J. Math. Sci. Univ. Tokyo
4 (1997), 279-339.

On Simply Knotted Tori in S*

By Akiko SHIMA

Abstract. Let T be a torus in S%. If the singular set I'(T*) of the
projection T* (C S3) of T consists of three disjoint simple closed curves,
then T can be moved to either the standard torus, the spun torus of
the trefoil knot T0(L3), the twist spun torus of the trefoil knot 73(Ls),
or the torus obtained by attaching a handle to the spun 2-sphere of the
trefoil knot, by an ambient isotopy of S%.

1. Introduction

In [A], Aiso classified of simply knotted spheres with less than 6 crossing
circles. In this paper we will study an embedded torus 7" in S*. The author
([S1] and [S2] ) previously showed the following: if the singular set I'(T™) of
the projection T* (C S3) of T consists of at most two disjoint simple closed
curves, then T can be moved to the standard position by an ambient isotopy
of S%. Then if the singular set I'(T*) consists of three disjoint simple closed
curves, what can be said about the position of T'7 In this paper, the author
answers this question.

MAIN THEOREM 1 (Theorem 9.3). Let T be a torus in S*. If the
singular set T'(T*) consists of three disjoint simple closed curves, then T is
ambient isotopic to one and only one of the following tori.

(1) the standard torus,

(2) the spun torus of the trefoil knot T°(L3),

(3) the twist spun torus of the trefoil knot T3(L3), or

(4) the torus obtained by attaching a handle to the spun 2-sphere of the
trefoil knot (Figure 1 (1)).
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Figure 1

For the definition of T°(L3) and T3(Ls3), see Definition 2.1.

Let G be the standard torus, Gy = TY(L3), G3 = T3(L3), and G4 =the
torus obtained by attaching a handle to the spun 2-sphere of the trefoil
knot (Figure 1 (1)). Figure 1 (2) will be used in Section 9.

MAIN THEOREM 2 (Theorem 9.5). Ifi # j, then G; can not be moved
to G by an ambient isotopy of S4.

We will work in the PL category. All submanifolds are assumed to be
locally flat. Let S™ be the n-dimensional sphere, R" = S™ \ {oco} the n-
dimensional Euclidean space, and p : $*\ {oco} — 52\ {co} the projection
defined by p(z1, 2, 3, x4) = (x1, T2, T3).

With every point P or subset F of S*\ {00}, we associate the point
P* = p(P) or the subset F'* = p(F) of S\ {oc}. A point P* is an i-th
singular point, if [p~1(P*) N F| =i > 2. We define I'(F*) to be the set
of all i-th singular points with ¢ = 2 and put T'(F) = p~}(I'(F*)) N F. Let
B = {(z1,72,23) € R3|2? + 23 + 22 < 1} be the standard 3-ball in R3, and
P, = BN{(x1,72,23) € R3|z; = 0} fori = 1,2,3. Let F be a closed surface,
and f: F — S%\ {oo} a map. We say that f is in general position, if
for each element x of f(F), there exist a regular neighborhood N of z in
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3\ {oco} and a homeomorphism h : N — B such that N and h satisfy
the following two conditions:

(1) Under h, (N, NN f(F')) is homeomorphic to either (B, P;), (B, P,U
PQ), or (B,Pl UbPUuU Pg).

(2) Let R be a component of f~1(f(F)N N). There exists an integer
i such that ho f|R: R — P; is a homeomorphism.

Note. Let F be a surface with p|F' in general position, z € I'(F™). If
|p~1(x) N F| = 2, then z is called a double point.

A solid torus V is said to be standard in S3, if V is N(K) where K is
a trivial knot in S% and N(K) is a regular neighborhood of K in S3. And
the torus OV C S% C S% is said to be a standard torus in S*.

Let F be a surface in S, and 3y, ..., ¥,, the closures of the components
of F\T'(F). Let v* be the intersection of two surfaces Aj = X7 U X} ; and
A =27 UXT, (see Figure 2), and ~;,7; the preimages of v* on A; and
A; respectively. Let u: S*\ {00} — R be the height function defined by
w(zr, x2,x3,24) = x4, If u(y) < u(y)) (e u(p;) < u(p;) for all points
pi € i and p; € 7, with pj = pj»), then we call A; the under surface
and A; the over sur face respectively. We use the notation in Figure 2 to
represent the relation between the heights of two surfaces, where the small
vector on the under surface indicates the orientation of the over surface (see
1Y).

All homology groups are with coefficients in Z. We denote by |A| the
number of the components of A.

*
2i+1

Figure 2
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The paper is organized as follows. In Section 2, we define symmetry-
spun tori T%(K3) in S* and immersed tori a(a,b) in S3. In Section 3, we
consider solid tori and immersed surfaces in S2. In Section 4, we find a nec-
essary condition on singular sets I'(T"). In Section 5, we study equivalence
relations of knotted surfaces. In Section 6, we introduce a diagrammatic
representation of singular sets I'(7"). In Section 7, we study certain types
of 2-complexes in S3. In Section 8, we show that if each component of a
singular set I'(T") is not contractible in 7', then there exists a symmetry-
spun torus which is ambient isotopic to T. In Section 9, we prove Main
Theorem.

2. Definitions

Fix 6 € [0,2n]. Let R} = {(z,ycosf,ysinb,z)| (z,y,2) € Ry > 0} C
R% Then R* = U2™ R3, and p: $*\ {oo} ¥ R — $3\ {oo} = R3 is the
projection with p(z1, 72,3, 74) = (21,72, 23). Let 7y : R?> — R? be the
rotation map defined by

x\ (cosf —sinf x—2 n 2
"o y) \sinf cosf y 0)°
Fix an integer b with b # 0. Let ¢, : R? — R? be the map defined by

qp(tcos + 2,tsin ) = rpg(t cos O + 2, tsin b))

where 0 < ¢ and 6 € [0, 27]. Put B3 = {(2,5,0,2) ; (x —2)2 + > + 22 < 1}
and P = {(2,0,0,2)] =1 < 2 < 1}. Let K : S* — B3\ P be an embedding.

DEFINITION 2.1 (symmetry-spun tori [T]). Let id : R* — R? be the

identity. Fix integers a,b with b # 0. We define a symmetry-spun torus
T%(Kp) obtained from K as follows:

X

v 0 0 <0< 2m,
() =2 | g || @0.0.2) € (@ x id) (K (SY), b C R
. (X,Y) =r40(,y)

We denote by L and L’ the knots in B3\ P obtained by Figure 3.
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Figure 3

DEFINITION 2.2. Let a: J — p(B3\ P) be an immersion where J is
a disjoint union of 1-spheres and intervals. Let ¢d : R — R be the identity.
Fix integers a, b with b # 0. We define an immersed surface a(a, b) obtained
by a in S as follows:

X 0 <0 <2m,
ala,b) = Y cos @ (z,,0) € (g x id) "' (Ima), » C R>.
Y sind (Xv Y) = Ta@/b(:‘c’y)

Let T; : St — p(B3\ P) be an immersion obtained by Figure 4 (i) for
i=1,2,3,4. Let Ty : S'U[0,1] — p(B3\ P) be an immersion obtained
by Figure 4 (5). In particular, we denote by Tj(a,b) the immersed tori
obtained from T; (i = 1,2,3,4,5).

(1) (2) (3) (4) (5)

Figure 4

REMARK 2.3. (1) Let T%(K}) be a symmetry-spun torus, and a =
po K : S — p(B?\ P) an immersion. Then (T%(K}))* = a(a,b).

(2) Let a(a,b) be an immersed torus obtained by an immersion « :
St — p(B3\ P). Then there exists an embedding K : S — B3\ P with
(T*(Kp))* = afa,b).
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3. Solid tori and immersed surfaces in S°

LEMMA 3.1 ([S1, Lemma 3.1]). Let F be an oriented closed surface in
S* with p|F in general position. Let v* be a component of T'(F*) which
is a simple closed curve, and ci,cy the components of p~1(v*) N F. If v*
satisfies one of the following conditions, then v* can be cancelled by an
ambient isotopy of S*.

(1) There exist disks Dy, Dy in F with 0D; = ¢;, and intD; N\T'(F) = ¢.

(2) There exist an annulus A in F and a solid torus V in S® such that
0A = c1Ucq, OV = A*, intVNF* = ¢, and v* is a generator of Hy (V) = Z.

(3) There exists an annulus A in F with 0A = ¢y Uca, [¢;] = 1 in m (F),
and intANT(F) = ¢.

LEMMA 3.2 ([S1, Theorem 4.1] and [S2, Theorem 3.1]). Let T be a
torus in S*. If the singular set T'(T*) consists of at most two simple closed
curves, then T' can be moved to the standard position by an ambient isotopy

of S*.

We will define the D-surgery to be the operation shown in Figure 5.
If v* C T'(F*) is the intersection curve in Figure 5, ¢; and cp are the
preimages of v*, and ¢; bounds a disk D with T'(F) NintD = ¢, then the
D-surgery replaces the regular neighborhood of D* by a pair of disks that
do not intersect with F*, and connects the centers of the disks by an arc
the interior of which intersects F'* at one point at the center of D*.

3 |

D-surgery &_ )

Figure 5
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LEMMA 3.3. Let F' be an oriented closed surface with p|F in general
position. Let vy, 5 be components of I'(F*) which are simple closed curves.
Suppose that c1,ca are the components of p~L(vf) N F, and dy,ds are the
components p~L(v3) N F. If v},75 satisfy the following condition (*), then
Vi can be cancelled by an ambient isotopy of G4,

(*) There exist disks D1, Do, D3 in F with 0Dy = ¢1, 0D = ca, 0D3 =
di, D1 D DoUDs, DoNDs = ¢, intDy ﬂP(F) = coUd1 Uds, ’inthﬂF(F) =
¢, and intDs NI'(F) = ¢.

PROOF. Suppose that ~;,v; satisfy the above condition (*), then we
distinguish three cases (see Figure 6).

da
C1

Ca d
1 c') Cy dl
- dy S \

do

& (1) 2) (3)

dg Co d2

Figure 6

Case 1. By Lemma 3.1 (1) and (3), 75 can be cancelled by an ambient
isotopy of S4.

Case 2. There exists a disk Dy in Dy with 0Dy = do. Let Fy = F\intD;.
Then (F; U Dy4)* is as shown in Figure 7. The simple closed curve ~f can
be cancelled by an ambient isotopy of S.

Case 3. Perform D-surgeries along Ds, D3. Then we obtain Figure 8
(1). The simple closed curves v and 75 can be cancelled by an ambient
isotopy of S4.

This completes the proof of Lemma 3.3. [J
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Figure 7

(1

Figure 8

LEMMA 3.4. Let F, p|F, v}, ¢, di (i =1,2) be as above. If v{, v5 and
F satisfy one of the following conditions, then v or 5 can be cancelled by
an ambient isotopy of S*.

(1) The surface F is a torus. There exist an annulus A and a disk D
in F with 0D = ¢1, 0A = dy Udg, intANT(F) = ¢, [ca] #1 € m(F), and
[di] #1 e m(F) (i=1,2).

(2) There exist disks Dy, Dy in F with 0Dy = ¢1, 0Dy = co, intD1 N
I'(F)=¢, and (F\ Da) NI'(F) = ¢.

PROOF. Suppose that 77,75 satisfy (1). Then A* is an embedded torus
in 53, and v5 is a simple closed curve on A*. Let Vi, V5 be the closures of
the components of S\ A* with V3 U Vs = S3, 9V; = A* (i = 1,2) and
Vi D F* U D*. By the solid torus theorem (see [R] pl07), either V; or
Vo is a solid torus. Let B be an annulus in F' with 0B = co U d; and
BnN(ciUdy) = ¢ ({1,2} = {j,k}). Put D’ = DU B. In general, D"* is
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a singular disk, and (0D')* = +3. By Dehn’s lemma, there exists a non-
singular disk E with intE N A* = ¢ and OFE = ~;. Suppose that V; is
a solid torus. Then ~35 is a meridian of V;. Moving F' by some ambient
isotopy without changing the topology of the singular set I'(F'), we may
assume that V; is standard. Then +3 is a longitude of V3, and ~;5 can be
cancelled by Lemma 3.1 (2). Suppose that V5 is a solid torus. Then ~; is
a longitude of V5. We have 0A = dj U dy, OV = A", intVo N F* = ¢, and
[v5] = £1 € Hy(V2) = Z. Then we can cancel v5 by Lemma 3.1 (2).

Suppose that 77,75 satisfy (2). Let Fi = F'\intDy. The singular surface
(F1 U Dy)* is as shown in Figure 9 (1). Moving F' by an ambient isotopy of
S4 without changing the topology of the singular set I'(F'), we may assume
that (F} U Dq)* is contained in a regular neighborhood of Df in S3. Then
the simple closed curve v; can be cancelled.

Figure 9

This completes the proof of Lemma 3.4. (J

LEMMA 3.5. Let F, p|F, v}, ¢, and d; (i =1,2) be as above. Suppose
that F is a torus. Consider the following conditions.

(1) There exists an annulus A in F with 0A = ciUcq, intANT(F) = d;,
[dl] =1e€ 7T1(A), and [dg] 75 1e 7T1(F).

(2) There exist disks D1, Do in F with 0Dy = c¢1, 0Dy = ¢, intD1 N
F(F) =dy, intD> ﬂF(F) = ¢, and [dg] #1¢€ 7T1(F).

(3) There exist disks D1, Da, D in F' with 0Dy = ¢1, 0Da = ca, 0D = da,
intDl OF(F) == dl, DnN (D1 UDQ) == Dz (Z =1 or 2), andD1 ﬁDg == ¢

Then there does not exist such an embedded torus in S* that satisfies

(1), (2) or (3).
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PROOF. Suppose that there exists a torus F in S* which satisfies (1).
Let N(A), N(d2) be regular neighborhoods of A,ds in F' respectively. Let
ai,ay be the components of ON(A), and a3, as the components of ON (da).

(Case a) F'\ A is connected (see Figure 10 (a)).

By assumption, F'\ AUds consists of two components. Let G, G2 be the
components of F'\int(N(A)UN(dz)) with 0G; = a1Uasz and 0G2 = agUay.
Then (N(A) U N(dz))* is as shown in Figure 11. We connect a} and @} in
S3\ A* by G3. Then a}, a3, a3, a} are as shown in Figure 11. But we cannot
connect a} and a} in S\ A* by G%. This is a contradiction.

(Case b) F'\ A is not connected (see Figure 10 (b)).

By assumption, F'\ A consists of two components. Let Gp,G2 be the
components of F'\int(N(A)UN(dz)) with 0G; = a1 and 0G2 = agUazgUay.
Then (N(A) U N(dp))* is as shown in Figure 11. The curves a3, a3 and aj
must be connected in S\ A* by G%. But we cannot connect a},a} and aj
in §3\ A*. This is a contradiction.

A d,

4

Figure 10 Figure 11

Suppose that there exists a torus F in $* which satisfies (2). See Figure
12. Let N(D1), N(D2), N(ds) be regular neighborhoods of D1, Ds, ds in
F| respectively. Let F} = F\int(N(D1)UN(D2)UN(d2)), and a1, ag, as, a4
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be the components of 0F;. Then (N (D;1)UN(D2)UN(d2))* is as shown in
Figure 13. But we cannot connect af, a},a} and aj in S3\ (D; U Ds)* by
Fy. This is a contradiction.

Figure 12 Figure 13

Suppose that there exists a torus F in S* which satisfies (3). See Fig-
ure 14. Let N(D), N(D;1), N(D2), N(d2) be regular neighborhoods of
D, Dy, Dy,dy in F respectively. Put Fy = F\int(N(D)UN(D;)UN(Dy)U
N(dy)) and A = D \ int(N(D;) U N(dz2)). Let a1, as be the components of
ON(F1), and ag, agq the components of 9A. Then (N(D1)UN(D2)UN (dz))*
is as shown in Figure 14. We connect a}, a} in S®\ (D1 U D3)* by Fy. Then
aj,ay,as,a; are as shown in Figure 13. But we cannot connect aj,a} in
S3\ (D1 U Do)* by A*. This is a contradiction.

<
/ @
€1
dl C2 dz

Figure 14
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This completes the proof of Lemma 3.5. [J

Let F be an embedded closed surface in §*, and « € F*. We say that «
is a branch point (also known as “Whitney’s umbrella” or “a pinch point”)
if there exists a regular neighborhood N of z in S% such that (N, NN F*, z)
is homeomorphic to (B,Q,0), and p~*(N N F*) N F is homeomorphic to
a 2-disk where B = {(x1,72,23) € R3|2? + 22 + 22 < 1} and Q is a cone
with vertex 0 = (0,0,0) of a figure eight in 9B. We define B-move to be
the operation shown in Figure 15. The symbol «— means that pictures
pointed by an arrow are ambient isotopic. For canceling branch points, see

[C-S] or [H-N].

Figure 15

TP N-1

Figure 16
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P(G) =

Figure 16 (continued)
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LEMMA 3.6. Let F be an oriented surface with p|F in general position.
Suppose that there exist components v of I'(F*) (i = 1,2,...,n) and a
surface G in F' such that ~;} is a simple closed curve of G*, and p(G) is
Figure 16 (1). Then~; (i =1,2,...,n) can be cancelled.

Proor. We obtain Figure 16 using B-move. In Figure 16, it is realized
by an ambient isotopy only when the crossing information near the branch
points matches. If the crossing information does not match, then we rotate
one of the bottom handles by 180 degrees. Then an ambient isotopy can be
realized. The simple closed curves ;' can be cancelled. [

4. A necessary condition on singular sets

The following lemmas are generalizations of Aiso’s lemmas. We use a
technique of Aiso [A]. Let F be a torus or a 2-sphere in S* with p|F in
general position. In this section we assume that I'(F™*) consists only of
double points. Let v* be a component of I'(F*), and ¢, ¢ the components
of p~1(v*) N F. Suppose that ¢; and ¢y are situated on F' as shown by one
of the figures of Figure 17. Take an embedded arc « in F' such that « joins
c1 and ¢g, aN(c1 Ucg) = Oa, and inta is transverse to I'(F'). Suppose that
« satisfies that either |c N a| = 0 or 1 for any component ¢ of I'(F') with

c#c¢ (1=1,2).

Cy

(B-) (&

cC; «

Figure 17

Let I' = {~* is a component of I'(F*); p~1(7*) N F is one of the figures
of Figure 17}. We define a function p : I' — Zy as follows:

. 1 if lanNT(F)| is odd,
p(v") =

0 otherwise.
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We will show that p is well defined.

FACT 4.1. Let F be a closed surface in S* with p|F in general position.
Let ¢ be a simple closed curve in S® such that ¢ is transverse to F* and
cNI'(F*) = ¢. Then |cN F*| is even.

Let A, be the closure of the component of F'\ (¢; U ¢z) with A, D «a.
The orientations of c1, ¢z are the induced orientations from A,.

LEMMA 4.2. If p(v*) = 0, then the orientation of ¢} is opposite to the
orientation of ¢&. If p(v*) = 1, then the orientation of ¢; is the same as
the orientation of c5.

PrOOF. We will make a simple closed curve & in S? such that & is
transverse to F* and a NT'(F*) = ¢. We may assume that o* is a simple
closed curve in S3. We want to make o* by pushing out « to the positive
normal direction induced by an orientation of F'.

If A% is an orientable singular surface, then we construct & as in Figure
18 (1), and in this case the orientation of ¢} is opposite to the orientation of
c5. We have [aNF*| = |aNI(F)| = p(v*) (mod 2). By Fact 4.1, p(v*) = 0.

If A% is a non-orientable singular surface, then we construct & as in Fig-
ure 18 (2). In this case, the orientation of ¢} is the same as the orientation
of ¢, and we have |a N F*| = [a NT'(F)|+1= p(v*) + 1(mod 2). By Fact
4.1, p(v*) = 1. This completes the proof of Lemma 4.2. OJ

Obviously Lemma 4.2 implies that p is well defined.

LEmMMA 4.3. If p(v*) = 1, then there exists a component p* of I'(F™*)
with |[dy Nl =1, |deNa|l =0, and dy Udy C Ay, where di,dy are the
components of p~1(u*) N F.

PROOF. Let u* be a component of I'(F™*) with p* # ~v*, and dy, ds the
components of p~!(u*) N F. Let N(d;) be a regular neighborhood of d; in
F, and 3, 3 subarcs in a, &, respectively such that BNIL(F) = fNd; = {one
point}, B N N(dy)* = {one point}, and f is obtained from §* pushing it
slightly in the positive normal direction induced from the orientation of F.
If dy C Ay, then 3N A% = BN N(dy)* = {one point}. If do N A, = ¢, then
N(d2) N A, = ¢ and BN AL = ¢. Let Q; be the set of components p* of
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Figure 18

I(F*) with |[diNa|l =1, |[doNa| =0 and dy Udy C A,. We will show
Oy # ¢. Let Qo be the set of components p* of I'(F*) with |d; Na| =1
(¢ = 1 and 2). We use a simple closed curve & in Lemma 4.2. We have
&N As| = [Qa] x 2+ [Q] + 1. By Fact 4.1, | N A%| is even. Therefore
|21] = 1(mod 2), and Q1 # ¢. This completes the proof of Lemma 4.3. [J

COROLLARY 4.4. Let F be a 2-sphere or a torus with p|F in general
position. Let vy, 3 be components of T'(F*) which are simple closed curves,
c1,c2 the components of p~L(7{)NF, and dy, dy the components p~L(73)NFE.
Consider the following condition: there exists an annulus A with 0A =
cpUcy, intANT(F) =dy, and [di] # 1 € m1(A).

Then there does not exist such a surface satisfying this condition.

ProOOF. Take an arc @ on A as in Figure 19. We have that |aNI'(F)| is
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<)

Figure 19

odd, and p(~v*) = 1. But there does not exist a component of I'( F*) which
satisfies the condition of Lemma 4.3. Therefore there does not exist such a
surface satisfying this condition. [

5. Equivalence relations of knotted surfaces

We will define two equivalence relations. We will show that they are the
same relations. Let F be a closed surface, fi, fo : F — 5% embeddings
and F; = f;(F). We say that F} is ambient isotopic to Fy, if there exists a
level preserving homeomorphism H : S* x I — S% x I with hy = id and
hi(F) = F,. Two knotted surfaces (S%, F1) and (S*, I%) are equivalent
if there exists a homeomorphism f : (S4, F}) — (S, Fy) preserving the
orientation of S%. We let the notation (S4, Fy) = (S*, F3) stand for this
equivalence.

Fact 5.1 ([G, Theorem 1]). Let f : S* — S* be an orientation pre-
serving homeomorphism, then f is ambient isotopic to an identity map.

LEMMA 5.2.  The following conditions are equivalent.
(1) Fy is ambient isotopic to Fs.
(2) (8%, F1) = (8%, ).

ProOOF. If Fy is ambient isotopic to I, then (S, Fy) = (5S4, Fy) by
definition. Suppose that (S*, Fy) = (5%, Fy). There exists a homeomor-
phism f : §* — S* preserving the orientation of S* with f(F}) = F». By
Fact 5.1, there exists an isotopy H : S* x I — 5% x I with hg = f and
hi =id. Let H1: S* x I — S* x I ((x,t) — (h1_¢(),t)). Using H~!,
we can show that Fj is ambient isotopic to F5. [
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Let T be a torus in S*. If there exists an immersion o : S' — p(B\ P)
with 7% = a(a,b), (a,b) = 1, and b # 0, then there exists a knot & in
B3\ P such that (T%(d3))* = a(a,b), and T is ambient isotopic to T%(&yp)
(see Remark 2.3).

LEMMA 5.3. The above torus T is ambient isotopic to T°(a1) or
T ().

ProoF. By [T, Theorem 8], (S* T%d,)) = (S*7°%d;)) or
(84, T (d1)). Now Lemma 5.3 follows from Lemma 5.2. O]

6. A diagrammatic representation of I'(T)

Notes ([S1, Lemma 2.3] and [S1, Lemma 2.4]).

(1) If F is an oriented closed surface in S with p|F in general position,
then F'\ I'(F) is divided into some regions. Thus we can color each region
black or white so that adjacent regions have different colors.

(2) Let F, p|F be as above, and v* a component of T'(F™*). If v* is a
simple closed curve, then p~!(y*) N F consists of two disjoint simple closed
curves.

Let T be a torus in S* with p|T in general position. In this section
we assume that ['(T™) consists only of double points. By Notes (2), T'(T)
consists of even disjoint simple closed curves on T'. By Notes (1), then I'(T")
satisfies that

(**) the regions of T\I'(T") can be colored black or white so that adjacent
regions have different colors.

We will consider a certain diagrammatic representation of I'(T"). Let ¢;
(t=1,2,...,2n) be disjoint simple closed curves in 7. Put C(T) = U, c;.
Then T'\ C(T) is divided into several regions. Suppose that C(T") satisfies
(**). Let X4, ..., ¥, be the closures of the components of T'\ C(T"). Then
>; is either a torus with holes or a 2-sphere with holes. For a simple closed
curve ¢, there exists a unique pair (£;,%;) with ¥;NY; = 0%;N0%; D ¢,
and ¢ # j. We construct the graph G¢ () as follows. The vertices are in one
to one correspondence to the regions {¥;}, and the edges are in one to one
correspondence to the simple closed curves {c¢;}. If a simple closed curve ¢,
is a component of 9%; N J¥;, we connect the vertices v(%;) and v(X;) by
the edge e(c;). In particular, if ¥; is a torus with holes, then we call v(%;)
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the special vertex and we denote it by . Let |G| be the union of all edges
of a graph G. Let G be a connected graph having an even number of edges.
For an arbitrary graph we call it the special vertexr when we specify one of
the vertices. When a vertex is not specified, we say that a graph does not
have the special vertex. If GG satisfies one of the following two conditions,
we call G an S-graph.

(1) The graph G does not have the special vertex. There exists a unique
1-cycle C such that C' consists of an even number of edges and G \ C is a
collection of trees (G \ C consists of all vertices and edges which are not
contained in |C).

(2) The graph G is a collection of trees having the special vertex.

It is easy to prove the following lemmas.

LEMMA 6.1. Let C(T) = Uc; and C(T) = Ué, be two systems of dis-
joint simple closed curves on T satisfying the condition (**).

(1) If there exists a homeomorphism f : T — T with f(C(T)) = C(T),
then Gty and GC‘(T) are the same S-graphs.

(2) If G is an S-graph, then there exist disjoint simple closed curves
C(T) = Ucy on T such that G and Gty are the same graphs.

LEMMA 6.2. Let C(T) = US_,c; be a system of siz disjoint simple
closed curves on T satisfying (**). Then the graphs Gy are enumer-
ated in Figure 20.

Suppose that I'(T*) consists of three disjoint simple closed curves. By
Lemma 3.1 (1) and (3), we may assume the following conditions.
(1) A number of disks in {¥;} is at most three.
(2) If X; is an annulus and [¢;] = [¢s] = 1 € m1(T') where ¢, ¢ are the
components of 0%;, then ¢ N ¢} = ¢.
If I'(T') does not satisfy the above conditions (1) or (2), then the torus 7T is
ambient isotopic to the standard torus.

LEMMA 6.3. All the possible configurations of I'(T) that satisfy the
above conditions (1) and (2) are listed in Figure 21.

7. 2-complexes consisting of annuli in $3

We will study certain types of 2-complexes in S3. Put B={(z,y,2) €
RP[a?+y?+2% < 1}, Q1={(2,y,2) € R’| 2?+y® < 1,2 = 0}, Qo={(2,y,2) €
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R3| (22 +y?> <1,z=0)or (2 +22<1,2 >0,y =0)}, and Q3={(z,9,2) €
R3| (22 +y2 <1,2=0)or (22 +22 < 1,y =0)}.
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Figure 20 (continued)

DEFINITION 7.1. Let K be a 2-complex in S3. We call K a 2-complex
consisting of annuli in S® if K satisfies the following five conditions:
(1) K is connected.
(2) For each point = of K there exists a regular neighborhood N of x
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Figure 21

in S3 such that (z, N N K, N) is homeomorphic to either ((0,0,0),Q1, B),
((0’ 0, O)a QQ: B) or ((07 0, 0)7 Q?n B)
Let S(K) be the set of all points  of K having a regular neighborhood
N of x such that (z, N N K, N) is homeomorphic to ((0,0,0),Qs, B). Let
S’(K) be the set of all points 2 of K having a regular neighborhood N of
x such that (z, N N K, N) is homeomorphic to ((0,0,0),Q2, B).

(3) K\ (S(K)US'(K)) consists of finite open annuli.
Let C be a component of S(K)US'(K), and N(C) a regular neighborhood
of C'in S3.

(4) If C C S(K), then ON(C)N K consists of two or four components.
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Figure 21 (continued)
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Figure 21 (continued)
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Figure 21 (continued)
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Figure 21 (continued)
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Figure 21 (continued)
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(147)

Figure 21 (continued)
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Figure 21 (continued)

If C c S'(K), then ON(C) N K consists of three components.
(5) K \ R is connected for all components R of K \ (S(K)US'(K)).

Suppose C' C S(K). If N(C)N K is two immersed annuli, then we call
C an A-curve. If N(C)N K is two immersed M&bius bands, then we call
C an M-curve.

LEMMA 7.2. Let K be a 2-complex consisting of annuli such that S(K)
consists only of A-curves.
(1) The closure of each component of K \ (S(K)U S'(K)) is either an

annulus or a torus.
(2) Let C,C" be components of S(K)US'(K), then C and C' are homol-
ogous in H1(K) for certain orientations.

Proor. We will prove (1). Let B be the closure of a component of
K\ (S(K)US'(K)). Suppose that B is a Klein bottle. There exists a
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component C of S(K) with C € B. Then C is an M-curve. This is a
contradiction.

We will prove (2). There exists an annulus B in K with 0B = C U C’.
Then [C] = [C'] € Hi(K). O

Let K be a 2-complex consisting of annuli such that S(K) consists only
of A-curves. Let Vi, Vs, ..., V; be solid tori in S3, and U = {V4, Va,..., Vi }.
We say that U is a solid tori sequence for K if U satisfies the following
two conditions:

(1) oV; C K forall j (j=1,2,..., k).
(2) If j # s, then V;NV; = 0V; N OV is either one simple closed curve,
an annulus or empty.

Let U = {Vi,Va,...,Vi} be a solid tori sequence for K. Let ¢; be a
component of S(K)U S'(K) with ¢; C dVj. Let n be the minimal number
of intersection points of ¢; and a meridional disk of the solid torus V;. For
a solid torus V; we define n(V}) as follows.

n ifn>1,
n(V;) =< 0 if n=0,V; is non-standard,

oo if n =0, Vj is standard.

We will construct the graph G(0) obtained by U as follows. The vertices
are in one to one correspondence with the solid tori {V;}, and the edges are
in one to one correspondence with the set {V; NV, # ¢}. If V; NV # ¢,
then we connect the vertices v(V;) and v(Vy) by the edge ejs.

DEFINITION 7.3. Let U = {V1,Va,...,Vi} be a solid tori sequence for

K and ¢ an integer with 1 < i < k. We say that (0,14) is good, if (0,1)
satisfies the following four conditions:

(1) G(*V) is a connected tree.

(2) There exists a vertex v(V1) of G() such that n(V}) equals one for
all solid tori V; with V; # V1.

(3) If j # s, then V; N Vj is either one simple closed curve or empty.

(4) If B is an annulus with B C K and (UU)NB = 0B, then 0B C JV;.
We say that v(V7) is the special vertex. And we say that U is good if U
satisfies (1), (2), (3), and (4’) there does not exist an annulus with B C K
and (UY)N B = 0B.
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If V; N Vy is one simple closed curve, let N, be a regular neighborhood
of V; NV in 53, If V;NVs = ¢, let Nj; = ¢. If V; N Vs is an annulus, let
Njs =V;N V.

LEmMMA 7.4 ([S1, Lemma 2.2] and [S1, Theorem 4.1]). Let ¥ =
{V1,Va} be a solid tori sequence for a 2-complex consisting of annuli. Put
V =V1UVoU Nys.

(1) If V is a solid torus, then n(Vy) =1 or n(Va) = 1.

(2) If V is not a solid torus, then n(Vy) > 1, n(Va) > 1, and V1, Vo are
standard solid tori in S3.

Proor. We will prove (2). Suppose that V3 NV, is an annulus. Let
V3 = 83\ int(V4 U Va). Then V3 is a solid torus by the solid torus theorem
(see [R] pl07). The set Vi N Va N V3 consists of two disjoint simple closed
curves. Let ¢ be a component of V1 NVoN V3. Let I; be a preferred longitude
of dV;, and m; a meridian of dV;. For certain orientations, we denote by
¢ = pili + ¢gm; € H1(0V;) (i=1,2 or 3) where (p;, ;) is a pair of relatively
prime integers. By van Kampen’s theorem, we have mi(V; UV;) =< ;, 1]
" =17 >. We get

7 1f (pi,pj)zl

Z@ZM if (pi,pj) =d#1

Z® Ly, pr="0,ps7#0,{k,s}={i,5}
YASY/ pi:pj:O

H(ViuV;) =

Since V;UV; is the complement of an open regular neighborhood of some

knot, Hi(V; UVj;) = Z. Hence we have to consider the following cases:
(2-i) pi # 0,p; # 0, (pi,p;) = 1, or
(2-1i) pr = 0,p, = +1, {k, s} = {i, j}.

We will prove (2-i). We construct a Seifert fibration on S? in which each
solid torus V; has c as a fiber. If |p;| # 1 for all 4, then there are three
exceptional fibers. But we can show that in any Seifert fibration of the
3-sphere, there are at most two exceptional fibers (see [J-S] p 181). This is
a contradiction. Hence there exists an integer k with p = +1. We have
m (VU Vi) < 1, | 17 = l,fl >22 7. Therefore V; is a standard solid torus
where j # i, k. Similarly, V; is a standard solid torus.
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It is easy to prove (2-ii) (see [S1, Lemma 2.2]). If V3 N V4 is a simple
closed curve, then we can prove in a similar way as above.

We will prove (1). We compute H; (V1 UV3) in a similar way to Case (2).
If n(V1) # 1 and n(Va) # 1, then V' is the complement of an open regular
neighborhood of a non trivial torus-knot in S3. Therefore V is not a solid
torus. This is a contradiction. This completes the proof of Lemma 7.4. [J

LEMMA 7.5. Let U = {Vy,Va,...,Vi} be a good solid tori sequence for
K such that v(V1) is the special vertex. Let c¢; be a component of S(K) U
S'(K) with ¢ C 0V1, and V = (UD) U (UNjs). Then V is a solid torus,
and [c1] = £n(Vy) € Hi (V).

Proor. We will prove by induction on the number £ of solid tori. By
definition of a 2-complex consisting of annuli, S(K)US'(K) # ¢. If k =1,
we have [c1] = +n(V}) by definition of n(Vy). If k& = 2, then Lemma 7.5
follows from Lemma 7.4. Suppose that Lemma 7.5 is true for k < s. We
will show it for £ = s. Since G(U) is a tree, we may assume that Vj is
a solid torus of U such that v(Vs) is an endpoint of G(U) and is not the
special vertex. Then ¢ = Vi N (Uj;%‘/;) is one simple closed curve on V.
Since v(V;) is not the special vertex, n(Vy) = 1 and [¢] = £1 € Hy(V;) =
Z. By the inductive assumption, V' = (Uj;%vj) U (Uixs,j2sNij) is a solid
torus. Since (UY) N K is a 2-complex consisting of annuli, ¢ and ¢; are
homologous in U by Lemma 7.2. Then [¢] = [¢1] = +n(V}) € H1 (V') 2 Z.
Since [¢] = £1 € Hy(Vy) = Z, then V' UV, U N(c) is a solid torus and
[e1] = £n(V1) € H1(V' UV, U N(c)) = H1(V) = Z where N(c) is a regular
neighborhood of ¢ in S3. This completes the proof of Lemma 7.5. OJ

REMARK 7.6. (1) Let (*U,7) be a good solid tori sequence for K with
U % K. Then there exists an embedded surface B C K in S® such that
B is either an annulus or a torus, and

one simple closed curve if B is a torus,

BN (UY) = { e
BnoV; =08 if B is an annulus.
(2) Let U be a good solid tori sequence for K with UY 7 K. Then there
exists an embedded torus B C K in S? such that B N (UY) is one simple
closed curve.
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LEMMA 7.7. Let (0,i) be a good solid tori sequence for K with UU 5
K. Then there exists a good solid tori sequence (20, q) such that the number
of the components of K\ (S(K)US'(K)) in UD is smaller than the number
of the components of K \ (S(K)US'(K)) in U20.

PRrROOF. Let v(V}) be the special vertex of G(U) and U = {V1, V4, ...,
Vi}. By Remark 7.6 (1), there exists an embedded surface B C K in S3
such that B is either an annulus or a torus, and

one simple closed curve if B is a torus,

BnNn((UY) =
(V) {BﬁaVizaB if B is an annulus.

Case 1) There exists an annulus B with BN (UY) = BN OV; = 0B and
B CK.

Let B’ be the closure of a component of V;\ B. Then BU B’ is a torus.
By the solid torus theorem ([R] p107), there exists a solid torus V in S3
with OV = BUB’. Then VNV, is an annulus, or V; C V. If V; C V,
then 9V N 9V} is a boundary parallel annulus in V', V' \ 'V} is a solid torus,
and V; N (V '\ V;) is an annulus. We may assume that V' NV} is an annulus.
Let ¢ be a component of 0B, U} = {V;,,...,Vi,_,} the subset of U with
Vi, g VUV, (1<j<t), Vi, =V, and Uy = {V;,,,,..., Vi, } the subset of
U with V;, CV (t < j < k). Let Njs be a regular neighborhood of V; NV
in $%if V; NV, # ¢. Put U; = B, U {Vi} for j = 1,2. Then G(V;) and
G(U2) are connected subgraphs of G(U). Let N1 = (UU1) U (U1<js<tNiji,)
and Ny = (UD2) U (Us<js<kNiji,). By Lemma 7.5, Ny and Nz are solid
tori.

(1-i) V.U Ny is not a solid torus.

By Lemma 7.4, then [¢] # £1 € H(Ny), [c] # £1 € H{(V), and V is
standard. Since the curve ¢ is homologous to a curve on (S(K)US'(K))NoV;
in Ny, then G(U;) contains the special vertex v(V;) of G() and n(V1) # 1.
Let W; = Vi, (t <j<k), Wy =8%\intV and 20 = {W,,...,W;}. Then
(20,t) is a good solid tori sequence for K and UL C UQD.

(1-ii) V' U Ny is a solid torus.

Suppose [c] = £1 € Hi (V)= Z. Let W; =V;, (1 <j<t), Wy=V;UV,
and 20 = {Wy,...,W;}. Then (20,t) is a good solid tori sequence for K,
and UU C U20.
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Suppose [¢] # £1 € Hi(V) = Z. If [c] # £1 € H{(N1), then Ny UV
is not a solid tours by Lemma 7.4. This is a contradiction. We have
] = +1 € Hi(Ny) and n(V;,) =1 (1 < j < ). Let Wy = Vi, (1 <j <),
Wy =V, UV, and 20 = {Wy, Wy, ..., Wi}. Then (20,¢) is a good solid tori
sequence, UY C U0, and v(W;) is the special vertex of G(20).

Case 2) There does not exist an annulus B with BN(UY) = BNIV; = 0B
and B C K.

Then B is a torus in K such that BN (UY) is one simple closed curve. By
the solid torus theorem ([R] p107), there exists a solid torus V with 0V = B.
Let Njs be a regular neighborhood of V; N Vi in S3, if V;NVy # ¢. Let
N = (UD) U (UNjs). By Lemma 7.5, N is a solid torus. Let ¢ = B N (UDY),
then ¢ is one simple closed curve. If V' O UY, then let W7 = V, and
20 = {W1}. Then (20,1) is a good solid tori sequence, and UL C UJ. We
may assume that ¢ =V N (UY). Let N(c) be a regular neighborhood of ¢
in $3. By Lemma 7.5, [c] = +n(V}) € H1(N).

(2-1) VUN U N(c) is not a solid torus.

By Lemma 7.4 (2), S%\ intV is a solid torus. Let W; = S3\ intV, and
2 = {W1}. Then (20,1) is a good solid tori sequence, and UU C U2D.

(2-ii)) VUN U N(c) is a solid torus.

Suppose [c] = £1 € H (V) 2 Z. Let Vi1 =V, and W = VU {Vj11}.
Then (20,k + 1) is a good solid tori sequence, and UL C U20.

Suppose [c] # £1 € H1(V) = Z. We have that {V, N} is a good solid
tori sequence for OV U IN, OV NIN = ¢, n(V) # 1, and n(N) = n(V1).
By Lemma 7.4 (1), n(N) = 1. Hence n(Vy1) = 1. Let Wy =V, Wy = V1,
W; =V; (j=2,..., k), and 20 = {Wy, Wa, ..., Wis1}. Then (20,1) is
a good solid tori sequence, UY C U2, and v(W7) is the special vertex of
G(20). O

PropoSITION 7.8. Let K be a 2-complex consisting of annuli, then
there exists a good solid tori sequence U for K with UL D K.

PrOOF. Let B be a torus in K. By the solid tours theorem, there
exists a solid torus Vi with 0V; = B. Put U; = {V1}. Then (U;,1) is a
good solid tori sequence for K. By Lemma 7.7, there exist good solid tori
sequences (Vo,q2), ..., (Vi  ¢),... with U0, C Uy C --- CUL; C --- .
Since K is a finite 2-complex, there exists an integer n with K C UQ,,. [
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LEMMA 7.9. Let U be a good solid tori sequence for K with U0 D K,
and (V1) = 0 or n(Vy) = o). If B is a non-standard torus in S3 with
B C K, then B C V.

PRrROOF. By definition of good, there exists a solid torus V; € U with
B C V;. Suppose i # 1. Let V be a 3-manifold in V; with 0V = B. By the
solid torus theorem, V is either a solid torus or the complement of an open
regular neighborhood of a non-trivial knot. Since n(V;) = 1, all component
of (S(K)U S'(K)) N B are not zero in H;(V;). Hence V is a solid torus.
Since n(V1) = 0 or n(V}) = oo, there exists a meridional disk D’ in V; with
oD" c S(K)U S’(K). Since K is connected, there exists an annulus A’ in
V; such that A’ NV is a simple closed curve of A’ on OV, and A’ N9V is
a simple closed curve of A’ on dV;. Since K is connected, there exists an
annulus A in UY with 04 = 9D' U (A’ NaV;). Put D = A’UD’ U A. Then
D is a disk in S? with V N D = dD. We have that V is a standard solid
torus, and B is a standard tours. This is a contradiction. [

DEFINITION 7.10. Let K be a 2-complex consisting of annuli. We say
that K is super if there exists a good solid tori sequence U for K such that
UY D K, n(V1) = oo, and all embedded tori in K are standard tori.

ProPOSITION 7.11. Let U be a good solid tori sequence for K with
UY D K and n(Vy) = co. If there exists a non-standard torus B in S® with
B C K, then there exists a good solid tori sequence 20 for K with U0 D K
and n(Wy) = 0.

PROOF. Let B = {B| B is a non-standard torus in S® with B C K}.
By assumption, 8 # ¢. Let By, Bo € B. By the solid torus theorem, there
exist solid tori X1, Xo with 0X; = B;. If X1 C X5, then we define By < Bs.
Let B be a maximal torus in %8, and W} a solid torus in S® whose boundary
is B. Put 20; = {W;}. Then (201,1) is a good solid tori sequence for K,
and n(Wy) = 0. Suppose K ¢ 20;,. By Remark 7.6 (1), there exists an
embedded surface By C K in S® such that By is either an annulus or a
torus, and

one simple closed curve if By is a torus,

By N (U,) =
20 v { By N oWy = 0By if By is an annulus.
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By the solid torus theorem, there exists a solid torus V5 in S® such that
By C 0Vh C K, and (U201) N Vs is either one simple closed curve or an
annulus. Since B is maximal in 9B, then 9V is standard and (U207) N oV,
is one simple closed curve. We have that (U20;) NV, is one simple closed
curve, and n(Va) = 1. Put Wy = Vs, and 2y = 20; U {Ws}. Then (Wo, 2)
is a good solid tori sequence for K, U20; C Uy, and n(W7) = 0. Suppose
K ¢ 905. In a similar way as above, there exists a solid torus V3 in S3
such that By C 0V3 C K, n(V3) = 1 and (U22) N V3 is either one simple
closed curve or an annulus. If (U202) N V3 is one simple closed curve, put
W3 = Vs, W3 = Wy U {W3}, and g3 = 3. If (UW2) N V3 is an annulus, put
W3 =Wyon Vs, W3 = {IW;, W3}, and g3 = 3. Then (203, g3) is a good solid
tori sequence for K, U0y C U3, and n(W;) = 0. In a similar way as
above, there exist good solid tori sequences (W4, q4), - .., (Wi, ¢), ... with
Wy € 20; for all i, n(W;) = 0, and U20; € UWy C --- C UW; C ---
Since K is a finite 2-complex, there exists an integer n with K C U20,,. We
complete the proof of Proposition 7.11. [J

LEMMA 7.12. Let K be a 2-complex consisting of annuli. If K is super,
then there exists a good solid tori sequence 20 for K with U D K, and
n(W;) =1 for all associated vertices of G(20).

PrRoOOF. Since K is super, there exists a good solid tori sequence U for
K with UU D K, n(Vi) = co. Put Wp = S3\ V; and 207 = {W;}. Then
(201, 1) is a good solid tori sequence for K and n(W;) = 1. In a similar way
to Proposition 7.11 there exists a good solid tori sequence 20 for K with
U0 O K and n(W;) =1 for all W; € 20. We complete the proof of Lemma
7.12. 0

LeEMMA 7.13 ([S1, Lemma 2.1, [S1, Theorem 4.1], and [S2, Lemma
2.1]). Let {V} be a solid tori sequence for K such that K C V, and
the number of the closures of the components of K \ (S(K) U S'(K)) is
two. Let W be the closure of a component of V\ K with W 2 0V, and
C=SK)US'(K).

(1) If [C] # 0 in H1(V'), then W is a solid torus, and K can be moved
to either Ty(a,b), Ty(a,b) or Ts(a,b) by an ambient isotopy of S° where
(a,b)=1, b=n(V), and T1,Ty, T5 are immersions obtained from Figure /.

(2) If [C] = 0 in Hi(V), then W is the complement of an open regular
neighborhood of some knot in S3.
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(3) If [C] =0 in H (V) and [C] = 0 in Hi (W), then W is a solid torus.

ProOF. We will prove (1). Suppose C' C S’(K). Then the closures
of the components of K \ C' are an annulus and a torus. Let B be a
properly embedded annulus into V' with [b;] # 0 in Hy(V') where by, b; are
the components of 0B, then B is a boundary parallel annulus in V' (see [S1,
Lemma 2.1]). There exists a meridional disk D of V' such that D N K is as
shown in Figure 22 (1). Therefore K is ambient isotopic to T5(a,b) where

(a,b) =1,b=n(V). And W is a solid tours.

(1) (2) (3)

Figure 22

Suppose C' C S(K). Then the closures of the components of K \ C are
two tori. By assumption, [C] # 0 in H;(V). Let N be a regular neighbor-
hood of C in V, B = 0N NintV an annulus, and by, b1 the components of
0B. Since [C] # 0 in Hi(V), [bi] # 0 in Hi(V). Then B is a boundary
parallel annulus in V. Let X = V\ N, and B = K\ (OVUN). Then
X is a solid torus, and B’ is an annulus. Let bg, b/1 be the components of
OB', then [b;] # 0 in Hy(X). Then B’ is a boundary parallel annulus in
X. There exists a meridional disk £ of V such that £ NV is as shown in
Figure 22 (2) or (3). We can show that K is ambient isotopic to T} (a,b) or
Ty(a,b) where (a,b) = 1,b = n(V) (see [S1, Theorem 4.1]). We have that
W is a solid torus. This completes the proof of (1).

We will prove (2) and (3). Suppose [C] =0 € H;(V). Let D be a disk
in V with DN OW = 0D (see [S2, Lemma 2.1]). Using the disk D, we can
prove that W is a solid torus, or W is the complement of an open regular
neighborhood of some knot in $3. O
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LEMMA 7.14. Let {V'} be a good solid tori sequence for K with K C V.
If n(V) # 0 and n(V) # oo, then there exists an immersion o : J —
p(B3\ P) such that K can be moved to a(a,b) by an ambient isotopy of
S3 where (a,b) =1, b =n(V), and J is a disjoint union of 1-spheres and
intervals.

Proor. We will prove by induction on the number m of the compo-
nents of S(K)U S’(K). Suppose m = 1. By Lemma 7.13, the intersection
of a meridional disk of V' and K is as shown in Figure 23 (1). And « is
defined as in Figure 23 (2). Let ¢ be a component of (S(K)US'(K))NoV,
m a meridian on dV, and [ a preferred longitude on 9V. For certain ori-
entations, we denote by ¢ = am + n(V)l with (a,n(V)) = 1. Then K is
ambient isotopic to a(a,n(V)) in S3.

v

Figure 23 (1)

© © €

Figure 23 (2)

Suppose that Lemma 7.14 is true for m < k. We will show it for m = k.
We take an embedded surface F' C K such that F' is either an annulus or a
torus, and

one simple closed curve if F' is a torus,
FNnoVv =

oF if F'is an annulus.
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Let N be a regular neighborhood of F N9V in V, and Vi, V5 the closures
of the components of V' \ F'. Then V;\ N is a solid torus (i = 1,2). Let
B =Vi\NNVy\N. Then B is an annulus. Let ¢ be a component of
0B, m; a meridian on O(V; \ N), and [; a preferred longitude on 9(V; \ N)
for ¢ = 1,2. For certain orientations, we denote ¢ = aymi + n(V)l; and
¢ = agmg + lp with (a1,n(V)) = 1. Put by = n(V), by = 1. By the
inductive assumption, there exist immersions a; : J; — p(B? \ P) such
that V; \ N N K is moved to a;(aj,b;) by an ambient isotopy of S where
(aj,b;) =1, bj # 0 (j = 1,2), and J; is a disjoint union of 1-spheres
and intervals. Then the intersection of F' and a meridional disk of V is
as shown in Figure 24 (1). And the intersection of K and a meridional
disk of V' is as shown in Figure 24 (2). Therefore there exists an immersion
a: J — p(B3\ P) such that K is moved to a(ay, b1) by an ambient isotopy
of S3 where (a1,b1) = 1,b; = n(V), and J is a disjoint union of 1-spheres
and intervals (see Figure 24 (3)). Thus Lemma 7.14 is proved by induction
on m. [J

PROPOSITION 7.15. Let U be a good solid tori sequence for K with
UY D K where v(Vi) is the special vertex. If n(Vi) # 0 and n(Vy) # oo,
then there exists an immersion o : J — p(B3\ P) such that a(a,b) can be
moved to K by an ambient isotopy of S® where (a,b) = 1, b = n(V1), and
J is a disjoint union of 1-spheres and intervals.

Proor. Let U = {Vi,...,Vix}. We will prove Proposition 7.15 by
induction on the number k of solid tori V;. If kK = 1, this follows from by
Lemma 7.14. Suppose that Proposition 7.15 is true for m < k. We will
show it for m = k. We may assume that v(V},) is an endpoint of G ()
and is not the special vertex. Then ¢ =V, N (U;”;lle) is one simple closed
curve. Let N = (UD) U (UN;;), and N’ = (U;n:_ll‘/;) U (Ui, j2mNij) where
N;; is a regular neighborhood of V; N V; in S3. By Lemma 7.5, then N
and N’ are solid tori. By the inductive assumption, there exist immersions
aj: Jj — p(B?\ P) such that N’ N K is ambient isotopic to aj (a1, b1) in
S3 and V,, N K is ambient isotopic to as(az,b2) in S where (aj,b;) = 1
(7=1,2), by = n(V1), bo = n(V,,) = 1, and J; is a disjoint union of 1-
spheres and intervals. The intersection of K and a meridional disk of V,
is as shown in Figure 25 (1). And the intersection K and a meridional disk
of N is as shown in Figure 25 (1). Therefore there exists an immersion
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a:J — p(B3\ P) such that N N K is ambient isotopic to a(a,b;) in S?
where b = n(V1) and J is a disjoint union of 1-spheres and intervals (see
Figure 25 (2)). Thus Proposition 7.15 is proved by induction on k. O

8. Symmetry-spun tori

Let T be a torus in S* with p|T in general position. In this section we
assume that I'(T™) consists only of double points. We will show that if all
components of I'(T") are not contractible in 7', then there exists a symmetry-
spun torus 7T%(Kp) in S* which is ambient isotopic to T' (see Proposition
8.3).

LEMMA 8.1. Let T be a torus in S* such that T'(T*) consists only of
double points, and each component of T'(T) is not contractible in T. Let
U be a good solid tori sequence for T* with T* C UU. If n(V1) = 0 or
n(V1) = oo, then there exist a torus T' in S* and a good solid tori sequence
90 for the 2-complex T'* such that T is ambient isotopic to T' in S*, T'*
1s super, and the number of components of F(T/*) equals the number of
components of T'(T™*).
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PROOF. Let m be the number of the elements of {B| B is a non-
standard torus in S® with B C T*}. We can move T' by some ambient
isotopy of S* so that for the resulting 7" we have m = 0. We may assume
that v(V1) = 0 by Proposition 7.11. We will show that m can be reduced.
Let N(UD) be a regular neighborhood of U in S3. Then N (UD) is a solid
torus by Lemma 7.5. Since n(V1) = 0, N(UD) is a non-standard solid torus
in S3. Move T by an ambient isotopy of S* so that N(UY) is standard.
Let T” be a torus obtained from 7" as above, and V; a solid torus obtained
from V; as above. Suppose that there exists an embedded torus B C T*
in S% such that B’ is a non-standard torus which is obtained from B as
above. By Lemma 7.9, B C V; and B’ C V]. Let Y’ be the closure of the
component of S\ B’ such that Y’ is a solid torus. If Y/ ¢ V{, then B is
a non-standard torus (see Figure 26 (1)). If Y/ C V/ (see Figure 26 (2)),
there exists an annulus A in 7™ with AN (Y' UAV{) = dA, a; C dY’, and
ag C OV] where a1, ay are the components of OA. Let N(A) be a regular
neighborhood of A in V/ \ Y’. We have that V/ \ N(A) is a solid tours, and
ap is homologous zero in H1(Y'). Let D" be a meridional disk in Y’ with
0D" = a1, and D' = AU D". Then D' is a meridional disk in V] such
that D' NY"’ is a meridional disk of Y’. Let D be a meridional disk of V;
such that D’ is obtained from D as above. Using D, we have that B is a
non-standard torus. If B is a standard torus in 7%, then B’ is a standard
torus obtained from B as above. Hence m is reduced. Therefore we may
assume m = 0. This completes the proof of Lemma 8.1. [

LEMMA 8.2. Let T be a torus as above. Then there exist a torus T’
in S* and a good solid tori sequence U for T'* such that T is ambient
isotopic to T in S*, T™* c UD, n(Vi) # 0, n(V1) # oo, and the number
of components of F(T/*) equals the number of components of T'(T™) where
v(V4) is the special vertex of G(U).

Proor. By Proposition 7.8, there exists a good solid tori sequence U
for T* with T* C UD. If n(V1) = 0 or n(V1) = oo, then by Lemma 8.1 there
exists a torus 7" in S* such that 7" is super, and 7" is ambient isotopic to
T. By Lemma 7.12, there exists a good solid tori sequence 2J for T " such
that 7" and 20 satisfy the above condition by Lemma 8.1. This completes
the proof of Lemma 8.2. [J

PROPOSITION 8.3. Let T be as above. Then there exists a symmetry-
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Figure 26

spun torus T*(Kp) in S* such that T%(Ky) is ambient isotopic to T with
(a,b) =1, b # 0, and the number of components of I'((T*(Kp))*) equals the
number of components of T(T™).

PrRoOOF. By Proposition 7.15 and Lemma 8.2, there exist an immersion
a:J — p(B3\ P) such that a(a,b) is a projection of a torus 7" in $* such
that 7" is ambient isotopic to T where J is a disjoint union of 1-spheres
and intervals. By Remark 2.3, there exists a link K in B?\ P such that
T%(Kp) is ambient isotopic to 7. If the number of components of K were
greater than one, then 7%(K}) would consist of more than one component
(see [T]). Therefore K is a knot. This completes the proof of Proposition
8.3.0

9. Main Theorem

Let p : R* — R3 be the projection with p(x,y,z,w) = (z,y,2), f :
R* — R* the map defined by f(z,y,z,w) = (z,y,2,—w), g : R* —
R* the map defined by g(z,y,z,w) = (z,y,—2z,w), K : S — B3 an
embedding, and K = fo K.

LEMMA 9.1. (fog)T™(Ky) =T (K1) for alln € Z.
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PrOOF. Let (z,v,0,2) € (q1 x id)"}(K(SY)), and (X,Y) = rpe(z,y).
We have

(X7 Y) = Tn@(xvy) = T(—n)(—@)(x7y)a and
(fog)(X,Ycosh,Ysinf,z) = (X,Y cosf,—Y sinf, —z)

= (X,Y cos(—0),Y sin(—0), —z).

Therefore

Ycos@ =00
(fog Tn Kl Y sin 6 I‘ yaoaz) € (Q1 X ld)_l(K(Sl))
(X7 Y) :T_n@(l',y)
=T

n(l

Let F; be a torus in S* obtained by Figure 1 (i) (i = 1,2). Let F be
an embedded oriented surface in S, —F the surface having the opposite
orientation of F'. If F' is ambient isotopic to —F preserving the orientation
of F and S%, we call F invertible.

PROPOSITION 9.2.

(1) T°(L3) is ambient isotopic to T°(L}).

(2) T3(L3) is ambient isotopic to T3(L}).

(3) Fy is ambient isotopic to Fy.

Moreover T°(L3), T3(L3) and Fy are invertible.

PROOF. One can prove (1) and (2) by Lemma 9.1. We will prove (3).
We have

(fog)(x,ycosh,ysinb, z) = (x,ycos(—0),ysin(—0), —=z).

Then f o g is an orientation preserving homeomorphism, and Rg N F1 and
fogR3INF) =R3, N F, are as shown in Figure 27. By Figure 27 and
Lemma 5.2, we can prove (3).

If F'is T°(L3) or T3(L3), then F is invertible by the fact that a trefoil
knot is invertible. We can prove that F} is invertible by Figure 28. [J
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THEOREM 9.3. Let T be a torus in S*. If the singular set T(T*) con-
sists of three disjoint simple closed curves, then T is ambient isotopic to
one and only one of the following tori.

(1) the standard torus,

(2) the spun torus of the trefoil knot T°(L3) (for L, see Figure 3),

(3) the twist spun torus of the trefoil knot T3(L3), or

(4) the torus obtained by attaching a handle to the spun 2-sphere of the
trefoil knot (see Figure 1 (1)).

Proor. By Lemma 6.3, we will investigate the 157 cases of configura-
tions of I'(T") (see Figure 21).

If the configuration of I'(T') is either (61), (64), (100) or (103), then by
Lemma 3.3 T can be moved so that the resulting I'(T™) consists of one
simple closed curve. We can apply Lemma 3.2. Therefore T is ambient
isotopic to the standard torus.

If the configuration of I'(T") is either (132), (133), (134), (138), (139),
(143), (144), (149) or (150), then by Lemma 3.4 (1) T' can be moved so
that the resulting I'(T™) consists of two simple closed curves. We can apply
Lemma 3.2. Therefore T' is ambient isotopic to the standard torus.
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If the configuration of I'(T') is either (8), (10), (11), (14), (15), (16),
(17), (21), (22), (23), (24), (25), (26), (27), (29), (30), (31), (36), (37), (38),
(39), (40), (41), (42), (43), (45), (48), (49), (50), (51), (52), (53), (54) or
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Figure 29

(55), then by Lemma 3.4 (2) T can be moved so that the resulting I'(7T™)
consists of two simple closed curves. We can apply Lemma 3.2. Therefore
T is ambient isotopic to the standard torus.

If the configuration of I'(T) is either (101), (106), (117), (119), (141),
(142) or (148), then by Lemma 3.5 (1) there does not exist a torus with
such a singular set.

If the configuration of I'(T) is either (104), (111), (115), (122), (125),
(127) or (128), then by Lemma 3.5 (2) there does not exist a torus with
such a singular set.

If the configuration of I'(T") is either (46), (66), (71), (72), (84), (86),
(92), (121) or (124), then by Lemma 3.5 (3) there does not exist a torus
with such a singular set.

If the configuration of I'(T") is either (1), (3), (4), (5), (6), (9), (19), (32),
(34), (44), (56), (57), (58), (60), (68), (69), (74), (75), (76), (79), (89), (91),
(94), (96), (97), (99), (109), (110), (113), (114), (135), (136), (140), (147),
(154) or (156), then by Corollary 4.4 there does not exist a torus with such
a singular set.

If the configuration of I'(T') is either (7), (12), (18), (33), (35), (47), (62),
(63), (65), (67), (70), (78), (80), (81), (82), (83), (84), (85), (87), (90), (93),
(102), (105), (116), (120), (126), (129) or (130), then by Lemma 4.3 there
does not exist a torus with such a singular set. Take an arc « for each of
the cases shown in Figure 29.

Case (98).
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(126)

Figure 29 (continued)

Perform D-surgeries along the disks (see Figure 30 (1)). We obtain an
embedded 2-sphere S, an embedded torus S’, and an arc 3 in S® such that
S NS consists of disjoint two simple closed curves, 5N S consists of two
points, and 3NS5’ consists of one endpoint of 3. By the Schoénflies Theorem
([R] p 34), S is the boundary of a 3-ball. By the solid torus Theorem ([R]
p 107), S’ is the boundary of a solid torus. Then S U S’ U 3 is as shown in
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Figure 31

Figure 30 (2). The trefoil in the ball just represents the fact that the torus
may be knotted. Also the arc inside may have a different knotting. These
knottings can be untied by an ambient isotopy. We can check in Figure 31
that T' can be moved to the standard position by an ambient isotopy.

Case (107).

Perform D-surgeries along the disks (see Figure 32 (1)). We obtain T
in a similar way to Case (98) (see Figure 32 (2)). We can check in Figure
33 that T' can be moved to the standard position by an ambient isotopy.

Figure 32



On Simply Knotted Tori in 54 329

Case (112).

Perform D-surgeries along the disks (see Figure 34 (1)). We obtain T
in a similar way to Case (98) (see Figure 34 (2)). We can check in Figure 35
that T' can be moved to the standard position by an ambient isotopy.

Cases (108), (118), (123) and (137).

Perform D-surgeries along the disks (see Figure 36 (1)). We obtain 7™
in a similar way to Case (98) (see Figure 36 (2)). We can check in Figure
37 that T' can be moved to the standard position by an ambient isotopy.

(137)

Figure 36

Case (131).
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Figure 33

Figure 34

]
—> «—>

Lemma 3.6

Figure 35

Perform D-surgeries along the disks (see Figure 38 (1)). Then we get
an arc o and an immersed 2-sphere S* having the singular set of two simple
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closed curves. An immersed 2-sphere having the singular set of one simple
closed curve is as shown in Figure 38 (2). The arc o and the immersed
2-sphere S* are as shown in Figure 38 (3). We obtain 7™ in a similar way
to Case (98) (see Figure 38 (4)). We can check in Figure 39 that 7" can be
moved to the standard position by an ambient isotopy.

Lemma 3.6

Figure 39

Case (146).

Perform D-surgeries along the disks (see Figure 40 (1)). We obtain T
in a similar way to Case (98) (see Figure 40 (2)). We can check in Figure
41 that T' can be moved the standard position by an ambient isotopy.

Case (152).
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D8
Lemma36®

Figure 41

LRA D,

Figure 42

Perform D-surgeries along the disks (see Figure 42 (1)). We obtain 7™
in a similar way to Case (98) (see Figure 42 (2)). We can check in Figure
43 that T can be moved the standard position by an ambient isotopy.

Cases (145) and (151).

We will show that there does not exist a torus having a singular set
of these types. Suppose that there exists a torus with one of these types
of singular sets. Perform D-surgeries along the disks (see Figure 44 (1)).
Then we obtain an arc and an immersed 2-sphere having the singular set
of two double closed curves. We see the singularity of the 2-sphere as in
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Lemma 3.6

<-—+<-——>

Figure 43

Figure 44

Figure 44 (2). By Corollary 4.4, there does not exist such a singularity of
the 2-sphere. This is a contradiction.

Cases (2), (59), (77) and (88).

We will show that T is ambient isotopic to the torus obtained by attach-
ing a handle to the spun 2-sphere of the trefoil knot (see Figure 1 (1),(2)).
Perform D-surgeries along the disks (see Figure 45). Then we obtain T*
in a similar way to Case (98). We see the attaching handles in Figure 46 in
respective cases.

Cases (13), (20), (28), (73) and (95).

We will show that there does not exist the torus having a singular set
of these types. Suppose that there exists a torus with one of these types of
singular sets. Perform D-surgeries along the disks (see Figure 47). Then
we obtain arcs and embedded closed surfaces. But we cannot connect arcs.
This is a contradiction.

Cases (153), (155) and (157).
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Figure 45

By Proposition 8.3, there exists a symmetry-spun torus 7%(Kj) such
that T%(Kp) is ambient isotopic to T', and I'((T*(K3))*) consists of three
disjoint simple closed curves. By Lemma 5.3, T%(K}) is ambient isotopic
to T°(K;) or TH(K7). Since I'(T™*) consists of three disjoint simple closed
curves, we may assume K is the trefoil knot. Therefore 7' is ambient isotopic
to TO(L3), TO(L}), T3(L3) or T3(L}). By Proposition 9.2, T is ambient
isotopic to T°(L3) or T3(Ls).

This completes the proof of Theorem 9.3. [J

Let G1 be the standard torus, Go = TO(Lg)7 Gs = T3(L3), and G4 = F.

REMARKS. (1) m1(S*\ G1) 2 Z.
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Figure 46

(2) If i = 2,3 or 4, then 71(S* \ G;) = 71 (S3\trefoil knot) (see [Y]).

Let N(G;) be aregular neighborhood of G; in S* and X; = S*\intN(G,).
Let fix : m(0X;) — m(X;) be the map induced by the inclusion map

LEMMA 9.4. Ifi=2 or 8, then kerfix 2 7. And if i = 4, then ker f4,
contains the subset which is isomorphic to Z @ 7.

PROOF. Let B3 = {(x,4,0,2) € R% (x — 2)2 + 9% + 22 < 1}. We will
show that if i = 2 or 3, then ker fi. = Z. We use a technique in [B]. Let

x

ycos b

ysind
z

B3 x St = (z,y,0,2) € B}, 0<60<2r

Then S*\ int(B? x S') is homeomorphic to S% x D? where D? is a 2-disk.
Fix an integer n. Let 1, : (B3 x S') — (B3 x S') be a map defined as
follows:

Mn(z,ycosB,ysinb, z) = (X,Y cosf,Y sinb, z)
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Figure 47

where (2,9,0,2) € B3 and (X,Y) = 7u(x,y). In particular ng is the
identity map. Let (B3, K) denote a trefoil knot K in the 3-ball B3. Then

(8%, G) = (B x S, Ga) Uy, (S*\ int(B? x 1)),
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= (B3 K) x S* Uy, (S*\ int(B* x S')), and
(S%,G3) = (B? x S, Ga) Uy, (S*\ int(B> x 1)
>~ (B3 K) x S* U, (S*\ int(B* x S)).

Let N(K) be a regular neighborhood of K in B3. We have m((B? \
int(N(K))) x S*) = m(B? \ int(N(K))) ® Z. By Van Kampen’s theo-
rem, the effect of gluing S* \ int(B3 x S') to (B3 \ int(N(K))) x S! is to
kill the Z summands. Hence the inclusion map B? \ int(N(K)) — X;
induces an isomorphism of fundamental groups. Since 7 (ON(K)) injects
into 71 (B3 \ int(N(K))), we see ker fi = 7.

If ¢ = 4, then the proof is obvious. This completes the proof of Lemma
9.4.0

THEOREM 9.5. Ifi # j, then G; cannot be moved to G; by an ambient
isotopy of S*.

ProoF. Using Lemma 9.4, we have that G; (i = 2 or 3) cannot be
moved to G4 by an ambient isotopy of S*. By [B, Theorem 1.1], We can
show that Gy cannot be moved to G5 by an ambient isotopy of S4. O
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