to

be the order of any inverse power of the adiabatic parameter.

Our model is described by the following time-dependent Schrödinger

operator on L2(R2):

(1.1)
Hω(t) := (−i∇−A(x) − f(t)e1)

2 + Vω(x),

t ∈ [0, 1], x = (x1, x2) ∈ R2,

where A(x) = (−Bx2
2 , Bx1

2 ) corresponds to the constant magnetic field B:

dA0 = Bdx1 ∧ dx2. e1 := (1, 0). f(t) ∈ C∞(0, 1) is a real valued function

which satisfies f(0) = 0, f(1) = 1 and f ′(t) ∈ C∞
0 (0, 1). Due to the

Faraday-Lenz law, the change of flux f ′(t) represents a time-dependent

electric field perpendicular to x1. By taking f ′(t) near 1, we regard the

electric field is normalized. Vω(x) ∈ L∞(R2)(ω ∈ Ω) is a real-valued random

potential on a probability space Ω which can be considered to describe the

disordered configuration. We assume that, for any a ∈ R2, there is a

measure preserving map T a on Ω such that Vω(x) satisfies Vω(x + a) =

VTaω(x). In fact, Ω and Vω(x) can be constructed from a potential V (x) ∈
L∞(R2) by considering all of its translations and by identifying Ω with
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the weak∗-closure of the set {V (· − a) : a ∈ R2}(cf.[B2, B3]). Let P be a

normalized, T-invariant and ergodic measure on Ω.

To define the Hall conductivity, we need some notations. We define the

trace per area of an operator A on L2(R2) by:

(1.2) T (A) := lim
L↑∞

1

|KL|
Trace(χKL

AχKL
),

whenever it exists, where KL := [−L,L] × [−L,L] ⊂ R2 and |KL| = 4L2

is its area. χKL
is the characteristic function of KL. Let εF ∈ R be a

constant and Pω(t) := P(−∞,εF )(Hω(t)) be the orthogonal projection below

εF . This means we consider all electrons whose energy is below εF . In

physics literature, εF is called the Fermi energy. To simplify the notation,

we write Hω and Pω instead of Hω(0) and Pω(0) respectively. We assume

throughout this paper (and is assumed also in many mathematical papers

treating the integer quantum Hall effect) that

Assumption (A). The Fermi energy εF lies in the gap of the spectrum

of Hω.

When Vω = 0, the spectrum of Hω is given explicitly by σ(Hω) =

∪∞
n=0{2(n + 1

2)B}. Since Vω(x) ∈ L∞(R2), σ(Hω) has gaps for sufficiently

large B. It is true that this assumption is too strong and we wish to remove

it eventually. However, the adiabatic approximation theorem to be used in

what follows is not yet established without this Assumption (A). On the

other hand, we should remark that, in [B2], it is proved that if the local-

ization length is finite in the neighborhood of the Fermi energy, the Hall

conductivity σω to be computed in Corollary 1.3 below remains constant

under the small variation of the Fermi energy.

Let Uω(t), t ∈ [0, 1], ω ∈ Ω be the unitary evolution of Hω(t):

i
∂

∂t
Uω(t)ψ = Hω(t)Uω(t)ψ,

Uω(0)ψ = ψ, ψ ∈ D.

(1.3)

whose existence is guaranteed by a theorem of Kato and Yosida[RS2]. In

(1.3), D(⊂ L2(R2)) is the domain of Hω(t) which is independent of t ∈ [0, 1].
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We introduce the current operator perpendicular to x2:

(1.4) Jω(t) := U∗
ω(t)i[Hω(t), x2]Uω(t).

We define the charge transport in the time interval [0, 1] as the integration∫ 1
0 dt of the thermal average of Jω(t) per area at temperature T = 0:

(1.5) jω :=

∫ 1

0
dt T (U∗

ω(t)i[Hω(t), x2]Uω(t)Pω).

Since the exchange of integration of t for trace per area in (1.5) is permitted

for P-a.e.ω by dominated convergence theorem,

(1.6) jω := T ((U∗
ω(1)x2Uω(1) − x2)Pω).

By (1.6), we can also regard jω as the thermal average of the operator

of the displacement of particles. We suppose that, in general, jω can be

written as jω = σE +O(E2) when the electric field E is small, and we may

obtain the Hall conductivity by putting σ := limE↓0
jω
E . Thus we consider

the small electric field limit. To accomplish this situation, we let the flux

increase very slowly by introducing the adiabatic parameter τ > 0, putting

s := t/τ and replacing t by s. The constant τ is taken so large that when s

varies from 0 to 1, the real time t, which varies from 0 to τ , goes through

long time, and electric field, which now becomes f ′(s)/τ , is small. We then

replace Uω(t) by the new time evolution Uω,τ (s):

i
∂

∂s
Uω,τ (s)ψ = τHω(s)Uω,τ (s)ψ,

Uω,τ (0)ψ = ψ, ψ ∈ D.

(1.7)

We define the charge transport in the time interval [0, τ ] and under the

electric field f ′(t)/τ by

(1.8) jω,τ := T
(
(U∗

ω,τ (1)x2 Uω,τ (1) − x2)Pω

)
.

The well-definedness of (1.5) and (1.8) for P-a.e.ω is proved in section 2.

We define the Hall conductivity as the adiabatic limit of jω,τ :

(1.9) σω := lim
τ↑∞

jω,τ ,
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and one of the main purpose of this paper is to show that the limit (1.9)

exists and that σω is equal to the Chern character of Pω. We remark that,

instead of dividing jω,τ by the electric field 1
τ f

′(t) in the unit time interval

t ∈ [0, 1], we consider jω,τ itself in the time interval [0, τ ] in (1.9). However,

this leads to the same result.

Following [Ka], we consider the adiabatic evolution UA
ω,τ (s) defined by:

i
∂

∂s
UA
ω,τ (s)ψ = τHA

ω (s)UA
ω,τ (s)ψ,

UA
ω,τ (0)ψ = ψ, ψ ∈ D.

(1.10)

where HA
ω (s) := Hω(s) + i

τ [P
′
ω(s), Pω(s)]. The operator P

′
ω(s) is the de-

rivative of Pω(s) w.r.t.s in the operator norm. It is known that when τ is

large, UA
ω,τ (s) approximates Uω,τ (s) in the operator norm up to the order

of O(τ−1)([Ka, ASY] and references therein). We define the adiabatically

approximated charge transport:

(1.11) jAω,τ := T
(
(UA∗

ω,τ (1)x2 UA
ω,τ (1) − x2)Pω

)
.

We estimate the error jω,τ − jAω,τ of this approximation in section 3. The

result is

Theorem 1.1. Under Assumption (A), the error jω,τ −jAω,τ of the adi-

abatic approximation is estimated for P − a.e. ω as follows

(1.12) jω,τ = jAω,τ + O(τ−∞), τ → ∞.

We should remark that similar result is obtained in [KS] for the model of

Avron, Seiler, Yaffe and Klein and our proof also uses some general results

obtained in [KS] on the error estimate of the adiabatic approximation.

We have the following expression of jAω,τ .

Theorem 1.2. Under Assumption (A), the adiabatically approximated

charge transport jAω,τ can be written for P − a.e. ω in the following form

(1.13) jAω,τ = −iT (Pω[∂x1Pω, ∂x2Pω]Pω).
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where ∂xjPω := i[Pω, xj ], j = 1, 2.

The proof of Theorem 1.2 is given in section 4. The RHS of (1.13) is

the Chern character of Pω[B2] and is independent of τ . Theorem 1.1 and

Therem 1.2 imply that our purpose has been achieved.

Corollary 1.3. The Hall conductivity defined in (1.9) exists and is

equal to the Chern character for P-a.e. ω:

(1.14) σω = −iT (Pω[∂x1Pω, ∂x2Pω]Pω).

To prove the quantization of the Hall conductivity, we use the results of

[ASS] but under the slightly different definitions remarked in section 5.

Proposition 1.4. The adiabatically approximated charge transport

jAω,τ is written in terms of the Fredholm index on the Range of Pω for P-a.e.

ω:

(1.15) jAω,τ =
1

2π
Index(Pω

z

|z|Pω),

where z = x1 + ix2, and Index(Pω
z
|z|Pω) is the Fredholm Index of the mul-

tiplication operator z/|z| on RangePω.

As the final topic, in section 6, we consider the zero temperature limit.

We define the Hall charge transport at temperature T (> 0) by

(1.16) jω,τ (T ) := T
(
(U∗

ω,τ (1)x2 Uω,τ (1) − x2)fT,εF (Hω)
)
,

where fT,µ(ε) = (1 + exp((ε− µ)/kT ))−1 is the Fermi-Dirac distribution

function, k is the Boltzmann constant, and µ is the chemical potential.

Adiabatically approximated charge transport jAω,τ (T ) is defined similarly,

that is, by the right hand side of (1.16) with UA
ω,τ (1) in place of Uω,τ (1).

Proposition 1.5. If the spectral gap where εF lives contains an inter-

val (a, b) ⊂ R, it holds that, for arbitrary ε > 0 and for P-a.e. ω,

(1.17) jAω,τ (T ) = jAω,τ + O(exp(−(∆− ε)/kT )), T ↓ 0,
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(1.18) jω,τ (T ) = jω,τ + O(exp(−(∆− ε)/kT )), T ↓ 0,

where ∆ = min(b− εF , εF − a).

At this point, we should remark about the difference of our work from

[ASY, KS]. In our discussion, the flux is adiabatically switched to enforce

the electric field. It is the same argument as in [ASY, KS]. But our model is

different from theirs in several points: (1) Our definition of the conductivity

is simpler. (2) The space on which our models work is R2, which is natural

as the model of the bulk system in the grand canonical ensemble. (3) Our

Hamiltonian is one-particle and based on Bellissard’s setting of the ergodic

Schrödinger operators. (4) Our topological invariant is Fredholm index of

which we can compute the concrete value [ASS, B2].

In the following sections, we prove the theorems and propositions. In

appendix, we study some relationship with the works of Avron, Seiler, Klein,

and Yaffe[ASY,KS]. We show that σω is equal to the trace per area of

the adiabatic curvature. Moreover, in the model of Klein and Seiler, we

calculate the Hall conductivity and obtain the same results as in [KS].

Next, we show that the Hall conductivity can be regarded as the thermal

average of Berry’s phase in a sense.

§2. Preparation

In this section, we introduce the following operator algebra A which

is suitable for Hω(t). The operator algebra is used by Bellissard [B1, 2,

3], Nakamura and Bellissard[NB]. Let A0 := C0(Ω × R2) be the set of

continuous functions with compact support on Ω × R2. We define the ∗-
algebra structure of A0 by

AB(ω, x) =

∫
R2

dy A(ω, y)B(T−yω, x− y)e
iB
2
x∧y,(2.1)

A∗(ω, x) = Ā(T−xω,−x),(2.2)

for A,B ∈ A0, ω ∈ Ω, x ∈ R2. For each ω ∈ Ω, this ∗-algebra has a

representation πω on L2(R2):

(2.3) (πω(A)ψ)(x) =

∫
R2

dy A(T−xω, y − x)e
iB
2
y∧xψ(y),
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for A ∈ A0, ψ ∈ L2(R2). It is easy to check the following properties.

(1) πω(AB) = πω(A)πω(B), πω(A)∗ = πω(A∗).
(2) πω(A) is bounded and ‖πω(A)‖op ≤ ‖A‖∞,1, where ‖ · ‖op is the

operator norm and

‖A‖∞,1 = max

{
sup
ω∈Ω

∫
R2

dy |A(ω, y)|, sup
ω∈Ω

∫
R2

dy |A∗(ω, y)|
}

This follows from mimicking the proof of Young’s inequality.

(3) πω(A) satisfies the covariance relation:

(2.4) U(a)πω(A)U(a)∗ = πTaω(A),

where U(a) is the magnetic translation:

(2.5) (U(a)ψ) (x) = e
iB
2
x∧aψ(x− a).

We define a C∗-norm:

‖A‖ := sup
ω∈Ω

‖πω(A)‖op, A ∈ A0,

on A0. Let A = C∗(Ω × R2) be the completion of A0 with respect to this

norm.

Our Hamiltonian is naturally described by A. The following proposition

appears in [B3, NB]. Write ρ(Hω(t)) for the resolvent set of Hω(t).

Proposition 2.1. For z ∈ ρ(Hω(t)), (Hω(t) − z)−1 is represented by

an element of A.

A trace on A0 is defined by

(2.6) TP(A) :=

∫
dP(ω)A(ω, 0), for A ∈ A0,

whenever it exists. By Birkhoff’s ergodic theorem, TP(A) = T (πω(A)) for

P-a.e. ω. Hence T (πω(A)) is constant almost surely.
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For p ≥ 1, we define Lp(A, T ) as the completion of A0 under the norm

(2.7) ‖A‖p :=
(
T ((A∗A)p/2)

)2/p
, for A ∈ A0.

It is easy to see

(2.8) T (AB) = T (BA), A ∈ A, B ∈ L1(A, T )

for P-a.e. ω by (2.1) and (2.6).

We define the differential structure on A0 by

(2.9) ∂xjA(x, ω) := ixjA(ω, x), j = 1, 2, A ∈ A0.

This differential corresponds to the commutator with xj on the representa-

tion, πω(A):

(2.10) πω(∂xjA) = i[πω(A), xj ], j = 1, 2,

where the commutator [A,B] of a pair of operators A, B is defined as a

form on D(A) ∩D(B) and extended to an operator. Using this differential

structure, we define the Sobolev space H1 as the completion of A0 under

the inner product

(2.11) < A,B >H1 := T (A∗B) + T (∇A∗ · ∇B).

From Assumption (A) and Proposition 2.1, Pω is represented by an ele-

ment of A, and this was the reason why we abused the notation, ∂xjPω =

i[Pω, xj ], j = 1, 2 in (1.13). Moreover, Pω belongs to H1 due to the expo-

nential decay property of its integral kernel[ASS]. Thus it is easy to see the

RHS of (1.13) is finite for P-a.e. ω.

Before ending this section, we shall confirm that physical quantities de-

fined in introduction are all well-defined.

Proposition 2.2. The quantities jω, jω,τ , jAω,τ , jω,τ (T ), and jAω,τ (T )

are all well-defined for P-a.e. ω.
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Proof. We show Proposition 2.2 for jω only. The proof for others is

similar. We write jω as

jω =

∫ 1

0
dt T (U∗

ω(t)i[Hω(t), x2]Uω(t)(i + Hω)−1(i + Hω)Pω)

(i+Hω)−1 maps L2(R2) onto D and Uω(t) maps D to D. And [Hω(t), x2] =

−2(−i∇ − A(x) − f(t)e1). Hence the operator U∗
ω(t)i[Hω(t), x2]Uω(t)(i +

Hω)−1 is bounded on L2(R2). On the other hand, the integral kernel of

the operator (i + Hω)Pω has the exponential decay property[ASS]. Since

the bounded operator on L2(R2) is an ideal of L1(A, T ), jω is proved to be

well-defined. To prove the well-definedness of jω,τ (T ) and jAω,τ (T ), we use

the rapid decay property of the integral kernel of fT,εF (Hω)[Y]. �

§3. Adiabatic limit

In this section, we prove Theorem 1.1 that ensures σAω,τ is very good

approximation to σω,τ . In what follows, we omit the ω-dependence for

simplicity but we may not forget that some arguments hold only for P −
a.e. ω in view of Birkhoff’s ergodic theorem. We first recall some known

results about the adiabatic evolution from [KS]. We define

(3.1) Ω(s) := UA∗
τ (s)Uτ (s), s ∈ [0, 1],

to compare Uτ (s) with UA
τ (s). It satisfies the Volterra integral equation

(3.2) Ω(s) = 1 −
∫ s

0
dtKτ (t, P )Ω(t), s ∈ [0, 1],

where Kτ (t, P ) = UA∗
τ (t)[P ′(t), P (t)]UA

τ (t). To solve this, we set the fol-

lowing operator sequence

(3.3) Ω0(s) = 1, Ωj+1(s) = −
∫ s

0
dtKτ (t, P )Ωj(t), j ≥ 1.

We use the following lemma due to Klein and Seiler.
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Lemma 3.1 ([KS]). Ω(s) has the asymptotic expansion in τ

(3.4) Ω(s) ∼
∞∑
j=0

Ωj(s), s ∈ [0, 1], τ → ∞,

in the sense that,

(3.5) ‖Ω2j−1(s)‖op + ‖Ω2j(s)‖op = O(τ−j), s ∈ [0, 1], j ≥ 1,

and

(3.6) ‖R2j(s)‖op + ‖R2j+1(s)‖op = O(τ−j−1), s ∈ [0, 1], j ≥ 0,

where RN (s) = Ω(s) −
∑N

j=0 Ωj(s). The above estimates hold uniformly in

s ∈ [0, 1].

Proof of Theorem 1.1. We insert the definition (3.1) of Ω(s) into

(1.8):

jω,τ :=T ((U∗
τ (1)x2 Uτ (1) − x2)P )

=

∫ 1

0
dt T (U∗

τ (t)iτ [H,x2]Uτ (t)P )

=

∫ 1

0
dt T

(
Ω∗(t)UA∗

τ (t)iτ [Hω, x2]U
A
τ (t)Ω(t)P

)
.

We use Lemma 3.1 to expand Ω(1). Hence it is sufficient to show, for

arbitrary n ≥ 1,

(3.7)
∑

i+j=n

T (Ω∗
i (t)U

A∗
τ (t) iτ [H,x2]U

A
τ (t)Ωj(t)P ) = O(τ−∞),

as τ tends to infinity. We claim that

the LHS of (3.7) =
∑

i+j=n

T (UA∗
τ (t) iτ [H,x2]U

A
τ (t)Ωj(t)Ω

∗
i (t)P )(3.8)

+ O(τ−∞).
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The equation (3.8) is proved in the same way as the proof of Theorem A.4 in

[KS] and this is the place where the assumption f ′(t) ∈ C∞
0 (R) is necessary.

We also used the cyclicity of the trace per area(2.8). By virtue of (3.8), we

have only to show that, for arbitrary n ≥ 1,

(3.9)
∑

i+j=n

T (UA∗
τ (t) iτ [H,x2]U

A
τ (t)Ωj(t)Ω

∗
i (t)P ) = 0.

We calculate Ωj(t) explicitly

Ωj(t) = (−1)j
∫ t

0
ds1

∫ s1

0
ds2 · · ·

∫ sj−1

0
dsj K(s1)K(s2) · · ·K(sj),(3.10)

Ω∗
j (t) =

∫ t

0
ds1

∫ t

s1

ds2 · · ·
∫ t

sj−1

dsj K(s1)K(s2) · · ·K(sj).(3.11)

By using (3.10) and (3.11), it is elementary to prove (3.9). In fact, when

n = 1, (3.9) follows since K(s) + K∗(s) = 0. When n = 2k(k ∈ N), we

compute as follows:

(3.12) Ω2k(t) + Ω2k−1(t)Ω
∗
1(t) + · · · + Ωk+1(t)Ω

∗
k−1(t) =

(−1)k−1

∫
0≤sk+1≤sk≤···≤s1≤t

ds1ds2 · · · dsk+1

∫
sk+1≤sk+2≤···≤s2k≤t

dsk+2dsk+3 · · · ds2k

K(s1)K(s2) · · ·K(s2k).

(3.13) Ωk−1(t)Ω
∗
k+1(t) + Ωk−2(t)Ω

∗
k+2(t) + · · · + Ω1(t)Ω

∗
2k−1(t) + Ω∗

2k(t) =

(−1)k−1

∫
0≤sk≤sk−1≤···≤s1≤t

ds1ds2 · · · dsk
∫
sk≤sk+1≤···≤s2k≤t

dsk+1dsk+2 · · · ds2k

K(s1)K(s2) · · ·K(s2k).

(3.14) Ωk(t)Ω
∗
k(t) =

(−1)k
∫

0≤sk≤sk−1≤···≤s1≤t
ds1ds2 · · · dsk

∫ t

0
dsk+1

∫
sk+1≤sk+2≤···≤s2k≤t

dsk+2

dsk+3 · · · ds2kK(s1)K(s2) · · ·K(s2k).
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From (3.12), (3.13), and (3.14), we have (3.9). When n = 2k + 1(k ∈ N),

we compute similarly as follows:

(3.15) Ω2k+1(t) + Ω∗
2k(t)Ω

∗
1(t) + · · · + Ωk+1(t)Ω

∗
k(t) =

(−1)k+1

∫
0≤sk+1≤sk≤···≤s1≤t

ds1ds2 · · · dsk+1

∫
sk+1≤sk+2≤···≤s2k≤t

dsk+2dsk+3 · · · ds2k

K(s1)K(s2) · · ·K(s2k).

(3.16) Ωk(t)Ω
∗
k+1(t) + Ωk+1(t)Ω

∗
k(t) + · · · + Ω∗

2k+1(t) =

(−1)k
∫

0≤sk+1≤sk≤···≤s1≤t
ds1ds2 · · · dsk+1

∫
sk+1≤sk+2≤···≤s2k≤t

dsk+2dsk+3 · · · ds2k

K(s1)K(s2) · · ·K(s2k).

From (3.15) and (3.16), (3.9) follows. This completes the proof of Theorem

1.1. �

§4. Derivation of the Chern character

In this section, we prove Theorem 1.2: we derive the Chern character

from the definition of jAω,τ (1.11).

Proof of Theorem 1.2. We decompose jAω,τ into two parts:

σAτ =

∫ 1

0
dsT (UA∗

τ (s)iτ [HA(s), x2]U
A
τ (s)P )(4.1)

=:I + II,

where

(4.2) I =

∫ 1

0
ds T (UA∗

τ (s)iτ [H(s), x2]U
A
τ (s)P ),
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(4.3) II =

∫ 1

0
ds T (UA∗

τ (s)iτ

[
i

τ
[P ′(s), P (s)], x2

]
UA
τ (s)P ).

In the first equality in (4.1), we used (1.10) and exchanged the integration∫ 1
0 dt for trace per area T . This exchange is permitted for P-a.e. ω by

dominated convergence theorem. We show I = 0 and II = −iT (Pω[∂x1Pω,

∂x2Pω]Pω) below, and this completes Theorem 1.2. At this point, we notice

that UA
τ (s) has the intertwining property [ASY]:

(4.4) UA
τ (s)P = P (s)UA

τ (s), s ∈ [0, 1],

And from the definition, H(s), P (s) and P ′(s) satisfy the following relations:

H(s) = eif(s)x1He−if(s)x1 ,(4.5)

P (s) = eif(s)x1Pe−if(s)x1 ,(4.6)

P ′(s) = if ′(s)eif(s)x1 [x1, P ]e−if(s)x1 .(4.7)

By using (4.4)-(4.7) and the cyclicity of the trace per area (2.8), we obtain

(4.8) I = iτT (P (∂x2H)P ),

(4.9) II = −i

∫ 1

0
ds f ′(s)T (P [ ∂x1P, ∂x2P ]P ).

The RHS of (4.8) vanishes due to Proposition 3 of [B2]. From the definition

of f(s), we complete Theorem 1.2. �

The proof of Theorem 1.2 implies the following:

Proposion 4.1. Let UA
ω (s) be the unitary operator which satisfies

{
∂

∂s
− [P ′(s), P (s)]

}
UA
ω (s)ψ =0,

UA
ω (0)ψ =ψ, ψ ∈ L2(R2).

(4.10)

Then,
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(1) jAω is represented by the adiabatic transport UA
ω (s), i.e., for P-a.e.

ω,

(4.11) jAω = T ((UA∗
ω (1)x2U

A
ω (1) − x2)Pω).

(2)

(4.12) jAω = iT (UA∗
ω (1)∂x2U

A
ω (1)Pω).

Proposition 4.1 follows from straightfoward computation and we omit

the proof. The RHS of (4.12) can be regarded as the extended version of

Berry’s phase (see Proposition A.3 in appendix).

§5. Proof of Proposition 1.4

Proposition 1.4 may be proved following the argument of the proof of

Theorem 6.8 of [ASS] by changing the following two definitions. The proof

goes without any other modifications.

The first, in [ASS], the adiabatic curvature is defined as

(5.1) w12 = −i ([P,Λ1]Q[P,Λ2] − (1 ↔ 2)) ,

where Λ1, Λ2 are switching functions and Q = I − P . Alternatively, we

define

(5.2) w̃12 = −i ([P, x1]Q[P, x2] − (1 ↔ 2)) .

The exponential decay property of the integral kernel of P [ASS] implies

that [P, xj ](j = 1, 2) is bounded.

The second, we replace the definition of the Hall charge transport in

[ASS]:

(5.3)
Q

2π
= − lim

L↑∞
Trace(χKL

w12χKL
),

by trace per area: T (w̃12) which is the Chern character of P up to a constant

in Theorem 1.2.
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§6. Zero temperature limit

In this section, we prove Proposition 1.5. which comes from the expo-

nential property of fT,εF (ε).

Proof of Proposition 1.5. We prove (1.17) only, since (1.18) may

be proved similarly. We write

σAτ (T ) = σAτ + T ((UA∗
τ (1)x2 UA

τ (1) − x2)(fT,εF (H) − P )).

The second term is written

T ((UA∗
τ (1)x2 UA

τ (1) − x2)(H + i)−2(H + i)2(fT,εF (H) − P )).

We can show that the operator (UA∗
τ (1)x2 UA

τ (1)−x2)(H + i)−2 is bounded

by the argument in the proof of Proposision 2.2. And T ((H+i)2(fT,εF (H)−
P )) =

∫
(ε+1)2(fT,εF (ε)−χ(−∞,εF )(ε))dN (ε) where N (ε) is the integrated

density of states:

N (ε) = lim
L↑∞

1

|KL|
4{eigenvalues of χKL

HχKL
≤ ε}.

Thus the result follows from the dominated convergence theorem. �

Appendix

In appendix, we show that our definition of the Hall conductivity gives

the results similar to the works of Avron, Seiler, Klein, and Yaffe [ASY][KS].

The Hamiltonian is essentially the same as what appears in [ASS]:

(A.1) Hω(t, s) := (−i∇−A(x) − f(t)e1 − se2)
2 + Vω(x),

where x ∈ R2, (t, s) ∈ R := [0, 1]× [0, 1] ⊂ R2, ω ∈ Ω. In (A.1), e1 = (1, 0),

e2 = (0, 1), and A(x), f(t), and Vω(x) are the same as defined in sec-

tion 1. Let Pω(t, s) := χ(−∞,εF ](Hω(t, s)). Following [ASSS], we regard

RangePω(t, s) as the infinite-dimensional bundle on R, and consider a co-

variant derivative on RangePω(t, s):

(A.2) ∇ := d + A,
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where A := −[dPω, Pω] is called the adiabatic connection. The correspond-

ing curvature is defined by

(A.3) Ω := ∇2 = Pω(dPω ∧ dPω)Pω,

In (A.3), we regard dPω as the operator-valued 1-form on R. We shall

calculate the Hall conductivity in the same way as in section 1. We define

the scaled unitary evolution Uω,τ (t, s) and the adiabatic evolution UA
ω,τ (t, s)

of Hω(t, s) similarly as (1.7) and (1.10). And we define the Hall conductivity

using Hω(t, s) as follows:

jω,τ := T ((U∗
ω,τ (1, 0)x2Uω,τ (1, 0) − x2)Pω(0, 0)),(A.4)

σω := lim
τ↑∞

jω,τ ,(A.5)

jAω,τ := T ((UA∗
ω,τ (1, 0)x2U

A
ω,τ (1, 0) − x2)Pω(0, 0)).(A.6)

In reality, (A.4)-(A.6) are just the rewrites of (1.8), (1.9), and (1.11) respec-

tively since Hω(t, 0) = Hω(t) so that σω defined in (A.5) is already given in

Corollary 1.3. However, σω has another expressions given below.

Proposition A.1. The Hall conductivity σω is equal to the integration

on R of the thermal average of the adiabatic curvature for P- a.e. ω, i.e.,

(A.7) σω = −i

∫
R
T (Ω)

The proof of Proposition A.1 is similar to that of Theorem 1.2 and we

only show the sketch.

Sketch of proof . From the definition of Pω(t, s), it follows that

(A.8) Pω(t, s) = eif(t)x1+isx2Pω(0, 0)e−if(t)x1−isx2 .

By (A.8), Pω(t, s) satisfies the relation

(A.9)
∂Pω

∂t
(t, s) = −f ′(t)∂x1Pω(t, s),

∂Pω

∂s
(t, s) = −∂x2Pω(t, s).
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Then, the direct computation of the RHS of (A.7) gives the result.

Next, we shall consider the N-body version of Proposition A.1. Following

[KS], the Hamiltonian is defined by

HN (t, s) :=
N∑
j=1

(−i∇j −A(xj) − f(t)e1 − se2)
2(A.10)

+
N∑
j=1

V (xj) +
∑
k<l

|xk − xl|−1,

on ΛNL2(KL), L > 0, with periodic boundary conditions, where x =

(x1, · · · , xN ), xj ∈ KL(1 ≤ j ≤ N), and V (x) ∈ L∞(KL). The space

ΛNL2(KL) is the antisymmetric subspace of
⊗N

j=1 L2(KL). We assume

that there is a non-degenerate ground state Ψ ∈ ΛNL2(KL) and let PΨ be

the corresponding orthogonal projection. We define the Hall conductivity

σ in the spirit of section 1:

(A.11) σ := lim
τ↑∞

N∑
j=1

TraceKL
((U∗

τ (1)xj2Uτ (1) − xj2)PΨ),

where Uτ (t)(t ∈ [0, 1], τ > 0) is the time scaled unitary evolution of HN (t).

We should note that the RHS of (A.11) is not a statistical quantity. By the

similar computations in the proof of Proposition A.1, we obtain the same

result as in [KS].

Proposition A.2.

(A.12) σ = −i

∫
R
TraceKL

(PΨ(dPΨ ∧ dPΨ)PΨ).

In the end of appendix, we shall return to the Hamiltonian (A.1). And

we prove that the Hall conductivity σω has different representation using a

parallel transport w.r.t. the adiabatic connection.
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Proposition A.3. Let UA
ω (t, s) be the adiabatic parallel transport

w.r.t. the covariant derivative ∇, i.e., UA
ω (t, s) is unitary which satisfies

∇( ∂
∂t
,0)U

A
ω (t, s)ψ =

(
∂

∂t
− [

∂Pω

∂t
(t, s), Pω(t, s)]

)
UA
ω (t, s)ψ = 0,

UA
ω (0, s)ψ =ψ, s ∈ [0, 1], ψ ∈ L2(R2).(A.13)

Then, the Hall conductivity σω defined in (A.5) has the following form for

P-a.e. ω.

(A.14) σω = −i

∫
∂R

T (UA∗
ω (t, s)dUA

ω (t, s)Pω(0, s)).

If the dimension of RangePω(t, s) was equal to one, RangePω(t, s) would

be a U(1)-bundle and the RHS of (A.14) would be equal to Berry’s phase.

Thus, we can say that, the Hall conductivity σω is equal to the thermal

average of Berry’s phase in wide sense.

Proof. This proof is based on the proof of Proposition 3.1 in [KS].

The Hall conductivity σω may be written in the following:

(A.15) σω = −iT (∂x2Aω(0, 0)Pω(0, 0)),

where Aω(t, s) = −[∂Pω
∂t (t, s), Pω(t, s)]. The equation (A.15) follows easily

from Proposition 4.1.(1). We use the relations (A.8),(A.9), and the inter-

twining property of UA
ω (t, s) in (A.15). The product obtained is

(A.16) σω = i

∫
R

dtds T (UA∗
ω (t, s)(

∂

∂s
Aω(t, s))UA

ω (t, s)Pω(0, s)).

We notice that ( ∂
∂sAω(t, s))UA

ω (t, s) = ∂
∂s

(
Aω(t, s)UA

ω (t, s)
)

−
Aω(t, s)( ∂

∂sU
A
ω (t, s)). Then, a short computation yields

(A.17) σω = −i

∫ 1

0
ds T (UA∗

ω (1, s)(
∂

∂s
UA
ω (1, s))Pω(0, s)).
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On the other hand,

(A.18) T (UA∗
ω (0, s)(

∂

∂s
UA
ω (0, s))Pω(0, s)) = 0,

which follows from (A.13), and for t ∈ [0, 1],

T (UA∗
ω (t, s)(

∂

∂t
UA
ω (t, s))Pω(0, s)) = T (Pω(t, s)Aω(t, s)Pω(t, s))(A.19)

= 0.

In the first equality in (A.19), we used (A.13), the intertwining property of

UA
ω (t, s), and the cyclicity of trace per area (2.8). In the second equality in

(A.19), we used the fact that Pω(t, s)( ∂
∂tPω(t, s))Pω(t, s) = 0 which follows

easily from the equation ∂
∂t(Pω(t, s))2 = ∂

∂tPω(t, s). By combing (A.17),

(A.18), and (A.19), we complete the proof. �
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