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Asymptotically One-Dimensional Diffusions on

Scale-Irregular Gaskets

By Tetsuya Hattori

Abstract. A new class of fractals, the scale-irregular abb-gaskets,
is defined, and the asymptotically one-dimensional diffusion processes
are constructed on them. The class contains infinitely many fractals
which lack exact self-similarity, and which also lack non-degenerate
fixed points of renormalization maps (hence are not in the class of
nested fractals).

An essential step in the construction of diffusion is to prove the
existence of appropriate time-scaling factors. For this purpose, a limit
theorem for a discrete-time multi-type supercritical branching pro-
cesses with singular and irregular (varying) environment, is developed.

1. Introduction

In this paper we define a new class of fractals which we call the scale-

irregular abb-gaskets, and construct asymptotically one-dimensional diffu-

sion processes [16] on the scale-irregular abb-gaskets. The class scale-irregu-

lar abb-gasket is a generalization of the Sierpiński gasket, a triangle based

fractal, which we introduce as examples of finitely ramified fractals which

are scale-irregular, i.e. do not have exact self-similarity, and moreover, which

lack non-degenerate fixed points of renormalization maps (hence are not in

the class of nested fractals). See [17, 16, 15] for the motivation on the latter

point. The class scale-irregular abb-gasket is a scale-irregular extension of

the abc-gasket defined in [17].

Intuitively speaking, a scale-irregular abb-gasket is obtained by recur-

sively repeating a procedure of joining ‘triangle graphs’ to form a larger

triangle, and ‘shrinking’ them by giving appropriate metrics. Namely, join

(a0 + 2b0) copies of a triangle H̃0 as in Fig. 1 to form a triangle H̃−1. In a
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Fig. 1.

similar way, for n ∈ Z+, form H̃−n−1 from (a−n + 2b−n) copies of H̃−n. A

scale-irregular pre-abb-gasket as a graph H̃ ′
∞ is defined to be the inductive

limit of two copies of H̃−n joined at origin O. H̃ ′
∞ is specified by a sequence

of pairs of positive integers Σ = ((a0, b0), (a−1, b−1), (a−2, b−2), · · ·). Denote

the vertex set of H̃ ′
∞ by G0(Σ).

Given a sequence of pairs of positive integers {(an, bn), n ∈ Z}, put

SN = ((aN , bN ), (aN−1, bN−1), (aN−2, bN−2), · · ·),

and define GN = G0(SN ) for N = 1, 2, 3, · · ·. GN has a graph structure

inherited from H̃ ′
∞, which we denote by HN and call the scale-irregular

pre-abb-gasket of scale N . For x ∈ GN we call y ∈ GN an N -neighbor of

x if {x, y} is an edge of the graph. If N ≤ N ′, there is an injection from

GN to GN ′ (see (A.9)), with which we identify GN to a subset of GN ′ . An

intuitive meaning of this injection is that GN is obtained from GN−1 by

adding a substructure specified by (aN , bN ). We can define a metric d on

G∞
def
=

∞⋃

N=1

GN such that d(x, y) =
N∏

k=1

min{ak + 1, bk + 1}−1 if x and y are

N -neighbors (see (A.8)). We define the scale-irregular abb-gasket, which we

denote by G, as the completion of G∞ by the metric d.



Diffusions on Scale-Irregular Gaskets 231

If aN and bN are independent of N , the corresponding fractal is an

abc-gasket (with b = c) of [17]. The Sierpiński gasket is the scale-irregular

abb-gasket with aN = bN = 1, N ∈ Z. Inspired by the case of the Sierpiński

gasket, we use the terminology ‘horizontal’ (edges) and a ‘unit triangle’ of

scale-irregular pre-abb-gaskets, in the following. We give a precise definition

of the scale-irregular abb-gasket, together with the definition of these terms,

in Appendix A.

For a process X taking values in G we define Tn,i(X) , n ∈ Z , by

Tn,0(X) = inf {t ≥ 0 | X(t) ∈ Gn} , and

Tn,i+1(X) = inf {t > Tn,i(X) | X(t) ∈ Gn \ {X(Tn,i(X))}} , i = 0, 1, 2, · · · .

For an integer n and a Markov process X on G or on GN for some N ≥ n,

we call a random walk X(n) on Gn defined by X(n)(i) = X(Tn,i(X)) the

n-decimated walk of X. By definition,

Proposition 1.1. If n < N and X(n) and X(N) are the n and N -

decimated walks of X respectively, then X(n) is the n-decimated walk of

X(N).

For N ∈ Z and w > 0, we define a simple random walk XN,w on GN

as follows. At each integer time, the random walker jumps to one of the

four N -neighbors, and the relative rates of the jumps are 1 for a jump in

horizontal direction and w in the other directions. We prove in this paper

the following.

Theorem 1.2. Assume that {(aN , bN ), N ∈ Z} is a bounded sequence

of pairs of integers satisfying

aN ≥ 2, bN ≥ 2, bN < 2aN , N ∈ Z,(1.1)

and let G be the scale-irregular abb-gasket defined by this sequence. Then

there exist a sequence of positive numbers wN , N ∈ Z satisfying

lim
N→∞

wN = 0,(1.2)

and a symmetric Feller diffusion process X with a measure µ on G defined

by
∫
f dµ = lim

N→∞

(∏N
k=0(ak + 2bk)

−1
)∑

x∈GN
f(x), such that for N ∈ Z,

the N -decimated walk of X is equal in law to the random walk XN,wN
.
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The assumptions (1.1) are to avoid complications. We will prove Theo-

rem 1.2 for any w0 satisfying

w0 ∈ I def
=(0, inf

N
{2aN/bN} − 1).(1.3)

Proposition 1.1 and Theorem 1.2 imply that the (N − 1)-decimated walk of

XN,wN
is equal in law to XN−1,wN−1

, from which it follows that the sequence

{wN} satisfies a recursion relation

wN−1 = f(aN ,bN )(wN ) , N ∈ Z,(1.4)

where

f(a,b)(w) =
2w{(1 + a)b+ (a b+ a+ b)w}
b(b+ 2) + 2(b2 + a+ b)w + b2w2

.(1.5)

Proof of (1.4) is elementary (but lengthy), and is similar to that of [16,

Proposition 1.1]. It is elementary to see that

Proposition 1.3. If (1.1) and (1.3) are satisfied, there exists one and

only one sequence {wN} which satisfies (1.4) and which is in the open inter-

val I. Moreover, {wN} is strictly decreasing and satisfies (1.2).

lim
n→∞

wn+s

wn

s∏
k=1

δn+k = 1 uniformly in s ∈ Z+, where δk
def
=

2(1 + ak)

2 + bk
> 1. If

bN = aN , N ∈ Z, it also holds that I = (0, 1) and lim
N→−∞

wN = 1.

The ratio of the rate for a off-horizontal to horizontal jump of XN,wN

is wN , hence (1.2) means that on small scales the process favors horizontal

moves, while wN > 0 means that the process span the whole fractal space

and is not confined in a line. If bN = aN , N ∈ Z, we have lim
N→−∞

wN = 1,

which implies that isotropy is asymptotically restored.

The fractals may be regarded to have “obstacles’ or holes in the space,

when compared to uniform Euclidean spaces. Intuitively, a random walker

that favors horizontal motion performs a one-dimensional random walk be-

tween a pair of obstacles, and eventually is forced to move in off-horizontal

direction before they could move further horizontally. There are obstacles

of various scales (sizes), separated by distances of the same order as their

scales, hence globally, the random walker is scattered almost isotropically

[4]. This phenomena is absent on regular spaces such as Euclidean spaces.
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The intuition implicitly guided the studies in [16, 17], but in spite of the

generality in the intuition, it was not clear how to obtain such diffusions for

fractals which lack exact self-similarity. Also the statements for the diffusion

in that work were not referring to the properties which explicitly embodied

the picture. It is the purpose of this paper to report some positive answers

(Theorem 1.2) to these points.

We construct the diffusion as a weak limit of XN,wN
([LN t]), N ∈ Z, for

a time-scaling constant LN . A key step in the construction is an asymp-

totic estimate of number of steps of XN,wN
, whose expectation value is LN .

We apply a limit theorem for discrete-time multi-type supercritical branch-

ing processes with singular and irregular environment. We need multi-type

branching processes because the horizontal and off-horizontal jumps have

different transition probabilities. Branching rates change with the gener-

ation N (irregular environment) because the substructure of pre-gaskets

varies with its scale N . Environment varies also because the transition prob-

abilities of the random walk XN,wN
vary with N . In particular, birth rates

of types corresponding to the numbers of off-horizontal jumps approach 0

as N → ∞ (singular environment). Compared with existing related results,

there are two major complications arising from these requirements; crite-

rion for supercriticality, and scaling factor for total number of descendants.

For a construction of spatially symmetric diffusion on an exact self-similar

finitely ramified fractal [22, 6, 24, 21], the expectation of off-spring for the

associated branching process is a constant matrix independent of generation

N . For a construction of asymptotically one-dimensional diffusion on an ex-

act self-similar finitely ramified fractal [16, 18], the off-spring expectation

matrix has a limit as N → ∞. In these cases, the largest eigenvalue of the

(limit of) off-spring expectation matrix gives the (asymptotic) growth rate

of descendant expectations and governs supercriticality. A pioneering work

for scale-irregular fractals by Hambly [10] deals with spatially symmetric

diffusions on fractals called HSG(ν̄) (which have much in common with

scale-irregular abb-gaskets with bN = aN , N ∈ Z, as far as construction

of diffusions are concerned). Due to the spatial symmetry, the associated

branching process is of one-type, hence the off-spring expectation is one-

dimensional, which gives the growth rate. In the present study, off-spring

expectation is a multi-dimensional matrix, and neither is constant nor has

a limit. Thus a criterion for supercriticality cannot be given in terms of
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growth rates. Furthermore, the ratios of expectations of the population

between different types are unbounded, which obscures at first site, the

existence of scaling factor for total descendant numbers.

Our approach is partly inspired by a study on multi-type branching pro-

cesses in random environment by Cohn. Much of our proof of Proposition

2.1 follows the idea in [8]. In that work, a probability measure on envi-

ronments is considered, and the assumptions on stationarity and ergodicity

implicitly assured the last two assumptions in Proposition 2.1 (including

supercriticality) to hold. The assumptions are not suitable for our purpose

to consider singular environment, where some of the branching rates vanish

in the limit. To formulate a sufficient condition of supercriticality in The-

orem 2.2, we introduce a recursion relation in Appendix B which reflects

recursive nature of branching processes. We apply this recursion relation

also to prove continuity of limit distribution in Theorem 2.5. The idea

of using recursion relation to prove continuity originally appeared in [16,

Lemma 2.7], which we refine to handle irregular environments. It turns out

in Proposition 2.4 that the existence of scaling factor for total descendant

follows from a fact that the distribution of normalized population converge

to a limit independent of types. Consideration on the branching processes

may be interesting in its own respect, so we will discuss this in Section 2

independently of other sections.

To apply the general theory of branching processes to the diffusion, we

consider in Section 3 estimates for generating functions. An algebraic part

of our proof of estimates (Proposition 3.1) is computer-aided because it

requires a routine work of rather lengthy calculations. We use these basic

estimates to obtain estimates for number of steps of XN,wN
, to which one

can apply [16, Sect. 3].

Note added in Nov. 1995 . While the present paper was being refereed,

some new works on related subjects have appeared. There is now an al-

ternative and a quite general convergence results for multitype branching

processes (partly motivated by the present paper), which are very nicely ap-

plicable to the construction of the same diffusion [19]. An alternative and

more general construction of the asymptotically one-dimensional (lower di-

mensional) diffusion on a subclass of nested fractals, together with some

detailed studies such as the asymptotic estimates of the t dependence of

the (diagonal) heat kernels pt(x, x) and the homogenization problems also
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appeared [13]. Estimates of the x, y dependence of pt(x, y) require tail struc-

tures of limit distribution of the branching processes, which we hear is now

in progress by Hambly and Jones [12]. A characterization of asymptotically

one-dimensional diffusions on the Sierpiński gasket by the exit distributions

is given in [27]. Our standpoint is developed further in [5] where we deal

with the Sierpiński carpet.
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2. Branching process with singular and irregular environment

Let d ≥ 2 be an integer and put E def
={1, 2, 3, · · · , d}. Consider a discrete

time d-type branching process �ZN = (ZN,j , j ∈ E), N ∈ Z+. Given n ∈ Z+

and i ∈ E , let

�Zn,N,i
def
=(Zn,N,i,j , j ∈ E), N = n, n+ 1, · · · ,

be random vectors which give the number of descendant at time N from a

single ancestor of type i at time n. We have, for r ∈ Z+ and j ∈ E ,

Zn+r,j =
∑
i∈E

Zn,i∑
u=1

Zn,n+r,i,j,u ,

where (Zn,n+r,i,j,u , j ∈ E), u ∈ Z+, are i.i.d. copies of �Zn,n+r,i when con-

ditioned on Zn,i. Let {en} be a sequence of non-negative real numbers.
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Proposition 2.1. Assume that following three conditions hold for

each i ∈ E.

(1) Uniform estimates for second moments of WnNij
def
=

ZnNij

E[ ZnNij ]
;

v
def
= sup

n∈Z+

sup
N≥n+n0

en E[ W 2
nNij ] <∞, j ∈ E ,

lim
p→∞

sup
N≥n+n0

E[ W 2
nNij ; WnNij > p ] = 0, j ∈ E , n ∈ Z+ ,

for some constant n0 ∈ Z+.

(2) For each n ∈ Z+, γni
def
= lim

N→∞
E[ ZnNij ]

E[ ZnN1j ]
> 0 exist, positive and inde-

pendent of j ∈ E.

(3) lim
N→∞

Prob[ eN ZNj ≥ p ] = 1, j ∈ E, p > 0.

Then the sequence of normalized random vectors (ZNj/E[ ZNj ], j ∈ E)

converges in L2 as N → ∞ to a random vector (W,W, · · · ,W ) with E[ W ] =

1.

Proofs of the results in this section are postponed to the end of the

section. Generalization to include eN is for our application in Section 3. A

simple sufficient condition for the existence of γni is given in Appendix C, in

terms of off-spring expectation matrices AN (ANij = E[ ZN−1,N,i,j ]). The

last assumption states supercriticality. One of our main concern here is a

useful condition for the last assumption to hold.

Definition. A family of sequences of pairs of reals {(xk,n, yk,n), n =

0, 1, · · · , k}, k ∈ Z+, is said to satisfy the assumption R, if there exist

sequences of non-negative numbers {an}, {wn}, {w′
n}, n ∈ Z+, satisfying

2 ≤ infn an, supn an < ∞, and max{wn, w
′
n} ≤ min{1, Cwδ

−n}, n ∈ Z+,

for constants Cw > 0 and δ > 1, such that

xk,n ≤ x
an+1

k,n+1 + wn+1 min{1 − x
an+1

k,n+1 , yk,n+1} ,
yk,n ≤ xk,n+1 + w′

n+1 yk,n+1 , 0 ≤ n ≤ k ,

hold for all k ∈ Z+. Similarly, {(xk,n, yk,n), n ∈ Z+}, k ∈ Z+, is said to

satisfy the assumption R, if similar relation hold for n ∈ Z+ and k ∈ Z+.
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Theorem 2.2. Assume that for some j0 ∈ E, Z0,j = 1, j = j0, and

Z0,j = 0, otherwise. Let p > 0 and j ∈ E. Suppose that there exists an

integer n0 and a non-empty subset E ′ ⊂ E, not equal to E, such that the

family of sequences {(xk,n, yk,n)} defined by

xk,n = max
i∈E ′

Prob[ en0+k Zn,n0+k,i,j < p ] ,

yk,n = max
i∈E\E ′

Prob[ en0+k Zn,n0+k,i,j < p ] , 0 ≤ n ≤ k, k ∈ Z+ ,

satisfies the assumption R, and

lim inf
k→∞, xk,k 	=0

{
(− log xk,k)

k∏
�=0

a�

}1/k

> 1 .(2.1)

Then

lim
N→∞

Prob[ eN ZN,j ≥ p ] = 1 .

The assumption (2.1) is an ‘a priori estimate’ that Prob[ en0+kZk,n0+k,i,j

< p ] is not too large. The Theorem then says that it is in fact small. Let us

call the types j ∈ E ′ the dominant types, and the types j �∈ E ′ the recessive

types. The assumption R reflects the recursive nature of branching process.

It is satisfied when the probability that recessive types appear in the off-

springs of a parent at generation n vanishes exponentially as n→ ∞, and if

recessive type do not appear in the off-springs, then at least one dominant

type off-spring appears from a recessive parent, while at least an+1 (no less

than 2 but bounded) dominant off-springs appear from a dominant parent.

{wn} represents singular environment, while n-dependence of {an} implies

irregular environment. Though the branching rate to recessive types vanish

in the limit, the recessive types may contribute significantly to the growth

of dominant types, because a recessive parent may give birth to exponen-

tially many dominant type off-springs. Thus in general, we can not discard

the recessive types from consideration for limit theorems. Note also that

supercriticality is non-trivial because of the recessive types. Assumption on

initial condition Z0,j is chosen to be simple, to avoid complications.

The following is useful in obtaining an a priori estimate of type (2.1)

from moments of ZnNij .
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Proposition 2.3. Let p ∈ R and X a real valued random variable.

If E[ X ] > p then Prob[ X ≤ p ] ≤ 1 − d +
√
d2 − 1, where d = 1 +

2−1 V[ X ] (E[ X ] − p)−2.

The next statement is on the existence of norming factor for total de-

scendant numbers.

Proposition 2.4. Assume that the sequence (ZN,j/E[ ZN,j ], j ∈ E),

N ∈ Z+, converges in probability as N → ∞ to a random vector (W,W, · · · ,
W ). Then

∑
j∈E ZN,j∑

j∈E E[ ZN,j ]
converges in probability as N → ∞ to W .

We complete our list of the results with a sufficient condition for the

continuity of the limit distribution, stated in terms of the assumption R.

Let Wn,i, n ∈ Z+, i ∈ E , be real valued random vectors, and let

Φn,i(t)
def
= E[ exp

(√
−1 tWn,i

)
] ,

denote the characteristic function. We assume an ‘a priori’ estimate of the

form

|Φn,i(t)| ≤ 1 − Cn t
2 , −tn < t < tn , n ≥ n0 , i ∈ E ′,(2.2)

for some non-empty subset E ′ ⊂ E not equal to E , an integer n0, and positive

reals Cn and tn.

Theorem 2.5. Assume that {tk, k ∈ Z+} in (2.2) diverges to infinity

as k → ∞ exponentially fast at most ( lim
k→∞

tk = ∞ and lim sup
k→∞

t
1/k
k < ∞),

and satisfies

θ
def
= inf

k; ∃tj<tk
sup

j; tj<tk

tj
2 tk

> 0 .

If for any sequence of reals {sk, k ∈ Z+} the family of sequences {(x̃k,n, ỹk,n),

n ∈ Z+}, k ∈ Z+, defined by

x̃k,n = max
i∈E ′

|Φn0+n,i(sk)|

ỹk,n = max
i∈E\E ′

|Φn0+n,i(sk)| , n ∈ Z+ , k ∈ Z+ ,
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satisfies the assumption R, and if

lim inf
k→∞


t2k Ck

k−n0∏
�=0

a�




1/k

> 1 ,

holds with a� as in the assumption R, then the distribution of Wn,i is con-

tinuous for all n ∈ Z+ and i ∈ E.

The intuition for the assumptions is similar to those for Theorem 2.2,

with Wn,i being a weak limit of

∑
j ZnNij∑

k,j E[ Z0Nkj ]
.

The rest of this section is devoted to the proofs of the stated results.

Proof of Proposition 2.1. We follow [8] and prove first that

ZN,j/E[ ZN,j ] converges weakly. Since WnNij ≥ 0 and E[ WnNij ] = 1,

the family of random variables {WnNij , N = n, n + 1, · · ·} is tight, hence

there exists a subsequence of integers {kN} such that Wn,kN ,i,j converges

weakly as N → ∞ to a random variable W̃nij . By assumption {WnNij}
is uniformly integrable. Weak convergence and uniform integrability imply

convergence of expectations;

E[ W̃n,i,j ] = lim
N→∞

E[ Wn,kN ,i,j ] = 1 .(2.3)

sup
n∈Z+

en E[ W̃ 2
n,i,j ] ≤ v .(2.4)

Put Wn,N,i,j,u
def
=

Zn,N,i,j,u

E[ Zn,N,i,j,u ]
. (Wn,N,i,j,u , j ∈ E), u ∈ Z+, are i.i.d. copies

of (Wn,N,i,j , j ∈ E) when conditioned on Zn,i. Hence (Wn,kN ,i,j,u, j ∈ E ,

u ∈ Z+), conditioned on Zn,i, converges weakly as N → ∞ to a random

vector (W̃n,i,j,u, j ∈ E , u ∈ Z+), where (W̃n,i,j,u , j ∈ E), u ∈ Z+, are i.i.d.

copies of (W̃n,i,j , j ∈ E) when conditioned on Zn,i. Hence (2.3) and (2.4)

imply, for positive integer p,

E[


Z−1

ni

Zni∑
u=1

(W̃niju − 1)




2

; Zni ≥ p ]

=
∞∑
q=p

q−1E[ (W̃nij1 − 1)2 ; Zni = q ]

≤ (v/en + 1)/p .
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This implies, with the assumption on supercriticality and Chebyshev’s in-

equality, that for η > 0 and ε > 0, there exists n0 such that if n ≥ n0

then

Prob[

∣∣∣∣∣∣Z−1
ni

Zni∑
u=1

(W̃niju − 1)

∣∣∣∣∣∣ ≥ ε ]

≤ Prob[

∣∣∣∣∣∣Z−1
ni

Zni∑
u=1

(W̃niju − 1)

∣∣∣∣∣∣ ≥ ε , Zni ≥
2(v + en)

η ε2 en
] + η/2 ≤ η .

Convergence in probability follows;

lim
n→∞

Prob[

∣∣∣∣∣∣Z−1
ni

Zni∑
u=1

W̃niju − 1

∣∣∣∣∣∣ ≥ ε ] = 0 , ε > 0, i ∈ E .(2.5)

The second assumption in the statement and a property of branching

process

E[ ZN,j ] =
∑
k∈E

E[ Zn,k ] E[ Zn,N,k,j ](2.6)

implies that the limit

βn,i
def
= lim

N→∞
E[ Zn,kN ,i,j ]

E[ ZkN ,j ]
=

γn,i∑
k E[ Zn,k ] γn,k

,

exists, positive, independent of j, and satisfies
∑
i∈E

βni E[ Zni ] = 1. This,

with (2.5) and the non-negativity of Z and W̃ implies convergence in prob-

ability,

lim
n→∞

Prob[

∣∣∣∣∣∣
∑
i∈E


βni Zni∑

u=1

W̃niju


−

∑
i∈E

βni Zni

∣∣∣∣∣∣ > ε ] = 0 , ε > 0.(2.7)

Note that in (2.7) everything except possibly W̃niju is independent of the

choice of subsequence {kN}.
Put

ξn(x)
def
= lim

N→∞
Prob[ ZkN ,j/E[ ZkN ,j ] ≤ xj , j ∈ E | �Zn ] .
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ξn(x) is a bounded martingale, hence converges as n → ∞ to a random

vector ξ(x) a.s. The definitions of W̃niju and βni with (2.6) imply

ξn(x) = Prob[
∑
i∈E


βni Zni∑

u=1

W̃niju


 ≤ xj , j ∈ E | �Zn ] ,

on set of continuity points. This with (2.7) implies that ξ(x) is independent

of the choice of subsequence {kN}. In particular,

E[ ξ(x) ] = lim
N→∞

Prob[ ZkN ,j/E[ ZkN ,j ] ≤ xj , j ∈ E ]

is independent of the subsequence, hence {ZN,j/E[ ZN,j ], j ∈ E} converges

weakly to a random vector with distribution function E[ ξ(x) ]. Further-

more, (2.7) implies that this random vector has equal components. Con-

vergence in probability, and then in L2, is now proved exactly as in [8,

step 4]. �

Proof of Theorem 2.2. By definition 0 ≤ xk,n ≤ 1 and 0 ≤ yk,n ≤ 1

for all n and k. With the assumption R and (2.1), we see that {(xk,n, yk,n)}
satisfies all the assumption of Theorem B.2. Theorem B.2 implies

lim
k→∞

max{xk,0, yk,0} = 0, which gives lim
N→∞

Prob[ eNZ0Nij ≥ p ] = 1. �

Proof of Proposition 2.3. Put Y = X − E[ X ], v = V[ X ] =

V[ Y ], b = E[ X ] − p > 0, and t = Prob[ Y > −b ] = Prob[ X > p ]. 0 =

E[ Y ] ≤ E[ Y ; Y ≤ −b ] + E[ Y ; Y > 0 ] implies E[ Y ; Y > 0 ] ≥ b (1 − t).

Using Schwarz inequality we have

t v ≥ Prob[ Y > 0 ] E[ Y 2; Y > 0 ] ≥ (E[ Y ; Y > 0 ])2 ≥ b2 (1 − t)2 .

The statement follows by solving this algebraic inequality in t. �

Proof of Proposition 2.4.

lim
N→∞

E[ min{1,
∣∣∣∣∣
∑

j∈E ZN,j∑
j∈E E[ ZN,j ]

−W

∣∣∣∣∣} ]

≤ lim
N→∞

E[
∑
j

E[ ZN,j ]∑
k E[ ZN,k ]

min{1,
∣∣∣∣∣ ZN,j

E[ ZN,j ]
−W

∣∣∣∣∣} ]

≤
∑
j∈E

lim
N→∞

E[ min{1,
∣∣∣∣∣ ZN,j

E[ ZN,j ]
−W

∣∣∣∣∣} ] = 0 .
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The assumption implies the last equality. Hence the statement follows. �

Proof of Theorem 2.5. Note that the definition and assumption on

θ imply 0 < θ < 1/2. Let n1 ≥ n0, and let {sk, k ∈ Z+} be a sequence of

reals satisfying

θ tn1+k ≤ |sk| ≤ tn1+k , k ∈ Z+ .(2.8)

Put

xk,n = max
i∈E ′

|Φn1+n,i(sk)|

yk,n = max
i∈E\E ′

|Φn1+n,i(sk)| , 0 ≤ n ≤ k, k ∈ Z+ .

The assumption R implies that {(xk,n, yk,n)} satisfies the recursion relation

in the assumption of Theorem B.2. with {wn1+n−n0} and {an1+n−n0} in

place of {wn} and {an}. Also (2.8) and the assumption on a priori estimate

(2.1) imply

lim inf
k→∞

{
− log xk,k

k∏
�=0

an1+�−n0

} 1
k

≥ lim inf
k→∞


θ2Ckt

2
k

k−n0∏
�=n1−n0

a�




1
k−n1

> 1.

We see that {(xk,n, yk,n)} satisfies all the assumption of Theorem B.2, hence

there exist positive constants C1 and C2 (which may depend on n1 but not

on k) such that

|Φn1,i(sk)| ≤ C1 exp(−C2 k
2) , k ∈ Z+ , i ∈ E .(2.9)

The assumptions lim
k
tk = ∞ and lim sup

k→∞
t
1/k
k < ∞ imply that there exist

constants C3 > 0 and C4 > 1 such that tn1+k < C3C
k
4 , k ∈ Z+. This and

(2.8) and (2.9) imply

|Φn1,i(sk)| ≤ C5 exp(−C6 (log |sk|)2) ,

with positive constants C5 and C6 independent of i, k, and sk. Note that

sk is an arbitrary number satisfying (2.8). Note also that for any t ∈ R

satisfying |t| > min
k
tn1+k, there exists j ∈ Z+ satisfying

θ tn1+j < |t| < tn1+j .(2.10)
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In fact, let j = min{k | tn1+k > |t|} − n1. (The assumption lim
k→∞

tk = ∞
implies that the minimum exists.) The definition of θ implies that there

exists j′ ∈ Z+ such that tn1+j > tn1+j′ > θ tn1+j . Hence (2.10) follows.

Therefore,

|Φn1,i(t)| ≤ C5 exp(−C6 (log |t|)2) ,(2.11)

for sufficiently large |t|. This implies Φn,i ∈ L1(R), n ≥ n0, i ∈ E . By the

assumption of recursion relation, it follows inductively that Φn,i ∈ L1(R)

for any n ∈ Z+, which implies that Wn,i is continuous. �

3. Convergence of path measures

Consider a pre-gasket HN and its vertices GN . One needs to consider

4 types of vertices A, B, D, E, and 8 types of edges (as ordered pair of

vertices) Ap, Ar, Bp, Bq, Br, Dq, Ep, Er, as in Fig. 2 (see Appendix A

for definitions). We put

E def
={Ap, Ar, Bp, Bq, Br, Dq, Ep, Er} .

Let (a, b) be a pair of positive integers, and consider the case that HN -

substructure of the pre-gasket HN−1 is parametrized by (a, b): In the no-

tation of Section 1 and Appendix A, (aN , bN ) = (a, b). Let Ω̃(a, b, i) be

the set of walks on GN whose starting point X and stopping point form an

edge of type i ∈ E in HN−1, and such that do not pass through points in

GN−1 \ {X}:

Ω̃(a, b, i)

= {ω̃ = (ω̃(0), · · · , ω̃(L)) ⊂ GN for some L | (ω̃(0), ω̃(L)) is type i,

ω̃(k) �∈ GN−1 \ {ω̃(0)}, ω̃(k)ω̃(k + 1) ∈ HN , k = 0, · · · , L− 1} .

For i ∈ E and ω̃ ∈ Ω̃(a, b, i), let Li(ω̃) be the number of steps in ω̃

(ordered pairs of the form (ω̃(j), ω̃(j + 1))) which are of type i. Define

Fi(a, b;u)
def
=

∑
ω̃∈Ω̃(a,b,i)

∏
j∈E

uj
Lj(ω̃) , u ∈ CE .

Note that, by definition, there is no N -dependence in Fi. Fi is a generating

function of number of steps of walks, hence is a rational function of u.
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Fig. 2.

Let Π(w) = t(ΠAp(w), · · · ,ΠEr(w)) be as in Table 1. The random walk

XN,wN
on GN defined in Section 1 is specified by a positive number wN ,

defined in (1.3) and (1.4). It is easy to see from Fig. 2 that the (one-step)

jump probability of XN,wN
for a jump of type i is Πi(wN ). The definitions

of Π and F together with (1.4) imply

Π(f(a,b)(w)) = F (a, b; Π(w)) .(3.1)

Define �E-dimensional matrix A(a, b, w) by

A(a, b, w)ij
def
=

∂Fi

∂uj
(a, b;u = Π(w)) .

It turns out that A(a, b, w)Dq,j for j �= Ap, Ar, Dq diverge as w → 0. We

therefore define �E-dimensional diagonal matrix S(w) = diag(Si(w), i ∈ E)

by

SDq(w) = w , Si(w) = 1 , i �= Dq ,(3.2)
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Table 1. Transition probabilities

i Ap Ar Bp Bq Br Dq Ep Er
Πi(w) w

2+2w
1

2+2w
w

1+3w
w

1+3w
1

1+3w
1
2

w
1+w

1
1+w

and define rational functions F̃i(a, b, w;u), i ∈ E , u ∈ CE , by

F̃i(a, b, w;u)
def
= Si(f(a,b)(w))Fi(a, b;S

−1(w)u) .(3.3)

Also we define a vector Π̃(w) and a matrix Ã(a, b, w) by

Π̃(w)
def
= S(w) Π(w) ,

Ã(a, b, w)ij
def
=

∂F̃i
∂uj

(a, b, w;u = Π̃(w))

= Si(f(a,b)(w))A(a, b, w)ij S
−1
j (w) .

Proposition 3.1. Let a, a′, b, and b′ be integers no less than 2, and

let I be the interval defined in (1.3). Then the elements of matrix Ã(a, b, w)

are positive for w ∈ I and

sup
w∈I

Ã(a, b, w)ij <∞ , i ∈ E , j ∈ E ,(3.4)

inf
w,w′∈I

(
Ã(a′, b′, w′)Ã(a, b, w)

)
ij
> 0 , i ∈ E , j ∈ E ,(3.5)

Ã(a, b, 0)Ar,Ar ≥ (a+ 1)2 .(3.6)

For each i ∈ E put ga,b,i(w, h) = F̃i(a, b, w; Π̃(w) + wh). Then ga,b,i is a

rational function in h ∈ CE and w, analytic at h = 0 for w ∈ I, and for

each j1, · · · , j4 ∈ E,

sup
w∈I

∣∣∣∣∣ 1w ∂2ga,b,j1
∂hj2∂hj3

(w, h = 0)

∣∣∣∣∣ <∞ , and

sup
w∈I

∣∣∣∣∣ 1w ∂3ga,b,j1
∂hj2∂hj3∂hj4

(w, h = 0)

∣∣∣∣∣ <∞ .
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Proof. A(a, b, w) has non-negative elements because it is an expec-

tation matrix for number of steps. Graphical considerations shows that

every type j of steps appear with positive probability for any i, hence they

are positive. F̃ is related to the generating function for number of steps

of random walks (see also Proposition 3.2 below), from which we see that

ga,b,i(w, h) are rational functions both in h and w, and analytic at h = 0.

The parameter w is the relative jump rate of the random walk. Therefore

for w ∈ I there are no singularities. The only possible relevant singularities

of F̃ are at w = 0. The estimates in the statement are proved by explicit

calculation of F̃ with aid of computer. We give in Appendix D explicit form

of Ã(a, b, w = 0) obtained as the first derivatives of F̃ using REDUCE. The

explicit formula implies (3.4), (3.5), and (3.6). The estimates on higher

derivatives of F̃ at w = 0 is also obtained using REDUCE. See Appendix D

for more information on computer aided proof of this Proposition. �

Note that (3.4) and (3.5) imply

inf
w∈I

∑
k∈E

Ã(a, b, w)kj > 0, j ∈ E .(3.7)

We go back to the gasket and look into the N -dependence. Assume that

ζ
def
={(aN , bN ), N ∈ Z} is a bounded sequence of pairs of integers sat-

isfying (1.1), which determines the gasket G. For N ∈ Z, let FN =

(FN,Ap, · · · , FN,Er) be a CE -valued function in 7E (= 8) variables defined

by

FN,i(u)
def
= Fi(aN , bN ;u) , i ∈ E .(3.8)

Also define a diagonal matrix, ΠN
def
= diag(Π(wN )). Using FN and ΠN , we

can write the generating functions for the number of steps of XN,wN
. Let

i ∈ E , j ∈ E , and n ≤ N . Let ZnNij be the random variable which counts

the number of steps of type j ∈ E between the times Tn,1(XN,wN
) and

Tn,0(XN,wN
), under the condition that (XN,wN

(Tn,0(XN,wN
)) ,

XN,wN
(Tn,1(XN,wN

))) forms an edge of type i in Hn. Tn,i is a hitting time

of Gn defined in Section 1. By strong Markov property of simple ran-

dom walks, the distribution of ZnNij is independent of the starting point

of XN,wN
, and the random variables which count the number of steps of

type j ∈ E between the times Tn,k+1(X) and Tn,k(X), k = 0, 1, 2, · · ·, are
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independent and equal in distribution to ZnNij , under similar conditions.

By definition, Znnij = 1 (j = i), = 0 (j �= i).

Proposition 3.2. Fix n ∈ Z and i ∈ E. (ZnNij , j ∈ E), N = n, n +

1, · · ·, is a multi-type branching process whose generating functions φnN =

(φnN,Ap, · · · , φnN,Er) defined by φnNi(z)
def
= E[

∏
j∈E

z
ZnNij

j ], satisfy, for n <

N ,

φnN (z) = Π−1
n (Fn+1 ◦ · · · ◦ FN )(ΠNz) , z ∈ CE .(3.9)

Proof. The strong Markov property of simple random walks and the

finite ramifiedness of the fractal imply that {ZnNij} is a branching process.

In particular,

φnN (z) = φn,N−1(φN−1,N (z)) , N > n,(3.10)

holds. The definitions of ΠN and FN imply

φn,n+1(z) = Π−1
n Fn+1(Πn+1z) ,(3.11)

which, together with (3.10) implies (3.9). �

Proposition 1.3 implies that some off-spring branching rates vanish as

N → ∞, hence we are considering branching process with singular environ-

ment.

For integers n and N satisfying n ≤ N , define 7E-dimensional matrices

Π̃N
def
= diag(Π̃(wN )), ÃN

def
= Ã(aN , bN , wN ), B̃nN

def
= An+1An+2 · · ·AN .

Then (3.9), (3.1), and (1.4) imply

E[ ZnNij ] =
(
Π̃−1
n B̃nN Π̃N

)
ij
, i ∈ E , j ∈ E , N ≥ n .(3.12)

Elementwise positivity of AN and hence of BnN were noted in Proposition

3.1;

ÃNij > 0, B̃nNij > 0, i, j ∈ E , N > n .(3.13)

Proposition 3.3.
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(1) For each n0 ∈ Z there exist positive constants C1 and C2 such that if

n ∈ Z and N ∈ Z satisfy N − 2 ≥ n ≥ n0, then

B̃nNij ≥ C1

N∏
k=n+1

(ak + 1)2 ,

B̃nNij
w2
N

w2
n

≥ C2

N∏
k=n+1

(
1 +

bk
2

)2

, i ∈ E , j ∈ E .

(2) There exist limits

γni
def
= lim

N→∞
B̃nNij

B̃nN1j

, n ∈ Z, i ∈ E , j ∈ E ,

independent of j, which satisfy, for each n0 ∈ Z,

0 < inf
n≥n0,i∈E

γni ≤ sup
n≥n0,i∈E

γni <∞ .

(3) For each n0 ∈ Z there exists a positive constant C3 such that if integers

n, m, and N satisfy m− 1 ≥ n ≥ n0 and N ≥ max{m,n+ 2}, then

∑
k∈E

B̃n,m−1,i,k

∑
k′∈E

B̃mNk′j ≤ C3 B̃nNij , i ∈ E , j ∈ E .

Proof. Since F is rational in w, Ã is also rational. Therefore (3.6)

implies Ãk22 ≥ (ak + 1)2 + C4wk, k ∈ Z, where C4 is a positive constant.

Proposition 1.3 implies that
∑

k≥nwk <
∑

k≥n0
wk < ∞, n ≥ n0, hence

we obtain the first estimate for B̃nNij . Proposition 1.3 implies that for

each n0 there exists a constant C5 > 0 such that
wN

wn
≥ C5

N∏
k=n+1

δ−1
k ,

N ≥ n ≥ n0. With the first estimate, we have the second estimate. The

estimates (3.4) and (3.5) imply that the elementwise positive matrices ÃN ,

N ∈ Z, satisfy the assumption of Theorem C.1 in Appendix C with q = 2.

Theorem C.1 then implies the second assertion. ζ
def
={(aN , bN ), N ∈ Z} is

a bounded sequence, hence contains finite number of distinct pairs; as far
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as ζ is concerned, taking supremum or infimum in N is taking maximum or

minimum among finite possibilities. Assume N ≥ m+ 2. Then

B̃nNij ≥
∑
k∈E

B̃n,m−1,i,k

∑
k′∈E

Ãmkk′ min
k′′∈E

B̃mNk′′j

≥
∑
k

B̃n,m−1,i,k

∑
k′
B̃mNk′j inf

�∈E,m′≥n0

∑
�′
Ãm′��′

inf
k′′

{B̃mNk′′j/B̃mN1j}

7E sup
k′′

{B̃mNk′′j/B̃mN1j}
.

It is now easy to see that the second assertion and (3.7) imply the third

assertion. The cases N = m and N = m+1 can be proved similarly. �

Put WnNij
def
=

ZnNij

E[ ZnNij ]
.

Proposition 3.4. Let i ∈ E and j ∈ E. For each n0 ∈ Z there exists

a positive constant C such that for all N and n ≥ n0 satisfying N ≥ n+ 2,

E[ W 2
nNij ] ≤ C Π̃niiw

−1
n .

Also, for each n ∈ Z the third moment is bounded in N ; sup
N≥n

E[ W 3
nNij ] <

∞.

Proof. By taking derivatives of φnN in Proposition 3.2 we obtain

wnΠ̃−1
niiE[ W 2

nNij ](3.14)

= wnΠ̃−1
niiE[ ZnNij ]−2{

∑
k1,k2,k3∈E

N∑
m=n+1(

Π̃−1
n B̃n,m−1

)
i,k1

∂2F̃k1

∂uk2∂uk3

(am, bm, wm; Π̃(wm))

×
(
B̃m,N Π̃N

)
k2,j

(
B̃m,N Π̃N

)
k3,j

+
(
Π̃−1
n B̃n,N Π̃N

)
i,j
}

=
∑

k1,k2,k3∈E

N∑
m=n+1

wn

wm
B̃n,m−1,ik1

1

wm

∂2gam,bm,k1

∂hk2∂hk3

(wm, 0)

×B̃mNk2j

B̃nNij

B̃mNk3j

B̃nNij

+
wn

B̃nNij Π̃Njj

,
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where we used (3.12) and the definition of g in Proposition 3.1.

Table 1 and (3.2) imply that there exists a positive constant C6 inde-

pendent of n, N , i, j, such that

wn

B̃nNij Π̃Njj

≤ C6
wn

wN B̃nNij

≤ C6C2
wN

wn
∏N

k=n+1

(
1 + bk

2

) ,
where, in the last inequality, we used the first assertion in Proposition 3.3.

bk > 0 and wN < wn (Proposition 1.3) therefore imply that the second term

in the right hand side of (3.14) is bounded.

Next note that Proposition 3.1 implies that there exists a positive con-

stant C7 independent of n, N , i, j, such that the first term in the right hand

side of (3.14) is bounded from above by

C7

∑
k1,k2,k3∈E

N∑
m=n+1

wn

wm

B̃n,m−1,ik1 B̃mNk2j

B̃nNij

B̃mNk3j

B̃nNij

.

Using the third, second, and first assertions of Proposition 3.3 in turn, we

see that this quantity is further bounded from above by

C7C3

N∑
m=n+1

wn

wm

∑
k3∈E

B̃mNk3j

B̃nNij

≤ C8

N∑
m=n+1

wn

wm

1∑
�∈E B̃nmij�

≤ C8

∞∑
m=n+1

wm

wn
∏m

k=n+1

(
1 + bk

2

)2 ,

for some positive constant C8 independent of n, N , i, j. Using wm <

wn (Proposition 1.3) and bk ≥ 2, we see that this quantity is bounded.

Therefore we have the bound in the statement of the proposition for the

second moment E[ W 2
nNij ]. The bound on the third moment is proved in a

similar way. �

Let E ′ ⊂ E be the set of horizontal edges;

E ′ def
={Ar, Br, Er} .(3.15)
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Note that Table 1 and (3.2) imply that there exist positive constants C and

C ′ such that for w ∈ I we have

C ≤ Π̃i(w) ≤ C ′ , i ∈ E ′ , C w ≤ Π̃i(w) ≤ C ′w , i ∈ E \ E ′ .(3.16)

Define, for N ∈ Z+,

LN
def
=
∑
i∈E

∑
j∈E

E[ Z0Nij ] .(3.17)

The next Theorem shows that LN is the appropriate scaling factor for the

random walk X = XN,WN
on HN . Note that Tn,1(X)−Tn,0(X) =

∑
j∈E

ZnNij ,

where i is the type of edge formed by the endpoints ofX in this time interval.

Theorem 3.5. Let m ∈ Z and i ∈ E. (WmNij, j ∈ E), N = m,m +

1, · · ·, converges in L2 (hence in probability and in law) as N → ∞. The

limit is a random vector with equal components (Wmi, · · · ,Wmi), satisfying

E[ Wmi ] = 1 and sup
n≥m

wnE[ W 2
ni ] < ∞. L−1

N

∑
j∈E

ZmNij converges in proba-

bility as N → ∞ to W ′
mi

def
=

γmiWmi∑
j,k E[ Z0mjk ] γmk

, with γmi as in Proposition

3.3. The distribution of W ′
mi is continuous.

Proof. As noted in Proposition 3.2, (ZmNij , j ∈ E), N = m,m+1, · · ·,
is a branching process. The number of descendant at time N from a single

ancestor of type k at time m is equal in distribution to that of (ZmNkj ,

j ∈ E). Fix j ∈ E . Proposition 3.4 implies, with (3.16),

sup
n≥m

sup
N≥n+2

wn E[ W 2
nNij ] <∞ .

The uniform bound for E[ W 3
nNij ] in Proposition 3.4 implies

lim
p→∞

sup
N≥n+2

E[ W 2
nNij ; WnNij > p ] = 0 , n ≥ m.

Proposition 3.3 with (3.12) implies that for each n ≥ m, lim
N→∞

E[ ZnNij ]

E[ ZnN1j ]
exists, positive and independent of j ∈ E . Hence, if we prove that wN ZmNij

diverges in probability to infinity, then all the assumptions of Proposition
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2.1 will be satisfied, with eN replaced by wm+N and n0 = 2. Proposition

2.1 then will imply that (WmNij , j ∈ E) converges in L2 as N → ∞, to a

random vector with equal components.

By definition, Zmmij = 1 (j = i) and = 0 (j �= i). Fix p > 0 and j ∈ E ,

and define a family of sequences {(xk,n, yk,n)} 0 ≤ n ≤ k, k ∈ Z+, by

xk,n = max
i′∈E ′

Prob[ wm+n0(k)+k Zm+n,m+n0(k)+k,i′,j ≤ p ] ,

yk,n = max
i′∈E\E ′

Prob[ wm+n0(k)+k Zm+n,m+n0(k)+k,i′,j ≤ p ] ,

where E ′ is defined in (3.15). n0(k) is an arbitrary function of k taking non-

negative integer values (to be specified later). Define a sequence {ãn, n ∈
Z+} by ãn = am+n + 1, and {w̃n, n ∈ Z+} by

w̃n
def
= max

i′∈E ′
Prob[

∑
k∈E\E ′

Zm+n−1,m+n,i′,k ≥ 1 ] .

w̃n is the largest probability among i′ ∈ E ′ that the random walk X =

XN,wN
with N = m + n jumps off-horizontally at least once in the time

interval [TN−1,1(X), TN−1,0(X)], under the condition that the endpoints of

X for this time interval forms an edge of type i′ in HN−1. By definition,

3 ≤ infn ãn ≤ supn ãn < ∞. Also 0 ≤ w̃n ≤ 1 and is of order wm+n, for

which Proposition 1.3 implies w̃n ≤ C1 δ
−n for some constant C1 > 0 and

δ = min
k
δk = min

k

2(1 + ak)

2 + bk
> 1 (recall that there are only finite number of

distinct pairs (ak, bk)).

A graphical consideration shows that

xk,n ≤ max
i′∈E ′


Prob[

∑
j′∈E\E ′

Zm+n,m+n+1,i′,j′ = 0 ]xk,n+1
ãn+1

+Prob[
∑

j′∈E\E ′
Zm+n,m+n+1,i′,j′ ≥ 1 ] yk,n+1


 .

(The first term in the outmost parenthesis corresponds to those paths whose

(m+n+1)-decimated walks do not contain jumps of type j′ ∈ E \E ′, while

the second term corresponds to those with at least one such jumps.) We

may either use yk,n ≤ 1 or use Prob[
∑

j′∈E\E ′
Zm+n,m+n+1,i′,j′ = 0 ] ≤ 1, to
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conclude that xk,n satisfies the inequality in the definition of the assumption

R in Section 2, with {wn} and {an} replaced by {w̃n} and {ãn}, respectively.

Similarly, we find

yk,n ≤ max
i′∈E\E ′


Prob[

∑
j′∈E ′

Zm+n,m+n+1,i′,j′ ≥ 1 ]xk,n+1

+Prob[
∑
j′∈E ′

Zm+n,m+n+1,i′,j′ = 0 ] yk,n+1


 ,

hence we see that yk,n also satisfies the inequality of the assumption R.

For k ∈ Z+ and i′ ∈ E ′ put

ek,i′
def
= E[ wm+n0(k)+k Zm+k,m+n0(k)+k,i′,j ] ,

vk,i′
def
= V[ wm+n0(k)+k Zm+k,m+n0(k)+k,i′,j ] .

Proposition 3.3, (3.12), (3.16), and bk ≥ 2 imply ek,i′ ≥ C2w
2
m+k 4n0(k),

where C2 > 0 is a constant independent of n0 ∈ Z+ and k ∈ Z+. For each

k, define n0(k) to be sufficiently large so that ek,i′ ≥ 2p for all k ∈ Z+.

Proposition 2.3 then implies that Prob[ wm+n0(k)+k Zm+k,m+n0(k)+k,i,j ≤
p ] < 1 − 1/(2d), where d ≤ 1 + 2 vk,i′ e

−2
k,i′ . Applying Proposition 3.4 and

(3.16) we see that xk,k < 1 − C3wm+k, where C3 is a positive constant

independent of k. Proposition 1.3 implies wm+k ≥ C4wm

k∏
�=0

δ−1
m+� with

δk = 2(1 + ak)/(2 + bk), and for a positive constant C4 independent of k.

Hence

(− log xk,k)
k∏

�=0

ã� > C3C4wm

k∏
�=0

(1 + bm+�/2) ,

which implies lim inf
k→∞, xk,k 	=0

{
(− log xk,k)

k∏
�=0

ã�

}1/k

≥ 2 > 1. We see that all

the assumptions in Theorem 2.2 are satisfied, with eN replaced by wm+N ,

and ZN,j by Zm,m+N,i,j . Theorem 2.2 then implies lim
N→∞

Prob[ wN ZmNij ≥
p ] = 1 , p > 0, which, as we noted in the first part of the proof, proves the

convergence of (WmNij , j ∈ E) to (Wmi, · · · ,Wmi). Weak convergence and

uniform integrability imply convergence in expectations. Therefore, from

what we have proved, we obtain the statements on E[ Wmi ] and E[ W 2
mi ].
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Let n ∈ Z+. The j independence of γni in Proposition 3.3 implies, with

(3.12),

lim
N→∞

∑
j E[ ZnNij ]∑
j E[ ZnN1j ]

= γni .

Also from (3.12) one sees, for m ≤ n ≤ N ,

E[ ZmNij ] =
∑
k∈E

E[ Zmnik ] E[ ZnNkj ] .

Hence, with (3.17), we see that lim
N→∞

L−1
N

∑
j

E[ ZnNij ] =

γni∑
j,k E[ Z0njk ] γnk

. Convergence of (WnNij , j ∈ E) and Proposition 2.4 im-

ply that

∑
j ZnNij∑

j E[ ZnNij ]
converges in probability to Wni. Therefore we have

the convergence in probability of L−1
N

∑
j∈E

ZnNij to W ′
ni. With E[ Wni ] = 1

and Proposition 3.3, we have

E[ W ′
ni ] =

γni∑
j,k E[ Z0njk ] γnk

≥ C5 (
∑
j,k

E[ Z0njk ])−1 ,(3.18)

for some positive constant C5 independent of n ≥ 0 and i ∈ E . Similarly,

there exists a positive constant C6 such that

E[ W ′
ni

2
] ≤ C6 (

∑
j,k

E[ Z0njk ])−2w−1
n , n ≥ 0, i ∈ E .(3.19)

Let

Φn,i(t)
def
= E[ exp

(√
−1 tW ′

n,i

)
] , t ∈ R ,

denote the characteristic function. With obvious bound 0 ≤ 1 − �Φni(t) ≤
t2E[ W ′

ni
2 ]/2 and |�Φni(t) − tE[ W ′

ni ]| ≤ t2E[ W ′
ni

2 ]/2, t ∈ R, we can

proceed as in the first half of the proof of [16, (2.45)], using random walk

representation [26, (2.30)] for Φni(t), to obtain

|Φn,i(t)| ≤ 1 − C̃n t
2 , −t′n < t < t′n , n ≥ 0, i ∈ E ′ ,

with C̃n = C7w
−1
n+1 min

j
E[ W ′

n+1,j ]2 and t′n =
minj E[ W ′

n+1,j ]

maxj E[ W ′
n+1,j

2 ]
, where C7

is a positive constant independent of n ≥ 0. (Replace 6kt in [16, (2.45)]
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by t and (3/4)n+k by wn.) We may use a narrower interval (−tn, tn) with

tn ≤ t′n for the estimate above, in applying Theorem 2.5. Put

tn
def
= C5C6

−1wn

∑
j,k

E[ Z0njk ] .

Then (3.18) and (3.19) imply tn ≤ t′n . With (3.18), Proposition 1.3, and

Proposition 3.3, we see that an assumption of Theorem 2.5

lim inf
k→∞


t2kC̃k

k−n0∏
�=0

(an0+�+1 + 1)




1/k

> 1 ,

is satisfied with a� replaced by an0+�+1 + 1.

Proposition 3.3 and (3.12) imply lim
k→∞

tk = ∞, while boundedness of

Ãnij implied in (3.4) with Proposition 1.3 and (3.16) gives supk≥0 t
1/k
k <∞.

Let n ≥ 0 and m ≥ 0. Proposition 3.3, Proposition 1.3, (3.12), (3.16), and

bk ≥ 2 imply

tn
tn+m

<
C8wn

wn+m min�
∑

k∈E ′ Bn,n+m,�,k
< C8 4−m ,

where C8 is a positive constant independent of n and m. Therefore there

exists an m0 such that
tn

tn+m0

< 1 for all n ≥ 0. With the boundedness

of Anij we also see inf
n≥0

tn
tn+m0

> 0. Hence all the assumptions for {tk} in

Theorem 2.5 hold.

Using [16, (2.30)], we can proceed with similar arguments as we did

for Prob[ wm+n0(k)+k Zm+n,m+n0(k)+k,i′,j ≤ p ], from which we see that Φn,i

satisfies the assumption R condition of Theorem 2.5. We have now proved

that Φn,i satisfies all the assumption of Theorem 2.5, which implies that the

distribution of W ′
n,i is continuous. �

Let D
def
= D([0,∞);G) be the set of cadlag paths on the scale-irregular

abb-gasket G. For n ∈ Z and x ∈ Gn we define a family of probability

measures P
(N)
x [ · ], N = n, n+ 1, · · ·, on D, by P

(N)
x [ w(0) = x ] = 1 and

P (N)
x [ w(ti) = xi, i = 1, 2, · · · , r ]

= Prob[ XN,wN ,x([LN ti]) = xi, i = 1, · · · , r ],
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where XN,wN ,x is the random walk XN,wN
with starting point x; XN,wN ,x =

x. We use abbreviations such as

P (N)
x [ w(0) = x ]

def
= P (N)

x [ {w ∈ D | w(0) = x} ] ,

and write E
(N)
x [ · ] for the expectations with respect to P

(N)
x [ · ]. Define

Tn,i(w), w ∈ D, similarly as we did in Section 1 for processes, and put

Wn,i
def
= Tn,i+1 − Tn,i. Let N ≥ n, x ∈ GN , i ∈ Z+, and let x0, x1, · · · , xi be

a sequence of points in Gn such that each adjoining pair is an n-neighbor

pair and x0 and x are in a unit triangle of Hn. Consider the distribution of

Wn,j , j = 0, 1, · · · , i− 1, under the conditional probability

P (N)
x [ · | w(Tn,0(w)) = x0, w(Tn,1(w)) = x1, · · · , w(Tn,i(w)) = xi ] .

Since the probability is based on random walks, this distribution is a direct

product of the distributions of each Wn,j , and as we noted before Theorem

3.5, the distribution of each Wn,j under the conditional probability is equal

to that of L−1
N

∑
�∈E ZnNk�, if (xj , xj+1) forms an edge of type k ∈ E , and

is independent of i, j, x, and xj ’s. We denote this distribution of Wn,j by

Q
(N)
n,k [ · ], and their limit distributions as N → ∞ by Qn,k[ · ], k ∈ E .

Theorem 3.5 implies

lim
N→∞

Q
(N)
n,k [ s | a < s < b ] = Qn,k[ s | a < s < b ] , 0 ≤ a < b ≤ ∞ .(3.20)

We need a following type of uniformity to handle processes starting from

‘irrational’ points.

Proposition 3.6. Let N , M , n be non-negative integers satisfying

N ≥ M ≥ n, and let x ∈ GM and y ∈ Gn such that x and y are in a

unit triangle of Hn. Then there exists a positive constant C1 independent

of x, y, n, M , and M , such that

E(N)
x [ Tn,0(w) | w(Tn,0(w)) = y ] ≤ C1

n∏
�=1

(
1 +

b�
2

)−2

.

Proof. By similar arguments for the proof of [16, (3.2)], we see that

there exist positive constants C2 and C3 such that for Xm = Xm,wm,x′

E[ Tm−1,0(Xm) | Xm(Tm−1,0(Xm)) = y′ ] ≤ C1 +
C2

wm
,(3.21)
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for all m ∈ Z+, x′ ∈ Gm \ Gm−1, and y′ ∈ Gm−1 , with x′ and y′ in a

unit triangle of Hm−1. For an m-neighbor pair (u, v) forming a type k edge,

Proposition 3.3, (3.17), and (3.12) imply

L−1
N E[ Wm,i(XN,wN

) | XN,wN
(Tm,i) = u,XN,wN

(Tm,i+1) = v ]

= L−1
N

∑
�∈E

ZnNk� ≤ C3 Π̃−1
nk (
∑
�,�′

B̃0.n−1,�,�′)
−1 ,(3.22)

where C3 is a positive constant independent of m, N , u and v. Proposition

3.3, (3.21), and (3.22) imply

E
(N)
x′ [ Tm−1,0(w) | w(Tm−1,0(w)) = y′ ] ≤ C4

m∏
�=1

(1 + b�/2)−2 ,(3.23)

for all N ≥ m ≥ 0, x′ ∈ Gm \Gm−1, and y′ ∈ Gm−1, with x′ and y′ in a unit

triangle of Hm−1. C4 is a constant. The estimate (3.23), combined with

the strong Markov property of the random walks, implies for N ≥ M ≥ n,

x ∈ GM , y ∈ Gn, with x and y in a unit triangle of Hn,

E(N)
x [ Tn,0(w) | w(Tn,0(w)) = y ]

=
∑
{yi}

M∑
i=n+1

E(N)
yi [ Ti−1,0(w) | w(Ti−1,0(w)) = yi−1 ]

× P (N)
x [ w(Ti,0(w)) = yi, n+ 1 ≤ i ≤M − 1 | w(Tn,0) = y ]

≤ C1

n∏
�=1

(1 + b�/2)−2 ,

where the first summation is taken over {yi} = (yn, yn+1, · · · , yM ) with

yi ∈ Gi, yn = y, yM = x, such that yi and yi−1 are in a unit triangle of

Hi−1, for i = n+ 1, · · · ,M . �

The following result is used to prove that an N -decimated walk of a

diffusion, obtained as the continuum limit N → ∞ of a sequence of random

walks, is equal to the original random walk.

Proposition 3.7. For N ∈ Z+, let XN be a simple random walk on

GN with N -neighbor jumps. Assume that there exists a sequence LN diverg-

ing to infinity as N → ∞ such that, X̃N (·) def
= XN ([LN ·]) converges almost

surely as N → ∞ to some continuous strong Markov process X(·) on G.
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Let n ∈ Z+. If for each N ≥ n, the n-decimated walk (defined in Section 1)

of XN is equal in law to Xn, then the n-decimated walk of X is also equal

in law to Xn.

Proof. Fix x ∈ Gn and y ∈ Gn. Denote by P (x)[ · ] the conditional

probability with condition XN (0) = x, N ∈ Z+, X(0) = x, and let E(x)[ ·
] be expectation with respect to P (x)[ · ]. For N ≥ n and a positive

integer q, define σN,q
def
= inf{t ≥ 0 | d(X̃N (t), Gn \{x}) ≤ 1/q}, σq def

= inf{t ≥
0 | d(X(t), Gn \ {x}) ≤ 1/q}, σN,∞

def
= inf{t ≥ 0 | X̃N (t) ∈ Gn \ {x}},

σ∞
def
= inf{t ≥ 0 | X(t) ∈ Gn \ {x}}, where d is the metric on G. The almost

sure convergence of X̃N to X implies

σq ≤ lim inf
N→∞

σN,q ≤ lim sup
N→∞

σN,q ≤ σq+1 , a.s., q > 0 .(3.24)

Define a harmonic function h : G → [0, 1] as follows; for z ∈ G∞, i.e., z ∈
Gm for somem ≥ n, define h(z)

def
= Prob[ X̃m(σm,∞) = y | X̃m(0) = z ]. The

assumption on the decimation property implies that Prob[ X̃m′(σm′,∞) =

y | X̃m′(0) = z ] is constant for m′ ≥ m, hence h is well-defined on G∞. We

can see that [16, Proposition 3.2] holds in our case, which implies that h is

continuous. In particular, h is uniquely extendable as continuous function

to G. By definition, h(y) = 1 and h(y′) = 0, y′ ∈ Gn \ {y}. XN is a simple

random walk, and h, restricted on GN , is an associated harmonic function.

Therefore h(X̃N (t∧σN,q)), t ≥ 0, is a martingale (a∧ b def
= min{a, b}), hence

E(x)[ h(X̃N (t ∧ σN,q)) ] = h(x), N ≥ n. This with (3.24), lim
N→∞

X̃N = X,

and continuity of h implies

E(x)[ min
σq≤s≤σq+1

h(X(t ∧ s)) ] ≤ h(x) ≤ E(x)[ max
σq≤s≤σq+1

h(X(t ∧ s)) ] .

Continuity of X implies that lim
q→∞

σq = σ∞. Hence we have h(x) =

E(x)[ h(X(t ∧ σ∞)) ], t ≥ 0. Since this is independent of t, we have h(x) =

E(x)[ h(X(σ∞)) ] = Prob[ X(σ∞) = y | X(0) = x ], which implies that the

transition probability of n-decimated walk of X is equal to that of Xn(0). �

Proof of Theorem 1.2. We can apply [16, Sect. 3], with [16, The-

orems 2.5, 2.8] replaced by Theorem 3.5, [16, (3.1)] by (3.20), and [16,
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Proposition 3.1(1)] by Proposition 3.6. Then for xN ∈ GN , N ∈ Z+, sat-

isfying lim
N→∞

xN = x, the sequence of measures P
(N)
xN [ · ] (the distribution

of XN,wN ,xN ([LN t])), N ∈ Z, converges weakly as N → ∞ to a symmetric

Feller process X. Skorokhod’s Theorem implies that there exists a proba-

bility space and GN valued processes XN , N ∈ Z, such that XN is equal

in law to XN,wN ,xN and converges almost surely to a process equal in law

to X. Proposition 3.7 implies that the n-decimated walk of this process is

equal in law to the original random walk Xn,wn . That this random walk has

the asymptotically one-dimensional (and isotropy restoration) properties, is

proved in Proposition 1.3. �

Appendix A. The scale-irregular abb-gasket

The scale-irregular pre-abc-gasket as a graph

A mathematical definition of a wide class of pre-fractals, including pre-

abc-gaskets, is given in [15, Section 5.1]. The definition of a scale-irregular

pre-abc-gasket as a graph is an easy scale-irregular extension. For con-

venience to the readers, we reproduce relevant part of the definition in

[15], with implementation of scale-irregularity for the scale-irregular pre-

abc-gaskets.

Denote a set of positive integers by N, and a set of non-negative integers

by Z+. For σ = (a, b, c) ∈ N3, define an equivalence relation
σ∼ on Z2

+,

parametrized by σ, by the defining relations


(i, 1)
σ∼ (i+ 1, 0) 0 ≤ i < a,

(i, 2)
σ∼ (i+ 1, 1) a ≤ i < a+ b,

(i, 0)
σ∼ (i+ 1, 2) a+ b ≤ i < a+ b+ c− 1,

(a+ b+ c− 1, 0)
σ∼ (0, 2).

Let Σ∞ = (σ1, σ2, σ3, · · ·), σn = (an, bn, cn), n ∈ N, be a sequence in

N3. Write Σ0 = φ and Σn = (σ1, σ2, · · · , σn) for n ∈ N.

For n ∈ Z+, the finite scale-irregular pre-abc-gasket at n-th stage con-

struction H̃n(Σn), parametrized by Σn, is a triplet

H̃n(Σn) = (V (Σn), B(Σn), P (Σn)),

of a set of vertices V (Σn), a set of edges (a set of unordered pairs of vertices)

B(Σn), and a set of three vertices P (Σn) = {pn0, pn1, pn2} ⊂ V (Σn), defined

inductively as follows.
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H̃0(Σ0) is defined by V (Σ0) = {0, 1, 2}, B(Σ0) = {{0, 1}, {1, 2}, {2, 0}},
and P (Σ0) = {p00, p01, p02}, where p0i = i, i = 0, 1, 2.

Assume that H̃n−1(Σn−1) is defined for an n ∈ N. Define an equivalence

relation ∼ on a set of pairs

{(m, v) | m ∈ Z+, v ∈ V (Σn−1)},

by the defining relation

(m, v) ∼ (m′, v′) if and only if v = pn−1,i, v
′ = pn−1,j ,

for some i, j, and (m, i)
σn∼ (m′, j).

(A.1)

V (Σn) is then defined by

V (Σn) = {(m, v) | m = 0, 1, 2, · · · , an + bn + cn − 1, v ∈ V (Σn−1)}/ ∼ .

Denote the equivalence class of (m, v) by ((m, v)). B(Σn) is defined by

B(Σn) = {{((m, v)), ((m,w))} |
m = 0, 1, · · · , an + bn + cn − 1, {v, w} ∈ B(Σn−1)},

and P (Σn) = {pn0, pn1, pn2} is defined by

pn0 = ((0, pn−1,0)), pn1 = ((an, pn−1,1)),

pn2 = ((an + bn, pn−1,2)).
(A.2)

For each n ∈ N, there is an injection ι : V (Σn−1) → V (Σn) defined by

ι : V (Σn−1) � v �→ ((0, v)) ∈ V (Σn).

ι maps a bond {v, v′} ∈ B(Σn−1) to a bond {((0, v)), ((0, v′))} ∈ B(Σn). We

can therefore identify (V (Σn−1), B(Σn−1)) as a subset of (V (Σn), B(Σn)).

Define a graph H̃∞(Σ∞) = (V (Σ∞), B(Σ∞)) by

H̃∞(Σ∞) =
⋃

n∈Z+

(V (Σn), B(Σn)),

with the identification induced by ι assumed.

Note that with the identification ι, pn0 = p00 = 0 holds for any n ∈ N.

We call 0 ∈ H̃∞(Σ∞) the origin, and also use the notation O.



Diffusions on Scale-Irregular Gaskets 261

For σ = (a, b, c) ∈ N3, define R(σ) by R(σ) = (a, c, b), and for a sequence

Σ∞ = (σ1, σ2, σ3, · · ·) in N3, define R(Σ∞) by

R(Σ∞) = (R(σ1), R(σ2), R(σ3), · · ·).

Define also an equivalence relation
R∼ by (+, O)

R∼ (−, O). A graph

H̃ ′
∞(Σ∞) = (V ′(Σ∞), B′(Σ∞)) (scale-irregular pre-abc-gasket as a graph)

is defined by

V ′(Σ∞) =
(
{(+, v) | v ∈ V (Σ∞)}

⋃
{(−, v) | v ∈ V (R(Σ∞))}

)
/

R∼ ,

and

B′(Σ∞) = {{((+, v)), ((+, w))} | {v, w} ∈ B(Σ∞)}⋃
{{((−, v)), ((−, w))} | {v, w} ∈ B(R(Σ∞))},

where ((+, v)) denotes the equivalence class of (+, v). Again, we write O

for ((+, O)) = ((−, O)) ∈ V ′(Σ∞) and call it the origin.

Metric on the scale-irregular pre-abc-gasket

Metrics on the pre-abc-gaskets and abc-gaskets, i.e. for the case without

scale-irregularity, are given in [17]. We extend the definition to allow for

scale-irregularity.

Let s ∈ {+,−}, N and n be integers satisfying n ≥ N ≥ 0, for each

k ∈ {n, n−1, · · · , N+1}, mk be an integer satisfying 0 ≤ mk < ak +bk +ck,

and i ∈ {0, 1, 2}. Then the sequence

(s,mn,mn−1, · · · ,mN+1, N, i)(A.3)

determines an element x ∈ V ′(Σ∞) by the sequence of equivalence classes

x = ((s, v)), v = ((mn, vn−1)), vn−1 = ((mn−1, vn−2)),

vn−2 = ((mn−2, vn−3)), · · · , vN+1 = ((mN+1, pN,i)).

We take (A.3) as a representation of x and write

x = (s,mn,mn−1, · · · ,mN+1, N, i) ∈ V ′(Σ∞).(A.4)

As a convention, we write x = (s, n, i) with N = n for x = ((s, pni)).
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Fix N ∈ Z+, and define G−N (Σ∞) ⊂ V ′(Σ∞) as a set of vertices x ∈
V ′(Σ∞) which has a representation (A.4). P (Σ0) = V (Σ0) implies that each

element x ∈ V ′(Σ∞) has a representation of the form (A.3) with N = 0,

hence, G0(Σ∞) = V ′(Σ∞). Also (A.2) implies

G0(Σ∞) = V ′(Σ∞) ⊃ G−1(Σ∞) ⊃ G−2(Σ∞) ⊃ · · · .

For each N ∈ Z+ define a shift τ̃N on the space of sequences in N3 by

τ̃N ((σ1, σ2, σ3, · · ·)) = (σN+1, σN+2, σN+3, · · ·).(A.5)

Let x ∈ G0(Σ∞)\{O}. xmay have more than one representations. However,

(A.1) implies that for each fixed N ,

x = (s,mn,mn−1, · · · ,mN+1, N, i) = (s′,m′
n,m

′
n−1, · · · ,m′

N+1, N, i
′)

if and only if (mN+1, i)
σN+1∼ (m′

N+1, i
′) and s = s′, mk = m′

k, k = n, n −
1, · · · , N + 2. Hence there is an injection

τ̃∗N : G0(τ̃N (Σ∞)) → G−N (Σ∞)

defined by

τ̃∗N (s,mn,mn−1, · · · ,m1, 0, i) = (s,mn,mn−1, · · · ,m1, N, i) .

Put

E−N (Σ∞) = {{τ̃∗N (x), τ̃∗N (y)} | {x, y} ∈ B′(τ̃N (Σ∞))}.

Let x and y be elements of G0(Σ∞). Denote by path(x, y) the collection

of finite sequences

z = {z0 = x, z1, · · · , zκ = y}, for some κ = κz ∈ Z+,

which has a property that for each i = 0, 1, · · · , κz − 1, {zi, zi+1} ∈
E−νz(i)(Σ∞) for some νz(i) ∈ Z+.

For z ∈ path(x, y) put

L(z) =
κz−1∑
i=0

νz(i)∏
n=1

(min{an, bn, cn} + 1).
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where, σn = (an, bn, cn), and Σ∞ = (σ1, σ2, · · ·). (By convention, we define

the product in the definition of L to be 1, if νz(i) = 0.) Then the metric

d̃(Σ∞) is defined by d̃(Σ∞)(x, y) = inf
z∈path(x,y)

L(z). It is straightforward to

see that d̃ is a metric, and, in particular,

d̃(Σ∞)(x, y) =
N∏

n=1

(min{an, bn, cn} + 1) , {x, y} ∈ E−N (Σ∞).(A.6)

In considering (anisotropic) random walks on H̃ ′
∞(Σ∞), it is convenient

to have the notion of vertex types and edge types [16, 17]. One sees [17]

that a vertex x ∈ V ′(Σ∞) is classified into 6 types; A, B, C, D, E, F , and

an edge as an ordered pair of vertices is classified into 18 types; Xy with

X = A,B,C and y = p, q, r, s, Xy with X = E,F and y = p, r, and Dp, Dq,

by the following rule.

(1) The origin O is of type A.

(2) A vertex which has two representations of the forms (s,mn, · · · ,m1,

0, i) and (s,mn, · · · ,m′
1, 0, i

′) for some s, n, i, i′, and mk’s, satisfying

(m1, i)
σ∼ (m′

1, i
′) is of type A, B, or C, if (i, i′) = (1, 0), (0, 2), or

(2, 1), respectively.

(3) Any other vertex with a representation of the form (s,mn, · · · ,m1, 0, i)

is of type D, E, or F , if i = 2, 0, or 1, respectively.

(4) Let {x, y} ∈ B′(Σ∞). Then x and y have representations of the form

x = (s,mn, · · · ,m1, 0, i) and y = (s,mn, · · · ,m1, 0, i
′). If x is of type

A then (x, y) as an ordered pair is of type Ap, Aq, Ar, or As, if

(i, i′) = (0, 2), (1, 2), (0, 1), or (1, 0), respectively. If x is of type B

then (x, y) is of type Bp, Bq, Br, or Bs, if (i, i′) = (0, 2), (2, 1), (0, 1),

or (2, 0), respectively. If x is of type C then (x, y) is of type Cp, Cq,

Cr, or Cs, if (i, i′) = (1, 2), (2, 0), (1, 0), or (2, 1), respectively. If

x is of type D then (x, y) is of type Dp or Dq, if (i, i′) = (2, 0) or

(2, 1), respectively. If x is of type E then (x, y) is of type Ep or Er, if

(i, i′) = (0, 2) or (0, 1), respectively. If x is of type F then (x, y) is of

type Fp or Fr, if (i, i′) = (1, 2) or (1, 0), respectively.

Inspired by the Sierpiński gasket, we call the edges of types Xr with X =

A,B,C,E, F , and As, the ‘horizontal’ edges.
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The scale-irregular abc-gasket

Fix S : Z → N3. For N ∈ N, define SN = (S(N), S(N − 1), S(N −
2), · · ·) (note that the numbers are now in decreasing orders), and put GN =

G0(SN ). GN has a graph structure with the edge set

EN
def
= B′(SN ).(A.7)

Define a metric dN on GN by

dN (x, y) = d̃(SN )(x, y)
N∏

n=1

1

min{an, bn, cn} + 1
,(A.8)

x, y ∈ GN ,

where we wrote S(n) = (an, bn, cn). (We define the product to be 1, if

N = 0.)

For each pair of non-negative integers N , N ′, satisfying N ≤ N ′, there

is an injection from GN = G0(SN ) to GN ′ = G0(SN ′) defined by

(s,mn,mn−1, · · · ,m0, 0, i) �→ (s,mn,mn−1, · · · ,m0, N
′ −N, i).(A.9)

We identify GN with a subset of GN ′ with this injection;

G0(S0) ⊂ G1 ⊂ G2 ⊂ G3 ⊂ · · · .

Let G∞ =
⋃

N∈Z+

GN with this identification assumed. Using (A.8) and

(A.6), we see that if N ′ ≥ N

dN ′(x, y) = dN (x, y), x, y ∈ GN ⊂ GN ′ .(A.10)

For any x and y in G∞, define d(x, y) as follows. There exists N ∈ Z+ such

that x, y ∈ GN . Then define d(x, y) = dN (x, y). With (A.10) we see that d

is a well-defined metric.

The scale-irregular abc-gasket G is the completion of G∞ by d.

A subset GN ⊂ G has a graph structure with the vertex set GN and

the edge set EN given by (A.7). We use the notation HN = (GN , EN ) (=

H̃ ′
∞(SN )) to refer to the graph structure, and call it a scale-irregular pre-

abc-gasket (of scale N). For x ∈ GN , we call a vertex y ∈ GN an N -neighbor

(of x) if {x, y} ∈ EN . We use, for HN , the notion of vertex types and edge
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types, Ap, Ar, etc., and the terminology ‘horizontal (edge)’, in accordance

with the corresponding notations for H̃ ′
∞(Σ∞).

If S has a property bN = cN for all N , where S(N) = (aN , bN , cN ),

we call G the scale-irregular abb-gasket and GN the scale-irregular pre-abb-

gasket. For a scale-irregular pre-abb-gasket, we identify the types Ap = Aq,

Ar = As, Bs = Bq, C = B, Dp = Dq, and F = E. Hence for a scale-

irregular abb-gasket, there are 4 vertex types A, B, D, E, and 8 edge types

Ap, Ar, Bp, Bq, Br, Dp, Ep, Er.

We also use the notion of a ‘unit triangle’. By a unit triangle of HN

(or a unit triangle of scale N) we mean a closure (in G with respect to the

metric d) of a set⋃
N ′≥N

{(s,mn, · · · ,m0,m−1, · · · ,m−N ′+N , 0, i) ∈ G0(SN ′) | i = 0, 1, 2,

m−k = 0, 1, 2, · · · , aN+k + bN+k + cN+k − 1,

k = 1, 2, · · · , N ′ −N} (⊂ G)

for some fixed s, mn, · · ·, m0. (s,mn, · · · ,m0, 0, i) ∈ G0(SN ) = GN , i =

0, 1, 2, are defined to be the three vertices of the triangle.

If S is a constant map defined by S(0) = (a, b, c), then G is an abc-gasket

[15, 16, 17]. If, furthermore, a = b = c = 1, then G is the Sierpiński gasket.

Remark. Assume that S is a bounded map. As in [17],

(min{an, bn, cn} + 1), n ∈ Z, in the definitions of metrics can be replaced

by Hn, n ∈ Z, satisfying Hn ≤ (min{an, bn, cn} + 1), n ∈ Z, and inf
n
Hn > 1.

The first condition implies (A.6), with (min{an, bn, cn} + 1) replaced by

Hn. The second condition with the boundedness of the map S implies that

there exists C > 0 such that if x and y is in a unit triangle of GN then

d(x, y) ≤ C
N∏

n=1

Hn
−1.

Appendix B. Decay estimate from non-linear recursion relations

The Lemma below gives a mild decay estimate from a non-linear re-

cursion relation. We apply the Lemma to prove a Theorem which states

a sharp decay estimate from another recursion relation with more involved

assumptions.
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Lemma B.1. Let {wn, n ∈ Z+} be a sequence in [0, 1] satisfying∑
nwn <∞, and {an, n ∈ Z+} a sequence satisfying D

def
= infn an > 1 and

supn an <∞. For each k ∈ Z+ define a sequence {xk,n, n = k, k−1, · · · , 0}
by a recursion relation

xk,n = (1 − wn+1)x
an+1

k,n+1 + wn+1 , n = k − 1, k − 2, · · · , 0 ,

with initial condition xk,k satisfying 0 ≤ xk,k ≤ 1. If

lim
k→∞, xk,k 	=0

(− log xk,k)
k∏

�=0

a� = ∞

holds, then there exist positive constants C1 and k1 (independent of n and

k) such that

xk,n ≤ C1 sup
�≥n

w� + exp
(
−Dfk−n−1

)
, 0 ≤ n ≤ fk, k ≥ k1 ,

where

fk = sup{n ≤ k − 1 |
√
D (− log xk,k)

k∏
�=n+2

a� > 1} + 1 ,

with a convention
∏k

�=k+1 a� = 1, and fk = k if xk,k = 0.

Proof. Put C2 = supn exp(an).
∑

nwn < ∞ and D > 1 imply that

there exists a constant n1 such that
∏
�≥n

(1 − C2w�) ≥
√
D

−1
, n ≥ n1 .

By assumption, lim
k→∞

fk = ∞, hence there exists a constant k1 such that

fk ≥ n1 − 1, k ≥ k1. Let k ≥ k1 in the following. We first prove that

xk,fk ≤ exp
(
−D−1

)
, k ≥ k1 .(B.1)

If xk,k = 0 then (B.1) directly follows, so we assume xk,k > 0. Put uk,n =

− log xk,n. The assumptions and the recursion relation imply 0 < xk,n ≤ 1

for all n, hence uk,n exist and are non-negative. Furthermore,

uk,n = an+1uk,n+1 − log
(
1 + (x

−an+1

k,n+1 − 1)wn+1

)
≤ an+1uk,n+1 ,
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which implies

uk,n ≤ uk,k


 k∏

�=n+1

a�


 , 0 ≤ n ≤ k .(B.2)

The definition of fk implies fk ≤ k and the following three inequalities;

uk,k ≥
√
D

−1
, if fk = k ,(B.3)

√
Duk,k


 k∏

�=fk+1

a�


 > 1 ,(B.4)

√
Duk,k


 k∏

�=n+2

a�


 ≤ 1 , fk ≤ n ≤ k − 1 .(B.5)

The estimates (B.2), (B.5), and D > 1 imply uk,n+1 < 1, fk ≤ n ≤ k − 1,

which, together with the recursion relation implies

uk,n = an+1uk,n+1

− log(1 + exp(uk,n+1an+1)wn+1(1 − exp(−uk,n+1an+1)))

≥ an+1uk,n+1 − log (1 + C2wn+1 uk,n+1 an+1)

≥ an+1(1 − C2wn+1)uk,n+1 , fk ≤ n ≤ k − 1 .

This with k ≥ k1 and (B.4) implies uk,fk ≥ uk,k(
∏k

�=fk+1 a�)(
∏k

�=fk+1(1 −
C2w�)) ≥ D−1, if fk ≤ k − 1. If fk ≥ k then fk = k, hence (B.3) implies

uk,fk > D−1. Therefore we have (B.1).

Put vn = sup
�≥n

w�. {vn} is decreasing, bounded above by 1, and lim
n→∞

vn =

0. Define a sequence {zk,n, n = fk, fk − 1, · · · , 0} by zk,n = zk,n+1
D + vn+1 ,

0 ≤ n ≤ fk − 1, and zk,fk = exp(−D−1). Then

xk,n ≤ zk,n , 0 ≤ n ≤ fk .(B.6)

Put

zk,n = exp
(
−Dfk−n−1

)
+ vn rk,n .(B.7)

Taylor’s formula implies (α + β)D − αD ≤ Dβ (α + β)D−1, for any α > 0,

β > 0, and D > 1. If we put α = exp
(
−Dfk−n−2

)
and β = vn+1 rk,n+1 we
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have, with zk,n+1
D = zk,n − vn+1,

rk,n = v−1
n

(
zk,n − exp

(
−Dfk−n−1

))
≤ vn+1

vn
rk,n+1D

(
exp

(
−Dfk−n−2

)
+ vn+1 rk,n+1

)D−1
+
vn+1

vn
,

which, with vn+1 = sup
�≥n+1

w� ≤ vn and D > 1,

rk,n ≤ rk,n+1D (e−1 + vn+1 rk,n+1)
D−1 + 1 , 0 ≤ n ≤ fk − 2 .(B.8)

Put ρ =
1

2
(1 +D e−D+1). D > 1 implies 0 < D e−D+1 < ρ < 1. Therefore

there exists a constant k2 defined by

k2 = inf{n ≥ 0 | D (e−1 + vn (1 − ρ)−1)D−1 < ρ} .

Monotonicity of {vn} implies D (e−1 + vn (1 − ρ)−1)D−1 < ρ, n ≥ k2 . If

fk ≥ k2 + 1 then we can prove by induction that rk,n ≤ (1 − ρ)−1, k2 ≤
n ≤ fk . In fact, we explicitly have rk,fk = 0 and rk,fk−1 = vfk/vfk−1 ≤ 1.

(The latter holds, because (B.7) implies zk,fk−1 = e−1 + vfk−1 rk,fk−1, while

zk,fk−1 = zk,fk
D + vfk = e−1 + vfk .) If rk,n+1 ≤ (1 − ρ)−1 holds for some

n with k2 ≤ n ≤ fk − 2, then (B.8) and the definition of k2 implies rk,n ≤
(1 − ρ)−1ρ + 1 = (1 − ρ)−1. Thus if fk ≥ k2 + 1, rk,n for k2 ≤ n ≤ fk are

bounded by a constant independent of n and k. k2 is independent of n and

k. Therefore rk,n for 0 ≤ n ≤ k2 are bounded by a constant independent

of n and k. If fk < k2 + 1, similar argument shows, with rk,fk = 0, that

rk,n for 0 ≤ n ≤ fk are bounded by a finite number independent of n and

k. This with (B.6) and (B.7) implies the statement. �

Theorem B.2. Let {wn}, {w′
n}, n ∈ Z+, be sequences in [0, 1] satis-

fying

max{wn, w
′
n} ≤ Cwδ

−n , n ∈ Z+ ,

for positive constants (independent of n) Cw and δ > 1. Also let {an, n ∈
Z+} be a sequence satisfying infn an ≥ 2 and supn an <∞. For each k ∈ Z+

consider a sequence in [0, 1]2

{(xk,n, yk,n) , n = k, k − 1, · · · , 0} ⊂ [0, 1]2 ,
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and assume that it satisfies a recursive inequality

xk,n ≤ x
an+1

k,n+1 + wn+1 min{1 − x
an+1

k,n+1 , yk,n+1} ,
yk,n ≤ xk,n+1 + w′

n+1 yk,n+1 , n = k − 1, k − 2, · · · , 0 .

If

lim inf
k→∞, xk,k 	=0

{
(− log xk,k)

k∏
�=0

a�

}1/k

> 1(B.9)

holds, then there exist positive constants C1 and C2 (independent of k) such

that

max{xk,0, yk,0} ≤ C1 exp(−C2 k
2) , k ∈ Z+ .

Proof. Define {x̃k,n, n = k, k − 1, · · · , 0} by x̃k,k = xk,k and

x̃k,n = (1 − wn+1) x̃
an+1

k,n+1 + wn+1 , n = k − 1, k − 2, · · · , 0 ,

Then the recursion relation for xk,n and the assumption yk,n ≤ 1 imply

xk,n ≤ x̃k,n , 0 ≤ n ≤ k, k ≥ 0 .

{x̃k,n} satisfies all the assumptions of Lemma B.1 with D = 2, hence there

exist positive constants C3 and k1 (independent of n and k) such that

xk,n ≤ C3 sup
�≥n

w� + exp
(
−2fk−n−1

)
, 0 ≤ n ≤ fk, k ≥ k1 ,(B.10)

where

fk = sup{n ≤ k − 1 |
√

2 (− log xk,k)
k∏

�=n+2

a� > 1} + 1 .(B.11)

Since (B.9) implies lim
k→∞

fk = ∞, there exists a constant k2 ≥ k1 such that

for 0 ≤ n ≤ fk/2 and k ≥ k2,

exp
(
−2fk−n−1

)
≤ exp

(
−2fk/2−1

)
≤ Cwδ

−fk/2 ≤ Cwδ
−n .
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This with (B.10) implies xk,n ≤ (C3 + 1)Cw δ
−n, 0 ≤ n ≤ fk/2, k ≥ k2.

Applying this estimate to the original recursion relations and using wn ≤
Cwδ

−n, w′
n ≤ Cwδ

−n, and an ≥ 2, we have

xk,n ≤ Cw δ
−n−1 ((C3 + 1)xk,n+1 + yk,n+1) ,

yk,n ≤ xk,n+1 + Cw δ
−n−1 yk,n+1 , 0 ≤ n ≤ fk/2 , k ≥ k2 .

Iterating once, we find

max{xk,n, yk,n} ≤ C5 δ
−n−1 max{xk,n+2, yk,n+2} ,

0 ≤ n ≤ fk/2 − 1 , k ≥ k2 ,

where C5 is a positive constant independent of n and k. Iterating this [fk/4]

times, where [x] is the largest integer not exceeding x, and using xk,n ≤ 1,

yk,n ≤ 1, we find

max{xk,0, yk,0} ≤ exp

{[
fk
4

]
(logC5) −

[
fk
4

]2
(log δ)

}
, k ≥ k2 .(B.12)

The assumption (B.9) implies that there exist positive constants k3 ≥ k2

and δ′ > 1 (independent of k) such that (− log xk,k)
k∏

�=0

a� > δ′k, k ≥ k3.

The definition (B.11) then implies fk ≥ min

{
log δ′

log sup� a�
k − 1, k

}
, k ≥

k3. Applying this to (B.12), increasing constants for terms with k < k3 if

necessary, we have the statement. �

Appendix C. Products of matrices with positive elements

We present an elementary theorem on the existence of a limit of normal-

ized products of matrices with positive elements. We assume no relation

among matrices in the product, such as commutativity or stationarity. We

also allow the infimums of some components to be zero.

Theorem C.1. Let d and q be positive integers, E def
={1, 2, · · · , d}, and

{AN , N = 1, 2, 3, · · ·} be a sequence of d-dimensional matrices whose ele-

ments are positive and bounded, satisfying inf
N,i,j

(ANAN+1 · · ·AN+q−1)ij > 0.
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Then for i ∈ E and j ∈ E, γi
def
= lim

N→∞

(A1 · · ·AN )ij
(A1 · · ·AN )1j

exists, positive, and is

independent of j.

Proof. For N > n ≥ 0 define

BnN
def
= An+1An+2 · · ·AN

and put

γNij
def
=
B0Nij

B0N1j
, i ∈ E , j ∈ E .

The elementwise positivity of AN+1 and BnN imply for each i that

{min
k
γNik} is increasing and {max

k
γNik} is decreasing in N , in particu-

lar, the sequence {γNij , N = 1, 2, · · ·} is bounded. Therefore, for each i

and j, and for any subsequence of positive integers there exists a further

subsequence {aN} such that the limit

γ
(a)
ij

def
= lim

N→∞
γaN ,ij > 0 .(C.1)

exists and is positive.

For 0 < n < N and i ∈ E , j ∈ E , put

pnNij
def
=
B0n1iBnNij

B0N1j
.

The definition and the elementwise positivity of BnNij imply, for 0 < n < N ,

i, j ∈ E ,

0 < pnNij < 1 ,
∑
k∈E

pnNkj = 1 , γNij =
∑
k∈E

γnik pnNkj .(C.2)

We prove a couple of Lemma for pnNkj .

Lemma C.2. Fix {aN}, and let γ
(a)
ij be as above. If for every i, j ∈ E

either inf
n>0

inf
N>n+q

pnNij > 0 or inf
n>0

inf
N>n+q

pnNji > 0 hold, then for every

i ∈ E, γ
(a)
ij is independent of j.
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Proof. Put n = aM and N = aM ′ in (C.2). We see from (C.1) and

(C.2) that for each ε > 0 there is an integer M0 such that for any integers

M , M ′ satisfying M ′ > M > M0 we have∣∣∣∣∣∣
∑
k∈E

(γ
(a)
ij − γ

(a)
ik )paM ,aM′ ,kj

∣∣∣∣∣∣ < ε .(C.3)

Now suppose that the Lemma is wrong; γ
(a)
ik1

< γ
(a)
ik2

and γ
(a)
ik1

≤ γ
(a)
ij ≤ γ

(a)
ik2

,

j ∈ E . If we put j = k2 in (C.3) and keep k = k1 term in the summation we

have ε > (γ
(a)
ik2

− γ
(a)
ik1

)paM ,aM′ ,k2,k1 , while if we put j = k1 and keep k = k2

term we have ε > (γ
(a)
ik2

− γ
(a)
ik1

)paM ,aM′ ,k1,k2 . Since ε > 0 is arbitrary, these

inequalities contradicts the assumption of the Lemma. �

Lemma C.3.

inf
n>0

inf
N>n+q

pnNij > 0 , i ∈ E , j ∈ E .

Proof. Note that each pnNij is positive by (C.2). Therefore it is

sufficient to consider the cases where N and n are sufficiently large. For

sufficiently large N ,

p1Nij ≥
A11i∑

k1

A11k1

∑
k2

A2,i,k2 B2,N,k2,j

max
k1

∑
k2

A2,k1,k2 B2,N,k2,j

≥ A11i∑
k1

A11k1

min
k2

A2,i,k2

max
k1

A2,k1,k2

,

where we used an inequality among non-negative numbers ai, bi, ci, i ∈ E ;∑
aici∑
bici

≥ min
i

ai
bi

. Hence inf
N>1

p1Nij > 0. If we prove inf
n>0

inf
N>n+q

pnNij

p1Nij
> 0,

then the Lemma is proved. For sufficiently large N and n with N − q > n,

pnNij

p1Nij
≥

min
k
A11kB1nkiBnNij

max
k
A11iB1nikBnNkj

≥ min
{ki}

min
k
A11kA2kk1Bn−q,n,k2iBn,n+q,ik3

A11iA2ik1 max
k
Bn−q,n,k2kBn,n+q,kk3

.

Taking the infimum of both sides with respect to N and n, we see, with the

assumptions of Theorem C.1, inf
n>0

inf
N>n+q

pnNij

p1Nij
> 0. �
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Let us continue the proof of the Theorem. Lemma C.2 and Lemma C.3

imply that γ
(a)
ij of (C.1) is independent of j. Fix i ∈ E , and consider two

subsequences of positive integers. There are subsequences, {aN} and {bN},
for each of the subsequences respectively, such that the limits

γ
(a)
i

def
= lim

N→∞
γaN ,ij > 0 , and γ

(b)
i

def
= lim

N→∞
γbN ,ij > 0 ,(C.4)

exist, positive, and are independent of j. Put n = bM and N = aM ′ in

(C.2);

γaM′ ,ij =
∑
k∈E

γbM ,ik pbM ,aM′ ,kj , aM ′ > bM , i ∈ E , j ∈ E .(C.5)

The equations (C.4), (C.5), and (C.2) imply that for any positive ε there

exists an integer N0 such that if aM ′ > bM > N0 hold, then

∣∣∣γ(a)
i − γ

(b)
i

∣∣∣ =
∣∣∣∣∣∣γ(a)

i −


γ(b)

i

∑
k∈E

pbM ,aM′ ,kj



∣∣∣∣∣∣ < ε , j ∈ E .

Hence γ
(a)
i = γ

(b)
i , which implies that the limit is independent of subse-

quences. Positivity of the limit also follows from (C.4). �

Appendix D. Estimates on generating function

We give an explicit formula for the generating function

ga,b,i(w, h) = F̃i(a, b, w; Π̃(w) + wh) ,

introduced in Section 3. As mentioned in the Introduction, an algebraic

part of our proof of estimates (Proposition 3.1) is computer-aided, because

it requires a routine work of lengthy calculations. A complete proof the

formula is long and it would not be worthwhile to describe the details of the

calculations. But it may be reasonable to specify which part of our estimates

are computer-aided. In this Appendix, we summarize the notations we used

for the computer calculations, and the results obtained by using REDUCE

on computers. The derivations are basically as in [16, 17], to which we refer

for further explanation.
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For each i ∈ E , ga,b,i has an expression ga,b,i(w, h) = Numi/Deni, where

Deni = detW +
3∑

α=1

det

(
0 Oα

Iα,i W

)
,

Numi = −det

(
0 O′

i

I ′i W

)
.

The definitions of Oα, Iα,i, O
′
i I

′
i, and W , in the above equations are as fol-

lows. Put Z(i) = Π(w)i + wS−1(w)ii hi, i ∈ E . Then O1 =

(Z(Ar), 0, 0, 0, 0, Z(Bq)), O2 = (0, Z(Ar), Z(Bq), 0, 0, 0), and O3 =

(0, 0, 0, Z(Bp), Z(Bp), 0). For X ∈ {A,B,D,E} and t ∈ {p, q, r}, we

write Xt to specify an element in E , with an obvious rule. With this

convention, O′
Xp = O3, X ∈ {A,B,E}, O′

Dq = O1, and O′
i = O2, oth-

erwise. I1,Dq = 0, otherwise I1,Xt = t(Z(Xr), 0, 0, 0, 0, Z(Xp)). I2,At =
t(0, Z(Ar), Z(Ap), 0, 0, 0), otherwise I2,Xt = 0. I3,Xt = 0, if X ∈ {A,E},
otherwise I3,Xt = t(0, 0, 0, Z(Xq), Z(Xq), 0). I ′Xq = tI3,Xq, while for t �= q,

I ′Xt = I1,Xt. W is a 6 dimensional matrix given by

W = I−


Wα(1) Wβ(1) 0 0 0 Z(Bq)

Wβ(1) Wα(1) Z(Bq) 0 0 0

0 Z(Ap) Wα(2) W ′
β(2) 0 0

0 0 Wβ(2) Wα′(2) Z(Br) 0

0 0 0 Z(Br) Wα′(2) Wβ(2)

Z(Ap) 0 0 0 Wβ′(2) Wα(2)



.

For j = 1, 2, Wα(j) + α′(j) = Wα′(j) + α(j) = 1 − β̄(j)
∆(j)n(j)

∆(j)n(j)−1
,

Wβ(j) =
β̄(j)

∆(j)n(j)−1

(
β(j)

β′(j)

)n(j)/2

, Wβ′(j) =
β̄(j)

∆(j)n(j)−1

(
β′(j)

β(j)

)n(j)/2

,

where β̄(j) =
√
β(j)β′(j) , 2ᾱ(j) = α(j) + α′(j), and ∆(j)n(j) =

x+(j)n(j)+1 − x−(j)n(j)+1

x+(j) − x−(j)
, x±(j) = 1 + δ(j) ±

√
δ(j) (2 + δ(j)), δ(j) =

1 − 2ᾱ(j) − 2β̄(j)

2β̄(j)
. Finally, n(j), α(j), α′(j), β(j), and β′(j) are given

by n(1) = a − 1, n(2) = b − 1, α(1) = α′(1) = Z(Ap)Z(Dq), α(2) =
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Z(Br)Z(Er), α′(2) = Z(Bq)Z(Ep), β(1) = β′(1) = Z(Ar)+Z(Ap)Z(Dq),

β(2) = Z(Bp) + Z(Br)Z(Ep), β′(2) = Z(Bq) + Z(Bq)Z(Er).

With these explicit formula, we obtain the following order estimate.

Define Ci, i ∈ E , by CAr = 1/2, CBr = CEr = 1, and Ci = 0, otherwise.

Proposition D.1. For all i ∈ E, w−3Deni and w−4 (Numi−CiDeni)

are rational in w and h, analytic at w = h = 0.

We also find by REDUCE calculation that O(w3) terms in Deni do not

vanish;

lim
w→0

w−3Deni �= 0 , i ∈ E .(D.1)

The matrix Ã(a, b, w) defined in Section 3 is rational in w, and has

no poles in w ≥ 0. The explicit form of Ã(a, b, w = 0) given below is

obtained by explicit calculation of the first derivatives of F̃ given above,

using REDUCE.

Define, for notational simplicity, a matrix M(a, b) by M(a, b)ij = (b +

2)2(a+ 1)−1Ã(a, b, w = 0)ij , i, j ∈ E , and put B2 = b+ 2. Then

M(a, b) =




2B2 0 (b3 + 9b2 + 14b+ 12)/12

(aB2 + b)B2 (a+ 1)B2
2 (b2 + 4b+ 6)(b− 1)/6

2B2 0 (b3 + 9b2 + 20b+ 24)/6

0 0 b(b+ 4)(b− 1)/6

2(aB2 − 1)B2 2aB2
2 b(b2 + 4b+ 7)

0 0 b(b+ 1)B2/4

2B2 0 (b3 + 9b2 + 14b+ 12)/6

2(aB2 − 1)B2 2aB2
2 (b2 + 4b+ 6)(b− 1)/3

b(b+ 4)(b− 1)/6 b(b+ 5)(b+ 1)/12 0

b(b2 + 6b+ 11)/3 b(2b2 + 9b+ 13)/12 (a− 1)B2
2

b(b+ 4)(b− 1)/3 b(b+ 5)(b+ 1)/6 0

(b3 + 9b2 + 14b+ 12)/3 b(b+ 5)(b+ 1)/6 0

2b(b2 + 3b+ 5) (2b2 + 5b+ 8)(b+ 1)/2 2(a− 1)B2
2

b(b+ 1)B2/2 b(b+ 1)B2/4 B2
2

b(b+ 4)(b− 1)/3 b(b+ 5)(b+ 1)/6 0

2b(b2 + 6b+ 11)/3 b(2b2 + 9b+ 13)/6 2(a− 1)B2
2
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(b2 + 10b+ 12)(b− 1)/12 b(b+ 7)(b− 1)/12

(b2 + 4b+ 6)(b− 1)/6 (2b2 + 11b+ 24)(b− 1)/12

(b2 + 10b+ 12)(b− 1)/6 b(b+ 7)(b− 1)/6

b(b+ 4)(b− 1)/6 b(b+ 7)(b− 1)/6

(b2 + 2b+ 2)(b− 1) (2b2 + 3b+ 8)(b− 1)/2

b(b− 1)B2/4 b(b− 1)B2/4

b(b+ 8)(b+ 1)/6 b(b+ 7)(b− 1)/6

b(b2 + 6b+ 11)/3 b(2b2 + 15b+ 37)/6



.

It is straightforward to see that Proposition D.1 and (D.1) imply the esti-

mates in Proposition 3.1 for second and third derivatives of g.

Remark. It may be interesting to summarize a possibility of proofs

without computers. At present, the estimates for which REDUCE calcu-

lations are inevitable, are the proof of (D.1) and the explicit form of Ã.

The required estimates in Section 3 concerning Ã are (3.4), (3.5), and (3.6),

among which (3.4) and (3.5) reflects a network structure of the (pre-) fractal,

and (3.6) is actually an expectation with respect to one-dimensional simple

random walk. It therefore suffices with relatively soft estimates of Ã. With

these considerations, presumably, we may be able to avoid computer aided

proof after all. For our purpose, rigorous derivation of the above results by

REDUCE on computers is sufficient.
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